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On determinants of modified Bessel functions and

entire solutions of double confluent Heun equations

V.M.Buchstaber∗†‡, A.A.Glutsyuk§, ¶‖

October 19, 2016

Abstract

We investigate the question on existence of entire solutions of well-
known linear differential equations that are linearizations of nonlin-
ear equations modeling the Josephson effect in superconductivity. We
consider the modified Bessel functions Ij(x) of the first kind, which

are Laurent series coefficients of the analytic function family e
x
2 (z+

1
z ).

For every l ≥ 1 we study the family parametrized by k, n ∈ Zl,
k1 > · · · > kl, n1 > · · · > nl of (l × l)-matrix functions formed
by the modified Bessel functions of the first kind aij(x) = Ikj−ni(x),
i, j = 1, . . . , l. We show that their determinants fk,n(x) are positive
for every l ≥ 1, k, n ∈ Zl as above and x > 0. The above determi-
nants are closely related to a sequence (indexed by l) of families of
double confluent Heun equations, which are linear second order differ-
ential equations with two irregular singularities, at zero and at infinity.
V.M.Buchstaber and S.I.Tertychnyi have constructed their holomor-
phic solutions on C for an explicit class of parameter values and con-
jectured that they do not exist for other parameter values. They have
reduced their conjecture to the second conjecture saying that if an ap-
propriate second similar equation has a polynomial solution, then the
first one has no entire solution. They have proved the latter statement
under the additional assumption (third conjecture) that fk,n(x) 6= 0 for
k = (l, . . . , 1), n = (l−1, . . . , 0) and every x > 0. Our more general re-
sult implies all the above conjectures, together with their corollary for

∗Permanent address: Steklov Mathematical Institute, 8, Gubkina street, 119991,
Moscow, Russia. Email: buchstab@mi.ras.ru
†All-Russian Scientific Research Institute for Physical and Radio-Technical Measure-

ments (VNIIFTRI),
‡Supported by part by RFBR grant 14-01-00506.
§CNRS, France (UMR 5669 (UMPA, ENS de Lyon) and UMI 2615 (Lab. J.-

V.Poncelet)), Lyon, France. Email: aglutsyu@ens-lyon.fr
¶National Research University Higher School of Economics (HSE), Moscow, Russia
‖Supported by part by RFBR grants 13-01-00969-a, 16-01-00748, 16-01-00766 and ANR

grant ANR-13-JS01-0010.

1



the overdamped model of the Josephson junction in superconductivity:
the description of adjacency points of phase-lock areas as solutions of
explicit analytic equations.

1 Introduction

We consider the well-known problem on entire solutions of double conflu-
ent Heun equations. Our results are directed to applications to nonlinear
equations modeling the Josephson effect in superconductivity.

1.1 Main result

Let Y (Zl) denote the space of the so-called two-sided Young diagrams of
order l:

Y (Zl) = {k = (k1, . . . , kl) | k1 > · · · > kl} ⊂ Zl.

This notion is motivated by the fact that the k ∈ Y (Zl) with ki > 0 are
the classical Young diagrams. To every two-sided infinite number sequence
(aj)

+∞
j=−∞ and every l ≥ 1 we associate the sequence of matrices Ak,n nu-

merated by pairs of two-sided Young diagrams k and n:

Ak,n = (aij), aij = akj−ni ; fk,n := detAk,n. (1.1)

Remark 1.1 The matrices Ak,n with k = (k1, k1−1, . . . , k1− l+1) and n =
(n1, n1−1, . . . , n1− l+1) are the classical Hankel matrices [15, pp. 301–302,
495] written with inverse order of columns. The theory of Hankel matrices
has important applications to the theory of functions, see [15, chapter XVI].
The matrices Ak,n corresponding to general two-sided Young diagrams may
be considered as a natural generalization of Hankel matrices. The results of
the paper provide the context on the crossing of dynamical systems, complex
differential equations and physics where the latter matrices naturally arise.

Remark 1.2 For every fixed two-sided Young diagram n the determinants
fk,n with variable k ∈ Y (Zl) form an infinite sequence of projective Plücker
coordinates corresponding to the subspace generated by the vector a = (aj)
and its shifts by n1, . . . , nl in an infinite-dimensional space.

The main result of the paper is the next theorem, which concerns the
above determinants fk,n(x) constructed from the sequence of modified Bessel
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functions of the first kind aj = Ij(x). Recall that Ij(x) are Laurent series
coefficients for the family of analytic functions

gx(z) = e
x
2
(z+ 1

z
) =

+∞∑
j=−∞

Ij(x)zj .

