
Limits of random tree-like discrete structures

Benedikt Stufler∗

Abstract

We study a model of random R-enriched trees that is based on weights on the
R-structures and allows for a unified treatment of a large family of random discrete
structures. We establish distributional limits describing local convergence around fixed
and random points in this general context, limit theorems for component sizes when R
is a composite class, and a Gromov–Hausdorff scaling limit of random metric spaces
patched together from independently drawn metrics on the R-structures. Our main
applications treat a selection of examples encompassed by this model. We consider
random outerplanar maps sampled according to arbitrary weights assigned to their inner
faces, and classify in complete generality distributional limits for both the asymptotic
local behaviour near the root-edge and near a uniformly at random drawn vertex. We
consider random connected graphs drawn according to weights assigned to their blocks
and establish a Benjamini–Schramm limit. We also apply our framework to recover
in a probabilistic way a central limit theorem for the size of the largest 2-connected
component in random graphs from planar-like classes. We prove Benjamini–Schramm
convergence of random k-dimensional trees and establish both scaling limits and local
weak limits for random planar maps drawn according to Boltzmann-weights assigned to
their 2-connected components.
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1 Introduction and main results

In recent years, there has been considerable progress in understanding the asymptotic shape
of large random discrete structures. Some focus was put on local weak convergence, which
describes the behaviour of neighbourhoods around random points [12, 100, 40, 37, 20, 90, 27].
Asymptotic global geometric properties are, on the other hand, better described by scaling
limits with respect to the Gromov–Hausdorff metric [71, 67, 3, 83, 85, 84, 91], and more
recent works [17] combine both viewpoints in local Gromov–Hausdorff scaling limits. A very
successful approach in this field is to make use of appropriate combinatorial bijections that
relate the objects under consideration to simpler structures such as different kinds of trees. To
name only a few examples, the Ambjørn–Budd bijection [11], the Cori–Vauquelin–Schaeffer
bijection [39, 99] and the Bouttier–di Francesco–Guitter bijection [34] have become well-known
for their usefulness in this regard.
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The approach taken in the present work is in a similar spirit, as we aim to make use of
results for random trees in order to study more complex structures. The main difference is,
however, that instead of presenting a specific example of a random structure and afterwards a
suitable bijection for this model, we consider an abstract family of all discrete structures that
admit a certain type of bijective encoding. Specifically, we consider the family of all objects
admitting an R-enriched tree encoding, with R ranging over all combinatorial classes. This
high level of generality allows for a unified approach for studying a large family of random
structures that in the past have only been treated individually.

The concept of enriched trees goes back to Labelle [81] who used it to provide a com-
binatorial proof of the Lagrange inversion formula. Roughly speaking, given a class R of
combinatorial objects, an R-enriched tree is a rooted tree together with a function that assigns
to each vertex an R-structure on its offspring. For example, the structure can be a linear
or cyclic order, a graph structure, or any other combinatorial construction. If we assign a
non-negative weight to each R-structure, we may draw an R-enriched tree of a given size
randomly with probability proportional to the product of its weights. The list of random
structures that may be described by this model is long, and includes random graphs sampled
according to weights assigned to its maximal 2-connected components, random outerplanar
maps sampled according to weights assigned to their inner faces, likewise random dissections
sampled according to such face-weights, random planar maps with a given number of edges
and weights on the blocks, and subclasses of random k-dimensional trees with a given number
of vertices.

In analytic combinatorics, random structures involving some sort of composition scheme
are usually classified into subcritical, critical and supercritical regimes, depending on how the
behaviour of the singularities of the inner and outer structure combine in order to determine
the behaviour of the compound structure [58, Ch. VI]. For example, random graphs from so
called subcritical classes of graphs have received considerable attention in the literature in
the past decade [48, 24, 50]. We are going to deviate from this classification and instead use
notions originating from a probabilistic context. Our study commences with the observation,
that any random discrete structure admitting an enriched-tree type encoding has a canonical
coupling with a simply generated tree. Janson’s survey [69] on the subject classifies this model
of random trees into three kinds I, II and III, with two further possible subdivisions of the
first into Iα and Iβ, or Ia and Ib. We recall the details in the preliminary Section 3. This
allows us to use the same classification for the random enriched-tree type structures under
consideration, and gives a more fine-grained terminology.

The core of our study of random weighted enriched trees describes asymptotic global and
local properties, such as convergence of extended enriched fringe subtrees and left-balls, limit
theorems for component sizes and scaling limits of associated random metric spaces. We
provide applications to prominent examples of random discrete structures encompassed by
this framework. The main contributions of the present work may be summarized as follows.

Random outerplanar maps and dissections of polygons. We consider random outerplanar
maps with n vertices sampled according to the product of weights assigned to their inner
faces. The case of uniform random outerplanar maps where each face receives weight 1 has
received some attention in the recent literature from both combinatorial and probabilistic
viewpoints [32, 36, 104].

As our first main application, we establish for arbitrary weight-sequences a distributional
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limit that encode convergence of neighbourhoods of the origin of the root-edge as the size of the
map tends to infinity, and also a Benjamini–Schramm limit that describes the asymptotic local
behaviour around a uniformly at random selected vertex. We compare and precisely describe
the distributions of both limit objects in terms of weighted Boltzmann distributions. The
limits admit a canonical embedding in the plane and the local convergence preserves the planar
structure of the random maps, that is, we really obtain convergence of the neighbourhoods
with their embedding in the plane. The approaches for obtaining the two limits are different,
as for the first we use the local convergence of simply generated trees with a fixed number
of vertices or leaves, and for the second we consider extended fringe subtrees at randomly
selected vertices.

In the type I case, we exploit the fact that the weak limits of the enriched tree encoding
with respect to both a fixed and random root are locally finite and correspond to actual
outerplanar maps. In the subcase Iα, where the diameter of this model of planar maps
has order

√
n, we even obtain convergence in total variation of arbitrary o(

√
n)-diameter

neighbourhoods of the fixed and random roots. This is best possible in this context, as the
convergence fails for ε

√
n-neighbourhoods for any positive ε.

In the type II regime, we apply the condensation phenomenon observed for large conditioned
Galton–Watson trees [72, 69, 27], and also establish a similar result for extended fringe-trees.
In this way, we obtain qualitatively different and interesting distributional limits, which
contrarily to the type I case contain doubly infinite paths. We also obtain limit theorems
for the sizes of the k ≥ 1 largest blocks and faces, in particular a central limit theorem for
k = 1, if the face-weights may additionally be tilted to probability weight-sequences that lie in
the domain of attraction of some stable law. One of the ingredients for treating outerplanar
maps is to understand the Benjamini–Schramm limits of large dissections of polygons sampled
according to the product of weights assigned to their inner faces, for which we provide a
complete description of their limits in the same spirit as for loop-trees in [28]. Random
face-weighted dissections have sparked the interest of probabilists in recent works [78, 43, 42].
We identify dissections as enriched trees using the Ehrenborg–Méndez transformation, which
allows us to study them in a unified way using the same framework as for general enriched
trees. If such a random dissection has type I, then its Benjamini–Schramm limit is given
by an infinite planar map whose dual-tree is distributed like a modified Kesten tree. In
the type II regime, giant faces emerge and the local weak limit contains a doubly-infinite
path corresponding to the boundary of the large face nearest to the random root. Random
dissections with type III converge in the local weak sense toward a deterministic doubly-infinite
path. As for random outerplanar in the type II regime, we may locate a submap given by
an ordered sequence of dissections whose random size (typically) becomes large. This is a
special case of a Gibbs partition, a general model of random partitions of sets which appear
naturally in combinatorial stochastic processes [97]. Using recent results for convergent type
Gibbs partitions [101], we identify a giant component in this sequence. Roughly speaking, this
implies that random outerplanar maps in this setting contain ”large” and ”small” dissections,
and if we look close the root-edge of the map, we typically see at most one that is large. A
priori, it would be possible that these ”dissection-cores” have type I and hence converge toward
the Kesten-tree-like limit object. However, we check that if the map has type II, then so do
the dissections. Thus the large dissections in type II outerplanar maps also have large faces.
This allows us to deduce local convergence of random outerplanar maps toward limit objects
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containing a doubly infinite path that corresponds to the frontier of a large face. We detail the
explicit distribution of the limits in terms of weighted Boltzmann-distributions. If the random
outerplanar map has type III, then it’s local behaviour is typically determined by single large
2-connected submap. In this case, the local weak limit for both the fixed and random root is
given by a deterministic doubly-finite path, and hence agrees with the behaviour of type III
dissections. Thus, our methods allow us to completely describe the local behaviour of random
face-weighted outerplanar maps and dissections of polygons for arbitrary weight-sequences
and around both the root-edge and around a uniformly at random chosen vertex.

Random graphs. The main example of random graphs in our setting is drawing a connected
n-vertex graph with probability proportional to weights assigned to its maximal 2-connected
subgraphs. This generalizes the model of uniform random graphs from addable minor-closed
graphs and also that of uniform random graphs from block-stable classes. See in particular
McDiarmid [88], McDiarmid and Scott [89] and references given therein. It encompasses in
particular the model of random graphs from planar-like classes introduced by Giménez, Noy
and Rué [63], and so called subcritical graph classes as studied by Drmota, Fusy, Kang, Kraus
and Rué [48].

It is not a restriction to treat connected graphs. If we draw a random possibly disconnected
graph in the same way, then a giant component emerges with a stochastically bounded
remainder, and hence properties for the connected case carry over automatically to the
disconnected case. This has been observed by McDiarmid [88] for uniform random graphs
from proper addable minor-closed classes, then recovered and extended in Stufler [101, Thm.
4.2 and Section 5] to random block-weighted classes with analytic generating function. In the
present work we establish results for Gibbs partitions with superexponential weights and apply
these to complete the picture, showing in complete generality that random block-weighted
graphs exhibit a giant component with a stochastically bounded remainder.

Our results for random enriched trees readily yield Benjamini–Schramm convergence in
the type I setting, and the strong o(

√
n)-neighbourhood convergence in the type Iα setting.

The limit object has a natural coupling with Kesten’s modified Galton–Watson tree, which is
reflected in the fact that it admits only one-sided infinite paths. In the less general type Ia
setting, which roughly corresponds to a weighted version of random graphs from subcritical
graph classes, this also yields laws of large numbers for the number of spanning trees and
subgraph counts by results due to Lyons [87] and Kurauskas [80]. The o(

√
n)-neighbourhood

convergence is best possible, as the diameter of these graphs has order
√
n. In the Iβ setting,

there are examples with a polynomially smaller expected diameter. So the asymptotic global
geometric properties differ greatly, but interestingly we still obtain Benjamini–Schramm
convergence toward a similar limit object.

For random graphs of type II, such as the uniform n-vertex planar graphs or random
graphs from planar-like classes, we obtain convergence toward a limit enriched tree that
contains a vertex with infinite degree and hence does not correspond directly to a random
graph. We still obtain convergence of the probability for the block-neighbourhood of a random
vertex to be of a specific shape, but this does not amount to Benjamini–Schramm convergence,
as it describes the asymptotic behaviour of neighbourhoods away from all large 2-connected
subgraphs. However, by combining results for the asymptotic behaviour of Gibbs-partitions,
the convergence toward the limit tree, and projective limits of probability spaces, we show that

there is sequence of random numbers Kn
d−→∞ such that the random connected graph with
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n-vertices converges in the Benjamini–Schramm sense if and only if the random 2-connected
graph drawn with probability proportional to its weight among all Kn-sized 2-connected
does. We detail the distribution of the limit of the connected graph in this case in terms of
weighted Boltzmann-distributions and the 2-connected limit. This is particularly interesting,
when considering random weighted graphs and not just uniform choices from fixed graph
classes. Apart from the class of planar graphs and related families, ”most” graph classes in
combinatorics are subcritical, and hence uniform graphs from such classes have the described
behaviour of type Ia random weighted graphs. But from a probabilistic perspective it is
natural to not only consider the uniform measure and we may easily force random weighted
graphs from subcritical classes into the type II or critical regime, by adjusting the weights. For
example, the uniform random outerplanar graph has type Ia, but if we adjust the block-weights
to the nongeneric type II regime, we obtain a new qualitatively different limit object, as
2-connected outerplanar graphs behave like random dissections of polygons. This example also
illustrates nicely the differences and similarities in the asymptotic behaviour of outerplanar
maps and graphs. Likewise, we may force many other examples of subcritical graph classes
such as cacti graphs into the type II regime, yielding a whole family of qualitatively different
Benjamini–Schramm limits. As for uniform random graphs from addable minor-closed graph
classes, it is known that these belong either to the type I or type II regime. In the type I case
we immediately obtain distributional convergence, and in the type II case our results fully
describe the relation to the 2-connected case. As we detail in Section 6.7.2, this seems to be a
first step in a promising direction for establishing and describing the Benjamini–Schramm
limit of uniform random planar graphs.

As a further main result, we obtain in a purely probabilistic way limit laws for the block-
size asymptotics of random graphs from planar-like classes, which encompasses the uniform
n-vertex planar graph. The limit laws for the size of the i-th largest blocks in this setting
appear to be new for i ≥ 2 and the central limit theorem for the size of the largest block
has previously been observed by Giménez, Noy and Rué [63], who even showed a stronger
local limit theorem by means of singularity analysis and the saddle-point method. The main
contribution of the present paper in this regard is, however, the simple probabilistic approach,
which shows that everything known about the extremal degree behaviour of simply generated
trees may be transferred to the setting of random graphs. As a byproduct, the framework
of enriched trees also yields results for the block-diameter of random graphs. McDiarmid
and Scott [89, Thm. 1.2] showed using interesting combinatorial methods that with high
probability any path in the random n-vertex graph from a block-class passes through at most
5
√
n log(n) blocks. They conjectured, that the extra factor

√
log(n) may be replaced by any

sequence tending to infinity. In the tree-like representation of graphs considered here, the
block-diameter corresponds up to an additive constant to the diameter of a simply generated
tree, and hence we may support this conjecture by verifying it for various families of classes.
We also observe that the conjecture would be entirely verified, if one could affirm a question
by Janson [69, Problem 21.8], who asked whether in general the diameter of any type of
simply generated trees has no larger order than

√
n.

Random k-dimensional trees. The notion of k-trees generalizes the graph-theoretic concept
of trees. A k-tree consists either of a complete graph with k vertices, or is obtained from a
smaller k-tree by adding a vertex and connecting it with k distinct vertices of the smaller
k-tree. Such objects are interesting from a combinatorial point of view, as their enumeration
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problem has been studied in many ways, see [93, 61, 60, 59, 44, 18, 68]. They are also
interesting from an algorithmic point of view, as many NP-hard problems on graphs have
polynomial algorithms when restricted to k-trees [13, 64]. We apply results for extended fringe
subtrees of random enriched trees to provide a Benjamini–Schramm limit of random k-trees.
Even more ambitiously, we verify total variational convergence of o(

√
n)-neighbourhoods,

which is the strongest possible form of convergence in this context, as the diameter of random
k-trees has order

√
n [47]. We compare the limit graph with a local limit established in [47]

that encodes convergence of neighbourhoods around a random k-clique. The limit objects
are distinct, which is already evident from the different behaviour of the degree of a random
vertex and a vertex of a random front. Interestingly, we may however verify that the two
limits are identically distributed as unrooted graphs.

Random planar maps. The study of random planar maps as their number of edges
becomes large has been the driving force for numerous discoveries in the past decade, and
their scaling limit and local limit are interesting objects in their own right. Tutte’s core
decomposition shows that planar maps are special cases of R-enriched trees, if we let R
denote the class of non-separable maps. Hence our results for random weighted enriched
trees apply to random planar maps sampled according to the product of weights assigned to
their maximal non-separable submaps. This includes the case of uniform n-vertex bipartite
maps, loop-less maps, and many other natural classes of maps, whose constraints may be
expressed in terms of constraints for the 2-connected components. We establish a local weak
limit for type I random block-weighted planar maps, and a scaling limit in the type Ia regime
with respect to the first-passage percolation metric, for which we also strengthen the local
convergence to total variational convergence of o(

√
n)-neighbourhoods. In the type II case,

which encompasses the mentioned examples of uniform planar maps with constraints, we apply
the condensation phenomenon to establish a general principle stating that whenever random
weighted non-separable maps converge in the local weak sense, then so does the corresponding
random block-weighted planar map. The enriched tree corresponding to a random planar map
is simply generated and its outdegrees correspond to the number of half-edges in the maximal
non-separable submaps. Hence available limit theorems and bounds for extremal outdegrees in
simply generated trees also hold for random block-weighted planar maps. A similar connection
to simply generated trees has been observed by Addario-Berry [4]. Specifically, the coupling
with a simply generated tree in [4, Prop. 1] is encompassed by Lemma 6.1 for the special case
where R is the species of non-separable planar maps.

Random enriched trees may also be considered up to symmetry. The combinatorial
techniques necessary for this specific task are not required for the present exposition concerning
random labelled or asymmetric structures. For this reason, we undertake this endeavour
in [103].

Plan of the paper

Section 1 gives an informal introduction and overview of the main applications. Section 2 recalls
basic notions related to graphs, trees and planar maps, and discusses the concepts of local weak
convergence and Gromov–Hausdorff convergence. Section 3 fixes notation regarding simply
generated trees and their limits. Section 4 discusses an algebraic formalization of weighted
combinatorial structures and associated Boltzmann probability measures. Section 5 briefly
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recalls probabilistic tools that will be frequently used. Section 6 presents the contributions
of the present paper in detail. Specifically, Subsection 6.1 introduces our model of random
weighted R-enriched trees and discusses how this encompasses various models of random
graphs, dissections of polygons, outerplanar maps, planar maps and k-trees. Subsection 6.2
provides general results for the convergence of trimmings, left-balls and extended fringe-
subtrees in enriched trees. In Subsection 6.4 we establish similar results for Schröder enriched
parenthesizations. Subsection 6.5 discusses the notion of convergent type Gibbs-partitions,
which will be crucial in the application to type II random structures and is also applied in
Subsection 6.6, which provides limit laws for the extremal sizes of components for random
R-enriched trees when R is a compound structure. Subsection 6.7 discusses the applications
to the mentioned examples of random enriched trees and establishes further main results
regarding the local weak convergence of structures in the type II case by application of the
condensation phenomenon. Subsection 6.8 introduces a general model of random semi-metric
spaces patched together from random semi-metrics associated to the R-structures. A scaling
limit and a tail-bound for the diameter are established and applied to random block-weighted
planar maps. In Section 7 we present the proofs of our main results.

Notation

Throughout, we set

N = {1, 2, . . .}, N0 = {0} ∪ N, [n] = {1, 2, . . . , n}, n ∈ N0.

We usually assume that all considered random variables are defined on a common probability
space whose measure we denote by P, and let Lp denote the corresponding space of p-integrable
real-valued functions. All unspecified limits are taken as n becomes large, possibly taking

only values in a subset of the natural numbers. We write
d−→ and

p−→ for convergence in

distribution and probability, and
d
= for equality in distribution. An event holds with high

probability, if its probability tends to 1 as n → ∞. We let Op(1) denote an unspecified
random variable Xn of a stochastically bounded sequence (Xn)n, and write op(1) for a random

variable Xn with Xn
p−→ 0. We write L(X) to denote the law of a random variable X. The

total variation distance of measures and random variables is denoted by dTV.

2 Background on graph limits and combinatorial struc-

tures

2.1 Graphs, trees and planar maps

2.1.1 Graphs

A graph G = (V (G), E(G)) consists of a set of labels or vertices V (G) and a set of edges E(G)
which are 2-element subsets of the vertex set. Instead of writing v ∈ V (G) we will often just
write v ∈ G. We say an edge e = {v, w} is incident to its ends v and w, and will shortly
denote by e = vw. The number of edges incident to a vertex v is its degree dG(v). A graph is
locally finite if every vertex has finite degree, and finite if it has only finitely many vertices.



2 BACKGROUND ON GRAPH LIMITS AND COMBINATORIAL STRUCTURES 10

Graphs H with V (H) ⊂ V (G) are subgraphs of G. We denote this by H ⊂ G. The graph H
is an induced subgraph, if additionally any edge of G with both ends in V (H) also belongs to
E(H). A path v0, v1, . . . , v` in G is a subgraph P of the form

V (P ) = {vi | 0 ≤ i ≤ `}, E(P ) = {vivi+1 | 0 ≤ i ≤ `− 1}.

The non-negative integer ` is the length of the path. We say P joins or connects its endvertices
v0 and v`. We will also encounter infinite paths v0, v1, . . . which start at the vertex v0. A graph
G is connected, if any two vertices may be joined by a path. The graph distance is a metric
on the vertex set V (G). The corresponding metric space is, by abuse of notation, usually
denoted by (G, dG) and we write v ∈ G instead of v ∈ V (G). We let D(G) = supx,y∈G dG(x, y)
denote the diameter of G. A cutvertex is a vertex whose removal disconnects the graph. A
connected graph is k-connected, if it has at least k + 1-vertices and removing any k vertices
does not disconnect the graph. The complete graph Km with m vertices has vertex set [m]
and any two distinct vertices are joined by an edge.

A subgraph B of a connected graph G is a block, if it is 2-connected or isomorphic to K2,
and if it is maximal with this property. That is, any subgraph B ( B′ ⊂ G must have a
cutvertex. Connected graphs have a tree-like block-structure, whose details are explicitly given
in Diestel’s book [46, Ch. 3.1]. We mention a few properties, that we are going to use. Any
two blocks of G overlap in at most one vertex. The cutvertices of G are precisely the vertices
that belong to more than one block. Many properties of G are evident from looking at its
blocks. For example, the graph G is termed bipartite, if its vertex set may be partitioned into
two disjoint sets A and B, such that no edge with both ends in A or both ends in B exist.
This is equivalent to requiring that every block of G is bipartite.

A graph isomorphism between graphs G and H is a bijection φ : V (G) → V (H) such
that any two vertices v, w ∈ E(G) are joined by an edge in G if and only if their images
φ(v), φ(w) are joined by an edge in H. The graphs G and H are structurally equivalent or
isomorphic, denoted by G ' H, if there exists at least one graph isomorphism between them.
If we distinguish a vertex vG ∈ V (G), then the pair G• = (V (G), vG) is a rooted graph with
root vertex vG. We let H(G•) = supx∈G dG(vG, x) denote the height of G•. For any vertex
x ∈ G, we let hG•(x) = dG(vG, x) the height of x in G. A graph isomorphism between rooted
graphs G• and H• is a graph isomorphism φ between the unrooted graphs G and H that
satisfies φ(vG) = vH . A graph considered up to isomorphism is an unlabelled graph. That
is, any two unlabelled graphs are distinct if they are not isomorphic. Formally, unlabelled
graphs are defined as isomorphism classes of graphs. Unlabelled rooted graphs are defined
analogously.

2.1.2 Trees

A tree T is a connected graph in which any two vertices are joined by a unique path. A rooted
tree T • has a natural partial order 4 on its vertex set, with v 4 w if the unique path from
the root vertex vT to w passes through v. If additionally w 6= v and no vertex u 6= v, w with
v 4 u 4 w exists, then w is a direct successor or an offspring of v. The offspring set of a
vertex v is the collection of all its direct successors. Its size is the outdegree d+

T (v).
Unlabelled unrooted trees are also called Pólya trees. Besides the four types of unordered

trees that may be labelled or unlabelled, rooted or unrooted, there are also ordered trees.
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Figure 1: Corners and half-edges of planar maps.

These trees are always rooted, but may be labelled or unlabelled. An ordered tree is a rooted
labelled tree in which each offspring set is endowed with a linear order. That is, each vertex
may have a first offspring, second offspring, and so on. Unlabelled ordered trees are usually
called plane trees.

2.1.3 Planar maps

A multigraph is a graph which may have multiple edges between vertices and in which an
edge may of identical endpoints. Regular graphs are also often called simple graphs in order
to distinguish the two notions. A graph or multigraph is planar if it may be embedded in
the sphere or plane such that edges may only intersect at their endpoints. Planar maps are
embeddings of connected planar multigraphs in the sphere, considered up to orientation-
preserving homeomorphism. We will not go into details and refer the reader to the book by
Mohar and Thomassen [92] for a complete exposition. Usually one studies rooted maps, in
which one of the edges is distinguished and given an orientation. This oriented edge is called
the root edge of the map and its origin is termed the root vertex. The complement of a map is
divided into disjoint connected components, its faces. The face to the left of the root edge is
termed the root face and the face to the right the outer face. The outer face is taken as the
infinite face in plane representations. It is notationally convenient to also consider the map
consisting of a single vertex as rooted, although it has no edges to be rooted at.

Many algorithms in computational geometry use a half-edge data structure in order to
represent planar maps. Here any edge of the map is split into two directed half-edges that
point in opposite directions. The half-edges correspond bijectively to the corners of the map,
see Figure 1 for an illustration where corners are denoted by letters and half-edges by directed
arrows. Formally, a corner incident to a vertex v may be defined as a pair of consecutive (not
necessarily distinct) elements in the cyclically ordered list of ends of edges incident to v.

A map is termed separable, if its edge set may be partitioned into two non-empty subsets
S and T such that there is precisely one vertex v incident with both a member of S and of T .
In this case, v is termed a cutvertex of the map. A planar map that is not separable is termed
non-separable. Note that a non-separable map with less than three vertices consists either of
two vertices with an arbitrary positive number of edges between them, or a single vertex with
either one or none loop-edge attached to it. A simple rooted map is termed outerplanar if
every vertex lies on the boundary of the outer face. Finally, a map is termed bipartite, if the
corresponding graph is bipartite.
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2.2 Local weak convergence

Let G• = (G, vG) and H• = (H, vH) be two connected, rooted, and locally finite graphs. For
any non-negative integer k we may consider the k-neighbourhoods Vk(G

•) and Vk(H
•) which are

the subgraphs induced by all vertices with distance k from the roots. The k-neighbourhoods
are considered as rooted at vG and vH , respectively. We may consider the distance

dBS(G•, H•) = 2− sup{k∈N0 |Vk(G•)'Vk(H•)} (2.1)

with Vk(G
•) ' Vk(H

•) denoting isomorphism of rooted graphs, that is, the existence of a
graph isomorphism φ : Vk(G

•)→ Vk(H
•) satisfying φ(vG) = vH . This defines a premetric on

the collection of all rooted locally finite connected graphs. Two such graphs have distance
zero, if and only if they are isomorphic. Hence this defines a metric on the collection B of
all unlabelled, connected, rooted, locally finite graphs. The space (B, dBS) is complete and
separable, that is, a Polish space. We refer the reader to the lecture notes by Curien [41] for
a detailed proof.

A random rooted graph G• ∈ B is the the local weak limit of a sequence G•n = (Gn, vn),
n ∈ N of random elements of B, if it is the weak limit with respect to this metric. That is, if

lim
n→∞

E[f(G•n)] = E[f(G•)] (2.2)

for any bounded continuous function f : B→ R. This is equivalent to stating

lim
n→∞

P(Vk(G•n) ' G•) = P(Vk(G•) ' G•). (2.3)

for any rooted graph G•. If the conditional distribution of vn given the graph Gn is uniform
on the vertex set V (Gn), then the limit G• is often also called the Benjamini–Schramm limit
of the sequence (Gn)n.

We are also going to consider the block-metric dblock on the graph G defined as follows.
Given vertices u, v ∈ V (G), consider any shortest path P connecting u and v in G, and let
dblock(u, v) ∈ N0 denote the minimum number of blocks of C required to cover the edges of
P . Given a non-negative integer k, we let Uk(G

•) denote the subgraph induced by all vertices
with block-distance at most k. This graph may be considered as rooted at the vertex v. As
Vk(G

•) ⊂ Uk(G
•), verifying

lim
n→∞

P(Uk(G•n) ' G•) = P(Uk(G•) ' G•)

for all rooted graphs G• verifies (2.3), and hence implies distributional convergence of G•n to
G•.

Benjamini–Schramm convergence often yields laws of large numbers for additive graph
parameters. Bollobás, Janson and Riordan remark in Section 7 of [31] that local weak
convergence does not always determine global subgraph count asymptotics. However, a
result by Kurauskas [80], shows that certain moment and uniform integrability conditions are
sufficient for deducing subgraph count asymptotics from the Benjamini–Schramm convergence.

Lemma 2.1 (Subgraph count asymptotics, [80, Thm. 2.1]). Suppose that (kn)n is a (deter-
ministic) sequence in N that tends to infinity and that (Gn)n is a sequence of random finite



2 BACKGROUND ON GRAPH LIMITS AND COMBINATORIAL STRUCTURES 13

graphs such that Gn has kn vertices. Let G•n be the rooted graph obtained by distinguishing a
uniformly at random chosen vertex. Suppose that the sequence (G•n) converges weakly in the
Benjamini–Schramm sense toward a (rooted) random limit graph G•. Let h ≥ 1 and suppose
that the root-degree d(G•) satisfies E[d(G•)h] <∞. Then the following three statements are
equivalent.

1. E[d(G•n)h]→ E[d(G•)h] as n becomes large.

2. (d(G•n)h)n is uniformly integrable.

3. For any connected graph H with h+ 1 vertices and any choice of root vertex v ∈ V (H)
the rooted graph H• = (H, v) satisfies

k−1
n emb(H,Gn)

p−→E[emb(H•,G•)].

Similarly, a result due to Lyons [87] yields spanning tree count asymptotics.

Lemma 2.2 (Spanning tree count asymptotics, [87, Thm. 3.2]). Let (Gn)n≥1 denote a
sequence of random finite graphs such that the expected average degree is bounded, that is,
there is a constant M with

E[|V (Gn)|−1
∑

v∈V (Gn)

dGn(v)] ≤M

for all n. For each rooted graph G• let pk(G
•) denote the probability that a simple random

walk started at the root is back at the root after k steps. If the sequence (Gn)n converges in
the Benjamini–Schramm sense toward a rooted limit graph G•, then the number of spanning
trees t(Gn) satisfies the limit law

|V (Gn)|−1 log t(Gn)
p−→E[d(G•)−

∑
k≥1

pk(G•)].

2.3 Gromov–Hausdorff convergence

Let X• = (X, dX , x0) and Y • = (Y, dY , y0) be pointed compact metric spaces. A correspondence
between X• and Y • is a subset R ⊂ X × Y containing (x0, y0) such that for any x ∈ X there
is a y ∈ Y with (x, y) ∈ R, and conversely for any y ∈ Y there is a x ∈ X with (x, y) ∈ R.
The distortion of the correspondence is defined as the supremum

dis(R) = sup{|dX(x1, x2)− dY (y1, y2) | (x1, y1), (x2, y2) ∈ R}.

The Gromov–Hausdorff distance between the pointed spaces X• and Y • is given by

dGH(X, Y ) =
1

2
inf
R

dis(R)

with the index R ranging over all correspondences between X• and Y •. The factor 1/2 is only
required in order to stay consistent with an alternative definition of the Gromov–Hausdorff
distance via the Hausdorff distance of embeddings of X• and Y • into common metric spaces,
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see [86, Prop. 3.6] and [35, Thm. 7.3.25]. This distance satisfies the axioms of a premetric
on the collection of all compact rooted metric spaces. Two such spaces have distance zero
from each other, if and only if they are isometric. That is, if there is a distance preserving
bijection between the two that also preserves the root vertices. Hence we obtain a metric on
the collection K• of isometry classes of pointed compact metric spaces. The space (K•, dGH)
is known to be Polish (complete and separable), see [86, Thm. 3.5] and [35, Thm. 7.3.30 and
7.4.15].

3 Convergence of simply generated trees

Simply generated trees are a model of random trees that generalize the concept of Galton–
Watson trees conditioned on having a specific number of vertices. We recall relevant notions
and results that we are going to use later in our study of combinatorial objects satisfying
bijective encodings as enriched trees. This exposition follows parts of Janson’s survey [69].

3.1 Simply generated trees

3.1.1 Random plane trees

Let w = (ωk)k∈N0 with ωk ∈ R≥0 for all k denote a weight sequence satisfying ω0 > 0 and
ωk > 0 for some k ≥ 2. Then to each plane tree T we assign its corresponding weight

ω(T ) =
∏
v∈T

ωd+T (v).

Let Tn denote the set of plane trees with n vertices. The partition function is defined by

Zn =
∑
T∈Tn

ω(T ).

The support of w is defined by

supp(w) = {k | ωk > 0}

and the span span(w) is the greatest common divisor of the support. If the partition function
Zn is positive, then n ≡ 1 mod span(w). Conversely, if n is large enough, then n ≡ 1
mod span(ω) also implies Zn > 0, see [69, Cor. 15.6]. For any integer n with Zn > 0 we may
draw a random tree Tn from Tn with distribution given by

P(Tn = T ) = ω(T )/Zn.

Prominent examples of such simply generated trees are Galton–Watson trees conditioned on
having n vertices.
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3.1.2 Types of weight sequences

It is convenient to partition the set of weight sequences into the three cases I, II, and III, as
weight sequence having the same type share similar properties.

In order to define these types, consider the power series

φ(z) =
∑
k≥0

ωkz
k

and let ρφ denote its radius of convergence. If ρφ > 0, then by [69, Lem. 3.1] the function

ψ(t) :=
tφ′(t)

φ(t)

defined on [0, ρφ[ is finite, continuous and strictly increasing. If ρφ > 0, set

ν := ψ(ρφ) := lim
t↗ρφ

ψ(t) ∈]0,∞].

Otherwise, if ρφ = 0, set ν := ψ(0) := 0.
The constant ν has a natural interpretation. Unless ρφ = 0 (which is equivalent to ν = 0),

ν is the supremum of the means of all probability weight sequences equivalent to w. See
Section 4 and in particular Remark 4.3 of Janson’s survey [69] for details.

We define the number 0 ≤ τ <∞ as follows. If ν ≥ 1, let τ ∈ [0, ρφ] be the unique number
satisfying ψ(τ) = 1. Otherwise, let τ := ρφ. Define the probability distribution (πk)k on N0 by

πk = τ kωk/φ(τ). (3.1)

The mean and variance of the distribution (πk)k are given by

µ = ψ(τ) = min(ν, 1) (3.2)

and

σ2 = τψ′(τ) ≤ ∞. (3.3)

We define the cases I) ν ≥ 1, II) 0 < ν < 1 and III) ν = 0. The case I) may be subdivided
in mutually exclusive cases by either Ia) ν > 1 and Ib) ν = 1, or Iα) ν ≥ 1 and σ <∞ and
Iβ) ν = 1 and σ = ∞. In the cases I) and II) the simply generated tree with n vertices is
distributed like a Galton–Watson tree conditioned on having size n with offspring distribution
(πk)k. In the case III) the weight sequence does not correspond to any offspring distribution.

The generating function

Z(z) =
∞∑
n=0

Znz
n,

with Zn denoting the partition function, is the unique power series satisfying

Z(z) = zφ(Z(z)).

This follows from [69, Rem. 3.2] and the Lagrange inversion formula. Let ρZ denote its radius
of convergence. By [69, Ch. 7] we have that 0 ≤ ρZ <∞ and

ρZ = τ/φ(τ). (3.4)

Moreover, ρZ = 0⇔ ρφ = 0⇔ τ = 0 and it holds that

τ = Z(ρZ). (3.5)
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3.2 Local convergence of simply generated trees

Simply generated trees convergence weakly toward an infinite limit tree, which, depending on
the weight sequence, need not be locally finite.

3.2.1 The modified Galton–Watson tree

Let ξ be a random variable on N0 with average value µ := E[ξ] ≤ 1 and let (πk)k≥0 denote

its distribution. The modified Galton–Watson tree T̂ ∈ T is defined in [69, Ch. 5] as follows.
Any vertex is either normal or special and we start with a root vertex that is declared special.
Normal vertices have offspring according to an independent copy of ξ and special vertices
have offspring (outdegree) according to an independent copy of the random variable ξ̂ with
distribution given by

P(ξ̂ = k) =

{
kπk, k ∈ N0,

1− µ, k =∞.

All children of a normal vertex are declared normal and if a special node gets an infinite
number of children all are declared normal as well. When a special vertex gets finitely many
children all are declared normal with one uniformly at random chosen exception which is
declared special. The special vertices form a path which is called the spine of the tree T̂ .
Note that if µ < 1 (the subcritical case) then T̂ has almost surely a finite spine ending with
an explosion. The length of the spine follows a geometric distribution. If µ = 1 then T̂ is
almost surely locally finite and has an infinite spine.

3.2.2 Local convergence

The Ulam–Harris tree U∞ is an infinite plane tree in which each vertex has countably infinitely
many offspring. Its vertex set

V∞ = {∅} ∪ N1 ∪ N2 ∪ · · · (3.6)

is the set of all finite strings of positive integers. Its root is given by the empty string ∅, and
any string v = (v1, . . . , v`) has ordered offspring (v, 1), (v, 2), . . ..

Any plane tree T can be viewed as subtree of the Ulam–Harris tree U∞ and is uniquely

determined by its sequence of outdegrees (d+
T (v))v∈V∞ ∈ NV∞0 with N0 = N0 ∪{∞}. We endow

the set N0 with a compact topology as the one-point compactification of the discrete space

N0. The space NV∞0 is a compact Polish-space since it is the product of countably many such

spaces. We let T ⊂ NV∞0 denote the subspace of trees, allowing nodes with infinite outdegree.
The subset T is closed and hence also compact.

Let w = (ωk)k be a weight sequence with ω0 > 0 and ωk > 0 for some k ≥ 2. Let Tn denote
the simply generated random tree with n vertices. Let T̂ denote the modified Galton–Watson
tree corresponding to the distribution (πk)k defined in Section 3.1.2.

Theorem 3.1 (Local limit of simply generated trees, [69, Thm. 7.1]). It holds that Tn
d−→T̂

in the metric space T as n ≡ 1 mod span(w) tends to infinity.



3 CONVERGENCE OF SIMPLY GENERATED TREES 17

Note that the limit object T̂ is almost surely locally finite if and only if the weight sequence
has type I. In this case, convergence in T implies convergence in the local weak sense of
Section 2.2.

3.3 Scaling limits of simply generated trees

3.3.1 The continuum random tree

The (Brownian) continuum random tree (CRT) is a random metric space constructed by
Aldous in his pioneering papers [7, 8, 9]. Its construction is as follows. To any continuous
function f : [0, 1]→ [0,∞[ satisfying f(0) = f(1) = 0 we may associate a premetric d on the
unit interval [0, 1] given by

d(u, v) = f(u) + f(v)− 2 inf
u≤s≤v

f(s)

for u ≤ v. The corresponding quotient space (Tf , dTf ) = ([0, 1]/∼, d̄), in which points with
distance zero from each other are identified, is considered as rooted at the coset 0̄ of the
point zero. This pointed metric space is an R-tree, see [53, 86] for the definition of R-trees
and further details. The CRT may be defined as the random pointed metric space (Te, dTe , 0̄)
corresponding to Brownian excursion e = (et)0≤t≤1 of duration one.

3.3.2 Convergence toward the continuum random tree

Depending on the weight sequence, the simply generated tree Tn may or may not admit a
scaling limit with respect to the Gromov–Hausdorff metric. In the case Iα), the tree Tn is
distributed like a critical Galton–Watson tree conditioned on having n vertices, with the
offspring distribution having finite non-zero variance.

Theorem 3.2 (Scaling limit of simply generated trees, [9]). If the weight-sequence w has
type Iα, then

(Tn,
σ

2
n−1/2dTn , ∅)

d−→ (Te, dTe , 0̄)

in the Gromov–Hausdorff sense, with σ given in Equation (3.3).

This invariance principle is due to Aldous [9] and there exist various extensions, see for
example Duquesne [52], Duquesne and Le Gall [53], Haas and Miermont [66].

3.3.3 Depth-first-search, height and width

Suppose that the weight sequence w has type Iα. We are going to list a few known results
that we are going to use frequently in our proofs later on. Addario-Berry, Devroye and Janson
[5, Thm. 1.2] showed that there are constants C, c > 0 such that for all n and h ≥ 0

P(H(Tn) ≥ h)) ≤ C exp(−ch2/n). (3.7)

Janson [69, Problem 21.9] posed the question, whether such a bound holds for all types of
weight sequences. While this question has not been answered fully yet, significant progress
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Figure 2: The lexicographic DFS-queue.

was made in recent work by Kortchemski [75, 79]. A corresponding left-tail upper bound of
the form

P(H(Tn) ≤ h) ≤ C exp(−c(n− 2)/h2) (3.8)

for all n and h ≥ 0 is given in [5, p. 6]. The first moment of the number Lk(Tn) of all vertices
v with height hTn(v) = k admits a bound of the form

E[Lk(Tn)] ≤ Ck exp(−ck2/n). (3.9)

for all n and k ≥ 1. See [5, Thm. 1.5].
Recall that the lexicographic depth-first-search (DFS) of the plane tree Tn is defined by

listing the vertices in lexicographic order v0, v1, . . . , vn−1 and defining the queue (Qi)0≤i≤n by
Q0 = 1 and the recursion

Qi = Qi−1 − 1 + d+
Tn(vi−1).

Compare with Figure 2, in which the numbers Qi are adjacent to the vertices vi. We may
also consider the reverse DFS (Q′i)0≤i≤n as the DFS of the tree obtained from Tn by reversing
the ordering on each offspring set. Then (Qi)i and (Q′i)i agree in distribution and by [5, Ineq.
(4.4)] there are constants C, c > 0 such that

P(max
j
Qj ≥ x) ≤ C exp(−cx2/n) (3.10)

for all n and x ≥ 0. Given a vertex v of Tn let j and k denote the corresponding indices in
the DFS and reverse DFS. In particular, v = vj in the lexicographic ordering. Then

Qj +Q′k = 2 +
∑
u

d+
Tn(u)− hTn(v) (3.11)

with the index u ranging over all ancestors of the vertex v.

4 Combinatorial species and weighted Boltzmann dis-

tributions

The language of combinatorial species was developed by Joyal [73] as a unified way to describe
combinatorial structures and their symmetries. It provides a clean and powerful framework
in which complex combinatorial bijection may be stated using simple algebraic terms. Rota
predicted its rise in importance in various mathematical disciplines in the foreword of the
book by Bergeron, Labelle and Leroux [21]. The present work aims to make a contribution by
showing its usefulness in combinatorial probability theory.
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4.1 Weighted combinatorial species

We take a gentle approach in introducing the required notions, following [73, 21]. A combina-
torial species F is a rule that produces for each finite set U a finite set F [U ] of F -objects and
for each bijection σ : U → V a bijective map F [σ] : F [U ] → F [V ] such that the following
properties hold.

1) F preserves identity maps, that is for any finite set U it holds that

F [idU ] = idF [U ].

2) F preserves composition of maps, i.e. for any bijections of finite sets σ : U → V and
σ′ : V → W we require that

F [σ′σ] = F [σ′]F [σ].

A combinatorial species F maps any finite set U of labels to the finite set F [U ] of F-objects
and any bijection σ : U → V to the transport function F [σ]. For example, we may consider
the species of finite graphs that maps any finite set U to the set of graphs with vertex set U .
In this context, the size of a graph is its number of vertices. Any bijection of finite sets is
mapped to the relabelling bijection between the corresponding sets of graphs.

We are going to study random labelled F -objects over a fixed set, drawn with probability
proportional to certain weights. To this end, we require the notion of a weighting of a species.
Letting A = R≥0 denote the non-negative real numbers, an A-weighted species Fω consists of
a species F and a weighting ω that produces for any finite set U a map

ωU : F [U ]→ A

such that ωU = ωV ◦ F [σ] for any bijection σ : U → V . Any object F ∈ F [U ] has weight
ωU(F ) and we may form the inventory

|F [U ]|ω =
∑

F∈F [U ]

ωU(F ).

By abuse of notation we will often drop the index and write ω(F ) instead of ωU (F ). Isomorphic
structures have the same weight, hence we may define the weight of an unlabelled F -object
to be the weight of any representative. The inventory |F̃ [n]|ω is defined as the sum of weights
of all unlabelled F-objects of size n. Any species may be considered as a weighted species
by assigning weight 1 to each structure, and in this case the inventory counts the number of
F -objects. To any weighted species Fω we associate its exponential generating series

Fω(z) =
∑
n≥0

|F [n]|ωzn/n!.

Two species F and G are termed isomorphic, denoted by F ' G, if there is a family (αU)U
of bijections αU : F [U ]→ G[U ], with the index U ranging over all finite sets, such that the
following diagram commutes for any bijection σ : U → V of finite sets.

F [U ]

αU
��

F [σ]
// F [V ]

αV
��

G[U ]
G[σ]

// G[V ]
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We say the family (αU)U is a species isomorphism from F to G.
Two weighted species Fω and Gν are called isomorphic, if there exists a species isomorphism

(αU)U from F to G that preserves the weights, that is, with ν(αU(F )) = ω(F ) for each finite
set U and F -object F ∈ F [U ].

There are some natural examples of species that we are going to encounter frequently.
The species SET with SET[U ] = {U} has only one structure of each size and its exponential
generating series is given by

SET(z) = exp(z).

The species SEQ of linear orders assigns to each finite set U the set SEQ[U ] of tuples
(u1, . . . , ut) of distinct elements with U = {u1, . . . , ut}. Its exponential generating series is
given by

SEQ(z) = 1/(1− z).

Finally, the species X is given by X [U ] = ∅ if |U | 6= 1 and X [U ] = {U} if U is a singleton.

4.2 Operations on species

Species may be combined in several ways to form new species. We discuss the the relevant
operations following [73, 21].

4.2.1 Products

The product F · G of two species F and G is the species given by

(F · G)[U ] =
⊔

(U1,U2)

F [U1]× G[U2]

with the index ranging over all ordered 2-partitions of U , that is, ordered pairs of (possibly
empty) disjoint sets whose union equals U . The transport of the product along a bijection is
defined componentwise. Given weightings ω on F and ν on G, there is a canonical weighting
on the product given by

µ(F,G) = ω(F )ν(G).

This defines the product of weighted species

(F · G)µ = Fω · Gν .

The corresponding generating sums satisfy

(F · G)µ(z) = Fω(z)Gν(z).

4.2.2 Sums

Let (Fi)i∈I be a family of species such that for any finite set U only finitely many indices i
with Fi[U ] 6= ∅ exist. Then the sum

∑
i∈I Fi is a species defined by

(
∑
i∈I

Fi)[U ] =
⊔
i∈I

Fi[U ].
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Given weightings ωi on Fi, there is a canonical weighting µ on the sum given by

µ(F ) = ωi(F )

for any i and F ∈ Fi[U ]. This defines the sum of the weighted species

(
∑
i∈I

Fi)µ =
∑
i∈I

Fωii .

The corresponding exponential generating series is given by

(
∑
i

Fωii )(z) =
∑
i

Fωii (z).

4.2.3 Derived species

Given a species F , the corresponding derived species F ′ is given by

F ′[U ] = F [U ∪ {∗U}]

with ∗U referring to an arbitrary fixed element not contained in the set U . (For example,
we could set ∗U = {U}.) Any weighting ω on F may also be viewed as a weighting on
F ′, by letting the weight of a derived object F ∈ F ′[U ] be given by ωU∪{∗U}(F ). The
transport along a bijection σ : U → V is done by applying the transport F [σ′] of the bijection
σ′ : U ∪ {∗U} → V ∪ {∗V } with σ′|U = σ. The generating series of the weighted derived
species (Fω)′ is satisfies

(Fω)′(z) =
d

dz
Fω(z).

4.2.4 Pointing

For any species F we may form the pointed species F•. It is given by the product of species

F• = X · F ′

with X denoting the species consisting of single object of size 1. In other words, an F•-object
is pair (m, v) of an F-object m and a distinguished label v which we call the root of the
object. Any weighting ω on F may also be considered as a weighting on F•, by letting the
weight of (m, v) be given by ω(m). This choice of weighting is consistent with the natural
weighting given by the product and derivation operation X · F ′, if we assign weight 1 to the
unique object of X . The corresponding exponential generating series is consequently given by

(F•)ω(z) = z
d

dz
Fω(z).
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4.2.5 Substitution

Given species F and G with G[∅] = ∅, we may form the composition F ◦ G as the species with
object sets

(F ◦ G)[U ] =
⋃
π

(
{π} × F [π]×

∏
Q∈π

G[Q]

)
,

with the index π ranging over all unordered partitions of the set U . Here the transport
(F ◦ G)[σ] along a bijection σ : U → V is done as follows. For any object (π, F, (GQ)Q∈π) in
(F ◦ G)[U ] define the partition

π̂ = {σ(Q) | Q ∈ π},

and let
σ̂ : π → π̂

denote the induced bijection betweenthe partitions. Then set

(F ◦ G)[σ](π, F, (GQ)Q∈π) = (π̂,F [σ̂](F ), (G[σ|Q](gQ))σ(Q)∈π̂).

That is, the transport along the induced bijection of partitions gets applied to the F -object
and the transports along the restrictions σ|Q, Q ∈ π get applied to the G-objects. Often, we
are going to write F(G) instead of F ◦ G. Given a weighting ω on F and a weighting ν on G,
there is a canonical weighting µ on the composition given by

µ(π, F, (GQ)Q∈π) = ω(F )
∏
Q∈π

ν(Q).

This defines the composition of weighted species

(F ◦ G)µ = Fω ◦ Gν .

The corresponding generating series is given by

(F ◦ G)µ(z) = Fω(Gν(z)). (4.1)

4.2.6 Restriction

For any subset Ω ⊂ N0 we may restrict a weighted species Fω to objects whose size lies in Ω.
The result is denoted by FωΩ . For convenience, we are also going to use the notation Fω≥k for
the special case Ω = {k, k + 1, . . .}, and define Fω>k, Fω<k, and Fω≤k analogously.

4.2.7 Interplay between the operators

There are many natural isomorphisms that describe the interplay of the operations discussed
in this section. The two most important are the product rule and the chain rule, which we
are going to use frequently.

Proposition 4.1 (Product rule and chain rule, [73]). Let Fω and Gν be weighted species.
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1. There is a canonical choice for an isomorphism

(Fω · Gν)′ ' (Fω)′ · Gν + Fω · (Gν)′.

2. Suppose that G[∅] = ∅. Then there is also a canonical isomorphism

(Fω ◦ Gν)′ ' ((Fω)′ ◦ Gν) · (Gν)′.

The product rule is easily verified, as the ∗-label in (Fω · Gν)′ may either belong the
F-structure, accounting for the summand (Fω)′ · Gν , or to the G-structure, accounting for
the second summand. The idea behind the chain rule is that the partition class containing
the ∗-label in an (Fω ◦ Gν)′-structure distinguishes an atom of the F -structure. We refer the
reader to the cited literature for details and further properties.

4.3 Weighted Boltzmann distributions and samplers

Boltzmann distributions appear naturally in the local limit of random discrete structures
and in the limit of certain convergent Gibbs partitions. A Boltzmann sampler is a procedure
involving random choices that generates a structure according a Boltzmann distribution.

4.3.1 Boltzmann distributions

Let Fω be a weighted species. For any parameter y > 0 with 0 < Fω(y) <∞ we may consider
the Boltzmann distribution for labelled F-objects with parameter y, given by

PFω ,y(F ) = Fω(y)−1ω(F )
y|F |

|F |!
, F ∈

⊔
m≥0

F [m]. (4.2)

4.3.2 Boltzmann samplers

The following two lemmas allow us to construct Boltzmann distributed random variables for
the sum, product and composition of species. The results in this subsection are a straight-
forward generalizations of corresponding results in the setting without weights, see for example
Duchon, Flajolet, Louchard, and Schaeffer [51] and Bodirsky, Fusy, Kang and Vigerske [30,
Prop. 38].

Lemma 4.2 (Weigthed Boltzmann distributions and operations on species).

1. Let Fω and Gν be weighted species, and let X and Y be independent random variables
with distributions L(X) = PFω ,y and L(Y ) = PGν ,y. Then (X, Y ) may be interpreted as
an F · G-structure over the set [|X|] t [|Y |]. If α denotes a uniformly at random drawn
bijection from this set to [|X|+ |Y |], then

L ((F · G)[α](X, Y )) = PFω ·Gν ,y.
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2. Let (Fωii )i∈I be a family of weighted species, y ≥ 0 a parameter with
∑

iF
ωi
i (y) <∞,

and (Xi)i∈I a family of independent random variables with distributions L(Xi) = PFωii ,y.

If K ∈ I gets drawn at random with probability proportional to FωKK (y), that is

P(K = k) = Fωkk (y)/
∑
i

Fωii (y),

then
L(XK) = P∑

i F
ωi
i ,y.