Equivalently, they are defined by the integral formulas

Ij(x) =
1

π

∫ π

0
ex cosφ cos(jφ)dφ, j ∈ Z.

Theorem 1.3 The determinant fk,n(x) in (1.1) with aj = Ij(x) is positive
for every two-sided Young diagrams k and n and every x > 0.

Remark 1.4 Recall that a rectangular l×m-matrix is called strictly totally
positive (nonnegative) [1, 16, 17, 26], if all its minors of all the dimensions
are positive (nonnegative). Many results on characterization and properties
of strictly totally positive matrices and their relations to other domains of
mathematics, e.g., dynamical systems, mathematical physics, combinatorics,
geometry and topology, are given in loc. cit. and in [27, 12] (see also
references in all these papers and books). A.Postnikov’s paper [27] deals
with the matrices l ×m, m ≥ l or rank l satisfying a weaker condition of
nonnegativity of just higher rank minors. One of its main results provides an
explicit combinatorial cell decomposition of the corresponding subset in the
Grassmanian G(l,m), called the totally nonnegative Grassmanian. The cells
are coded by combinatorial types of appropriate planar networks. K.Talaska
[31] obtained further development and generalization of Postnikov’s result.
In particular, for a given point of the totally nonnegative Grassmanian the
results of [31] allow to decide what is its ambient cell and what are its
affine coordinates in the cell. S.Fomin and A.Zelevinsky [12] studied a more
general notion of total positivity (nonnegativity) for elements of a semisimple
complex Lie group with a given double Bruhat cell decomposition. They
have proved that the totally positive parts of the double Bruhat cells are
bijectively parametrized by the product of the positive quadrant Rm+ and
the positive subgroup of the maximal torus.

Theorem 1.3 provides an explicit one-dimensional family (given by clas-
sical special functions) of strictly totally positive matrices Ak,n with l rows
and infinite number of columns. We hope that appearance of strictly to-
tally positive matrices in the context of the present paper would open a new
direction of their applications.
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Let us describe the relation of construction (1.1) to Schur polynomials.
Consider the generating function associated to a sequence aj :

M(a;w) =
+∞∑
j=−∞

ajw
j , w ∈ C.

Recall that for every classical Young diagram n ∈ Y (Zl) one denotes

∆n(z1, . . . , zl) =

∣∣∣∣∣∣∣∣
zn1
1 zn1

2 . . . zn1
l

zn2
1 zn2

2 . . . zn2
l

. . . . . . . . . . . .
znl1 znl2 . . . znll

∣∣∣∣∣∣∣∣ .
One denotes

Mn(a; z) = ∆n(z)
l∏

i=1

M(a; zi), where z = (z1, . . . , zl).

Lemma 1.5 One has the following formula

Mn(a; z) =
∑
k∈Zl

fk,nz
k. (1.2)

Proof The Laurent coefficient at zk of the function Mn(a; z) equals the
sum (−1)σak1−nσ(1) . . . akl−nσ(l) taken over all the permutations σ ∈ Sl. The
latter sum is obviously equal to the determinant fk,n, see (1.1). 2

Remark 1.6 The determinants fk,n are well-defined for every k, n ∈ Zl.
One has fk,n = 0 if either ki = kj , or ni = nj for some i 6= j. If a

tuple k̃ ∈ Zl is obtained from another tuple k by a permutation σ, then
f
k̃,n

= (−1)sign(σ)fk,n, where sign(σ) is the parity of the permutation σ.

Analogous statement holds for the other parameter n. The function Mn(a; z)
is obviously anti-symmetric in z = (z1, . . . , zl). This together with Theorem
1.3 implies that for every given two-sided Young diagram n and aj = Ij(x)
its Laurent coefficient with multi-index k is positive, whenever the order of
the components kj differs from the decreasing one by an even permutation.

Set
δ = (l − 1, l − 2, . . . , 0) ∈ Y (Zl),

sλ(z) =
∆δ+λ(z)

∆δ(z)
, z = (z1, . . . , zl), λ ∈ Zl.

4



Recall that if λ is a classical Young diagram, then by definition, sλ is the
Schur polynomial associated to λ, see [24, p. 40]. If λ ∈ Zl is not a Young
diagram, then we will call sλ a Schur rational function.