3. Let Fω and Gν be species such that Gν(0) = 0 and let y > 0 be parameter with
0 < Gν(y) < ∞ and 0 < Fω(Gν(y)) < ∞. Let X be a PFω ,Gν(y)-distributed random
F-object and (Yi)i∈N a family of independent PGν ,y-distributed random G-objects, that
are also independent of X. Then (X, Y1, . . . , Y|X|) may be interpreted as an F ◦ G-object
with partition {[|Y1|], . . . , [|Y|X||]}. Let α denote a uniformly at random drawn bijection
from the underlying set to the set [|Y1|+ . . .+ |Y|X||]. Then

L((F ◦ G)[α](X, Y1, . . . , Y|X|)) = PFω◦Gν ,y.

5 Probabilistic tools

For ease of reference, we explicitly state a selection of classical results that we are going to
use in our proofs.

5.1 Projective limits of probability spaces

Let (I,4) be a directed non-empty set. That is, we assume that the relation 4 is reflexive and
transitive, and every pair of elements in I has an upper bound. Let (Xi,Ti)i∈I be a family of
topological spaces. Suppose that for each pair i, j ∈ I with i 4 j we are given a continuous
map

fi,j : Xj → Xi,

such that fi,i = idXi for all i, and for all i 4 j 4 k the diagram

Xk

fj,k
//

fi,k

  

Xj

fi,j
��

Xi

commutes. The system ((Xi,Ti)i∈I , (fi,j)i4j) is termed a projective system of topological
spaces.

Let (X,TX) be a topological space, and for each i ∈ I let fi : X → Xi be a continuous
map. Suppose that for all i 4 j the diagram

X
fj
//

fi

  

Xj

fi,j
��

Xi

(5.1)
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commutes. The space (X,TX) is termed a projective limit of the system ((Xi,Ti)i∈I , (fi,j)i4j),
if for any topological space (Y,TY ) and any family of continuous maps gi : Y → Yi that also
satisfy (5.1) there is a unique continuous map f : Y → X such that for all i 4 j the diagram

Y

f
��

gj

��

gi

��

X

fj~~ fi   

Xj

fj,i
// Xi

(5.2)

commutes. In particular, between any two projective limits there is a canonical homeomor-
phism that is compatible with the projections of the system.

The projective limit always exist. We may define the space X as the subset X ⊂
∏

i∈I Xi

of all families x = (xi)i that satisfy xi = fi,j(xj) for all i 4 j. For each i we let fi : X → Xi

denote the projection to the ith coordinate. Let T denote the smallest topology on X
that makes all projections fi continuous. Then the space (X,T ) together with (fi)i∈I is a
projective limit of the system ((Xi,Ti)i∈I , (fi,j)i4j).

Suppose that for each i ∈ I we are given a probability measure µi on the Borel σ-algebra
σ(Ti), such that for all i 4 j the measure µi is the image measure fi,jµj of the measure µj
under fi,j, that is, for all events A ∈ σ(Ti) it holds that µi(A) = µj(f

−1
i,j (A)).

If we equip each of the topological spaces (Xi,Ti) with its Borel σ-algebra σ(Ti), then the
maps fj,i become measurable. The smallest σ-algebra on the projective limit (X,T ) that
makes all projections fi measurable coincides with its Borel σ-algebra σ(T ).

Suppose that for each i ∈ I we are given a probability measure µi on σ(Ti). We say (µi)i∈I
is a projective family, if for all i 4 j the measure µi is the image measure of µj under fi,j.
That is, for each event A ∈ σ(Ti) we require that µi = µj(f

−1
i,j (A)).

Lemma 5.1 ([33, Ch. 9, §4, No. 3, Theorem 2]). Let (Xi,Ti)i∈I , (fi,j)i4j be a projective
system of topological spaces, and (µi)i∈I a projective family of probability measures on the
Borel σ-algebras σ(Ti), i ∈ I. If the index set I is countable, then there exists a probability
measure µ on the projective limit (X,T ) such that for all i ∈ I the measure µi is the image
of µ under the projection fi.

5.2 A central local limit theorem

The following lattice version of the local limit theorem for sums of independent random
variables is taken from Durrett’s book.

Lemma 5.2 ([54, Ch. 3.5]). Let (Xn)n a family of independent identically distributed random
integers with first moment µ = E[X1] and finite non-zero variance σ2 = V[X1]. Let d ≥ 1
denote the smallest integer such that the support {k | P(X1 = k)} is contained in a lattice
of the form a+ dZ for some a ∈ Z. Then the sum Sn = X1 + . . . Xn satisfies the local limit
theorem

lim
n→∞

sup
x∈a+dZ

∣∣∣∣√nP(Sn = x)− d√
2πσ2

exp(−(nµ− x)2

2nσ2
)

∣∣∣∣ = 0.
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5.3 A deviation inequality

The following deviation inequality is found in most textbooks on the subject.

Lemma 5.3 (Medium deviation inequality for one-dimensional random walk). Let (Xi)i∈N be
an i.i.d. family of real-valued random variables with E[X1] = 0 and E[etX1 ] <∞ for all t in
some interval around zero. Then there are constants δ, c > 0 such that for all n ∈ N, x ≥ 0
and 0 ≤ λ ≤ δ it holds that

P(|X1 + . . .+Xn| ≥ x) ≤ 2 exp(cnλ2 − λx).

The proof is by observing that E[eλ|X1|] ≤ 1 + cλ2 for some constant c and sufficiently
small λ, and applying Markov’s inequality to the random variable exp(λ(|X1|+ . . .+ |Xn|)).

6 A probabilistic study of tree-like discrete structures

In this section, we develop a framework for random enriched trees and present our main
results as well as their applications to specific models of random discrete structures.

Index of notation The following list summarizes frequently used terminology in this
section.

Rκ κ-weighted species of R-structures, page 28

AωR ω-weighted species of R-enriched trees, page 28

ARn random n-sized R-enriched tree, page 28

(Tn, βn) random n-vertex R-enriched plane tree coupled to ARn , page
36

(T̂ , β̂) random modified R-enriched plane tree with a spine, page 38

(T ∗, β∗) another random modified R-enriched plane tree with a spine
that grows backwards, page 41

f(A, x) the enriched fringe subtree of a vertex x in an enriched tree
A, page 41

(T, α)[k] the enriched tree pruned at height k, page 38

w = (ωk)k weight-sequence associated to Rκ and Tn, page 36

φ(z) generating series of w, page 15

ρφ radius of convergence of φ(z), page 15

ψ series ψ(t) = tφ′(t)/φ(t), page 15

τ limit τ = limt↑ρφ ψ(t), page 15

ν maximal first moment of probability weight sequences equiv-
alent to w, page 15

(πk)k canonical probability weight sequence equivalent to w, page
15

ξ random variable with distribution (πk)k, page 40

ξ̂ size-biased version of ξ, page 40



6 A PROBABILISTIC STUDY OF TREE-LIKE DISCRETE STRUCTURES 27

V∞ vertex set of the Ulam–Harris tree, page 16

I, Ia, Iα, Iβ, II, III types of weight sequences, page 15

d+
T (x) outdegree of a vertex x in a rooted tree T , page 10

dG(x) degree of a vertex x in a graph G, page 9

d(G•) degree of the root-vertex in a rooted graph G•, page 9

dG(x, y) graph-distance between x, y ∈ G, page 10

dBLOCK block-metric, page 12

dFPP first-passage-percolation metric, page 77

Vk(·) graph metric k-neighbourhood, page 12

Uk(·) block metric k-neighbourhood, page 12

Ex(·) graph class defined by excluded minors, page 30

C species of connected graph, page 29

Cωn random n-vertex connected graph, page 30

B species of 2-connected graph, page 29

Bγn random n-vertex 2-connected graph, page 61

SET exponential species, page 20

SEQ species of linear orders, page 20

X single point species, page 20

D species of edge-rooted dissections of polygons, page 30

Dω
n random dissection of an n-gon, page 32

O species of simple outerplanar maps, page 33

Oω
n random n-vertex outerplanar map, page 33

M species of planar maps, page 34

Mω
n random planar map with n edges, page 34

Q species of 2-connected planar maps, page 34

Qκ
n random 2-connected planar map with n edges, page 74

K species of k-trees, page 35

Kn uniform random k-tree with n hedra, page 35

K◦ species of front-rooted k-trees, page 35

K◦1 species of front-rooted k-trees where the root-front is con-
tained in a unique hedra, page 35

Kk the complete graph with k vertices, page 10

PFω ,y Boltzmann distribution for a weighted species Fω with pa-
rameter y, page 23

Ĉ Benjamini–Schramm limit of random graphs, pages 58,61

Ô distributional limit of outerplanar maps, pages 51,54

Ô∗ Benjamini–Schramm limit of outerplanar maps, page 51

D̂ Benjamini–Schramm limit of dissections, page 67

K̂ Benjamini–Schramm limit of k-trees, page 71

Lk(·) number of vertices with height k in a rooted graph, page 18
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6.1 Prominent examples of weighted R-enriched trees

In this section, we state the formal definition of R-enriched which were introduced by
Labelle [81] using the language of combinatorial species by Joyal [73]. These notions allow for
a unified treatment of a large class of combinatorial objects. We introduce a model of random
enriched trees and, giving several examples, explain how this generalizes many well-known
models of random discrete structures.

As a motivation, consider the species A of rooted unordered trees. Any such tree consists
of a root vertex together with an unordered list of rooted trees attached to it. This may be
expressed in the grammar of Section 4.2 by an isomorphism

A ' X · SET(A), (6.1)

with X denoting the species consisting of a single object of size 1, and SET the species having
a single object of size k for each k ∈ N0. Enriched trees are rooted trees where the offspring
set of each vertex is decorated with an additional structure. They are characterized by a
similar isomorphism as (6.1). Let R be a combinatorial species. The species of R-enriched
trees AR is constructed as follows. For each finite set U let AR[U ] be the set of all pairs (A, α)
with A ∈ A[U ] a rooted unordered tree with labels in U , and α a function that assigns to
each vertex v of A with offspring set Mv an R-structure α(v) ∈ R[Mv]. The transport along a
bijection σ : U → V relabels the vertices of the tree and the R-structures on the offspring sets
accordingly. That is, AR[σ] maps the enriched tree (A, α) to the tree (B, β) with B = A[σ](A)
and β(σ(v)) = R[σ|Mv ](α(v)) for each v ∈ A. Analogous to (6.1), the species of R-enriched
trees satisfies an isomorphism

AR ' X · R(AR), (6.2)

as any R-enriched tree consists of a root vertex (corresponding to the factor X ) together with
an R-structure, in which each atom is identified with the root of a further R-enriched tree.
Conversely, Joyal’s theorem of implicit species [73, Thm. 6] ensures that given any species F
with an isomorphism F ' X · R(F), there is a natural choice of an isomorphism F ' AR. As
the examples below show, many classes of combinatorial objects that have been studied by
both combinatorialists and probabilists admit a decomposition as in (6.2), and may hence be
treated in a unified way by working with enriched trees.

We consider weightings on the enriched trees that are based on weights on the R-structures.
Let κ be a weighting on the species R. Then we obtain a weighting ω on the species AR
given by

ω(A,α) =
∏
v∈A

κ(α(v)). (6.3)

This weighting is consistent with the isomorphism in (6.2), that is,

AωR ' X · Rκ(AωR). (6.4)

If |AR[n]|ω > 0 we may consider the random labelled enriched tree ARn , drawn with
probability proportional to its weight among all labelled objects from AR[n]. In the following,
we illustrate how this models of random enriched trees generalizes a large variety of random
combinatorial objects.
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Figure 3: Correspondence of rooted connected graphs and enriched trees.

6.1.1 Simply generated (plane) trees

A natural example of a random enriched tree is the simply generated plane tree Tn discussed
in Section 3. Given a weight sequence w = (ωk)k∈N0 of non-negative real numbers with ω0 > 0
and ωk > 0 for at least one k ≥ 2, we may consider the weighting κ on the species R = SEQ
of linear orders that assigns weight ωk to each linear order on a k-element set. Then AR is
the species of ordered rooted trees and ARn is the random simply generated plane tree Tn with
n vertices. Strictly speaking, the vertices of ARn are additionally labelled from 1 to n, but as
any plane tree with n vertices has n! different labellings, this does not make a difference.

6.1.2 Random block-weighted graphs

Let C denote the species of connected graphs and B the subspecies of graphs that are
2-connected or consist of two distinct vertices joint by an edge. There is a well-known
decomposition

C• ' X · SET(B′(C•)) (6.5)

illustrated in Figure 3, that allows us to identify the species C• of rooted connected graphs
with SET◦B′-enriched trees. That is, rooted trees, in which each offspring set gets partitioned,
and each partition class Q carries a B′-structure, that has |Q|+ 1 vertices, as the ∗-vertex
receives no label. The isomorphism (6.5) can be found for example in Harary and Palmer [68,
1.3.3, 8.7.1], Robinson [98, Thm. 4], and Labelle [82, 2.10].

The idea behind (6.5) is the block-decomposition of connected graphs. A block of a graph
G is a maximal connected subgraph that does not contain a cutvertex of itself, that is, deleting
any vertex does not disconnect the block. Any edge of the graph lies in precisely one block
and any two blocks may intersect in at most one vertex. The cutvertices of G are precisely
the vertices that belong to more than one block, see for example Diestel’s book on graph
theory [46, Ch.3]. Hence any rooted graph consists of the root-vertex (accounting for the
factor X in (6.5)), and an unordered list of blocks incident to the root vertex, where at each
non-root vertex a further rooted graph is inserted (accounting for the factor SET ◦ B′ ◦ C•).

If we fix a weighting γ on B, we may consider the weighting ω on C that assigns weight
ω(C) =

∏
B γ(B) to any graph C, with the index B ranging over the blocks of C. The random

graph Cωn drawn from C[n] with probability proportional to its ω-weight is distributed like the
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1

2

3

Figure 4: Decomposition of edge-rooted dissections of polygons.

random enriched tree ARn for the weighted species Rκ = (SET ◦ B′)κ, with κ assigning the
product of the γ-weights of the individual classes to any assembly of B′-structures. Note that
formally ARn is a random rooted graph from C•[n], but we may simply drop the root in order
to obtain Cωn.

If we set the γ-weights of blocks to zero, we obtain random connected graphs from so called
block-stable classes, that is, classes of graphs defined by placing constraints on the allowed
blocks. A well-known example is the class of planar graphs, where each graph (equivalently,
each block of the graph) is required to admit an embedding in the complex plane, such
that any two distinct edges may only intersect at their endpoints. More generally, any class
of graphs Ex(M) that may be defined by excluding a set M of 2-connected minors is also
block-stable. Here a minor of a graph G refers to any graph that may be obtained from
G by repeated deletion and contraction of edges. Kuratowski’s theorem [46, Thm. 4.4.6]
states that any graph is planar if and only if it does not admit the complete graph K5

or the complete bipartite graph K3,3 as minor, identifying the class of planar graphs with
Ex(K5, K3,3). Further prominent examples are outerplanar graphs (Ex(K4, K2,3)), that may
be drawn in the plane such that each vertex lies on the frontier of the infinite face, and
series-parallel graphs (Ex(K4)), that may be constructed similar to electric networks in terms
of repeated serial and parallel composition. These two classes fall under the more general
setting of random graphs from subcritical block-classes in the sense of Drmota, Fusy, Kang,
Kraus and Rué [48], which also are special cases of the random graph Cωn.

6.1.3 Random dissections of polygons and Schröder enriched parenthesizations

Consider a convex polygon P in the complex plane, whose corners are the n-th roots of unity.
If we add an arbitrary number of diagonals to P in such a way, that different diagonals may
only intersect at their endpoints, we obtain a dissection of P . We may interpret dissections of
polygons as simple rooted planar maps, by distinguishing the edge from 1 to exp(2πi/n). Let
D denote the class of edge-rooted dissections of polygons. It will be convenient to define the
size of any D-object to be the number of non-root vertices, and allow a ”degenerate” dissection
consisting of a single root edge to be an element of D.

Any dissection consists of a root face, where each non-root edge is identified with the root
edge of a smaller dissection. Hence any element D ∈ D where the root-face has degree k, may
be interpreted as an ordered sequence (D1, . . . , Dk−1) of k − 1 smaller D-objects. Since we do
not count root vertices, the size of D agrees with the sum of the sizes of the Di. This yields
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Figure 5: The Ehrenborg–Méndez transformation of Schröder (X · L)-enriched
parenthesizations into SEQ ◦ L-enriched trees.

an isomorphism

D ' X + SEQ≥2 ◦ D, (6.6)

with the summand X corresponding to a single root-edge, and SEQ≥` denoting the species
of linear orders with length at least `. Compare with Figure 4, where the root vertices are
depicted as a ∗-placeholders, in order to illustrate that they do not count as regular vertices.
The isomorphism in (6.6) is a slight modification of a decomposition established by Bernasconi,
Pangiotou and Steger [25, Eq. (3.1)].

Given a species N with no structures of size zero or one, we may consider the species SN
of Schröder N -enriched parenthesizations. For any finite set U , a structure in SN [U ] can be
described as a rooted tree whose leaves are labelled with elements of U , such that to each
(unlabelled) internal vertex v with offspring set Mv an N -structure from N [Mv] is assigned.
The species SN satisfies an isomorphism of the form

SN ' X +N ◦ SN , (6.7)

see Ehrenborg and Méndez [55, Def. 2.1]. Joyal’s theorem of implicit species [73, Thm. 6]
ensures that given any species S with an isomorphism S ' X +N (S), there is a natural
choice of an isomorphism S ' SN . In particular, (6.6) allows us to identify the class D of
edge-rooted dissections of polygons with SEQ≥2-enriched Schröder parenthesizations.

Suppose that each object of the species N admits a canonical point of reference, that is,
N ' X · L for some species L. Ehrenborg and Méndez [55, Prop. 2.1] showed that there is an
isomorphism

SN ' ASEQ◦L (6.8)

which identifies Schröder N -enriched parenthesizations with SEQ◦L-enriched trees. The idea
is that any SN -object consists of a leaf-labelled tree where each unlabelled internal vertex v
with offspring set Mv has a preferred son v0 ∈Mv and an L-structure on Mv \ {v0}. Starting
at the root, we may follow the preferred sons until reaching a leaf, and the L-structures along
that path form a SEQ ◦ L-structure that we assign to the label of the leaf. Compare with
Figure 5. Each atom of the SEQ ◦ L-structure is the root of a smaller Schröder N -enriched
parenthesization, hence we may continue in this way until the whole parenthesization got
explored, yielding a SEQ ◦ L-enriched tree.
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Figure 6: Correspondence of edge-rooted dissections of polygons and enriched trees

We may choose the last element of any SEQ≥2-structure as its point of reference, yielding
an isomorphism between SEQ≥2 and X · SEQ≥1. Hence the isomorphism (6.8) allows us to
identify the species D of edge-rooted dissections of polygons with SEQ ◦ SEQ≥1-enriched
trees. That is,

D ' X · SEQ(SEQ≥1(D)). (6.9)

Here any SEQ ◦ SEQ≥1-structure corresponds to a dissection of a polygon, where each
diagonal must be incident with the destination of the root-edge, and the vertices incident
to the root-edge do not count as regular vertices. See Figure 6 for an illustration of the
correspondence (6.9).

Given a sequence of non-negative weights γ3, γ4 . . . with γk > 0 for at least one k, we may
assign to each dissection D of a polygon the weight

ω(D) =
∏
F

γ|F |,

with the index F ranging over the inner faces of D, and |F | denoting the face-degree. The
random dissection Dω

n of an n-gon that gets drawn with probability proportional to its ω-weight
is distributed like the random enriched tree ARn−1 for the weighted species Rκ = SEQ◦SEQγ

≥1

with the weighting γ given by SEQγ
≥1(z) =

∑∞
k=1 γk+2z

k. This model of a random plane
graph has received some attention in recent literature. A particular highlight is the work
by Curien, Haas and Kortchemski [42], who established the continuum random tree as the
scaling limit of Dω

n, if the weight-sequence (γk)k satisfies certain conditions.

6.1.4 Random outerplanar maps with face weights or block weights

Rooted planar maps are so called asymmetric objects. That is, any object with n vertices
may be labelled in precisely n! ways, using a fixed n-element set of labels. Hence it makes
no difference, whether we treat random labelled or unlabelled maps. In the following we are
going to work with classes of labelled maps, in order to stay consistent with the framework of
the present paper.
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Figure 7: Correspondence of rooted simple outerplanar maps to labelled enriched
trees.

Let O denote the class of rooted simple outerplanar maps with vertices as atoms. Moreover,
let D denote the class of rooted non-separable simple outerplanar maps, in which the origin of
the root-edge is replaced by a ∗-vertex that does not contribute to the size of the maps. Any
non-separable simple outerplanar map with at least 3 vertices has a unique Hamilton cycle
given by the boundary of the outer face. Hence D is the class of dissections of edge-rooted
polygons.

The class of simple outerplanar maps admits a tree-like decomposition according to the
blocks, which was established in Stufler [104]. Any such map can be constructed in a unique
manner as follows. Start with a root vertex, then take an ordered (possibly empty) sequence
of dissections and glue them together at the root vertex in a counter-clockwise way. The root
edge of the first map in the sequence becomes the root edge of the resulting map, and we
declare root vertex as marked. For each unmarked vertex left, take another ordered (possibly
empty) sequence of dissections, glue them together in a counterclockwise way at that vertex,
and finally declare that vertex as marked. Repeat the last step, until no unmarked vertices
are left.

This may be expressed in the language of species as follows. Let SEQ denote the species
of linear orders. Hence SEQ ◦ D is the class of ordered sequences of dissections, in which the
root vertices of the dissections do not contribute to the total size of the objects. If for each
vertex v of an outerplanar map we let α(v) denote the SEQ ◦ D-object corresponding to v in
the above decomposition, and declare each non-∗-vertex of α(v) as the offspring of v, then
we end up with an encoding of this map as an SEQ ◦ D-enriched tree (T, α). This yields an
isomorphism between Mout and the species of SEQ ◦ D-enriched trees. The corresponding
recursive isomorphism as in (6.2) reads as follows:

O ' X · SEQ(D(O)). (6.10)

If we fix a weighting γ on D, for example the weighting considered in Section 6.1.3, then we
may consider the weighting ω on O that assigns weight ω(M) =

∏
D γ(D) to any outerplanar

map M , with the index D ranging over the blocks of M . The random map Oω
n drawn from

O[n] with probability proportional to its ω-weight is distributed like the random enriched tree
ARn for the weighted species Rκ = (SEQ ◦ D)κ, with κ assigning the product of the γ-weights
of the individual dissections to any ordered sequence of D-structures. This encompasses the
uniform outerplanar map, which received some attention in recent literature, particularly
due to the work by Caraceni [36], who established the continuum random tree as its scaling
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Figure 8: Correspondence of rooted planar maps to trees enriched with non-separable
maps.

limit. A further natural example of Oω
n is that of random bipartite outerplanar maps, which

is obtained by setting the γ-weights of unwanted (that is, not bipartite) dissections to zero.
The Ehrenborg–Méndez isomorphism discussed in Section 6.1.3 yields an weight-preserving

isomorphism

Oω ' X + (X · Dγ)(Oω) (6.11)

which identifies weighted outerplanar maps as Schröder (X · Dγ)-enriched parenthesizations.
The combinatorial interpretation of Equation (6.11) is that any outerplanar map is either
a single vertex (accounting for the summand X ) or an edge-rooted dissection of a polygon,
where each vertex (including the origin of the root-edge, which is why we multiply Dγ by X )
gets identified with the origin of the root-edge of another outerplanar map.

6.1.5 Random planar maps with block-weights

Let M denote the species of rooted planar maps whose atoms are corners, or equivalently
half-edges. Let Q denote the subclass of all non-separable maps. Tutte’s ”substitution
decomposition” (see for example Banderier, Flajolet, Schaeffer, and Soria [15] and Flajolet and
Sedgewick [58, Ex. IX.42]) states that any rooted planar map consists of a non-separable block
or core Q that contains the root-edge, where for each vertex v of Q and each corner c incident
to v an arbitrary rooted map Mc is attached to v by drawing Mc in the face corresponding to
c and identifying the root-vertex of Mc with the vertex v. Hence

M' Q(X ·M). (6.12)

This identifies the species X ·M as C-enriched trees. The canonical isomorphism is illustrated
in Figure 8. Given a weighting κ on the species Q, we may assign the weight

ω(M) =
∏
Q

κ(Q)

to any map M , with the index Q ranging over all maximal non-separable submaps of M . Let
Mω
n denote the random planar map with n edges drawn with probability proportional to its

ω-weight. Then Mω
n is distributed like the map corresponding to the random enriched tree

AQ
κ

2n+1.
A planar map is simple if and only if all its maximal non-separable submaps are simple.

The same holds for many other properties, such as being bipartite, loopless, or bridgeless. We
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Figure 9: Decomposition of the class K◦1 for k = 2.

may set the κ-weight of unwanted blocks to zero in order for the random map Mω
n to satisfy

any subset of these constraints.

6.1.6 Random k-dimensional trees

A k-tree is a simple graph obtained by starting with a k-clique Kk and adding in each
step a vertex and k distinct edges from the vertex to the graph. For example, 1-trees are
simply unordered trees. Any k-clique in a k-tree is termed a front, a (k + 1)-clique a hedra.
Throughout we fix k and let K denote the species of k-trees. Let Kn denote the uniform
random k-tree with n + k vertices, or equivalently n hedra. Any k-tree with n hedra may
be rooted at

(
n+k
k

)
different fronts. So if K◦ denotes the species of k-trees that are rooted

at a front consisting of distinct ∗-placeholder vertices, then Kn may be sampled by taking a
uniform random element from K◦[n]. This reduces the study of labelled k-trees to the study
of front-rooted k-trees, for which an easy decomposition is available [44].

Let K◦1 denote the subspecies of K◦ where the root-front is contained in precisely one
hedron. Clearly any element from K◦ may be obtained in a unique way by glueing an arbitrary
unordered collection of K◦1-objects together at their root-fronts. Hence

K◦ ' SET(K◦1). (6.13)

Any K◦1-object may be constructed in a unique way as illustrated in Figure 9, by starting
with a hedron H consisting of the root-front and a vertex v, and then choosing, for each front
M of H that contains v, a k-tree from K◦ whose root-front gets identified in a canonical way
with M . Hence

K◦1 ' X · SEQ{k}(K◦). (6.14)

Combining the isomorphisms in (6.13) and (6.14) yields

K◦1 ' X · (SEQ{k} ◦ SET)(K◦1). (6.15)

This identifies the species K◦1 as SEQ{k}◦SET-enriched trees, and the species K◦ as unordered
forest of enriched trees.