Corollary 1.7 For every λ ∈ Zl one has

Mδ+λ(a; z) = sλ(z)Mδ(a; z).

Corollary 1.8

Mn(a; z) =
∑

k∈Y (Zl)

fk,n∆k(z) = ∆δ(z)
∑

k∈Y (Zl)

fk,nsk−δ(z).

The main application of our results concerns the family

dφ

dt
= − sinφ+B +A cosωt, A, ω > 0, B ≥ 0. (1.3)

of nonlinear equations, which arises in several models in physics, mechan-
ics and geometry. For example, it describes the overdamped model of the
Josephson junction (RSJ - model) in superconductivity (our main motiva-
tion), see [21, 30, 25, 3, 28]; it arises in planimeters, see [13, 14]. Here ω is
a fixed constant, and (B,A) are the parameters. Set

τ = ωt, l =
B

ω
, µ =

A

2ω
.

The variable change t 7→ τ transforms (1.3) to a non-autonomous ordinary
differential equation on the two-torus T2 = S1×S1 with coordinates (φ, τ) ∈
R2/2πZ2:

φ̇ =
dφ

dτ
= −sinφ

ω
+ l + 2µ cos τ. (1.4)

The graphs of its solutions are the orbits of the vector field{
φ̇ = − sinφ

ω + l + 2µ cos τ

τ̇ = 1
(1.5)

on T2. The rotation number of its flow, see [2, p. 104], is a function ρ(B,A)
of parameters.

The phase-lock areas are the level subsets of the rotation number in the
(B,A)-plane with non-empty interior. They have been studied by V.M.Buchstaber,
O.V.Karpov, S.I.Tertychnyi et al, see [9, 18] and references therein and in
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Section 3 below. Each phase-lock area is an infinite chain of adjacent do-
mains separated by adjacency points. V.M.Buchstaber and S.I.Tertychnyi
have described coordinates of a wide class of adjacency points [9] and con-
jectured that this is the complete list of adjacencies. This was done via
reduction of the family of non-linear equations to two families (3.4), (3.9)
of second order linear differential equations of double confluent Heun type.
They have shown that adjacencies correspond exactly to those parameter
values, for which the linear equations have non-trivial holomorphic solu-
tions at 0. They formulated conjectures on the existence of their holomor-
phic solutions, which would imply the above conjecture on the adjacencies.
It appears that the first linear equation cannot have polynomial solutions,
while the second one can. The main conjecture, which implies the others,
says that if the second linear equation has a polynomial solution, then the
first linear equation does not have holomorphic solution at zero. Buch-
staber and Tertychnyi have reduced it to their other conjecture saying that
the determinants fδ+(1,...,1),δ(x) are non-zero for every x > 0 [9, conjecture
3, p.342]. They have proved their positivity for l ≤ 3 and arbitrary x > 0
and also for all l and small x > 0 dependently on l [10, appendixes 1, 2].

Theorem 1.3 is a more general result, which implies all the above con-
jectures.

Theorem 1.3 will be proved in Section 2. Its proof is based on the
following observation. The derivative of each modified Bessel function Ij is
the half-sum of its neighbors Ij±1. This implies that the derivative of each
determinant fk,n is a linear combination with positive coefficients of other
determinants fk′,n with k′ obtained from k by adding±1 to some component.
The surprising idea is to write the latter formula for derivative not just for a
single determinant fk,n, but for all the determinants fk,n with a fixed n and
all k ∈ Y (Zl) together. This yields a linear ordinary differential equation on
the infinite-dimensional vector function (fk,n(x))|k∈Y (Zl) with the right-hand
side being equal to the discrete Laplacian plus the multiplication by 2l. The
latter right-hand side represents a linear bounded vector field on the space l2
of infinite sequences (fk)k∈Y (Zl) for which the positive quadrant {fk ≥ 0 | k ∈
Y (Zl)} is an invariant subset. It is shown that the infinite vector function
(fk,n(x))k∈Y (Zl) is l2-valued. The values at 0 of all the determinants being
non-negative, the initial condition belongs to the positive quadrant. This
implies that the above vector of determinants fk,n(x) lies in the positive
quadrant for all x > 0, and hence, each determinant is non-negative for
x > 0. Its strict positivity is deduced from the same differential equation,
which implies that all its derivatives are non-negative and some of them does

6



not vanish at zero.
Section 3 presents applications of Theorem 1.3 to double-confluent Heun

equations and nonlinear equations (1.3), (1.4) related to the Josephson ef-
fect. It contains an introduction to the subject, an overview of previous
results and proof of the above-mentioned conjectures of V.M.Buchstaber
and S.I.Tertychnyi on Heun equations and adjacencies of phase-lock areas.

2 Proof of Theorem 1.3

In the proof of Theorem 1.3 we use the following classical properties of the
modified Bessel functions Ij of the first kind, see [32, section 3.7].

Ij = I−j ; (2.1)

Ij |x>0 > 0; Ij(0) = 0 for j 6= 0; I0(0) > 0; (2.2)

I ′0 = I1; I
′
j =

1

2
(Ij−1 + Ij+1); (2.3)

Ij(2y) =
∞∑
s=0

yj+2s

s!(j + s)!
for every j ≥ 0. (2.4)

The next two propositions and corollary together imply that for every fixed
n ∈ Y (Zl) the vector function (fk,n(x))k∈Y (Zl) is a solution of a bounded lin-
ear ordinary differential equation in the Hilbert space l2 of infinite sequences
(fk)k∈Y (Zl): a phase curve of a bounded linear vector field. We show that

the positive quadrant {fk ≥ 0 | k ∈ Y (Zl)} ⊂ l2 is invariant under the
positive flow of the latter field. This implies that fk,n(x) ≥ 0 for all x ≥ 0,
and then we easily deduce that the latter inequality is strict for x > 0. This
will prove Theorem 1.3.

Let us recall how the discrete Laplacian ∆discr acts on the space of
functions f = f(k) in k ∈ Zl. For every j = 1, . . . , l let Tj denote the
corresponding shift operator:

(Tjf)(k) = f(k1, . . . , kj−1, kj − 1, kj+1, . . . , kl).

Then

∆discr =
l∑

j=1

(Tj + T−1j − 2). (2.5)

Thus, one has

(∆discrf)(p) =

l∑
s=1

(f(p1, . . . , ps−1, ps − 1, ps+1, . . . , pl)
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+f(p1, . . . , ps−1, ps + 1, ps+1, . . . , pl))− 2lf(p). (2.6)

Remark 2.1 We will deal with the class of sequences f(k) for which f(k) =
0 whenever ki = kj for some i 6= j. It includes f(k) = fk,n(x) with fixed
n ∈ Zl and x ∈ R, see Remark 1.6. In this case the discrete Laplacian
is well-defined by the above formulas (2.5), (2.6) on the restrictions of the
latter sequences f(k) to the two-sided Young diagrams k ∈ Y (Zl).

Proposition 2.2 For every l ≥ 1 and n ∈ Y (Zl) the vector function (f(x, k) =
fk,n(x))k∈Y (Zl) satisfies the following linear differential equation:

∂f

∂x
= ∆discrf + 2lf. (2.7)

Equation (2.7) follows immediately from definition, equation (2.3) and
Remarks 1.6, 2.1.

Remark 2.3 For every k ∈ Y (Zl) the k-th component of the right-hand
side in (2.7) is a linear combination with strictly positive coefficients of the
components f(x, k′) with k′ ∈ Y (Zl) obtained from k = (k1, . . . , kl) by
adding ±1 to some ki. This follows from (2.6), (2.7).

Proposition 2.4 For every constant R > 1 and every j ≥ R2 one has

|Ij(x)| < Rj

j!
for every 0 ≤ x ≤ R. (2.8)

Remark 2.5 The sequence Rj

j! is bounded, and it decreases in j ≥ R.

Proof of Proposition 2.4. Fix an arbitrary j ≥ R2. Let us estimate the
terms of the series (2.4). For every s ≥ 0 and y ∈ [0, R2 ] one has

yj+2s

s!(j + s)!
≤ Rj+2s

2j+2s(j + s)!
≤ Rj

j!

1

2j+2s

(
R2

j

)s
≤ 1

2j+2s

Rj

j!
.

This together with (2.4) implies (2.8). 2

Corollary 2.6 For every l ≥ 1, n ∈ Y (Zl) and x ≥ 0 one has (fk,n(x))k∈Y (Zl) ∈
l2. Moreover, there exists a function C(R) = Cn(R) > 0 in R > 1 such that∑

k∈Y (Zl)

|fk,n(x)|2 < C(R) for every 0 ≤ x ≤ R. (2.9)
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Proof Fix an n ∈ Y (Zl) and an R > 1 + |n|max, |n|max = maxi |ni|. Set

|k|n,max = |k|max − |n|max; K = K(n,R) = {k ∈ Y (Zl) | |k|n,max ≥ R2}.