6.1.7 Simply generated trees with leaves as atoms

We may consider the species T` of plane trees with leaves as atoms, such that no vertex is
allowed to have outdegree 1. This way, only finitely many trees correspond to any given finite
set of atoms. The species T` admits the decomposition

T` ' X + SEQ≥2(T`),



6 A PROBABILISTIC STUDY OF TREE-LIKE DISCRETE STRUCTURES 36

as any such tree is either a single root-vertex or an internal vertex, that does not contribute
to the total size, with an ordered sequence of at least two such trees dangling from it.

In combinatorial terminology, the class T` is a so called Schröder-enriched parenthesization.
We may write

SEQ≥2 ' X · SEQ≥1

by distinguishing any canonical element of the order, for example the left-most or the right-
most. The Ehrenborg–Méndez transformation (6.7) illustrated in Figure 5 now yields

T` ' X · (SEQ ◦ SEQ≥1)(T`). (6.16)

Given a weight-sequence (γk)k≥2 of non-negative real numbers with γk > 0 for at least one k,
we may assign the weight

ω(T ) =
∏
v

γd+T (v)

to any plane tree T , with the index v ranging over all internal vertices of T . That is, vertices
that are not leaves. We define a weighting γ on SEQ≥1, such that

SEQγ
≥1(z) =

∑
k≥1

γk+1z
k.

As the Ehrenborg–Méndez isomorphism (6.16) is compatible with these weightings, we obtain

T ω` ' X · (SEQ ◦ SEQ
γ
≥1)(T ω` ).

So, for Rκ = SEQ ◦ SEQγ
≥1, the random enriched tree ARn corresponds to a random plane

tree with n leaves drawn with probability proportional to its ω-weight.

6.2 Local convergence of random enriched trees near the root node

Throughout this section, let Rκ be a weighted species such that the weight sequence w = (ωk)k
with ωk = |R[k]|κ/k! satisfies ω0 > 0 and ωk > 0 for some k ≥ 2. Moreover, let ω be the
corresponding weighting on the species AR of R-enriched trees, as given in Equation (6.4).

In order to formalize local convergence, it is convenient to work with objects that we will
call R-enriched plane trees in the following, that is, pairs (T, β) of a plane tree T and a map
β that maps each vertex v of T to an R-structure β(v) ∈ R[d+

T (v)] with d+
T (v) denoting the

outdegree.
Recall that, as discussed in Section 3.2.2, any plane tree may be viewed as a subtree

of the infinite Ulam–Harris tree U∞ whose vertex set V∞ consists of the finite sequences of
positive integers. As there is a canonical bijection between the set of numbers [d+

T (v)] =
{1, 2, . . . , d+

T (v)} and the offspring set v1, v2, . . . , vd+
T (v) for any vertex v ∈ T , this allows us

to interpret an enriched plane tree (T, β) as an enriched tree.
The following lemma provides a coupling that allows us to make use of the wealth of

results for simply generated trees in order to study random enriched trees.

Lemma 6.1 (A coupling of random R-enriched trees with simply generated trees). Let n ∈ N
with |AR[n]|ω > 0 be given. The outcome ARn = (An, αn) of the following procedure draws a
random enriched tree from the set AR[n] with probability proportional to its ω-weight.
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1. Draw a simply generated plane tree Tn of size n according to the weight sequence w.

2. For each vertex v ∈ V (Tn) choose an R-structure

βn(v) ∈ R[d+
Tn(v)]

at random with conditional distribution

P(βn(v) = R | Tn) = κ(R)/|R[d+
Tn(v)]|κ

for all R ∈ R[d+
Tn(v)].

3. Choose a bijection
σ : V (Tn)→ [n]

between the vertex set of Tn and [n] uniformly at random, and distribute labels by applying
the transport function:

(An, αn) = AR[σ](Tn, βn).

By corresponding results for simply generated trees recalled in Section 3.1, we have that
|AR[n]| > 0 implies that n ≡ 1 mod span(w) and conversely, if n ≡ 1 mod span(w) is large
enough, then |AR[n]| > 0. The random enriched plane tree (Tn, βn) encodes all information
about the enriched tree An apart from the labeling. The vertices of enriched plane trees have
unique coordinates which allow us to encode these objects as elements of a product space as
follows.

If the maximum size of an R-object is finite, we equip the finite set

X := {∗} t
⊔
n≥0

R[n] (6.17)

with the discrete metric. Here ∗ denotes some placeholder value. Otherwise, if the sizes of
R-objects are unbounded, we instead let

X := {∗,∞} t
⊔
n≥0

R[n] (6.18)

such that the set X \ {∞} is equipped with the discrete topology and the space X is the
corresponding one-point compactification. Clearly X is a compact Polish space in both cases,
and so is the countable product XV∞ .

An R-enriched plane tree (T, β) may be encoded as an element of XV∞ by setting β(v) := ∗
for all vertices v ∈ V∞ \ V (T ). (There could be various R-structures of size 0, which is why
we make use of the ∗-placeholder.) Let A ⊂ XV∞ denote the subset of all R-enriched plane
trees that may have vertices with infinite degree. We do not require the offspring set of such
a vertex v to be endowed with an additional structure and set β(v) :=∞. The subset A is
closed and hence also a compact Polish space, see the proof of Theorem 6.2 in Section 7.11
for details.

We may now state our first main theorem which ensures the local convergence of our
model of random enriched trees. Janson [69, Thm. 7.1] showed the local convergence of simply
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generated trees (i.e. the case R = SEQ) in this generality, and our proof builds on this result.
Various subcases of simply generated trees were treated separately earlier, see Kennedy [74],
Aldous and Pitman [10], Jonsson, and Stefánsson [72], and Janson, Jonsson, and Stefánsson
[70].

Theorem 6.2 (Local convergence of random R-enriched trees). Let (Tn, βn) denote the
random R-enriched plane tree from Lemma 6.1. We define the random modified R-enriched
plane tree (T̂ , β̂) as follows.

1. Let T̂ ∈ T be the modified Galton–Watson tree defined in Theorem 3.1 that corresponds
to the weight sequence (ωk)k.

2. For each vertex v ∈ V (T̂ ) with finite outdegree d+

T̂ (v) <∞ choose

β̂(v) ∈ R[d+

T̂ (v)]

at random with conditional distribution

P(β̂(v) = R | T̂ ) = κ(R)/|R[d+

T̂ (v)]|κ

for all R-structures R ∈ R[d+

T̂ (v)]. For each vertex v ∈ V (T̂ ) with d+

T̂ (v) = ∞ set

β̂(v) =∞.

Then (Tn, βn) converges in distribution toward (T̂ , β̂) in the metric space A.

In particular, the R-structure βn(o) of the root converges in distribution to β̂(o) in
the space X. Recall that, as discussed in Section 3.1.2, the weight sequence w may be
classified into certain types according the supremum of the means of all possible equivalent
probability weight sequences. Depending on the weight sequence, we may strengthen the form
of convergence in Theorem 6.2 as follows.

For any enriched tree (T, α) and any integer k, let (T, α)[k] = (T [k], α[k−1]) denote the
corresponding tree that gets trimmed at height k. That is, T [k] is obtained from T by deleting
all vertices with height greater than k, and α[k−1] = (α(v))v∈T [k−1] . Hence (T, α)[k] is a tree
where each vertex with height less than k is enriched with an R-structure on its offspring set.
If the weight-sequence w has type I, then Theorem 6.2 implies that

(Tn, βn)[k] d−→ (T̂ , β̂)[k]

for every fixed k ≥ 1. If w has type Iα, this may be strengthened to convergence of trees
pruned at height o(

√
n):

Theorem 6.3 (A stronger form of local convergence of random R-enriched trees). Suppose
that the weight sequence w has type Iα. Then for any sequence of positive integers kn = o(n1/2)
it holds that

dTV((Tn, βn)[kn], (T̂ , β̂)[kn])→ 0

as n ≡ 1 mod span(w) becomes large.
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In Lemma 6.1 and Theorem 6.2 we observed a ”natural” construction that crops up when
working with enriched trees: First we sample a random plane tree, and then we draw for each
vertex v with finite degree d+(v) an R-structure from R[d+(v)] with probability proportional
to its weight. The proof of Theorem 6.2 may easily be extended to the following result.

Lemma 6.4. Let (τn)n≥1 be a sequence of random locally finite plane trees, that convergence

weakly in the space T toward a random limit tree τ̂ . Then the naturally enriched tree (τ̂ , β̂) is
the weak limit of the naturally enriched trees (τn, βn) in the space A.

Many models of random plane trees are known to converge weakly in T. See in particular
Abraham and Delmas [1, 2] and Janson [69, Ch. 22]. We are going to apply Lemma 6.4 in
Section 6.4 to Schröder enriched parenthesizations such as random face-weighted outerplanar
maps.

6.3 Convergence of random enriched trees that are centered at a
random vertex

As in the previous section, we let Rκ denote a weighted species such that the weight sequence
w = (ωk)k with ωk = |R[k]|κ/k! satisfies ω0 > 0 and ωk > 0 for some k ≥ 2. By Equation (6.4),
this induces a weighting on the species AR of R-enriched trees, which we denote by ω.

The present section is dedicated to studying the of random R-enriched trees locally around
a uniformly at random selected vertex. This is a natural question, as this behaviour may
differ from the behaviour around the fixed root-vertex. Our main application will be to
face-weighted random outerplanar maps in Section 6.7.1, for which we characterize different
limit graphs depending on whether we look at the vicinity of the root-edge or of a uniformly
at random drawn vertex.

6.3.1 The space of pointed plane trees

We start with the construction of an infinite plane tree U•∞ having a spine (ui)i≥0 that grows
backwards, that is, such that ui is a parent of ui−1 for all i ≥ 1. Any vertex ui with i ≥ 1 has
an infinite number of vertices to the left and to the right of its distinguished offspring ui−1,
and each of these non-centered offspring vertices is the root of a copy of the Ulam–Harris tree
U∞. To conclude the construction, the start-vertex u0 of the spine also gets identified with
the root of a copy of U∞. We let V•∞ denote the vertex-set of the tree U•∞.

Any plane tree T together with a distinguished vertex v0 may be interpreted in a canonical
way as a subtree of U•∞. To do so, let v0, v1, . . . , vk denote the path from v0 to the root of T .
This way, any vertex vi for i ≥ 1 may have offspring to the left and to the right of vi−1. Thus
there is a unique order-preserving and outdegree preserving embedding of T into U•∞ such
that vi corresponds to ui for all 0 ≤ i ≤ k.

Similarly as for the encoding of plane trees, we may identify the pair T • = (T, v0) with
the corresponding family of outdegrees (d̄+(v))v∈V•∞ , such that

d̄+
T •(v) ∈ N̄0 = N0 ∪ {∞}

for v /∈ {u1, u2, . . .}, and

d̄+
T •(ui) ∈ {∗} t (N̄0 × N̄0), i ≥ 1
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such that the two numbers represent the number of offspring vertices to the left and right of
the distinguished son ui−1, and the ∗-placeholder represents the fact that the vertex does not
belong to the tree.

We may consider N̄0 as a compact Polish space given by the one-point compactification of
the discrete space N0. A metrization that is complete and separable is given by

dN̄0
(a, b) =

{
0, a = b

(1 + min(a, b))−1, a 6= b.

Consequently, the product N̄0 × N̄0 is also compact and Polish. A corresponding metric is
given by

dN̄0×N̄0
((a1, a2), (b1, b2)) = max(dN̄0

(a1, b1), dN̄0
(a2, b2)).

The same goes with the disjoint union topology on {∗} t (N̄0 × N̄0), where we let the ∗-point
have distance 2 from any other vertex. Hence the space

{(d̄+(v))v∈V•∞ | d
+(v) ∈ N̄0 for v /∈ {u1, u2, . . .}, d̄+(v) ∈ {∗}t(N̄0×N̄0) for v ∈ {u1, u2, . . .} }

is the product of countably many compact Polish spaces, and hence also compact and Polish.
Any element of this space corresponds to a subgraph of the tree U•∞, and we say it is a tree if
this subgraph is connected. The subset T• of all elements that correspond to trees is closed,
and hence also a compact Polish space with respect to the subspace topology.

Any enriched plane tree together with a distinguished vertex has a spine given by the unique
directed path from the distinguished vertex to the root. This makes the R-structures along
that path (apart from the R-structure of the distinguished vertex) actually R•-structures,
because each contains a unique distinguished vertex from the spine. We could easily generalize
the space T• to a space whose elements encode pointed R-enriched trees, but there is no need
for this, as we may phrase our limit theorems in a way that avoids this construction.

6.3.2 The limit objects

As discussed in Section 3.1.2 there is a probability distribution (πk)k associated to the weight
sequence w, with density given in (3.1). Let ξ be distributed according to (πk)k and let T be
a ξ-Galton–Watson tree. By Equation (3.2) it holds that µ := E[ξ] ≤ 1. We may consider the
size-biased random variable ξ̂ ∈ N0 ∪ {∞}, distributed according to

P(ξ̂ = k) = kπk and P(ξ̂ =∞) = 1− µ.

The type I regime If the weight-sequence w has type I, then ξ̂ <∞ almost surely, and
we define the random tree T ∗ in the space T• as follows. Let u0 be the root of an independent
copy of the Galton–Watson tree T . For each i ≥ 1, we let ui receive offspring according to an
independent copy of ξ̂. The vertex ui−1 gets identified with an uniformly at random chosen
offspring of ui. All other offspring vertices of ui become roots of independent copies of the
Galton–Watson tree T . The construction of T ∗ goes back to Aldous [6], who established it as
a limit of large critical Galton–Watson trees re-rooted at a random vertex.

For each vertex v ∈ T ∗, we draw an R-structure β∗(v) ∈ R[d+
T ∗(v)] with probability

proportional to its weight. The atoms of the R-structure are matched in a canonical order
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preserving way with the offspring vertices of the vertex v. For i ≥ 1, the R-structure β∗(ui)
becomes an R•-structure by distinguishing the atom corresponding to the vertex ui−1. This
yields an infinite locally finite R-enriched tree (T ∗, β∗).

The condensation regime Suppose that the weight-sequence w has type II or III, that
is, 0 ≤ ν < 1. Let o denote the root vertex of the simply generated tree Tn. Janson [69, Lem.
19.32, Lem. 15.7] showed that there is a deterministic sequence Ωn that tends to infinity
sufficiently slowly, such that for any sequence Kn →∞ with Kn ≤ Ωn it holds that

lim
n→∞

P(d+
Tn(o) > Kn) = 1− ν. (6.19)

Let D̃n be a sequence of random variables with distribution given by

D̃n
d
= (d+

Tn(o) | d+
Tn(o) > Ωn). (6.20)

We construct the random pointed tree T ∗n as follows. The center u0 becomes the root of
an independent copy of the Galton–Watson tree T . For i = 1, 2, . . . the vertex ui receives
offspring according to independent copy ξ̂i of ξ̂, where a randomly chosen son gets identified
with ui−1 and the rest become roots of independent copies of T . We proceed in this way for
i = 1, 2, . . . until it occurs for the first time i1 that ξ̂i1 = ∞. When ξ̂1, . . . , ξ̂i1−1 < ∞ and
ξ̂i1 =∞, then ui1 receives offspring according to D̃n, among which we select one uniformly
at random and identify it with ui1−1. Each of these vertices (except ui1−1 of course) gets
identified with the root of an independent copy of the Galton–Watson tree T .

We form the finite pointed R-enriched tree (T ∗n , β∗n) by drawing for each vertex v of the
tree T ∗n an R-structure β∗n(v) from R[d+

T ∗n (v)] with probability proportional to its weight. The
atoms of the R-structure are matched in a canonical order-preserving way with the offspring
vertices of v. For i ≥ 1, the R-structure β∗(ui) becomes an R•-structure by distinguishing
the atom corresponding to the vertex ui−1.

6.3.3 Convergence of the vicinity of a random node

Given a pointed R-enriched tree A• = (A, x), we may consider the enriched fringe subtree
f(A•) which is the maximal enriched subtree of A that is rooted at x. For all k ≥ 0, we may
also consider the pointed enriched tree fk(A

•) given by the enriched fringe subtree at the k-th
ancestor of x, that we consider as pointed at the vertex x. If the vertex x has height less than
k in A•, then we set fk(A

•) = � for some placeholder symbol �.
Theorem 6.5 (Convergence of type I re-rooted trees). Let the R-enriched plane tree (Tn, βn)
be pointed at a uniformly at random selected vertex v0. For all k ≥ 0 let

Hk = fk((Tn, βn), v0)

denote the pointed fringe-subtree at the k-th ancestor of v0.

1. If the weight-sequence w has type I, then for each fixed k ≥ 1 it holds that

Hk
d−→ fk(T ∗, β∗)

as random elements of the countable set of finite pointed enriched trees, that we equip
with the discrete metric.
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2. If the weight-sequence w has type Iα, then for any sequence kn = o(
√
n) it holds that

dTV(Hkn , fkn(T ∗))→ 0

as n becomes large.

Let m ≥ 0 be an integer and T • = (T, x0) a pointed tree with spine x0, x1, . . . , xk. We
consider the pointed subtree tree Pm(T •) obtained by pruning away the offspring of all siblings
of xk−1 that lie more than m to the left or m to the right of xk−1. That is, all these siblings
become leaves.

If A• is a pointed R-enriched plane consisting of T • and a family of R-structures (γ(v))v∈T ,
we may likewise consider the pruned tree Pm(A•), that is given by the pointed tree Pm(T •)
such that all vertices v ∈ Pm(T •) keep their original R-structure, except for the siblings of
the vertex xk−1 that lie more than m to the left or to the right of it, whose R-structure we
set to the ∗-placeholder value.

Theorem 6.6 (Convergence in the condensation regime). Let the R-enriched plane tree
(Tn, βn) be pointed at a uniformly at random selected vertex v0. Let kn ≥ 0 be minimal with
the property, that the knth ancestor vkn of v0 in the tree Tn has outdegree d+

Tn(vkn) > Ωn. We
set

Hkn = fkn((Tn, βn), v0).

If no such ancestor exists, we set kn = ∞ and Hkn = �. It holds that 1 ≤ kn < ∞ with
probability tending to 1 as n becomes large, and for each m ≥ 0

dTV(Pm(Hkn), Pm(T ∗n , β∗n))→ 0.

6.4 Schröder N -enriched parenthesizations

Given a weighted species N υ with no structures of size less than 2 and at least one structure
with positive υ-weight, we may consider the species SυN of Schröder N -enriched parenthesiza-
tions discussed in Section 6.1.3, that satisfies a weight-preserving isomorphism

SυN ' X +N γ ◦ SυN . (6.21)

We have seen in Section 6.1 that the Ehrenborg–Méndez isomorphism allows us to consider
many classes of combinatorial objects such as face-weighted dissections of polygons and face-
weighted outerplanar maps both as enriched trees and as Schröder-enriched parenthesizations.

Similar as random enriched trees, who have a canonical coupling with a simply generated
tree (with vertices as atoms), random enriched parenthesizations have a natural coupling
with a simply generated tree whose atoms are leaves. Each viewpoint has its own advantages
and disadvantages: For example, if we study a random face-weighted outerplanar map with
n vertices and analytic weights, we may interpret this map either as a Galton–Watson tree
conditioned on having n leaves that is enriched by dissections, or as a (different) Galton–Watson
tree conditioned on having n vertices that is enriched by ordered sequences of dissections. The
first coupling is more convenient from a combinatorial viewpoint, because the outdegrees of
the vertices in the tree then correspond precisely to the sizes of the 2-connected components
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of the map, but there are less results available for Galton–Watson trees conditioned on their
number of leaves than for simply generated trees. There are fairly recent additions though
that are useful in this context, for example by Abraham and Delmas [2], Kortchemski [76]
and Curien and Kortchemski [43].

Lemma 6.7 (A coupling of random Schröder-enriched parenthesizations with simply generated
trees that have leaves as atoms). Let n ∈ N with |SN [n]|υ > 0 be given. Set p0 = 1 and for
each k ≥ 2 set pk = |N [k]|γ/k!. The outcome SNn of the following procedure draws a random
enriched tree from the set SυN [n] with probability proportional to its υ-weight.

1. Sample a random plane tree τn with n leaves according to

P(τn = T ) = (
∑
S

∏
v∈S

pd+S (v))
−1
∏
v∈T

pd+T (v).

with the sum-index S ranging over all plane trees with n leaves.

2. For each vertex v ∈ V (τn) choose an N -structure

δn(v) ∈ N [d+
τn(v)]

at random with conditional distribution

P(δn(v) = N | τn) = γ(N)/|N [d+
τn(v)]|γ

for all N ∈ N [d+
τn(v)].

3. Choose a bijection
σ : V (τn)→ [n]

between the vertex set of τn and [n] uniformly at random, and distribute labels by applying
the transport function:

SNn = SN [σ](τn, δn).

Given parameters a, t > 0, we may tilt the weight-sequence (pk)k by setting

pa,t0 = a and pa,tk = pkt
k−1

for k ≥ 1. The modified weight of the tree is then given by

υa,t(T ) =
∏
v∈T

pa,t
d+T (v)

= (at)nυ(T ).

Hence it makes no difference whether we draw a tree from T υ` [n] with probability proportional
to its υ-weight or to its υa,t-weight. If the generating series

p(z) :=
∑
k≥2

pkz
k
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is analytic at 0, then for each t > 0 with p(t) <∞ there is a unique parameter a = a(t) > 0
such that the tilted weights p(t) = (pa,tk )k≥0 form a probability weight-sequence. The expected
value of the offspring distribution is given by

µt =
∑
k≥2

kpa,tk =
∑
k≥2

kpkt
k−1,

which we may interpret as a strictly increasing function

µ : [0, ρp]→ [0,∞]

in t, with ρp denoting the radius of convergence of p(z). There is a canonical choice for a
parameter t <∞. If µρp ≥ 1, we let t0 > 0 be the unique parameter with µt0 = 1, and say
the weight-sequence (pk)k has type I. If 0 < µρp < 1, we set t0 = ρp and say (pk)k has type
II. Finally, if ρp = 0, we say (pk)k has type III and set t0 = 0 and let p(t0) be the probability
weight-sequence with mass 1 on the value 0.

Let τ̂ denote the modified Galton–Watson tree from Section 3.2.1 that corresponds to the
offspring distribution p(t0). Abraham and Delmas [1, Thm. 1.2] (see also [43, 2] for previous
results in subcases) showed convergence of τn toward τ̂ in the cases I and II. We complete
the picture by treating the non-analytic case III, in which we establish the same asymptotic
behaviour as simply generated trees with vertices as atoms and super-exponential weights
on the out-degrees [70, 69]. The idea of the proof is to transform the tree τn in two different
ways to simply generated trees and use the convergence of each. Recall that in Section 3.2.2
we discussed the compact Polish space T of plane trees that may have vertices with infinite
degree.

Lemma 6.8 (Convergence of simply generated trees with leaves as atoms). The random tree
τn converges in distribution toward the modified Galton–Watson tree τ̂ in the space T as n
becomes large.

The random enriched parenthesization (τn, δn) may be viewed as a random point in the
metric space A introduced in Section 6.2. Lemma 6.8 and Lemma 6.4 allow us to obtain
convergence toward a limit object (τ̂ , δ̂).

Theorem 6.9 (Local convergence of random enriched parenthesizations). Let (τn, δn) denote
the random N γ-enriched parenthesization from Lemma 6.7. We define the random modified
enriched parenthesization (τ̂ , δ̂) as follows.

1. Let τ̂ denote the modified Galton–Watson tree from Section 3.2.1 that corresponds to
the offspring distribution p(t0).

2. For each vertex v ∈ V (τ̂) with finite outdegree d+
τ̂ (v) <∞ choose

δ̂(v) ∈ N [d+
τ̂ (v)]

at random with conditional distribution

P(δ̂(v) = N | τ̂) = γ(N)/|N [d+
τ̂ (v)]|γ

for all N -structures N ∈ N [d+
τ̂ (v)]. For each vertex v ∈ V (τ̂) with d+

τ̂ (v) = ∞ set

δ̂(v) =∞.
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Then (τn, δn) converges in distribution toward (τ̂ , δ̂) in the metric space A.

We will also refer to the type of the weight-sequence (pk)k as the type of Sυ, (τn, δn) and
(τ̂ , δ̂). In a certain sense, the types are compatible with those of simply generated trees:
Suppose that we are given a species AωR of Rκ-enriched trees such that

Rκ = SEQ ◦ Hκ

for some species Hκ, whose weighting we also denote by κ (committing a slight abuse
of notation). The Ehrenborg–Méndez isomorphism from Section 6.1.3 allows us identify
Rκ-enriched trees with (X · Hκ)-enriched parenthesizations:

AωRκ ' SυX·Hκ .

We distinguished three types for the weight-sequence w = (ωk)k with ωk = |R[k]|κ. The
following observation states that the type of w agrees with the type of (pk)k. Recall the
definition of the parameter τ from Section 3.1.2.

Lemma 6.10 (The types of the two weight-sequences agree). The weight-sequence w has
type I if µt0 > 1, type II if 0 < µt0 < 1, and type III if µt0 = 0. Thus, the type of the
weight-sequence (pk)k agrees with the type of the weight-sequence (ωk)k. Moreover, it holds
that τ = t0.

6.5 Giant components in Gibbs partitions

Suppose that we are given weighted species Fυ and Gγ such that the composition Fυ ◦ Gγ
is well-defined. That is, we assume that Gγ(0) = 0. If we consider a random compound
structure from (Fυ ◦ Gγ)[n] that gets drawn with probability proportional to its weight, then
the corresponding random partition of the set [n] may be called a Gibbs partition. Pitman [97]
gives a comprehensive survey on this topic and describes various forms of convergence. We
are interested in cases where typically a giant component emerges as the size total size of the
composite structure

6.5.1 The convergent case

In this section, we discuss a setting where the random compound structure asymptotically
looks like a Boltzmann distributed (Fυ)′ ◦ Gγ-object, where the marked ∗-placeholder atom in
the F-structure is replaced with a giant component. The term is inspired by Barbour and
Granovsky’s terminology for the convergent case of random partitions satisfying a conditioning
relation [16]. The class of partitions satisfying a conditioning has a non-trivial intersection
with that of Gibbs partitions, but neither contains the other. See for example Arratia, Barbour
and Tavaré’s book [14] for a detailed discussion of this model.