It suffices to prove uniform boundedness in x ∈ [0, R] of sum (2.9) taken
through all k ∈ K, since the complement Y (Zl) \K is finite. Set

M = max
j∈Z, 0≤x≤R

Ij(x).

The number M is finite, by (2.8) and Remark 2.5. For every k ∈ K one has

|fk,n(x)| < R|k|n,max

(|k|n,max)!
l!M l−1 for every 0 ≤ x ≤ R. (2.10)

Indeed, if k ∈ K, then some column of the matrix Ak,n consists of functions
Ij with j ≥ |k|n,max ≥ R2, which satisfy inequality (2.8), by Proposition
2.4 and (2.1). For the latter j the right-hand sides of inequality (2.8) are

no greater than R|k|n,max

(|k|n,max)!
, whenever x ∈ [0, R], by Remark 2.5. The other

matrix elements are no greater that M on [0, R]. Therefore, the module
|fk,n(x)| of its determinant defined as sum of l! products of functions Ij
satisfies inequality (2.10). This implies that the sum in (2.9) through k ∈ K
is no greater than

C(R) = l!M l−1
∑
k∈K

R|k|n,max

(|k|n,max)!
< +∞.

The corollary is proved. 2

Definition 2.7 Let Ω be the closure of an open convex subset in a Banach
space. For every x ∈ ∂Ω consider the union of all the rays issued from x
that intersect Ω in at least two distinct points (including x). The closure of
the latter union of rays is a convex cone, which will be here referred to, as
the generating cone1 K(x).

Proposition 2.8 Let H be a Banach space, Ω ⊂ H be as above. Let v be a
C1 vector field on a neighborhood of the set Ω in H such that v(x) ∈ K(x)
for every x ∈ ∂Ω. Then the set Ω is invariant under the flow of the field v:
each positive semitrajectory starting at Ω is contained in Ω.

1The authors believe that this definition and the next proposition are well-known to
specialists, but they have not found them in literature.
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Proof Fix a point O ∈ Int(Ω). Consider the “anti-Euler” vector field w
on H: its vector at a point x ∈ H is the vector xO directed to O. Consider
the family of vector fields uε = v + εw. For every ε > 0 and x ∈ ∂Ω
one has uε(x) ∈ Int(K(x)). In other words, the field uε with ε > 0 is
directed strictly inside the domain Ω, and its trajectories obviously stay
in Ω. Hence, the latter statement holds for ε = 0, by the theorem on
the existence and uniqueness of solutions of bounded ordinary differential
equation and continuity in parameter [11]. This proves the proposition. 2

Now let us prove Theorem 1.3. Fix an n ∈ Y (Zl). The right-hand side
of differential equation (2.7) is a bounded linear vector field on the Hilbert
space l2 of sequences (fk)k∈Y (Zl). We will denote the latter vector field by v.
Let Ω ⊂ l2 denote the “positive quadrant” defined by the inequalities fk ≥ 0.
For every point x ∈ ∂Ω the vector v(x) lies in its generating cone K(x): the
components of the field v are non-negative on Ω, by Remark 2.3. The vector
function (fk,n(x))k∈Y (Zl) in x ≥ 0 is an l2-valued solution of the correspond-
ing differential equation, by Corollary 2.6. One has (fk,n(0))k∈Y (Zl) ∈ Ω:

fk,n(0) = 0 whenever k 6= n; fn,n(0) = I l0(0) > 0, (2.11)

which follows from (2.2). This together with Proposition 2.8 implies that

fk,n(x) ≥ 0 for every k ∈ Y (Zl) and x ≥ 0. (2.12)

Now let us prove that the inequality is strict for all k ∈ Y (Zl) and x > 0.
Indeed, let fp,n(x0) = 0 for some p = (p1, . . . , pl) ∈ Y (Zl) and x0 > 0. All
the derivatives of the function fp,n are non-negative, by (2.7), Remark 2.3
and (2.12). Therefore, fp,n ≡ 0 on the segment [0, x0]. This together with
(2.7), Remark 2.3 and (2.12) implies that fp′,n ≡ 0 on [0, x0] for every p′

obtained from p by adding ±1 to some component. We then get by induction
that fn,n(0) = 0, – a contradiction to (2.11). The proof of Theorem 1.3 is
complete.