Definition 6.11 (Convergent type substitution). Let Fυ and Gγ be weighted species such
that Gγ(z) is not a polynomial and satisfies Gγ(0) = 0. For each n with [zn]Fυ(Gγ(z)) > 0
let Sn denote the isomorphism type of a random labelled compound structure from the set
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(Fυ ◦ Gγ)[n] sampled with probability proportional to its weight. Suppose that the radius of
convergence ρG is positive and that

0 < ((F ′)υ ◦ Gγ)(ρG) <∞.

Let Ŝn denote the isomorphism type of the compound structure obtained by sampling a
P(F ′)υ◦Gγ ,ρG -distributed object Ŝ and replacing the ∗-placeholder atom in the F-structure by

a random G-structure sampled from G[n− |Ŝ|] with probability proportional to its γ-weight.
This is only well-defined if n − |Ŝ| > 0 and |G[n − |Ŝ|]|γ > 0, otherwise we set Ŝn to some
place-holder value. We say the composition Fυ ◦ Gγ has convergent type, if

lim
n→∞

dTV(Sn, Ŝn) = 0. (6.22)

Definition 6.12. Let d ≥ 1 be an integer. We say the coefficients of a power series g(z) =∑∞
n=0 gnz

n with non-negative coefficients and radius of convergence r > 0 belongs to the class
Sd of subexponential sequences with span d, if gn = 0 whenever n is not divisible by d, and

gn
gn+d

∼ rd,
1

gn

∑
i+j=n

gigj ∼ 2g(r) <∞ (6.23)

as n ≡ 0 mod d becomes large.

The broad scope of this setting is illustrated by the following easy observation, which has
been noted in various places, see for example [56].

Proposition 6.13. If gn = h(n)n−βρ−n for some constants ρ > 0, β > 1 and a slowly varying
function h, then the series

∑
n∈dN gnz

n belongs to the class Sd.

The notions introduced above are relevant to the study of enriched trees. The following
result follows from [101, Lem. 3.3] and shows that the coefficients of the exponential gener-
ating series of an arbitrary class of enriched trees form up to a constant shift of indices a
subexponential sequence, as long as the series has positive radius of convergence.

Lemma 6.14 (Subexponentiality of enriched trees). If Rκ is a weighted species, and AωR
the corresponding species of R-enriched trees such that the weight-sequence w = (ωk)k with
ωk = |R[k]|κ has type I or II, then the series AωR(z)/z belongs to the class Sd of subexponential
sequences with d = span(w).

The following general criterion follows from [101, Thm. 3.4, Eq. (6.3)] and ensures that
the compound structure R = Fυ ◦ Gγ has convergent type in the settings we are interested in.

Lemma 6.15 (Convergence of Gibbs partitions along subsequences). Suppose that there is
an integer 0 ≤ m < d such that Gγ(z)/zm belongs to the class Sd. Let D = d/ gcd(m, d) and
for each 0 ≤ a < D, let Fυa denote the restriction of Fυ to objects whose size lies in a+DZ.
If the exponential generating series Fυa (z) is not constant, then the composition Fυa ◦ Gγ has
convergent type. That is,

dTV(San, Ŝ
a
n)→ 0, n→∞, n ≡ am mod d,



6 A PROBABILISTIC STUDY OF TREE-LIKE DISCRETE STRUCTURES 47

with San denoting the isomorphism type of a random composite structure sampled from (Fυa ◦
Gγ)[n] with probability proportional to its weight, and Ŝan as in Definition 6.11, but for the
species Fυa and Gγ. If Sn denotes the isomorphism type of a random element from (Fυ ◦Gγ)[n]
that is drawn with probability proportional to its weight, then it holds for n ≡ am mod d that

Sn
d
= San.

We are going to apply Lemma 6.15 in many ways. For example, random face-weighted
outerplanar maps correspond by the discussion in Section 6.1.4 to trees enriched with ordered
sequences of dissections of polygons. We interpreted face-weighted dissections as classes of
enriched trees in Section 6.1.3, and hence their generating series is up to a constant shift
subexponential by Lemma 6.14. This will allow us to apply Lemma 6.15 to random type II
outerplanar maps, where the condensation phenomenon yields large submaps given by ordered
sequence of dissections, which may be interpreted as random-sized Gibbs partitions. The
randomness of the size will even out the different behaviour observed along subsequences in
Lemma 6.15, which allows us to establish local weak convergence of arbitary face-weighted
outerplanar maps in Theorem 6.27.

We will occasionally also make use of the following fact:

Proposition 6.16 ([38, Thm. 1], [56, Thm. C]). Suppose that the power series g(z) belongs
to Sd with radius of convergence r. Then for any complex function f(z) that is analytic in an
open set containing all g(z) with |z| ≤ r, it holds that

[zn]f(g(z)) ∼ f ′(g(r))[zn]g(z), n→∞, n ≡ 0 mod d.

6.5.2 The superexponential case

If the radius of convergence of the exponential generating series of the species under consid-
eration equals zero, then the limit object studied in the convergent case is not well-defined,
as Boltzmann-distributions only make sense for analytic species. For such superexponential
weights, we may establish a regime where typically the composite structure consists of a single
component, or of a giant component with a bounded rest.

Lemma 6.17. Suppose that the species AωR of R-enriched trees has type III, and set

ai = [zi]AωR(z)

for all i ≥ 0. Then for any integer k ≥ 2 it holds that∑
i1+...+ik=n

1≤i1,...,ik<n−(k−1)

ai1 · · · aik = o(an−(k−1)). (6.24)

Here both sides of the equation are equal to zero, unless n ≡ k mod span(w).

The probabilistic interpretation of Equation (6.24) is that if we draw a k-tupel from
(AωR)k[n] with probability proportional to its weight, then with high probability all trees in the
forest have size 1, except for a single giant tree which accounts for the total remaining mass.
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Theorem 6.18. Let Fυ and Gγ denote weighted combinatorial species, such that Gγ(z) has
radius of convergence zero and Fυ(z) has positive radius of convergence. Suppose that the
coefficients

ai = [zi]Gγ(z)

are supported on a lattice 1 +dN0 with d ≥ 1, such that there is an integer I with ai > 0 for all
i ≥ I with i ≡ 1 mod d. Let Sn be drawn from (Fυ ◦Gγ)[n] with probability proportional to its
weight. If the coefficients (ai)i satisfy Equation (6.24) for all k ≥ 2, then there is a constant
n0 such that with probability tending to 1 as n becomes large the composite structure Sn has a
giant component with size at least n− n0. In particular, the total number of components in Sn
is at most n0 + 1 with high probability.

Note that if we condition the largest component on having size k, then it is up relabelling
distributed like drawing a G-structure from Gγ [k] with probability proportional to its γ-weight.
This follows easily by applying Lemma 4.2 to the analytic species Fυ≤n ◦ G

γ
≤n. (We cannot

apply Lemma 4.2 directly to Fυ ◦ Gγ , as Boltzmann distributions only make sense for analytic
species, but there is no difference between Fυ≤n ◦ G

γ
≤n[n] and Fυ ◦ Gγ[n].)

We also obtain a sufficient criterion for the Gibbs partition to typically be consist of a
single component.

Corollary 6.19. If additionally to the requirements of Theorem 6.18 it holds that

[z1]Fυ(z) > 0 and a1, a2 > 0,

then Sn consists with high probability of a single component.

A result similar to Corollary 6.19 has been obtained by Wright [106, Thm. 3], who
studied under which circumstances the SET ◦ Gγ Gibbs partition typically consists of a
single component. In the setting considered there, the generating series Gγ(z) has radius of
convergence zero and the coefficients ai = [zi]Gγ(z) satisfy

n−1∑
i=1

aian−i = o(an). (6.25)

It is easy to adapt the proof of Theorem 6.18 to see that in Corollary 6.19 we may replace the
assumption (6.24) by Equation (6.25). We leave the details to the inclined reader.

6.6 Extremal component sizes

The sizes of the R-structures in the random enriched tree ARn correspond to the outdegrees
of the vertices in the coupled simply generated tree Tn. In many cases, such as for random
connected graphs or outerplanar maps, we consider compound R-structures of the form
Rκ = Fυ ◦ Gγ, and are interested in extremal sizes of the G-components, which in these
examples correspond to the maximal 2-connected subgraphs. Note that we may always assume
that R is a compound species, as there is the trivial isomorphism Rκ ' X ◦ Rκ.

Recall the definition of the series φ, the numbers ν, τ and ρφ, and the distribution (πk)k
from Section 3.1. Let ξ be a random non-negative integer following the distribution (πk)k.
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Combining Lemma 6.15 with results for the largest degrees in simply generated trees [69, Ch.
9 and Thm. 19.34] and Jonsson and Stefánsson [72] we may obtain the following asymptotic
results for the extremal sizes of the G-structures in the random enriched tree ARn .

Theorem 6.20 (Component size asymptotics). Suppose that Rκ = Fυ◦Gγ and set γk = |G[k]|k
for all k. Let B(1) ≥ B(2) ≥ . . . denote the descendlingy ordered list of the sizes of the G-
components of the random enriched tree ARn .

1. If w has type Ia, then

B(1) ≤
log n

log(ρφ/τ)
+ op(log n).

In particular, if ρφ =∞, then
B(1) = op(log n).

2. If w has type Iα, then
B(1) = op(

√
n).

If w has type Iβ, then
B(1) = op(n).

In both cases there is a positive constant C (that may depend on w) such that for all
k ≥ 1

P(B(1) ≥ k) ≤ CnP(ξ ≥ k).

3. Suppose w has type II, γk ∼ ck−βρ−kG for some constants ρG, c > 0 and β > 2, and that
Fυ(z) is analytic at Gγ(ρG). Set α = min(2, β − 1) and c′ = c/Fυ(Gγ(ρG)).

a) It holds that

B(1) = (1− ν)n+Op(n
1/α) and n−1/α((1− ν)n−B(1))

d−→Xα,

where Xα is an α-stable random variable with Laplace transform

E[e−tXα ] = exp(c′Γ(−α)tα), Re t ≥ 0.

b) It holds that

B(2) = Op(n
1/α) and n−1/αB(2)

d−→W,

with W satisfying the Fréchet distribution

P(W ≤ x) = exp(−c
′

α
x−α), x ≥ 0.

c) For any j ≥ 2,

B(j) = Op(n
1/α) and n−1/αB(j)

d−→Wj,

where Wj has the density function

c′x−α−1 (c′α−1x−α)j−2

(j − 2)!
exp(−c′α−1x−α), x ≥ 0,

and
c′α−1W−α

j
d
= Γ(j − 1, 1).
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More recent results due to Kortchemski [79] allow for the following generalization.

Proposition 6.21 (Component size asymptotics in a subcase of case II). Suppose that the
weight sequence w has type II and γk = f(k)k−βρ−kG for some constants ρG > 0, β > 2 and
a function f that varies slowly at infinity. Set α = min(2, β − 1) and let (Yt)t≥1 denote a
spectrally positive Lévy process with Laplace exponent

E[exp(−λYt)] = exp(tλα).

Then there exists a slowly varying function g such that

(1− ν)n−B(1)

g(n)n1/α

d−→Y1 and B(2) = Op(g(n)n1/α).

Theorem 6.20 and Proposition 6.21 provide a novel and simple proof for extremal
component-size asymptotics of many examples of random discrete structures. As detailed
in Section 6.7.2, they apply to random planar graphs and, more generally, random graphs
from so called planar-like classes. In this way, we may recover the central limit theorem
for the largest block size in random planar graphs, and provide new results for the sizes
of the kth-largest blocks for k ≥ 2. For random outerplanar maps drawn with probability
proportional to weights corresponding to the degrees of their faces we obtain novel results for
the block-size limits in various settings.

6.7 Applications to random discrete structures

In this section, we apply the general results of Sections 6.2 and 6.5 to the families of random
discrete structures discussed in Section 6.1, and provide further main results concerning limit
theorems for random structures in the type II case.

6.7.1 Applications to random weighted outerplanar maps

As discussed in Section 6.1.4, the species O of simple outerplanar maps is isomorphic to the
species of SEQ ◦ D-enriched trees, with SEQ denoting the species of linear orders, and D the
species of dissections of edge-rooted polygons in which the root vertex does not contribute to
the total size of the dissection.

Let γ be a weighting on D, and κ the corresponding weighting on SEQ ◦ D that assigns
to each sequence of dissections D1, . . . , Dt the weight γ(D1) · . . . · γ(Dt). The weighting ω on
the species O that corresponds to κ as in Equation (6.3) is given by

ω(M) =
∏
D

γ(D)

for each simple outerplanar map M , with the index D ranging over the blocks of M . Let
w = (ωk)k be the weight-sequence with ωk = |(SEQ ◦ D)[k]|κ. Note that in the bijection of
Section 6.1.4 each block of M has a canonical root edge, depending on the location of the root
edge of M . The weight γ(D) may depend on the location of its root edge. We let w = (ωk)k
denote the weight-sequence given by

ωk = |(SEQ ◦ D)[k]|κ.
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Figure 10: The local weak limit of random outerplanar maps with type I.

In the following we study the random map Oω
n drawn from the set O[n] with probability

proportional to its ω-weight. As in Section 6.7.2, we let dblock denote the block-distance on the
vertex set of any connected graph. For any rooted graph C•, we let Vk(C

•) and Uk(C
•) denote

the k-neighbourhoods with respect to the graph metric and the block-metric, respectively.
Note that if we set γ(D) = 1 for each dissection D, then Oω

n is the uniform outerplanar map
with n vertices. If we set γ(D) = 1D is bipartite, then Oω

n is the uniform bipartite outerplanar
map. If (ιk)k≥3 denotes a weight sequence, then we may set γ(D) =

∏
F ι|F | with the index F

ranging over all inner faces of the dissection D, and |F | denoting the number of bounding
edges of the face F . So the model Oω

n encompasses the case of random outerplanar map drawn
with probability proportional to a product of weights corresponding to the degrees of its faces.
The highlight of this section will be to show that for arbitrary weight-sequences (ιk)k≥3 with
ι` 6= 0 for at least one ` the random map Oω

n has both a Benjamini–Schramm limit and a local
weak limit near its root-edge.

Local convergence - the infinite spine case We are going to apply Theorems 6.2, 6.3
and 6.5 to the random outerplanar map Oω

n. If the weight sequence w has type I, then the
random SEQ ◦D-enriched tree (T̂ , β̂) corresponds to a random locally finite outerplanar map
Ô according to the bijection in Section 6.1.4. Likewise, the SEQ ◦ D-enriched tree (T ∗, β∗)
corresponds to a random locally finite outerplanar graph Ô∗. The two limit objects are, in
general, not identically distributed. See Remarks 6.23 and 6.24 below for detailed descriptions
of their distributions. Theorems 6.2 and 6.5 yield that Ô is the local weak limit of Oω

n with
respect to convergence of neighbourhood around the origin of the root-edge, and Ô∗ is the
Benjamini–Schramm limit of Oω

n. See Figures 10 and 11 for illustrations of these limit objects.

Theorem 6.22 (Local weak convergence and Benjamini–Schramm convergence of random
outerplanar maps with type I).

1. If the weight-sequence w has type I, then the random outerplanar map Oω
n converges in

the local weak sense toward Ô as n becomes large. A bit stronger, the k-neighbourhoods
with respect to the block distance dBLOCK around the root vertex converge, that is

lim
n→∞

P(Uk(Oω
n) ∈ E) = P(Uk(Ô) ∈ E)

for any set E of finite unlabelled rooted graphs. Similarly, Ô∗ is the Benjamini–Schramm
limit of Oω

n, and
lim
n→∞

P(Uk(Oω
n, vn) ∈ E) = P(Uk(Ô∗) ∈ E)
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Figure 11: The Benjamini–Schramm limit of outerplanar maps with type I.

with vn denoting a uniformly at random drawn vertex of Oω
n.

2. If the weight-sequence w has type Iα, then we obtain a stronger form of convergence.
For any sequence of non-negative integers kn = o(n1/2), the total variation distance of
the kn-block-neighbourhoods converges to zero:

dTV(Ukn(Cωn, vn), Ukn(Ĉ))→ 0.

Moreover, Ô∗ is the Benjamini–Schramm limit of Oω
n. If vn denotes a uniformly at

random chosen vertex of Oω
n, then

dTV(Ukn(Oω
n, vn), Ukn(Ô∗))→ 0.

As detailed in Remarks 6.23 and 6.24 below, the limit objects Ô and Ô∗ have a canonical
embedding in the plane and are hence not just graphs but infinite planar maps. The
convergence in Theorem 6.22 respects the the planar structures, that is, we actually obtain the
stronger form of convergence of neighbourhoods of vertices that keep their planar embedding.

Remark 6.23. The distribution of the local weak limit Ô has the following description.

1. Let (D•i )i≥1 be a family of independent identically distributed D•-objects following a
weighted Boltzmann distribution P(D•)γ ,τ . Concatenate the D•i by identifying the pointed
vertex of D•i with the root ∗-vertex of D•i+1 for all i. The resulting chain of dissections C
has an infinite spine given by the ∗-vertices of the D•i . We consider this chain as rooted
at the start of the spine, which is the root ∗-vertex of D•1.

2. Let O denote a random outerplanar map that follows a Boltzmann distribution POω ,τ/φ(τ).
For each non-spine vertex v of C take a fresh independent copy of O and identify its
root with v. For each spine-vertex v of C take two fresh independent copies of O and
identify their roots with v by glueing one from each side.

3. The resulting graph consisting of C with one Boltzmann map glued to each non-spine
vertex and two such maps glued to each spine vertex is distributed like Ô.
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Figure 12: The local weak limit of type II random outerplanar
maps.

Remark 6.24. The distribution of the Benjamini–Schramm limit Ô∗ may be described as
follows.

1. Again we start with an i.i.d. family (D•i )i≥1 of P(D•)γ ,τ -distributed pointed dissections.
But this time, we form a chain C∗ by glueing together the pointed vertex of D•i+1 with
the root ∗-vertex of D•i for all i. C∗ has a spine consisting of the marked vertices of the
D•i that we consider as rooted at the marked vertex of D•1.

2. Like above, let O denote a random outerplanar map that follows a Boltzmann distribution
POω ,τ/φ(τ). For each non-spine vertex v of C∗ take a fresh independent copy of O and
identify its root with v. We do the same for the root of the chain, that is the first
spine-vertex. For each non-root spine-vertex v of C∗ take two fresh independent copies
of O and identify their roots with v by glueing one from each side.

3. The resulting graph is distributed like Ô∗. It consists of C∗ with one Boltzmann map
glued to each non-spine vertex and the first spine-vertex, and two such maps glued to all
the other spine-vertices.

If the weight sequence w has type Ia, then the root-degrees in Ô and Ô∗ have finite
exponential moments. Hence in this case both are almost surely recurrent by a general
result [65, Thm. 1.1] on distributional limits of random planar graphs.

Local convergence - the finite spine case Our first result reduces the study of random
outerplanar maps to the study of random dissections.

Theorem 6.25 (Local weak convergence of outerplanar maps with type II). Suppose that
w has type II and that the composition SEQ ◦ Dγ has convergent type in the sense of
Definition 6.11. Let Dγ

n denote the random random dissection that gets drawn from D[n] with
probabilty proportional to its γ-weight. If Dγ

n converges in the local weak sense toward a limit
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object D̂•, then the random outerplanar map Oω
n converges as well. The limit object Ô may be

constructed as illustrated in Figure 12. That is:

1. Draw a random integer L ≥ 0 that follows the geometric distribution

P(L = `) = ν`(1− ν).

2. Let (D•i )1≤i≤L be a family of independent identically distributed D•-objects following a
weighted Boltzmann distribution P(D•)γ ,τ . Concatenate the D•i by identifying the pointed
vertex of D•i with the root ∗-vertex of D•i+1 for all i ≤ L − 1. Identify the root of the

limit object D̂ with the marked vertex of D•L. The resulting chain C has a finite spine

with L+ 1 vertices given by the root-vertices of the D•i and D̂.

3. Let O denote a random outerplanar map that follows a Boltzmann distribution POω ,τ/φ(τ).
For each non-spine vertex v of C take a fresh independent copy of O and identify its
root with v. For each spine-vertex v of C take two independent copies of O and identify
their roots with v by glueing one from each side. The resulting outerplanar map follows
the distribution of Ô.

In Section 6.7.3 we obtain concrete limit theorems for random dissections in two settings,
where the limit either has an infinite spine of circles glued together at edges if the dissection,
or a finite random-length spine of this type with a doubly infinite path attached to its end.
We observe that if w has type II and if the γ-weights correspond an enriched tree weighting
on the species D of dissections, then Dγ

n also has type II. This means that in this setting the
type I limit of Dγ

n cannot appear as core of Oω
n.

Lemma 6.26. Suppose that the weighting γ on the species of dissections D is of the form

Dγ = X · (SEQ ◦ SEQ≥1)υ(Dγ) (6.26)

for an arbitrary weighting (SEQ◦SEQ≥1)υ. This includes the case where we draw the random
outerplanar map Oω

n according to weights corresponding to its face-degrees. Recall that Oω
n has

type I, II or III depending on whether ν ≥ 1, 0 < ν < 1 or ν = 0.

1. If Dγ has type I, then Oω
n has type Ia with ν =∞.

2. Suppose that Dγ has type II. Let τD denote the radius of convergence of

φD(z) := (SEQ ◦ SEQ≥1)υ(z),

and set
νD := lim

t1τD
φ′D(t)t/φD(t) ∈]0, 1[.

a) If τD < 1, then

ν =
τD

(1− τD)(1− νD)
∈]0,∞[.

b) If τD ≥ 1, then Oω
n has type Ia with ν =∞.
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Figure 13: The local weak limit of type II random face-weighted outerplanar maps.

3. If Dγ has type III, then ν = 0 and Oω
n has type III.

In light of Lemma 6.26 and Theorem 6.25, we obtain the following classification of the local
weak limits of random outerplanar maps drawn with probability proportional to arbitrary
weights assigned to their faces.

Theorem 6.27. (Classification of local weak limits of random face-weighted outerplanar
maps) Let (ιk)k≥3 be a sequence of non-negative weights, such that at least one weight is
positive. Consider the case where Oω

n is the random outerplanar map with n vertices drawn
with probability proportional to the product of ι-weights corresponding to the degrees of its
inner faces. That is, we define the weighting γ on the class of dissections D such that

Dγ ' X · (SEQ ◦ SEQι
≥1)(Dγ) with SEQι

≥1(z) =
∑
k≥1

ιk+2z
k.

1. If w has type I, then Oω
n convergences in the local weak sense by Theorem 6.22 toward

a limit graph that contains no doubly-infinite paths.

2. If w has type II, then the local weak limit of the random outerplanar map Oω
n is

the random map Ô given in Theorem 6.25 for the type II dissection limit D̂ given in
Theorem 6.49 for random dissections with ι-face-weights. The distribution of the limit
planar map is illustrated in Figure 13, where we use the notation

ρD = τD(1− SEQι
≥1(τD))

with τD denoting the radius of convergence of the generating series SEQι
≥1(z). The limit

almost surely contains doubly-infinite paths and differs in this aspect from the limit of
type I outerplanar maps.

3. If w has type III, then Oω
n converges in the local weak sense toward a single doubly-infinite

path.
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In the following example we provide an explicit weight sequence (ιk)k≥3 for which the
random outerplanar map Oω

n exhibits the interesting type II limit with doubly infinite paths.

Example 6.28 (Convergent type II outerplanar maps). Consider the weight sequence (ιk)k≥3

with
SEQι

≥1(z) =
∑
k≥1

ιk+2z
k = z/2 + (1− 4z)3/2/12.

Then it holds that

ιk ∼ (16
√
π)−1k−5/24k, νD = 3/23 < 1, ν = 23/60 < 1.

Thus the random ι-face-weighted outerplanar map Oω
n converges to the limit illustrated in

Figure 13.

The following result establishes the Benjamini–Schramm limit Ô∗ of arbitrary random
face-weighted outerplanar maps. In general, this limit is not identical to the local weak limit
Ô. Using a rerooting invariance of face-weighted dissections and the explicit description of
the limit Ô∗ obtained in the proof, we show that there is a natural coupling such that the
map Ô∗ is an induced subgraph of the map Ô. In particular, the two limits are identically
distributed if and only if the weight-sequence w has type III, in which case they both are
deterministic doubly-infinite paths.

Theorem 6.29. (Classification of Benjamini–Schramm limits of random face-weighted outer-
planar maps) Let (ιk)k≥3 be a sequence of non-negative weights, such that at least one weight
is positive, and let Oω

n be the random outerplanar map with n vertices drawn with probability
proportional to the product of ι-weights corresponding to the degrees of its inner faces as in
Theorem 6.27. That is, we consider the case of a weighting γ on the class of dissections D
such that

Dγ ' X · (SEQ ◦ SEQι
≥1)(Dγ) with SEQι

≥1(z) =
∑
k≥1

ιk+2z
k.

1. If w has type I, then Oω
n convergences in the Benjamini–Schramm sense by Theorem 6.22

toward a limit graph Ô∗ that contains no doubly-infinite paths.

2. If w has type II, then the random outerplanar map Oω
n converges in the Benjamini–

Schramm limit toward a limit Ô∗ that almost surely contains doubly-infinite paths.

3. If w has type III, then Oω
n converges in the Benjamini–Schramm sense toward a single

doubly-infinite path.

For the cases I and II, the construction of Ô∗ is almost identical to the construction of Ô in
Remark 6.23 for the type I case and to the construction of Ô in Theorem 6.25 for the type II
case, with the only difference being that in both cases we identify the root-vertex with the root
of only one POω ,τ/φ(τ)-distributed outerplanar map instead of two. In particular, Ô may be

obtained from Ô∗ by identifying the root vertex of Ô∗ with the root vertex of an independent
POω ,τ/φ(τ)-distributed map.
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Limit theorems for the largest blocks and faces As for the sizes of the largest blocks
in the random outerplanar map Oω

n, we immediately obtain the following result.

Corollary 6.30. Theorem 6.20 and Proposition 6.21 yield bounds and limit laws for the sizes
B(i) of the ith largest block in the random outerplanar map Oω

n for various cases of weight
sequences.

In the special case where Oω
n gets drawn with probability proportional to the product of

weights assigned to its face-degrees, even more can be said, as we may obtain limit laws for
the size of the largest face degrees.

Corollary 6.31. In the setting of Theorem 6.27, suppose that the weight-sequence w has type
II and

[zk]SEQι
≥1(z) = f(k)k−βr−β

for some constants r > 0 and β > 2, and a slowly varying function f . Set α = min(2, β − 1).
Then there is a slowly varying function g such that the size F(1) of the largest face satisfies
the central limit theorem

(1− ν)(1− νD)n− F(1)

g(n)n1/α

d−→Xα,

where Xα is an α-stable random variable with Laplace transform

E[e−tXα ] = exp(Γ(−α)tα), Re t ≥ 0.

The size F(2) of the second largest face admits the bound F(2) = Op(ḡ(n)n1/α) for some sequence
ḡ(n) satisfying ḡ(n) = o(nε) for all ε > 0.

In the proof of Theorem 6.27 we applied Lemma 6.7 to also construct a coupling of Oω
n

with an n-leaves simply generated tree τn such that the out-degrees in τn correspond precisely
to the sizes of the D-objects in Oω

n. Likewise, there is a coupling of the random face-weighted
dissection Dγ

n with such a tree, but with a different weight-sequence.
This yields an alternative approach to Corollaries 6.30 and 6.31, as all results (future and

present) regarding the vertex outdegrees in a Galton–Watson tree conditioned on having n
leaves directly translate to results for the block-sizes and face-sizes in the random outerplanar
map Oω

n, and the face-sizes in the random dissection Dγ
n. Conversely, we may also interpret

the results from Corollary 6.30 as statistics for the vertex outdegrees for this model of random
trees.

6.7.2 Applications to random block-weighted graphs

As discussed in Section 6.1.2, if C denotes the class of connected graphs and B its nonempty
subclass of graphs that are two-connected or are a single edge with its ends, then the
corresponding class of rooted graphs C• is isomorphic to the class of SET ◦ B′-enriched trees.

Let γ be a weighting on the species B, and κ the weighting on the species SET ◦ B′
that assigns to any collection of derived blocks the product of the individual γ-weights. The
weighting ω on the species C• and C, that corresponds to κ as in Equation 6.3, assigns to any
connected graph C from this class the weight

ω(C) =
∏
B

γ(B)
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with the index B ranging over all blocks of the graph C. We let w = (ωk)k denote the weight
sequence given by

ωk = |(SET ◦ B′)[k]|κ.

In the following we study the random connected graph Cωn drawn from the set C[n] with
probability proportional to its ω-weight.

Giant connected components in disconnected graphs Let Gυ denote the weighted
species of all (possibly disconnected) graphs such that the weight of each graph is the product
of ω-weights of its connected components. Similarly to the connected case, we may consider
the random graph Gυ

n that gets sampled from the set G[n] with probability proportional to its
weight. The following result shows in complete generality that it is not a restriction to focus
our studies on connected graphs, as ”almost all” properties of the random graph Cωn carry over
automatically to the random graph Gυ

n.

Theorem 6.32. The largest connected component of the random graph Gυ
n has size

Kn = n+Op(1)

as n becomes large. Up to relabelling, it is distributed like the randomly sized random connected
graph CωKn.

McDiarmid [88] observed such a result for uniform random graphs from proper addable
minor-closed classes, together with convergence of the small fragments toward a Boltzmann
limit graph. These results where later recovered and extended in Stufler [101, Thm. 4.2 and
Section 5] to random block-weighted classes with analytic generating functions. In order to
complete the picture, we have to treat the case with superexponential weights. Our proof
goes by applying general results on Gibbs partitions that we established in Theorem 6.18 and
Lemma 6.17. Corollary 6.19 also allows us to make the following observation.

Corollary 6.33. If the weight-sequence w has type III, then there is an integer n0 ≥ 1 such
that the largest connected component in the random graph Gυ

n has with high probability at least
n− n0 vertices. If the complete graph with 2 vertices has positive ω-weight, then the random
graph Gω

n is connected with probability tending to 1 as n becomes large.

This generalizes [58, Ex. II.15], where a direct counting argument was used to show that
almost all labelled graphs are connected.

Local convergence - the infinite spine case We are going to apply Theorems 6.2 and
6.3 to the random graph Cωn. If the weight-sequence w has type I, then the tree T̂ is locally
finite and the decorated limit tree (T̂ , β̂) corresponds, according to the bijection discussed in
Section 6.1.2, to a locally finite graph Ĉ. For each pair (ui, ui+1) of consecutive spine vertices
of T̂ there is a unique block in that graph containing ui and ui+1. Hence, in the type I case,
the limit Ĉ is shaped like an infinite sequence of doubly rooted blocks, where at each vertex a
random finite graph is inserted. See Figure 14. The doubly rooted blocks are independent
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Figure 14: Illustration of the infinite limit graph Ĉ for weight sequences with type I.

and identically distributed. Conditionally on this infinite sequence of blocks, the random
finite graphs inserted at each vertex are also independent and identically distributed. See
Remark 6.35 below for a detailed justification and description of the individual distributions.

Theorem 6.34 (Benjamini–Schramm convergence of random connected graphs).

1. If the weight-sequence w has type I, then the random graph Cωn converges as n becomes
large in the Benjamini–Schramm sense toward the limit graph Ĉ. Slightly stronger,
the k-neighbourhoods with respect to the block distance dBLOCK around a uniformly at
random drawn vertex vn converge. That is,

lim
n→∞

P(Uk(Cωn, vn) ∈ E) = P(Uk(Ĉ) ∈ E)

for any set E of finite unlabelled rooted graphs.

2. If the weight-sequence w has type Iα, then we establish a significantly stronger form of
convergence. For any sequence of non-negative integers kn = o(n1/2), the total variation
distance of the kn-block-neighbourhoods converges to zero:

dTV(Ukn(Cωn, vn), Ukn(Ĉ))→ 0.

Item (2) of Theorem 6.34 applies in particular to the case of a uniform random labelled
graph from a subcritical graph class in the sense of Drmota, Fusy, Kang, Kraus, and Rué [48,
Ch. 4.1], which in our setting roughly corresponds to the type Ia (which is a proper subcase
of type Iα). Formally, it is even a proper subcase of Ia, but with only minor restrictions such
as requiring the class C to contain all unordered trees [48, Ch. 2.2].

Hence, Theorem 6.34 recovers the asymptotic degree distribution of random vertices in
random graphs from subcritical classes, which was established by Bernasconi, Panagiotou and
Steger [23, 24] using different methods. Our contribution in this regard is the probabilistic
description of the limit distribution as the root degree of a limit graph.

Remark 6.35 (The distribution of the limit object). Recall the notation from Sections 3.1 and
3.2. The distribution of the limit graph Ĉ may equivalently be described as follows. Compare
with Figure 14.

1. Let (B′•i )i≥1 denote an independent identically distributed sequence of random B′•-objects
following a weighted Boltzmann distribution with parameter τ . For each i, identify the
pointed vertex of B′•i with the ∗-vertex of B′•i+1 in order to form an infinite block-chain
B. We consider B as rooted at the ∗-vertex of B′•1 .
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2. Let C• be a random C•-object following a weighted Boltzmann distribution with parameter
τ/φ(τ). For each vertex v of the block-chain B (including the root-vertex), take an
independent copy of C• and identify its root with the vertex v.

The block neighbourhood U1(Ĉ) of the limit graph is distributed as follows.

1. Let B′• denote an independent identically distributed sequence of random B′•-objects
following a weighted Boltzmann distribution with parameter τ .

2. Draw a random integer K ≥ 0 according to a Poisson distribution with parameter
(B′•)γ(τ).

3. Let B′1, . . . ,B
′
K be independent (conditionally on K) random B′-object that follow a

weighted Boltzmann distribution with parameter τ .

4. Glue the K + 1 blocks together at their ∗-vertices, and declare the resulting vertex as its
root.

In particular, the distribution of the degree d(Ĉ) is given by

d(Ĉ)
d
= d(B′•) +

K∑
i=1

d(B′i). (6.27)

The description of the root degree of the limit graph in (6.27) is very useful, as the involved
constants and distributions may be determined explicitly for many graph classes. For the
specific example of random outerplanar graphs, we may recover the expressions for the limit
probabilities calculated by Bernasconi and Panagiotou [23, Cor. 1.2] in this way.

Corollary 6.36 (Combinatorial applications). The degree d(Cωn, vn) of a uniformly at random
chosen point vn in Cωn is arbitrarily high uniformly integrable. Consequently, Lemmas 2.1
and 2.2 yield laws of large numbers for subgraph counts and spanning tree counts, where the
limiting constant is expressed in terms of the limit graph Ĉ.

We close the section on the infinite spine case with the following remark regarding a more
general model of random graphs, where the rerooting symmetry may break.

Remark 6.37. We defined the weights governing the distribution of Cωn in such a way,
that there is no difference between taking an n-vertex rooted graph sampled with probability
proportional to its ω-weight, and Cωn rooted at a uniformly at random chosen location. We
may break this rerooting symmetry easily, by considering more general choices of κ-weights
on R = SET ◦ B′. If w has type I, then the random rooted graph corresponding to ARn has a
local weak limit by Theorem 6.2 and a Benjamini–Schramm limit by Theorem 6.5, and the
distribution of the two limits may very well differ.
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Local convergence - the finite spine case If the weight-sequence w has type II, then
T̂ has an almost surely finite spine ending in a vertex with infinite degree. Each offspring
of this vertex becomes the root of an independent copy of a subcritical Galton–Watson tree.
The random length of the spine follows a geometric distribution, according to the discussion
in Section 3.1.2. As the infinite offspring set of the tip of the spine carries no additional
structures, there is a priori no natural interpretation in terms of sets of blocks. If we delete all
enriched fringe subtrees dangling from the tip of the spine in the enriched limit tree (T̂ , β),
then we are left with an almost surely finite enriched tree that may be interpreted as a rooted
random graph Ĥ• according to the bijection discussed in Section 6.1.2. If the spine has length
zero, then there is no R-structure assigned to the root of T̂ , and rather than setting Ĥ• to a
single vertex in this case, we let it assume some placeholder value (for example, the empty
set) that is different from all graphs. Theorem 6.2 shows how this random object encodes
some information about asymptotic local properties of the random graph Cωn.

Corollary 6.38 (Convergence of block neighbourhoods in the cases II and III). Let vn be a
uniformly at random drawn vertex of the graph Cωn. Then for any rooted graph G• and any
non-negative integer k the following holds.

1. If the weight-sequence w has type II, then

lim
n→∞

P(Uk(Cωn, vn) ' G•) = P(Uk(Ĥ•) ' G•). (6.28)

2. If the weight-sequence w has type III, then

lim
n→∞

P(Uk(Cωn, vn) ' G•) = 0. (6.29)

Note that the limit probabilities in Equation (6.28) sum up to the probability that the
spine of T̂ has non-zero length, which is given by ν < 1. Hence, contrary to the infinite
spine case, the convergence in Corollary 6.38 is not sufficient to imply Benjamini–Schramm
convergence. It does, however, provide information on how parts of the limit object must
look, if such a limit exists. Our next main theorem strengthens this greatly, by showing
that Benjamini–Schramm convergence of Cωn is in fact equivalent to Benjamini–Schramm
convergence of a randomly sized 2-connected graph. In particular, it is sufficient, if the
random graph Bγ

n drawn from B[n] with probability proportional to its weight converges as n
deterministically tends to infinity.

Theorem 6.39 (Characterization of Benjamini–Schramm convergence of Cωn). Suppose that
w has type II. Let Bγ

n denote the random 2-connected graph that gets drawn from B[n] with
probability proportional to its γ-weight. Then there is a random integer Kn that is independent

from the family (Bγn)n and satisfies Kn
d−→∞, such that the random connected graph Cωn

converges in the Benjamini–Schramm sense if and only if the graph Bγ
Kn

does. In this case,

the limit Ĉ of Cωn contains the limit B̂ as a subgraph via a coupling as illustrated in Figure 15.
The precise distribution of Ĉ is given as follows.

1. Draw a random integer K ≥ 0 that follows the geometric distribution

P(K = k) = νk(1− ν).
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Figure 15: If the 2-connected random graph Bγ
n admits a distributional limit B̂, and

the generating series (B′)γ(z) belongs to the class S1 of subexponential sequences, then
the random connected graph Cωn converges in the Benjamini–Schramm sense toward
a limit Ĉ. The limit consists of a finite chain of independent Boltzmann-distributed
doubly-rooted blocks, with the limit B̂ attached to the tip of the chain. The random
number of blocks in the chain follows a geometric distribution, and at each vertex of
the chain and of B̂ an independent random Boltzmann distributed rooted connected
graph is inserted.

2. Let (B′•i )1≤i≤K denote a (conditionally) independent identically distributed sequence of
random B′•-objects following a weighted Boltzmann distribution with parameter τ . For
each i < K, identify the pointed vertex of B′•i with the ∗-vertex of B′•i+1 in order to form
a finite chain of blocks. We consider this chain as rooted at the ∗-vertex of B′•1 .

3. Identify the root of the Benjamini–Schramm limit B̂ with the pointed vertex of B′•K in
the chain of blocks, and let D denote the result.

4. Let C• be a random C•-object following a weighted Boltzmann distribution with parameter
τ/φ(τ). For each vertex v of D take a fresh independent copy of C• and identify its root
with v.

Note that Benjamini–Schramm convergence of Bγ
n implies Benjamini–Schramm convergence

of Bγ
Kn

, but the converse need not hold. The first contribution of Theorem 6.39 is that, if
the generating function of the weight-sequence has positive radius of convergence, then the
random connected graph Cωn either has type I and converges by Theorem 6.34 to a limit object
with small blocks, or it has type II and then its limit, if it exists, must have precisely the
shape as described in Theorem 6.39. The second contribution is, that if we manage to deduce
Benjamini–Schramm convergence of Bγ

n in the type II regime, then Benjamini–Schramm
convergence of Cωn follows automatically.

The degree distribution of random planar graphs has been studied by Drmota, Giménez and
Noy [49] and Panagiotou and Steger [95] by means of analytic combinatorics and Boltzmann
samplers. In both papers the authors make use of the decomposition of graphs into components
having higher connectivity. Hence we deem this a promising approach to establish and explicitly
describe the Benjamini–Schramm limit of random planar graphs (or more generally uniform
random graphs from classes defined by given 3-connected components), and Theorem 6.39 is
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a first step in this direction. In the light of Corollary 6.38, Theorem 6.39 and Theorem 6.34,
we pose the following conjecture.

Question 6.40. If the generating series Cω(z) (or equivalently, Bγ(z)) has positive radius of
convergence, does the random graph Cωn converges in the Benjamini–Schramm sense?

This includes random graphs from block-stable classes of graphs with analytic weights, and
in particular the case of uniform connected graphs from proper minor-closed addable classes.
Such a graph class is of the form Ex(M) for some non-empty set M of 2-connected graphs.
See Section 6.1.2 for an explanation of this notation. By results of Bernardi, Noy and Welsh
[22] we know that uniform random graphs from minor-closed classes have either type I or II.
In the type I case, Theorem 6.34 immediately yields Benjamini–Schramm convergence. If the
random graph has type II, then Theorem 6.39 may be used to reduce the Benjamini–Schramm
convergence to the 2-connected case. It was established in [88] furthermore that random
graphs from proper minor-closed addable classes typically admit a giant component, and
that the remaining fragments converge in total variation toward a limit called the Boltzmann
Poisson random graph of the class. In [101], these results where recovered using fundamentally
different methods, and generalized to the random weighted model Cωn. Thus the weighted
graph Cωn is a sensible model that allows for a unified study of many other classes of graphs,
and subjectively has the correct level of generality to discover the ”abstract” reasons behind
the limiting behaviour of these special cases.

The distribution of Kn mentioned in Theorem 6.39 is made explicit in the proof. There is
a deterministic sequence Ωn that tends to infinity, such that if d+

Tn(o) denotes the root-degree
of the simply generated tree Tn, then

Kn
d
= (d+

Tn(o) | d+
Tn(o) ≥ Ωn)−Rn

for a sequence of random variables (Rn)n that converge in total variation to the size of a
PSET◦(B′)γ ,τ -distributed collection of blocks.

The conditioned root-degree distribution crops up in other places of the present work too.
For example, in Equations (7.53), (7.52) we determined for certain classes of weights related
to outerplanar maps the asymptotic probability for (d+

Tn(o) | d+
Tn(o) ≥ Ωn) to lie in lattices of

the form a + dZ. It might be interesting to investigate, whether the probability for Kn to
lie in a given subset of N converges. The idea behind this is that for some interesting graph
classes such as uniform cubic planar graphs the sequence (Bγ

n)n lies in the compact subspace of
(B, dBS) of all graphs with a fixed upper bound for their vertex degrees, and hence the natural
numbers may be partitioned into subsequences such that Bγ

n converges weakly along each. If
the probability for Kn to lie in any of those sequences converges (uniformly), it follows that
Bγ
Kn

converges weakly to a mixture of the limits of Bγ
n along the subsequences.

Since we consider random weighted graphs, Theorem 6.39 also applies other types of graph
classes. We may easily force well-known subcritical graph classes (where the uniform random
graph has type Ia) into the type II regime, by adjusting the weights on the blocks. We
demonstrate this for the well-known example of outerplanar graphs which have been studied
individually in various contexts [29, 23], but there are many further examples.

Example 6.41 (Type II outerplanar graphs). An outerplanar graph is a planar graph that
admits at least one embedding in the plane such that every vertex may be reached from the
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outside. We consider the case where Cωn is a random n-vertex outerplanar graph that is drawn
according to γ-weights assigned to its blocks.

Outerplanar graphs that are 2-connected have a unique Hamilton cycle which in any
”outerplanar” drawing may be oriented in two directions. Hence any labelled edge-rooted
dissection of a polygon may be obtained in a unique way by taking a vertex-rooted 2-connected
outerplanar graph and marking one of the two edges of the Hamilton cycle that are incident
to the root vertex. This means that the random γ-weighted n-vertex 2-connected outerplanar
graph Bγ

n is distributed like a random γ-weighted dissection Dγ
n of an n-gon.

We identify in Section 6.7.3 three qualitatively distinct Benjamini–Schramm limits of
random dissections where the γ-weights are products of ι-weights assigned to their inner faces.
That is, when

Dγ ' X · (SEQ ◦ SEQι
≥1)(Dγ),

see Section 6.7.3 for details. The limits are illustrated in Figure 16. One of them only admits
one-sided infinite paths, while the others contain doubly-infinite paths. Let us assume that the
γ-weighting on the blocks is given by the corresponding products of these face-weights.

It is tempting to expect Theorem 6.39 to yield different types of Benjamini–Schramm limits
for Oω

n, depending on the limit in the 2-connected case. However, the types for the connected
and 2-connected case are related, which can be shown analogously to the corresponding result
for outerplanar maps in Lemma 6.26. If Cωn has type I, then the Benjamini–Schramm limit of
Cωn is given as in Theorem 6.34. If Cωn has type II and the weight-sequence for the face-weights
is aperiodic, then Theorem 6.39 applies and Cωn converges toward the limit of Theorem 6.39
where B̂ is the type II dissection limit of Theorem 6.49. If the weight-sequence is periodic,
we still obtain convergence analogously to the proof of Theorem 6.27 for type II outerplanar
maps. If Cωn has type III, it would be reasonable to expect the Benjamini–Schramm limit to be
a deterministic doubly-infinite path, but we have not checked this.

Block sizes The maximum block-size of the random graph Cωn is an important parameter
which influences its geometric shape. The coupling of Cωn with the simply generated tree
Tn has the property, that the extrema outdegrees of Tn are upper bounds of the extremal
block-sizes in Cωn. Theorem 6.20 ensures that in many cases the kth largest block has the
order of the kth largest outdegree, by providing a corresponding lower bound.

We detail the results obtained in this way. The extremal block size of (uniform) random
graphs from block classes has been studied by various authors before, which is why we do
not claim novelty of all subcases of Theorem 6.20. We emphasize its applications to random
planar graphs, and more generally to random graphs from planar-like classes:

Corollary 6.42. If Cωn is the uniform random planar graph with n vertices, then w has type
II and |B′[k]|γ/k! ∼ cρ−kB k−5/2 for some constants c, ρB > 0. Hence part (3) of Theorem 6.20
applies and yields limit theorems for the size of the jth largest block for all fixed j ≥ 1. More
generally, these limit theorems also hold if the random weighted graph Cωn has type II and
satisfies |B′[k]|γ/k! ∼ cρ−kB k

−β for some β > 2. This encompasses random graphs from so
called planar-like classes introduced by Giménez, Noy and Rué [63]. In order to obtain the
central limit theorem for the size of the largest block, we may even replace the constant c by
any function of k that varies slowly at infinity.
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The asymptotics for the size of the jth largest blocks are new for j ≥ 2. The central limit
theorem for the size of the largest block has been known for some years for random graphs
from planar-like classes, but was obtained using different, analytic methods such as singularity
analysis and the saddle-point method. We give a short comparison of Corollary 6.42 to
previous results.

Panagiotou and Steger [94, Thm. 1.2] obtained by a detailed study of Boltzmann samplers
that for any ε > 0 and sequence tn →∞ the uniform planar graph with n vertices has with
high probability a unique giant block with (1± ε)cn vertices and the next largest block has
size between n2/3/ log(n) and n2/3tn. They also provide similar bounds [94, Thm. 1.4, ii)] in
a slightly less general setting as in (1) of Theorem 6.20.

Giménez, Noy and Rué [63, Thm. 5.4] applied an elaborated analytical framework to
obtain the strong result that the largest block size Xn of the uniform random planar graph
with n vertices satisfies P(Xn = k) ∼ n−2/3f(k) uniformly for k = (1− ν)n+ xn2/3 an integer
and x in a fixed compact interval. Here f denotes the density function of the distribution of the
random variable X3/2 from Theorem 6.20. They obtained that the next largest block has with
high probability at most O(n2/3) vertices, and provided extensions of this result to random
graphs from planar-like classes, which are encompassed by the case a) of Theorem 6.20.

Drmota and Noy [50, Thm. 3.1] used analytic methods to show that if w has type Ia
(and, for simplicity, span(w) = 1) then E[B(1)] = O(log(n)) and if additionally the series B(z)
satisfies the ratio test, then P(B(1) ≤ k) ∼ exp(− exp(log(n)− g(k))) uniformly for n, k →∞
where g(k) is a function with g(k) ∼ Ck for some constant C > 0.

The diameter of the block-tree Let Cn denote an instance of the random graph Cωn
where each block receives either weight 0 or 1. Such random graphs are also called block-stable
graphs or simply block-graphs. McDiarmid and Scott [89, Thm. 1.2] showed that with high
probability any path in the random graph Cn passes through at most 5

√
n log(n) blocks.

They conjectured, that the extra factor
√

log(n) can be replaced by any sequence tending to
infinity.

Conjecture 6.43 (McDiarmid and Scott). If tn denotes a sequence tending to infinity, then
with high probability any path in the uniform random graph Cn from a block class passes
through at most tn

√
n blocks.

By Lemma 6.1 there is a coupling of the random graph Cωn with a simply generated tree
Tn such that the diameter D(Tn) and the maximum number Dn of blocks along a path in Cωn
satisfy

Dn ∈ {D(Tn),D(Tn)− 1}. (6.30)

Addario-Berry, Devroye and Janson [5] established that if w has type Iα, then there are
constants C, c > 0 depending on w such that for all h ≥ 0 and n ≥ 1 it holds that

P(D(Tn) ≥ h) ≤ C exp(−ch2/n). (6.31)

By (6.30), this yields an equivalent tail bound for Dn and Conjecture 6.43 holds in this case.
Janson [69, Problem 21.8] posed the question, whether a tail-bound of the form (6.31) can be
obtained for any sensible weight sequence.
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Question 6.44 (Janson). Given a weight sequence (ωk)k such that ω0 > 0 and ωk > 0 for
at least one k ≥ 2, are there constants C, c > 0 such that the tail-bound (6.31) holds for the
corresponding simply generated tree Tn?

The coupling between Cωn and Tn allows us to relate the two questions as follows.

Corollary 6.45 (Relating the block-diameter with the diameter of simply generated trees).
If Question 6.44 can be answered in the affirmative, then a corresponding tail-bound also holds
for the block diameter of the random graph Cωn and Conjecture 6.43 follows.

If w has type Iβ, it is reasonable to expect that D(Tn)/
√
n even converges in probability to

zero. This is still an open conjecture [69, Conj. 21.5], which however has been confirmed for an
important class of weight sequences. Kortchemski [75, Thm. 1.2] showed that if the offspring
distribution (πk)k from Section 3.1 has mean 1 and belongs to the domain of attraction of
a stable law of index α ∈]1, 2], then there exists sequence bn of order n1/α (more precisely,
bn/n

1/α is slowly varying) such that for every δ ∈]0, α[ there exist constants C, c > 0 such
that for all u ≥ 0 and n ≥ 1

P(D(Tn) ≥ un/bn) ≤ C exp(−cuδ).

Of course, this directly translates into an equivalent bound for Dn. See also Duquesne [52,
Thm. 3.1], Haas and Miermont [66, Thm. 8] and Kortchemski [77] for related results regarding
the metric properties of Tn in this setting.

In the following nongeneric case, we may build on results due to Kortchemski [79, Thm. 4
and Prop. 2.11] to obtain more precise information. Recall the definition of the constant ν
given in Section 3.1.

Corollary 6.46 (Block radius asymptotics in a subcase of case II). Suppose that the weight-
sequence w has type II and |B′[k]|γ/k! = f(k)k−βρ−kB for constants ρB > 0, β > 2 and a
slowly varying function f . Choose a vertex of Cωn uniformly at random and let hn denote
the maximum number of blocks along a path starting in that vertex. Then for each function
tn →∞ it holds that

|hn − log(n)/ log(1/ν)| ≤ tn

with probability tending to one as n becomes large. Moreover, hn/ log(n) converges to the
constant log(1/ν) in the space Lp for p ≥ 1. In particular, this applies to the uniform random
planar graph for which we have β = 5/2, and more generally to random graphs from planar-like
classes in the sense of Giménez, Noy and Rué [63].

6.7.3 Applications to random dissections

Given a sequence of non-negative weights (γk)k≥3 with γk > 0 for at least one k, we may
assign to each dissection D of a polygon the weight

ω(D) =
∏
F

γ|F |,

with the index F ranging over the inner faces of D. Here |F | denotes the degree of the
face F . As discussed in Section 6.1.3, the random dissection Dω

n of an n-gon that gets
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drawn with probability proportional to its ω-weight is distributed like the random enriched
tree ARn−1 for the weighted species Rκ = SEQ ◦ SEQγ

≥1 with the weighting γ given by
SEQγ

≥1(z) =
∑∞

k=1 γk+2z
k. Let w = (ωk)k be the weight-sequence with ωk = |R[k]|κ.