3 Applications to double confluent Heun equations
and Josephson effect: entire solutions and adja-
cencies

Here we prove the conjectures of V.M.Buchstaber and S.I.Tertychnyi from
[9] mentioned in the introduction. They concern the family of nonlinear
equations (1.3):

φ̇ =
dφ

dt
= − sinφ+B +A cosωt, A, ω > 0, B ≥ 0. (3.1)

10



We fix an arbitrary ω > 0 and consider family (3.1) depending on two
variable parameters (B,A). The variable change τ = ωt transforms (3.1) to
the differential equation (1.4) on the two-torus T2 = S1×S1 with coordinates
(φ, τ) ∈ R2/2πZ2. Its solutions are tangent to the vector field{

φ̇ = − sinφ
ω + l + 2µ cos τ

τ̇ = 1
, l =

B

ω
, µ =

A

2ω
(3.2)

on the torus. The rotation number of the equation (3.1) is, by definition, the
rotation number of the flow of the field (3.2), see [2, p. 104]. It is a function
ρ(B,A) of parameters. (Normalization convention: the rotation number of
a usual circle rotation equals the rotation angle divided by 2π.) The B-axis
will be called the abscissa, and the A-axis will be called the ordinate.

Definition 3.1 (cf. [18, definition 1.1]) The l-th phase-lock area is the level
set {B,A) | ρ(B,A) = l} ⊂ R2, provided it has a non-empty interior.

Remark 3.2 : phase-lock areas and Arnold tongues. The behavior
of phase-lock areas for small A demonstrates the Arnold tongues effect [2,
p. 110]. The phase-lock areas are called “Arnold tongues” in [18, definition
1.1].

Recall that the rotation number of system (3.1) has the physical meaning
of the mean voltage over a long time interval. The segments in which the
phase-lock areas intersect horizontal lines correspond to the Shapiro steps
on the voltage-current characteristic.

It has been shown earlier that
- the phase-lock areas exist only for integer values of the rotation number

(a “quantization effect” observed in [6] and later also proved in [20, 19]);
- the boundary of each phase-lock area {ρ = l} consists of two analytic

curves, which are the graphs of two functions B = gl,±(A) (see [7]; this fact
was later explained by A.V.Klimenko via symmetry, see [22]);

- the latter functions have Bessel asymptotics (observed and proved on
physical level in [29], see also [23, chaptrer 5], [3, section 11.1], [5]; proved
mathematically in [22]).

- each phase-lock area is an infinite chain of bounded domains going to
infinity in the vertical direction, each two subsequent domains are separated
by one point, the separation points lying outside the horizontal B-axis are
called the adjacency points (or briefly adjacencies);
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- for every l ∈ Z the l-th phase-lock area is symmetric to the −l-th one
with respect to the A-axis (symmetry of equation (3.1); the set of adjacencies
of all the phase-lock areas is also symmetric).

There is a conjecture saying that for every l ∈ Z the adjacencies of
the l-th phase-lock area lie on the vertical line B = lω, see Fig.1. This
conjecture is an open problem that was supported numerically in [18]2. It
was rigorously shown in loc. cit. that for every adjacency (B,A) one has
l = B

ω ∈ Z, l ≡ ρ(B,A)(mod2) and |l| ≤ |ρ(B,A)|.
Theorem 3.12, one of the main results of the section stated and proved in

Subsection 3.2 describes the adjacencies lying on a given line B = lω, l ∈ Z,
l ≥ 0, as solutions of an explicit analytic equation. To prove the conjecture,
one has to show that their rotation numbers are equal to l.

The proof of Theorem 3.12 is based on the results of V.M.Buchstaber
and S.I.Tertychnyi [9], Theorem 1.3 and the next theorem relating family
(3.1) to families of double confluent Heun type equations. To state it, let us
recall the following constructions and notations from [9]. Set

l =
B

ω
, µ =

A

2ω
, λ =

(
1

2ω

)2

− µ2, (3.3)

The adjacencies correspond to l ∈ Z, and it suffices to describe only those
with l ≥ 0, by symmetry. Thus, without loss of generality, everywhere below
we consider that l ∈ Z, l ≥ 0.