The connection of random type I dissections and critical conditioned Galton–Watson
trees has been fruitfully applied in work by Kortchemski [78], Curien and Kortchemski [43],
and Curien, Haas and Kortchemski [42], who provide both scaling limits and combinatorial
applications. In particular, vertex and face degrees where studied in [43, Sec. 4.2], and the
approach taken in this section is similar, although additional ideas are required to treat the
type II and III cases. We summarize the main results in this section and refer to Section 7.8
for details and proofs.

Type I dissections The random dissection Dω
n possesses the rerooting invariance property.

That is, its distribution as rooted plane graph does not change if we reroot at a uniformly
at random chosen vertex. Hence we may apply Theorems 6.2 and 6.3 to obtain Benjamini–
Schramm convergence if w has type I.

Theorem 6.47 (Benjamini–Schramm convergence, type I). Suppose that the weight sequence
w has type I. Then the limit object (T̂ , β̂) corresponds to a random infinite planar map D̂.
The random dissection Dω

n converges toward D̂ in the Benjamini–Schramm sense. If the w
has type Ia, then it even holds that for any sequence of non-negative integers kn = o(n1/2)

lim
n→∞

dTV(Ukn(Dω
n), Ukn(D̂))→ 0.

The limit admits an easy description. Recall the parameter τ and the series φ(z) from
Section 3.1.2.

Remark 6.48. The distribution of D̂ is given as follows.

1. Let (Fi)i≥1 a family of independent copies of a random number F ≥ 3 with distribution
given by

P(F = k) = γk(k − 1)τ k−2. (6.32)

2. Let (Di)i≥1 be random polygons such that Di has degree Fi for all i. For each polygon, we
distinguish an arbitrary edge as its root-edge and we orient that edge in counter-clockwise
direction. We form an infinite planar map by identifying the root-edge of Di+1 with an
uniformly at random chosen non-root-edge of Di for all i. The resulting object D is a
planar map that we consider as rooted at the root-edge of D1. The sequence of root-edges
forms the spine of D.

3. Let D denote a random dissection following the Boltzmann distribution PD,τ/φ(τ). We
identify each non-spine edge of D with a fresh independent copy of D (attached from the
outside) and let D̂ denote the result.

Uniform dissections and triangulations of polygons where also studied by Bernasconi,
Panagiotou and Steger [25]. Using a different approach, they showed concentration results
that imply laws of large numbers for the number of induced copies of (necessarily 2-connected)
subgraphs [25, Thm. 1.4, 1.5] and the degree of a random root [25, Thm. 1.1].
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Figure 16: The three different types of Benjamini–Schramm limits of random face-
weighted dissections of polygons.

Type II dissections If w has type II, then we obtain convergence toward a limit object
having a finite spine with path at its tip that grows to infinity in both directions, and
corresponds to a face with large degree in Dω

n. The limit graph is illustrated in Figure 16.
Recall the parameter ν from Section 3.1.2.

Theorem 6.49 (Benjamini–Schramm convergence, type II). If w has type II, then the
Benjamini–Schramm limit D̂ of Dω

n is given as follows.

1. Draw a random integer L ≥ 0 that follows the geometric distribution

P(L = `) = ν`(1− ν).

2. Let F denote the random integer with distribution given by

P(F = k) = γk(k − 1)τ k−2/ν.

3. Let D1, . . . , DL be random polygons such that the degree of Di is an independent copy of
F for all i. We consider each polygon as rooted at a directed edge in counter-clockwise
direction. Form a planar map D by identifying the root-edge of Di+1 with a uniformly at
random drawn non-root-edge of Di for all 1 ≤ i ≤ L−1. Choose a random non-root-edge
e of DL. We call the sequence of root-edges together with e the spine of D.

4. Identify the edge e with an arbitrary edge of a path that grows to infinity in both directions.
Let DP denote the result.

5. Again let D denote a random dissection following the Boltzmann distribution PD,τ/φ(τ).
We identify each non-spine edge of DP with a fresh independent copy of D (attached
from the outside) and let D̂ denote the result.

Corollary 6.50. Theorem 6.20 and Proposition 6.21 yield bounds and limit laws for the sizes
B(i) of the ith largest faces in the random dissection Dω

n for various cases of weight sequences.
In the non-generic type II setting, we hence obtain a central limit theorem for the size of the
largest face.
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Type III dissections In the type III regime, the limit enriched tree consists of a single
vertex with infinitely many offspring, all of which are leaves. The root corresponds to a vertex
with large degree in the enriched tree representation of Dω

n. That is, a SEQ◦SEQγ
≥1 structure

with a large random total size that depends on n. The number of components equals the
number of inner faces to which the root-vertex of Dω

n is incident. The idea of the following
result is that with high probability the root vertex is incident to only a single inner face, and
any fixed-sized neighbourhood of the root looks with high probability like a straight line.

Theorem 6.51 (Benjamini–Schramm convergence of type III dissections of polygons). If the
weight sequence w has type III, then the Benjamini–Schramm limit of Dω

n is a doubly-infinite
path as illustrated in Figure 16.

Considered from a Gibbs-partition viewpoint, Theorem 6.51 is actually a small surprise.
It is a priori not clear at all why the SEQ ◦ SEQγ

≥1-structure belonging to the root of Dω
n

with a large random size should consist with high probability of a single component, when
such a behaviour does not need to hold for random SEQ ◦ SEQγ

≥1-structures with a large
deterministic size:

Remark 6.52 (Gibbs partitions: the non-analytic case). Being in the type III regime means
that SEQγ

≥1(z) is not analytic at the origin. If we take a random compound structure Sk from
(SEQ ◦ SEQγ

≥1)[k] with probability proportional to its weight for a deterministic k, and let k
tend to infinity, then the probability

rk =
[zk]SEQγ

≥1(z)

[zk]SEQ ◦ SEQγ
≥1(z)

that Sk consists of a single component may not converge at all. More precisely, the fact that
SEQγ

≥1(z) has radius of convergence 0 ensures that

lim sup
k→∞

rk = 1, (6.33)

but there are concrete examples for which the limes inferior belongs to [0, 1[. This has been
shown by Bell [19] for composition schemes of the form SET ◦ Fκ, and his arguments may
easily be adapted to verify (6.33). It is also not hard to construct aperiodic weightings for
which rk = 0 for infinitely many k.

The SEQ◦SEQγ
≥1-structure belonging to the root of Dω

n is distributed like SKn for a random
integer Kn independent from (Sk)k, that satisfies P(Kn ≥ Ωn) → 1 for some deterministic
sequence Ωn → ∞. If we look at the distribution of Kn directly, then it is not clear why it
behaves so nicely such that SKn has with high probability only a single component, as n becomes
large. We circumvent this issue in the proof of Theorem 6.51, by using the flexibility of the
Ehrenborg–Méndez isomorphism to treat arbitrary non-analytic γ-weights.

Theorem 6.51 may be reformulated to show that the random plane tree T ω` with ` leaves
from Section 6.1.7 converges in the type III regime toward the same infinite star as simply
generated trees do. See Lemma 7.3 and Lemma 6.8 for a precise statement of this fact.
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6.7.4 Applications to random k-trees

We are interested in obtaining the Benjamini–Schramm limit of the random k-dimensional tree
Kn with n hedra as n becomes large. A local limit around (a fixed vertex of) a uniformly at
random drawn front was established in [47]. As we shall see, the two limits are distinct, which
is already evident from the fact that the degrees of the root vertices tends to different limit
distributions. Interestingly, the two limits are however identically distributed as unrooted
graphs.

We use the notation of Section 6.1.6. As discussed there, Kn is distributed like the uniform
front-rooted k-tree K◦n from the front-rooted class K◦, which by Equations (6.13) and (6.14)
admits the decomposition

K◦ ' SET(K◦1), K◦1 ' X · SETk(K◦1).

Here K◦1 denotes the class of front-rooted k-trees where the root-front is contained in precisely
one hedron and consists of k distinct ∗-place-holder vertices that do not contribute to the
total size of the object. The decomposition shows that the uniform random n-sized element
K◦1,n from the class K◦1 corresponds to the random enriched tree ARn for R = SEQ{k} ◦ SET.
The weight-sequence w = (ωk)k is defined accordingly by ωk = |R[k]|.

As φ(z) = R(z) = exp(kz) is infinite when evaluated at its radius of convergence ∞, a
general criterion given in [69, Lem. 3.1] applies and ensures that w has type Ia. Thus [69,
Thm. 18.11] yields that

[zn]K◦1(z) ∼

√
φ(τ)

2πφ′′(τ)

(
φ(τ)

τ

)n
n−3/2 =

1

k
√

2π
(ek)nn−3/2,

as τ is defined by φ′(τ)τ = φ(τ) which yields τ = 1/k. Hence Lemma 6.15 ensures that the
decomposition SET ◦ K◦1 has convergent type, that is,

lim
n→∞

dTV(Kn,K
◦ + K◦1,n−|K|) = 0. (6.34)

Here K◦ denotes a random k-tree that follows the Boltzmann-distribution PK◦, 1
ek

and is

independent from (K◦1,n)n. That is, K◦ is obtained by glueing Poisson(K◦1( 1
ek

))-many (with
K◦1( 1

ek
) = τ = 1/k by Equation (3.5)) independent PK◦1 , 1

ek
-distributed K◦1-objects together

at their root-fronts. If the Poisson-distributed number equals zero, then we define it to be
just a single root-front. Moreover, K◦ + K◦1,n−|K| denotes the graph obtained by canonically
identifying the root-fronts of the two k-trees K◦ and K◦1,n−|K| with each other. This is only

well-defined if |K◦| < n, but the probability for this event tends to one as n becomes large.
Theorem 6.5 that describes the asymptotic behaviour of extended fringe subtrees in enriched

trees implies that K◦n,1 converges in the Benjamini–Schramm sense toward the limit graph K̂
that corresponds to the enriched tree (T ∗, β∗) according to the bijection in Section 6.1.6, and
we may use Equation (6.34) to deduce that Kn also converges in the Benjamini–Schramm
sense.

Even more ambitiously, we may establish total variational convergence of arbitrary o(
√
n)-

neighbourhoods. This is best possible, as the diameter of Kn has order
√
n. We also provide a

simple description of the distribution of the limit K̂ in Remark 6.54 below, as the interpretation
of (T ∗, β∗) as a graph requires some thought.
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Figure 17: The Benjamini–Schramm limit of random k-trees.

Theorem 6.53. Let K̂ denote the infinite random enriched tree corresponding to the limit
R-enriched tree (T ∗, β∗) according to the bijection in Section 6.1.6. Let vn be a uniformly at
random drawn vertex from the random n-vertex k-tree Kn and let tn = o(

√
n) be a series of

positive integers. Then the total variational distance between the graph-distance neighbourhoods
Vtn(·) of (Kn, vn) and K̂ converges to zero, that is

lim
n→∞

dTV(Vtn(Kn, vn), Vtn(K̂)) = 0.

This establishes K̂ as the Benjamini–Schramm limit of the random k-tree Kn.

We are going to describe the distribution of the Benjamini–Schramm limit K̂ in detail
using a random walk and family of independent Boltzmann distributions as illustrated in
Figure 17.

Remark 6.54. The limit K̂ corresponding to (T ∗, β∗) may be described as follows.

1. Imagine a random walker that sits inside of a hedron, which we may interpret as a
convex subset in k-dimensional space. For example, for k = 2 the walker sits inside of a
triangle. He leaves the hedron by passing through any of the k + 1 fronts. We label the
vertex not contained in this front as u0. We take another hedron and glue one of its
fronts from the outside to the front through which the walker just passed, so that the
walker finds himself trapped again. That is, he is now trapped in the second hedron of a
k-tree with two hedra in total.
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2. In the ith step (we start with i = 1), the random walker chooses uniformly at random
one of the k fronts of his prison hedra through which he has not passed before. We label
the unique vertex not contained in this front with ui. He leaves his prison k-tree by
passing through the chosen front, and we trap him as before by attaching a new hedra
from the outside.

(3) This yields a k-tree G consisting of an infinite ordered sequence of glued-together hedra.
The vertices of the k-tree are labelled by u0, u1, . . .. As in Equation (6.34), let K◦ denote
a random front-rooted k-tree that follows the Boltzmann-distribution PK◦, 1

ek
. For each

front F of the infinite k-tree G take a fresh independent copy K◦F of K◦ and identify F

with the root-front of K◦F in a canonical way. Let K̂ denote the result and root it at the
vertex u0.

We included the vertices u0, u1, . . . in the description of K̂ as they correspond to the backwards
growing spine of the infinite R-enriched tree (T ∗, β∗). The limit is illustrated in Figure 17,
where the red vertex corresponding to u0 being the root.

From this, we may deduce the precise limit distribution of a random vertex in the random
k-tree Kn.

Remark 6.55. The root-degree dK̂(u0) has finite exponential moments and its probability
generating function u(z) given by

u(z) = zkv(z)k, v(z) = exp((zv(z)k − 1)/k).

That is, for k = 2 it is given by the number of vertices of a forest of k subcritical Galton–
Watson trees with offspring distribution Poisson(1/2). In general, the distribution is given by
the number of type A vertices in a 2-type Galton–Watson tree, where type A vertices have no
offspring, the root always has type B, and the (A,B)-offspring of a type B vertex is given by
(Z, (k − 1)Z), for a Poisson(1/k)-distributed random variable Z.

Since 2-trees are planar, it follows by a general result [65, Thm. 1] on distributional limits
of planar graphs that the limit K̂ is almost surely recurrent for k = 2. In [47, Thm. 2] a
local weak limit K̂◦ was established that describes the convergence of neighbourhoods of a
fixed vertex of the root-front in a random front-rooted k-tree as its number of hedra tends to
infinity. The two limits are distinct as rooted graphs, since their root-degrees follow different
distributions. However, they are identically distributed as unrooted graphs:

Remark 6.56. We may compare the Benjamini–Schramm limit K̂ of the random k-tree Kn

with the limit K̂◦ that describes the convergence of neighbourhood of a uniform random vertex
of a uniform random front in Kn. Our main observation is that their root-degrees have different
distributions, but the two graphs are identically distributed as unrooted graphs.

The limit K̂◦ of [47, Thm. 2] admits a description similar as in Remark 6.54 with the
following difference. For K̂ we started in with an initial hedra that the random walker leaves
through a front and we label the opposite vertex as the root u0. So in the construction of K̂,
u0 is always incident to precisely k independent PK◦, 1

ek
-distributed objects. For K̂◦ we have

to start with an initial hedra that is rooted at a front and one of the vertices of that front is
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Figure 18: The local weak limit of random block-weighted planar maps with type I.

distinguished as the root-front. The random walker then leaves the hedra through a uniformly
at random drawn non-root-front and proceeds afterwards as in step (2) of Remark 6.54, that
is, avoiding fronts through which he has passed before. So in the resulting limit K̂◦, the root
is incident to a random number of independent PK◦, 1

ek
-distributed objects and that number

is with probability (k − 1)/k strictly larger than 2. Now if we simply reroot K̂◦ at the vertex
opposite of the front through which the random walker leaves the initial hedra, then the result is
distributed like K̂. So K̂ may be obtained from K̂◦ by rerooting at a random location depending
on the first move of the random walker. This verifies that K̂ and K̂◦ are identically distributed
as unrooted graphs.

6.7.5 Applications to random planar maps

We study the random block-weighted planar map Mω
n that corresponds as described in

Section 6.1.5 to the random enriched tree AQ
κ

2n+1 with Qκ denoting the κ-weighted class of
non-separable planar maps. So in this section, the weight-sequence w = (ωk)k is defined by
ωk = |Q[k]|κ for all k ≥ 0.

Local convergence - the infinite spine case In the type I regime, our framework yields
the following distributional limit.

Theorem 6.57. Suppose that the weight-sequence w has type I. Let M̂ denote the planar map
corresponding to the infinite Qκ-enriched tree (T̂ , β̂).

1. The random block-weighted planar map Mω
n converges in the local weak sense toward

M̂. The limit respects the planar embedding of the map. That is, for each fixed k the
neighbourhood Vk(Mω

n) of the origin of the root-edge of Mω
n converges weakly as plane

graph or edge-rooted planar map toward the neighbourhood Vk(M̂ω).

2. If w has type Ia, then it even holds for any sequence kn = o(
√
n) that

lim
n→∞

dTV(Vkn(Mω
n), Vkn(M̂)) = 0.

The distribution of the limit planar map M̂ admits an easy description, which is illustrated
in Figure 18.

Remark 6.58. The distribution of M̂ may be described as follows.
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1. Let Q denote a random non-separable map following a Boltzmann distribution PQκ,τ .
Likewise, let Q• denote random corner-rooted map following a P(Q•)κ,τ -distribution.

2. We start with an independent copy of Q•. The root-edge of this object will be the
root-edge of M̂. We declare all corners as unvisited.

3. In each step, pick an arbitrary unvisited corner c. If it is a root-corner, then attach an
independent copy Q of Q• at the corner c. Otherwise use an independent copy Q of Q
instead.

4. If Q is the empty map with no edges, then just declare the corner c as visited. Otherwise,
the attaching Q replaces the old corner c by two new corners. Declare the one incident
with the root-edge of Q as visited.

Local convergence - the finite spine case In the type II regime, which encompasses
the case of a uniform n-edge planar map, we obtain the following result.

Theorem 6.59. Suppose that the weight-sequence w has type II. Let Qκ
n denote a random

n-edge non-separable map that is drawn with probability proportional to its κ-weight. Suppose
that Qκ

n converges in the local weak sense toward a limit Q̂ as n becomes large. Then the
random map Mω

n also converges in the local weak sense.
The limit M̂ is a modification of the type I limit described in Remark 6.58, with the

only difference being that instead of an infinite spine of P(Q•)κ,τ -distributed corner-rooted
non-separable maps we take a spine having geometric length L with

P(L = `) = ν`(1− ν)

and then attach Q̂ at the root-corner of the map at the tip of spine.
That is, in the description of Remark 6.58 we may use exactly L independent copies of

the corner-rooted map. As soon as we would have to use the (L+ 1)th independent copy, we
attach the limit Q̂ instead, whose corners are of course all declared unvisited. In particular
for L = 0 we directly start the recursive description with Q̂.

Block sizes and block diameter The diameter of the coupled tree T2n+1 is an upper
bound for the block-diameter of the random n-edge block-weighted planar map Mω

n. The
outdegrees in T2n+1 correspond precisely to the number of half-edges or corners in the blocks
of Mω

n. Hence all known bounds and limit theorems regarding the extremal out-degrees in
simply generated trees also apply to the block-sizes in Mω

n. See Janson [69, Chapters 9, 19]
for an overview of such results, and Kortchemski [79, Thm. 1] for a recent addition. Formally,
Theorem 6.20 and Proposition 6.21 apply, as we may express R = Qκ trivially as a compound
structure R ' X ◦ Qκ.

Banderier, Flajolet, Schaeffer, and Soria [15] studied many natural models such as uniform
(bipartite) planar maps, which in our setting correspond to type II block-weighted maps with
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Figure 19: Patching together discrete metric spaces.

ωk ∼ ck−5/2τ−k for some c > 0. Using analytic methods, they also established a local limit
law [15, Thm. 3] for the size of the largest block, which is a stronger result than the central
limit theorem obtained by the probabilistic approach in this setting.

Addario-Berry [4] used a similar probabilistic approach as in the present paper to relate
the block-sizes of random planar maps to out-degrees in simply generated trees.

6.8 Scaling limits of metric spaces based on R-enriched trees

6.8.1 Patching together discrete semi-metric spaces

We describe a model of semi-metric spaces patched together from metrics associated to the
vertices of a tree. Let A be a rooted tree with vertex set V (A) and for each vertex v let Mv

denote its offspring set. Let δ be a map that assigns to each vertex v of A a semi-metric δ(v)
on the set Uv := Mv ∪ {v}. We may define a semi-metric d on the vertex vertex set V (A)
that extends the semi-metrics δ(v) by patching together as illustrated in Figure 19. Formally,
this semi-metric is defined as follows. Consider the graph G on V (A) obtained by connecting
any two vertices x 6= y if and only if there is some vertex v of the tree A with x, y ∈ Uv and
assigning the weight δ(v)(x, y) to the edge. The resulting graph is connected and the distance
of any two vertices a and b is defined by the minimum of all sums of edge-weights along paths
joining a and b in the graph G.

We now introduce our model of random semi-metric spaces associated to random enriched
trees. Let Rκ be a weighted species such that the weight sequence w = (ωk)k given by
ωk = |R[k]|κ/k! satisfies ω0 > 0 and ωk > 0 for some k ≥ 2. Consider the weighting ω on the
species AR introduced in Section 6.1, that is ω(A,α) =

∏
v∈[n] κ(α(v)) for all (A,α) ∈ AR[n].

For any integer n ≥ 0 with |AR[n]|ω > 0 we form the random R-enriched tree ARn = (An, αn)
drawn from the set AR[n] with probability proportional to its ω-weight. Suppose that for
each finite subset U ⊂ N and each R-structure R ∈ R[U ] we are given a random semi-metric
δR on the set U ∪ {∗U} with ∗U denoting an arbitrary fixed element not contained in U . For
example, we could set ∗U := {U}. We may form the random semi-metric space Xn = ([n], dXn)
as follows. For each vertex v of An with offspring set Mv let δn(v) be the semi-metric on the
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set Mv ∪ {v} obtained by taking an independent copy of δαn(v) and identifying ∗Mv with v.
Let dXn denote the semi-metric patched together from the family (δn(v))v as described in the
preceding paragraph.

In order for this to be a sensible model of a random tree-like structure we require the
following three assumptions.

1. We assume that there is a real-valued random variable χ ≥ 0 such that for any R-
structure R the diameter of the semi-metric δR is stochastically bounded by the sum of
|R| independent copies χR1 , . . . , χ

R
|R| of χ.

2. For any bijection σ : U → V of finite subsets of N and for any R-structure R ∈ R[U ]
we require that the semi-metric δR[σ](R) is identically distributed to the push-forward of
the semi-metric δR by the bijection σ̄ : U ∪ {∗U} → V ∪ {∗V } with σ̄|U = σ.

3. We assume that there is at least one R-structure R having positive κ-weight κ(R) > 0
such that the diameter of δR is not almost surely zero.

The first requirement ensures that the semi-metric space Xn maintains a tree-like structure
and the second that the symmetries of the enriched tree do not influence the choice of the
random semi-metrics. The third requirement ensures that Xn is not a degenerate space.

6.8.2 Scaling limits and a diameter tail-bound

In the following, we interpret Xn in a canonical way as a metric space by passing to the
quotient space, in which points with distance zero from each other are glued together.

Theorem 6.60 (Scaling limit of the enriched tree based model of random metric spaces).
Suppose that the weight sequence w has type Ia. Then the rescaled space (Xn, n

−1/2dXn)
converges weakly to a constant multiple of the (Brownian) continuum random tree Te with
respect to the Gromov–Hausdorff metric as n ≡ 1 mod span(w) tends to infinity.

The scaling factor is made explicit in the corresponding proof in Section 7.11. In order to
ensure that extremal parameters of the rescaled (pointed) metric space such as the height
and diameter converge not only in distribution, but also in higher moments, we also show a
diameter tail-bound in Lemma 6.61 below.

Lemma 6.61 (Tail bound for the diameter). Suppose that the weight sequence w has type
Iα. Then there are positive constants C and c such that for all n and x ≥ 0 it holds that

P(D(Xn) ≥ x) ≤ C(exp(−cx2/n) + exp(−cx)).

Note that if the random variable χ is bounded, then P(D(Xn) ≥ x) = 0 for all x larger
than a constant multiple of n and hence it follows that there are constants C, c > 0 with

P(D(Xn) ≥ x) ≤ C exp(−cx2/n)

for all n and x ≥ 0. The requirements of Lemma 6.61 are slightly weaker than in Theorem 6.60,
since we did not assume exponential moments. The main ingredient in the proof is a similar
tail-bound (3.7) for the height of Galton–Watson trees.
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Theorem 6.60 and Lemma 6.61 are inspired by previous work on scaling limits and
diameter tail-bounds in [42, 96, 104], but the author felt it would nevertheless be interesting
to complement the results on the local convergence in the general setting of random enriched
trees by examples describing global geometric properties. We limit the scope of this paper to
the ”Brownian”case where the global geometric properties are similar to a large critical Galton–
Watson trees whose offspring distribution has finite variance, but extensions to arbitrary
enriched trees in more involved settings of weight-sequences could be very interesting.

6.8.3 Applications

The main application of the results in Section 6.8.2 is to the model Mω
n of random planar maps

with block-weights introduced in Section 6.1.5. Furthermore, Theorem 6.60 and Lemma 6.61
mildly generalize results for uniform random graphs from subcritical graph classes [96, Thm.
5.1, Thm. 7.1] and uniform outerplanar maps [104, Thm. 1.2] to the setting of weighted
random structures, that is, block-weighted random graphs and block-weighted or face-weighted
outerplanar maps.

Let ι > 0 denote a random variable which has finite exponential moments. Given a
connected graph G we may consider the first-passage percolation metric dFPP on G by
assigning an independent copy of ι to each edge of G, letting for any two vertices x, y the
distance dFPP(x, y) be given by the minimum of all sums of weights along paths joining x and
y. We let DFPP(G) denote the diameter with respect to the dFPP-distance.

We may construct the first-passage percolation metric (Mω
n, dFPP) as the quotient space

of a random semi-metric space (Xn, dXn) as in Section 6.8.1. Here we make good use of the
freedom to assign semi-metric spaces to biconnected maps, as the non-root-vertices of the
enriched tree AQ

κ

2n+1 correspond to the corners of the random planar map Mω
n and not to the

vertices. For each Q-structure Q we let δQ denote the semi-metric space whose points are
the corners of Q with the distance of two corners x1, x2 being defined as the first-passage
percolation distance in (Q, dFPP) of the vertices incident to x1 and x2. So the quotient space
of (Xn, dXn) is, as a random metric space, distributed like (Mω

n, dFPP). Theorem 6.60 and
Lemma 6.61 now immediately yield the following result.

Theorem 6.62. Suppose that the weight sequence w has type Ia. Then the rescaled space
(Mω

n, n
−1/2dFPP) converges weakly to a constant multiple of the (Brownian) continuum random

tree Te with respect to the Gromov–Hausdorff metric as n ≡ 1 mod span(w) tends to infinity.
Moreover, there are constants C, c > 0 such that for all n and x ≥ 0 it holds that

P(DFPP(Mω
n) ≥ x) ≤ C(exp(−cx2/n) + exp(−cx)).