To family of equations (3.1), V.M.Buchstaber and S.I.Tertychnyi have
associated in [9] the family of second order differential equations

z2E′′ + ((l + 1)z + µ(1− z2))E′ + (λ− µ(l + 1)z)E = 0, (3.4)

which is equivalent to the family of double confluent Heun equations

z2v′′ + ((l + 1)z + µ(z2 + 1))v′ + (λ+ µ2)v = 0, v = e−µzE, (3.5)

cf [9, equations (2), (23)].

Theorem 3.3 For every ω > 0, l ∈ Z, l ≥ 0 a pair (B,A) with A 6= 0,
B = lω is an adjacency for family of equations (3.1), if and only if the cor-
responding equation (3.4) with λ, µ as in (3.3) has a nontrivial holomorphic
solution at 0.

2The results of paper [18] concern a slightly different family of differential equations
equivalent to (3.1), namely, dx

dτ
= ν sinx+a+s sin τ . It is obtained from (3.1) by coordinate

and parameter change τ = π
2
− ωt, x = −φ, ν = 1

ω
, a = B

ω
, s = A

ω

12



Figure 1: Phase-lock areas and their adjacencies for ω = 0.7. The abscissa
is B, the ordinate is A. Figure taken from [9, p. 331].

Remark 3.4 A solution of equation (3.4) is holomorphic at 0, if and only
if it is an entire function: holomorphic on C. An entire solution is uniquely
defined up to multiplicative constant. See [10, lemma 3, statement 4].

Theorem 3.3 was implicitly stated in [9, p. 332, paragraph 2]. We give
its proof in Subsection 3.2 for completeness of presentation.

In Subsection 3.1 we describe completely those parameter values for
which equation (3.4) has a nontrivial entire solution: these parameter val-
ues are solutions of equation (3.8). We then deduce the description of the
adjacencies in Subsection 3.2.
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3.1 Entire solutions of double confluent Heun equations

For every λ, µ ∈ R, µ ≥ 0 and l ∈ Z, l ≥ 0 set

Rm =
∞∏
j=m

Mj , where Mj =

(
1 + λ

j(j−l)
µ2

j(j−l)
1 0

)
, m = l + 1, l + 2, . . . ,

(3.6)
where the multipliers with bigger indices are placed to the right from those
with smaller indices. The well-definedness of the infinite products Rm was
proved in [9, lemma 15]. Set

ξl(λ, µ) = (λ µ2)Rl+1

(
1
0

)
. (3.7)

The main result of the present subsection is the following theorem.

Theorem 3.5 For every l ≥ 0 equation (3.4) has a nontrivial entire solu-
tion, if and only if the corresponding parameters (λ, µ) satisfy the equation

ξl(λ, µ) = 0. (3.8)

Theorem 3.5 answers positively conjecture 2 from [9, p. 332].

Remark 3.6 Equation (3.4) in an entire function E(z) can be translated
as a system of linear three-term recurrent relations on its Taylor coefficients,
see [9, p.338, formula (34)]. The above matrices Mj and function ξl(λ, µ)
introduced in [9, p.337] originate from studying the latter recurrence rela-
tions. The function ξl(λ, µ) is analytic, and its Taylor series converges on the
whole complex plane C2. This follows from the convergence of the infinite
matrix product Rm, see [9, lemma 15]. (Formally, the proof of convergence
in loc. cit. is given for λ, µ ∈ R, but it remains valid for complex values
without changes.)

The proof of Theorem 3.5 is based on the idea from [9] to consider
simultaneously the equation

z2E′′ + ((−l + 1)z + µ(1− z2))E′ + (µ(l − 1)z + λ)E = 0, (3.9)

which is obtained from equation (3.4) by changing l to −l.

Theorem 3.7 [9, theorem 7] The statement of Theorem 3.5 holds for l = 0.

14



Theorem 3.8 [9, theorem 2] For every l ∈ Z, l ≥ 0, and every (λ, µ)
satisfying equation (3.8) the corresponding equation (3.4) has a nontrivial
entire solution.

Theorem 3.9 [9, theorem 8, p. 353] Let for a given l ∈ N and some λ, µ
the corresponding differential equation (3.9) have no polynomial solutions.
Then equation (3.8) is also a necessary condition for the existence of a non-
trivial entire solution of equation (3.4).

Theorem 3.10 If for a given l ≥ 1 equation (3.9) has a polynomial solu-
tion, then the corresponding equation (3.4) has no nontrivial entire solution.

Theorem 3.10 solves positively conjecture 1 in [9, p. 332].
Proof Theorem 2 from [10] says that the statement of Theorem 3.10 holds
under the additional condition that the determinant ∆(x) = fk,n(x), k =
(l, . . . , 1), n = (l− 1, . . . , 0) from (1.1) with aj = Ij(x) is non-zero for every
x > 0. But the latter inequality follows immediately from Theorem 1.3.
This proves Theorem 3.10. 2

Remark 3.11 The proof of theorem 2 from [10], which relates the existence
of polynomial solution of equation (3.9) to the above determinant ∆(x), is
done as follows. If equation (3.4) has an entire solution, then each its solution
is a holomorphic function on C∗ = C \ {0} whose Laurent series contains
no monomial zs, −l ≤ s ≤ −1, see [10, lemma 3, part (6)]. Suppose,
by contradiction, that the corresponding equation (3.9) has a polynomial
solution Ê. Then degÊ = l−1, by [8, remark 3, p.973]. The transformation

g(z) 7→ eµ(z+z
−1)g(−z−1)

sends solutions of equation (3.9) to solutions of equation (3.4) [10, lemma
3, part (5)]. Therefore, the function

E(z) = eµ(z+z
−1)Ê(−z−1) (3.10)

is a solution of equation (3.4). The vector of its Laurent coefficients at
powers zs, s = −l, . . . ,−1 should be equal to zero. On the other hand, it
is obtained from the vector of coefficients of the polynomial Ê (written in
appropriate order with appropriate signs) by multiplication by the matrix
Ak,n from (1.1) of modified Bessel functions aj = Ij(2µ) with the above
k and n: ∆(2µ) = detAk,n. This follows immediately from formula (3.10).
Therefore, if ∆(2µ) 6= 0, then the above Laurent coefficient vector is nonzero,
– a contradiction.
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Proof of Theorem 3.5. Theorem 3.5 follows from Theorems 3.7–3.10. 2

3.2 Josephson effect: adjacencies of phase-lock areas

Theorem 3.12 For every given ω > 0 and l ∈ Z, l ≥ 0, set B = lω, a
pair (B,A) ∈ R2 with A 6= 0 is an adjacency of the corresponding family of
equations (3.1), if and only if the corresponding parameters λ, µ given by
(3.3) satisfy equation (3.8)

Theorem 3.12 follows from Theorems 3.3 and 3.5.
Proof of Theorem 3.3. Set

Φ = eiφ, z = eiτ = eiωt.

The complexified equation (3.1) is equivalent to the Riccati equation

dΦ

dz
= z−2((lz + µ(z2 + 1))Φ− z

2iω
(Φ2 − 1)).

The latter is the projectivization of the following linear equation in vector
function (u, v) with Φ = v

u :{
v′ = 1

2iωzu

u′ = z−2(−(lz + µ(1 + z2))u+ z
2iωv)

(3.11)

This reduction to a system of linear equations was earlier obtained in slightly
different terms in [4, 13, 9, 20]. It is easy to check that a function v(z) is the
component of a solution of system (3.11), if and only if it satisfies double
confluent Heun equation (3.5), or equivalently, the function E(z) = eµzv(z)
satisfies equation (3.4). System (3.11) has singularities only at zero and at
infinity; both are irregular ones.

Let us suppose that given l ≥ 0 and (λ, µ) correspond to an adjacency.
Then the corresponding linear system (3.11) (and hence, equation (3.4))
has trivial monodromy operator along a positive circuit around the origin.
This follows from the proof of [18, lemma 3.3]: it was shown in loc. cit.
that the monodromy matrix should be equal to diag(1, e2πia) with a ∈ Z,
and hence, to the identity. This implies that each solution of equation (3.4)
is holomorphic on C∗ = C \ {0}. Exactly one non-trivial solution (up to
multiplicative constant) should be holomorphic at zero. This follows from
the fact that the germ at 0 of system (3.11) should be analytically equivalent
to its diagonal formal normal form [18, lemma 3.3] and from [18, proposition
2.9]. The first part of Theorem 3.3 is proved.
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Now let us prove the converse. Let equation (3.4) have a nontrivial
solution holomorphic at 0. Then all its solutions are holomorphic in C∗, by
[9, theorem 3]. This implies that equation (3.4) (and hence, system (3.11))
has trivial monodromy. This together with [18, proposition 3.2] implies that
the parameters under consideration correspond to an adjacency. Theorem
3.3 is proved. The proof of Theorem 3.12 is complete. 2
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