7 Proofs

7.1 Proofs of the results on random enriched trees in Section 6.2

We start with a proof for the coupling of random enriched trees with simply generated trees.

Proof of Lemma 6.1. Let Tn denote the set of plane trees with n vertices and

Zn =
∑
T∈Tn

ω(T )
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the partition function of the weight sequence (ωk)k. Let A denote the species of rooted
unordered trees. Every unordered rooted tree A ∈ A[n] corresponds to

∏
v∈V (A) d

+
A(v)! ordered

trees (with labels in the set [n]) and every plane tree corresponds to n! ordered (labelled)
trees. Hence

|AR[n]|ω =
∑

A∈A[n]

∏
v∈V (A)

|R[d+
A(v)]|κ = n!

∑
T∈Tn

ω(T ) = n!Zn. (7.1)

We may view the tree AR[σ][(Tn, βn)] as a labelled ordered enriched tree by keeping the
orderings on the offspring sets of Tn. Each enriched tree (A,α) ∈ AR[n] may be ordered
in
∏

v∈V (A) d
+
A(v)! many ways, so the event ARn = (A,α) as unordered tree corresponds to∏

v∈V (A) d
+
A(v)! many outcomes for ARn as ordered tree. Each of these outcomes corresponds

to a unique value (T, β) for the random enriched plane tree (Tn, βn) and a unique value for
the random partition σ. Hence

P((An, αn) = (A,α)) =
1

n!

∑
(T,β)

P((Tn, βn) = (T, β)) (7.2)

with the sum index (T, β) ranging over all enriched plane trees corresponding to the enriched
tree (A,α) as described. It holds that P(ARn = (A,α)) > 0 if and only if P((Tn, βn) = (T, β))
for all (T, β) corresponding to (A,α), and in this case it holds that

P((Tn, βn) = (T, β)) = P((Tn, βn) = (T, β) | Tn = T )P(Tn = T )

=

 ∏
v∈V (A)

κ(β(v))

|R[Mv]|κ

 1

Zn

∏
v∈V (A)

ωd+A(v)


=

1

Zn

∏
v∈V (A)

κ(β(v))

d+
A(v)!

.

As there are
∏

v∈V (A) d
+
A(v)! many choices for (T, β), it follows from Equations (7.1) and (7.2)

that

P((An, αn) = (A,α)) =
1

n!Zn
ω(A,α) =

1

|AR[n]|ω
ω(A,α).

This concludes the proof.

Next, we are going to prove the local convergence of our model of random enriched trees.

Proof of Theorem 6.2. By construction, the set of enriched trees A is a subset of the compact
product space XV∞ with X = {∗,∞}t

⋃
nR[n]. We are going to argue that A is also compact.

For any vertex v ∈ V∞ and integers i > k ≥ 0 set

Uv,k,i = {f ∈ XV∞ | |f(v)| = k, f(vi) 6= ∗}.

Then each subset Uv,k,i is open. Thus the subspace

A =
⋂
v,k,i

(XV∞ \ Uv,k,i)
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is closed and hence compact.
Since A is compact, any sequence of random enriched plane trees has a convergent subse-

quence. In particular, the sequence (Tn, βn) of random enriched plane trees converges towards

a limit object (T̄ , β̄) along a subsequence (nk)k. We are going to show that (T̄ , β̄)
d
= (T̂ , β̂)

regardless of the subsequence. By standard methods [26, Thm. 2.2] this implies that

(Tn, βn)
d−→ (T̂ , β̂).

Consider the continuous map

ϕ : X → N̄0, X 7→ |X| (7.3)

where we set | ∗ | := 0 and |∞| :=∞. The induced continuous map ϕV∞ : XV∞ → N̄V∞0 may
be interpreted as the projection that sends an enriched plane tree (T, β) to the plane tree T .
Thus ϕV∞(A) ⊂ T. Hence it holds that

Tnk
d
=ϕV∞(Tnk , βnk)

d−→ϕV∞(T̄ )
d
= T̄ .

But Tn
d−→T̂ by Theorem 3.1 and thus T̄ d

= T̂ .

Moreover, in order to show (T̄ , β̄)
d
= (T̂ , β̂) it suffices to show that for any finite set V ⊂ V∞

we have that β̄(v)
d
= β̂(v) for all v ∈ V . The set XV is countable, hence this is equivalent to

P(β̄(v) = Rv for all v ∈ V ) = P(β̂(v) = Rv for all v ∈ V ) (7.4)

for all (Rv)v ∈ XV . Since T̄ d
= T̂ it suffices to consider the case

P(|β̂(v)| = |Rv| for all v ∈ V ) 6= 0

because otherwise both sides of Equation (7.4) equal zero. In particular, since the tree T̂ has
almost surely at most one vertex with infinite degree, we may assume that at the number of
vertices v ∈ V , with Rv =∞, equals one or zero.

Case a): Rv 6=∞ for all v ∈ V . Then

P(β̄(v) = Rv for all v ∈ V ) = lim
k→∞

P(βnk(v) = Rv for all v ∈ V ). (7.5)

Set V∗ = {v ∈ V | Rv = ∗}. Since T̄ d
= T̂ we have that

lim
k→∞

P(|βnk(v)| = |Rv| for all v ∈ V \ V∗, βnk(v) = ∗ for all v ∈ V∗)

= P(|β̂(v)| = |Rv| for all v ∈ V \ V∗, β̂(v) = ∗ for all v ∈ V∗). (7.6)

Moreover, by Lemma 6.1 and the definition of (T̂ , β̂) it follows that

P(βnk(v) = Rv for all v ∈ V | |βnk(v)| = |Rv| for all v ∈ V \ V∗, |βnk(v)| = ∗ for all v ∈ V∗)

=
∏

v∈V \V∗

κ(Rv)/|R[|Rv|]|κ

= P(β̂(v) = Rv for all v ∈ V | |β̂(v)| = |Rv| for all v ∈ V \ V∗, |β̂(v)| = ∗ for all v ∈ V∗).
(7.7)
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Hence Equation (7.4) holds in this case.
Case b): Ru =∞ for precisely one u ∈ V . By a similar argument as in case a) it follows

that for all K ≥ 1

P(β̄(v) = Rv for all v 6= u, |β̄(u)| ≥ K) = P(β̂(v) = Rv for all v 6= u, |β̂(u)| ≥ K).

Letting K tend to infinity yields Equation (7.4).

Next, we are going to prove the strong type of convergence, if the weight sequence has
type Iα.

Proof of Theorem 6.3. Let E denote the countably infinite set of all R-enriched plane trees
and set

Ek = {(T, β)[k] | (T, β) ∈ E}.

We have to show that

lim
n→∞

sup
H⊂Ekn

|P((Tn, βn)[kn] ∈ H)− P((T̂ , β̂)[kn] ∈ H)| = 0. (7.8)

By assumption the weight sequence w has type Iα. Hence the random tree Tn is distributed
like a critical Galton–Watson tree conditioned on having n vertices, with offspring distribution
ξ given in (3.1). In particular, ξ has finite non-zero variance. For any k and enriched plane
tree (T, β) ∈ E with height H(T ) ≥ k it holds that the probability P((Tn, βn)[k] = (T, β)[k]) is
zero if and only if P((T̂ , β̂)[k] = (T, β)[k]) is zero. Let

E ′k = {(τ, γ) ∈ Ek | H(τ) = k,P((Tn, βn)[k] = (τ, γ)) > 0}

denote the subset of all enriched plane trees satisfying this property. By assumption, there is a
sequence tn → 0 with kn = n1/2tn. The left-tail upper bound (3.8) for the height of Tn implies
that H(Tn) ≥ kn with probability tending to 1 as n becomes large. Thus, as H(T̂ ) =∞, it
suffices to verify (7.8) with the index H ranging over all subsets of E ′kn instead of Ekn .

Recall that for any tree T and non-negative integer ` we let L`(T ) denote the number of
vertices with height ` in T . Let ξ̂ denote the size-biased version of ξ with distribution given
by P(ξ̂ = i) = iP(ξ = i). Then L0(T̂ ) = 1 and, as E[ξ] = 1, for all integers k ≥ 1

E[Lk(T̂ )] = E[Lk−1(T̂ )] + E[ξ̂]− 1 = 1 + k(E[ξ̂]− 1). (7.9)

For any C > 0 and all k and n we define with foresight the subset EC,k,n ⊂ E ′k by

EC,k,n = {(T, β)[k] | (T, β) ∈ E , Lk(T ) ≤ C(ntn)1/2,

k∑
i=0

Li(T ) ≤ Cntn} ∩ E ′k. (7.10)

Using Markov’s inequality, Inequality (7.9) and the similar Inequality (3.9) for the number
Lk(Tn), we may easily check that there is a constant C > 0 such that (Tn, βn)[kn] and (T̂ , β̂)[kn]

belong to EC,kn,n with probability tending to 1 as n becomes large. Hence it suffices to verify
(7.8) with the index H ranging only over all subsets of EC,kn,n instead of Ekn .
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In order to check this modification of (7.8), we are going to show

lim
n→∞

sup
(τ,γ)∈EC,kn,n

|P((Tn, βn)[kn] = (τ, γ))/P((T̂ , β̂)[kn] = (τ, γ))− 1| = 0. (7.11)

Note that since EC,kn,n ⊂ E ′kn by definition, we do not divide by zero in (7.11). The crucial
point in the following argument is that for any (τ, γ) ∈ EC,kn,n

P((Tn, βn)[kn] = (τ, γ) | T [kn]
n = τ) = P((T̂ , β̂)[kn] = (τ, γ) | T̂ [kn] = τ),

and hence

P((Tn, βn)[kn] = (τ, γ))/P((T̂ , β̂)[kn] = (τ, γ)) = P(T [kn]
n = τ)/P(T̂ [kn] = τ). (7.12)

Let D(τ) denote the number of edges of τ and `(τ) the number of vertices of the restriction
τ [kn−1]. The probability for a trimmed simply generated tree to assume a given tree is known:
Let (ξi)i be a family of independent copies of ξ and set Sm =

∑m
j=1(ξj − 1) for all m. By

Equation (15.11) in Janson’s survey [69] it holds that

P(T [kn]
n = τ) =

n

n− `(τ)
(D(τ)− `(τ) + 1)

P(Sn−`(τ) = `(τ)−D(τ)− 1)

P(Sn = −1)

∏
v∈τ [kn−1]

P(ξ = d+
τ (v)).

The probability for T̂ [kn] = τ is easily verified to be

P(T̂ [kn] = τ) = Lkn(τ)
∏

v∈τ [kn−1]

P(ξ = d+
τ (v)),

as there are
Lkn(τ) = D(τ)− `(τ) + 1

possible places for the tip of the spine of T̂ [kn] to end up, and the probability for the offspring
of a spine-vertex to have size i with the successor being at a fixed position j ≤ i is given by
P(ξ̂ = i)/i = P(ξ = i). By Definition (7.10) it holds that

`(τ) ≤ Cntn and `(τ)−D(τ)− 1 = −Lkn(τ) ∈ [−C(ntn)1/2, 0] (7.13)

uniformly for all (τ, γ) ∈ EC,kn,n. Hence (7.12) simplifies to

P(T [kn]
n = τ)/P(T̂ [kn] = τ) = (1 + o(1))

P(Sn−`(τ) = `(τ)−D(τ)− 1)

P(Sn = −1)
.

with a uniform term o(1). Since E[ξ] = 1 and ξ has finite variance σ2, the local limit theorem
in Lemma 5.2 for lattice distributed random variables ensures that

sup
x∈span(w)Z

|
√
mP(Sm = x)− span(w)√

2πσ2
exp(− x2

2mσ2
)| → 0

as m becomes large. Inequality (7.13) implies that l(τ)−D(τ)− 1 = o(n1/2). Hence it follows
that uniformly in (τ, γ) ∈ EC,kn,n

P(Sn−`(τ) = `(τ)−D(τ)− 1)

P(Sn = −1)
= 1 + o(1).

This verifies the limit in (7.11) and hence completes the proof.
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Proof of Lemma 6.4. The proof is analogous to the proof of Proof of Theorem 6.2. As A is
compact, the sequence (τn, βn) converges toward a limit object (τ̄ , β̄) along a subsequence

(nk)k, and we need to show that (τ̄ , β̄)
d
= (τ̂ , β̂). As the projection ϕ : A → T from (7.3) is

continuous, it follows that

τ̂
d
= τ̄ .

Given an arbitrary finite subset V ⊂ V∞, it remains to show that

(β̄(v))v∈V
d
= (β̂(v))v∈V

in the countable space XV . Let (Rv)v ∈ XV and set

V∞ := {v ∈ V | Rv =∞}.

We need to show that for all positive integers K

P(β̄(v) = Rv for v ∈ V \ V∞, |β̄(v)| ≥ K for v ∈ V∞) =

P(β̂(v) = Rv for v ∈ V \ V∞, |β̂(v)| ≥ K for v ∈ V∞).

But this follows from τ̂
d
= τ̄ entirely analogous as in Equations (7.5), (7.6) and (7.7).

7.2 Proofs for the limits of re-rooted enriched trees in Section 6.3

Proof of Theorem 6.5. Suppose that the weight-sequence w has type I. It was shown in [102,
Thm. 5.1] that

(Tn, v0)
d−→T ∗ (7.14)

in the space T•. For any finite R-enriched tree A = (T, γ) that is pointed at a vertex v it holds
that if n is large enough, then the probability for fk(Tn, v0) = (T, v) is positive, if and only if
the probability for fk(T ∗) = (T, v) is positive. We may hence assume that both probabilities
are positive. Let V ⊂ V•∞ denote the set of vertices that correspond to the tree T . Then

P(fk((Tn, βn), v0) = (A, v))

= P(fk(Tn, v0) = (T, v))P(βn(v) = γ(v) for all v ∈ V | fk(Tn, v0) = (T, v))

= P(fk(Tn, v0) = (T, v))
∏
v∈V

κ(γ(v))

|R[d+
T (v)]|κ

= P(fk(Tn, v0) = (T, v))P(β∗(v) = γ(v) for all v ∈ V | fk(Tn, v0) = (T, v)). (7.15)

The limit in (7.14) implies that

P(fk(Tn, v0) = (T, v))→ P(fk(T ∗) = (T, v)).

It follows that
P(Hk = (A, v))→ P(fk(T ∗, β∗) = (A, v)).
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As fk(T ∗) is almost surely finite, this yields

Hk
d−→ fk(T ∗, β∗).

In the subcase where the weight-sequence w has type Iα, it was shown in [102, Thm. 5.2]
that for any sequence kn = o(

√
n) of non-negative integers it holds that

dTV(fkn(Tn, v0), fkn(T ∗))→ 0.

It follows by Equation (7.15) that

dTV(Hkn , fkn(T ∗, β∗)) =
1

2

∑
((T,γ),v)

|P(Hkn = ((T, γ), v))− P(fkn(T ∗, β∗) = ((T, γ), v))|

≤ dTV(fkn(Tn, v0), fkn(T ∗))→ 0.

This completes the proof.

Proof of Theorem 6.6. In [102, Thm. 7.1] it was shown that for any finite set x1, . . . , xr ∈ V•∞
of vertices it holds that

dTV((d̄(Tn,v0)(xi))1≤i≤r, (d̄T ∗n (xi))1≤i≤r)→ 0. (7.16)

The height of the specified vertex in T ∗n is stochastically bounded, hence it follows that for
each fixed m ≥ 0 the size of the pruned tree Pm(T ∗n ) is stochastically bounded. Thus, for each
ε > 0, we may choose a sufficiently large set of vertices V ⊂ V•∞ such that for all n it holds
with probability at least 1− ε that the vertex set of the pruned tree Pm(T ∗n ) is a subset of V .
Hence by the limit in (7.16) it follows that

dTV(Pm(T ∗n ), Pm(Tn, v0)) ≤ 2ε

for sufficiently large n. As ε > 0 was arbitrary, it follows that

dTV(Pm(T ∗n ), Pm(Tn, v0))→ 0. (7.17)

Let T • = (T, x) be a finite pointed plane tree where x has height at least 1 and Pm(T, x) =
(T, x). Let V ⊂ T• denote the subset of vertices that correspond to the vertices of T , except
for the sons of the root of T that lie more than m to the left or more than m to the right of
the unique spine successor.

Given Pm(T ∗n ) = (T, x), the family of (β∗n(v))v∈V of R-structures is (conditionally) inde-
pendent, and for each v ∈ V the R-structure β∗n(v) gets drawn from the set R[d+

T (v)] with
probability proportional to its κ-weight. The same holds for the conditional distribution of
the family (βn(v))v∈V given Pm(Tn, v0) = (T, x). Thus, for any finite pointed plane tree T • it
holds that

(Pm(T ∗n , β∗n) | Pm(T ∗n ) = T •)
d
= (Pm((Tn, βn), v0) | Pm(Tn) = T •).

By the limit in (7.17), it follows that

dTV(Pm(T ∗n , β∗n), Pm((Tn, βn), v0))→ 0.
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7.3 Proofs for the results on Schröder enriched parenthesizations
in Section 6.4

Proof of Lemma 6.7. Let Mn denote the set of plane trees with n leaves and no vertices with
outdegree 1 and set

Ln =
∑
T∈Mn

∏
v∈T

pd+T (v).

Let A denote the species of unordered rooted trees with unlabelled internal vertices and
leaves as atoms. Note that although the internal vertices of an A-object are unlabelled, they
are nevertheless distinguishable, as each may be identified with the set of labels of the leaves of
the fringe-subtree at that vertex. Hence every element A ∈ A[n] corresponds to

∏
v∈A d

+
A(v)!

ordered trees with labelled leaves. Moreover, for any plane tree with n leaves, there are n!
ways to label the leaves from 1 to n. Consequently,

|SN [n]|υ =
∑

A∈SN [n]

∏
v∈A

|N [d+
A(v)]|γ =

∑
T∈Mn

n!
∏
v∈T

|N [d+
T (v)]|γ

d+
T (v)!

= n!Ln. (7.18)

An element of SN [n] consists of a tree A ∈ A[n] together with a function f that assigns to
each vertex v of A with offspring set Ov an N -structure f(v) ∈ N [Ov]. There are

∏
v∈A d

+
A(v)!

many ways to order the offspring sets. We may consider the tree SN [σ](τn, δn) as ordered by
keeping the ordering of (τn, δn), so the event SNn = (A, f) as unordered trees would correspond
to
∏

v∈A d
+
A(v)! different outcomes for SNn as ordered tree. Each of these outcomes corresponds

to a unique value (T, δ) for (τn, δn) and a unique value for the permutation σ. Hence the
probability for the event that SNn = (A, f) as unordered trees is given by

P(SNn = (A, f)) =
1

n!

∑
(T,δ)

P((τn, δn) = (T, δ)) (7.19)

with the sum index (T, δ) ranging over all
∏

v∈A d
+
A(v)! enriched plane trees corresponding

to (A, f) as described. For each such enriched plane tree (T, δ) it holds that P((τn, δn) =
(T, δ)) > 0 if and only if P(SNn = (A, f)) > 0. If this is the case, then

P((τn, δn) = (T, δ)) = P((τn, δn) = (T, δ) | τn = T )P(τn = T )

=

 ∏
v∈V (T )

γ(δ(v))

|N [d+
T (v)|γ

( 1

Ln

∏
v∈T

pd+T (v)

)

=
1

Ln

∏
v∈V (A)

γ(f(v))

d+
A(v)!

=
1

Ln

 ∏
v∈V (A)

d+
A(v)!

−1

υ(A, f).

Since there are
∏

v∈A d
+
A(v)! choices for (T, δ), it follows from Equations (7.18) and (7.19) that

P(SNn = (A, f)) =
1

n!Ln
υ(A, f) =

1

|SN [n]|υ
υ(A, f).



7 PROOFS 85

Figure 20: Variants of the Ehrenborg–Méndez transformation.

This concludes the proof.

Proof of Lemma 6.8. It remains to treat the case III, where τ̂ consists of a root-vertex with

infinitely many offspring, all of which are leaves. In order to show τn
d−→ τ̂ , we need to show

that for arbitrarily large K ≥ 1 the root of τn has with high probability at least K children,
with the first K of them being leaves.

Let T υ` denote the species of plane trees with leaves as atoms as discussed in Section 6.1.7,
where each tree T ∈ T υ` [n] receives the weight

υ(T ) =
∏
v∈T

pd+T (v).

As discussed in Section 6.1.7, T υ` is a Schröder enriched parenthesization, since it satisfies an
isomorphism

T υ` ' X + SEQp
≥2 ◦ T υ` with SEQp

≥2(z) =
∞∑
k=2

pkz
k.

The random tree τn is distributed like the outcome of sampling an element from T υ` [n]
with probability proportional to its weight, and dropping the labels.

Recall the Ehrenborg–Méndez transformation of Schröder enriched parenthesizations that
is given in Equation (6.8) in Section 6.1.3 and is illustrated in Figure 5. Any choice of a
natural root-vertex of SEQp

≥2 yields a different isomorphism by Equation (6.8). We may
choose the left-most element of sequence as distinguished point, but just as well the second
from left. Moreover, as illustrated in Figure 5, when the descending along the distinguished
offspring vertices, the transformation orders the encountered fringe trees starting with those
of maximal height, then those just below, and so on. This is not essential at all, we may just
as well reverse the order and put the fringe trees of the non-distinguished offspring of the root
first, then those of height 2, and so on, to obtain an isomorphism as in Equation (6.8).
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Thus we may define two variants θ1 and θ2 of the Ehrenborg–Méndez transformation as
illustrated in Figure 20, where in θ1 we descend along the first offspring, in θ2 along the
second, and in both the order the fringe subtrees by first placing those at height 1, then those
at height 2, and so on.

By Lemma 6.1 it follows that the transformed trees θ1(τn) and θ2(τn) are both distributed
like simply generated trees with a common weight-sequence given by its generating series
SEQ(SEQp

≥2(z)/z). Since we assumed (pk)k to have type III, it follows that this series has
radius of convergence 0. Hence the simply generated trees θ1(τn) and θ2(τn) also have type
III and converge in distribution toward the star τ̂ by Theorem 3.1.

Let K ≥ 1 be an arbitrary fixed integer. The convergence of θ2(τn) toward τ̂ implies that
with probability tending to 1 as n becomes large the first offspring of the root in τn is a leaf.
If we apply the transformation θ1 to any plane tree T (that has no vertex with out-degree 1)
where the first offspring of the root is a leaf, then for all k ≥ 2 the kth offspring of the root in
θ1(T ) corresponds precisely to the kth offspring of the root in T , and it is a leaf in T if and
only if it is a leaf in θ1(T ). Hence, since the first offspring in τn is with high probability a leaf,

it follows from the convergence θ1(τn)
d−→ τ̂ that the root of τn has with high probability at

least K offspring with the first K all being leaves. Since K ≥ 1 was arbitrary, this confirms

τn
d−→ τ̂ .

Having Lemma 6.8 at hand, Theorem 6.2 follows directly by applying Lemma 6.4. We
proceed with the proof of Lemma 6.10.

Proof of Lemma 6.10. Recall that

φ(z) = 1/(1−Hκ(z)) with p(z) = zHκ(z)..

It is clear that φ(z) is analytic at 0 if and only if ρp > 0. Hence the weight-sequence w has
type III if only if µt0 = 0, and in this case we have t0 = 0 = τ .

Suppose now that ρφ, ρp > 0. We first show that

µρp ≥ 1 if and only if ψ(ρφ) ≥ 1. (7.20)

To do so, we are going to distinguish two different cases.
First, suppose that Hκ(ρp) ≥ 1. It holds for all 0 < t < ρp that

µt =
∑
k≥2

kpkt
k−1 ≥

∑
k≥2

pkt
k−1 = Hκ(t).

Letting t tend to ρp from below yields µρp ≥ 1. Moreover, Hκ(ρp) ≥ 1 implies that Hκ(ρφ) = 1
and hence φ(ρφ) =∞. By a general principle given in Janson [69, Lem. 3.1] this implies that
ψ(ρφ) > 1. Hence (7.20) is valid if Hκ(ρp) ≥ 1.

To conclude the verification of (7.20), it remains to consider the case Hκ(ρp) < 1. In this
case, it follows that ρφ = ρp <∞ and p(ρφ) < ρφ. A quick calculation shows that µz = p′(z)
and

ψ(z) = zφ′(z)/φ(z) = (p′(z)z − p(z))/(z − p(z)). (7.21)
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Thus ψ(ρφ) ≥ 1 if and only if µρp ≥ 1. This verifies (7.20) in the case Hκ(ρp) < 1.
This shows that w has type I if and only if µt0 > 0. In this case it holds that µt0 = p′(t0) = 1,

and it follows from Equation (7.21) that ψ(t0) = 1. Hence t0 = τ in the type I regime.
We have also shown that w has type II if and only if 0 < µρp < 1. In this case, it holds

that t0 = ρp and τ = ρφ. As shown above, if Hκ(ρp) ≥ 1, then we would be in the type I
regime, so it must hold that Hκ(ρp) < 1, and consequently ρp = ρφ. This verifies t0 = τ in the
type II regime.

7.4 Proofs for the results on Gibbs partitions in Section 6.5

Before starting with the proof of Lemma 6.17, let us recall the cycle lemma.

Lemma 7.1 ([105]). For each sequence of integers

k1, . . . , kn ≥ −1

with
n∑
i=1

ki = −r ≤ 0

there exist precisely r values of 0 ≤ j ≤ n− 1 such that the cyclic shift

(k1,j, . . . , kn,j) := (k1+j, . . . , kn, k1, . . . , kj)

satisfies
u∑
i=1

ki,j > −r

for all 1 ≤ u ≤ n− 1.

Proof of Lemma 6.17. In order to verify Equation (6.24), we use the notation

Z(m,n) :=
∑

k1,...,kn≥0
k1+...+kn=m

ωk1 · · ·ωkn

for all m,n ≥ 0. Note that for each n the coefficient an is equal to the sum of all products

ωj1 · · ·ωjn

such that
j1 + . . .+ jn = n− 1

and
j1 + . . .+ js ≥ s

for all s < n. By Lemma 7.1 it follows that

an =
1

n
Z(n− 1, n). (7.22)
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It follows also that the expression ∑
i1,...,ik≥1
i1+...+ik=n

ai1 · · · aik

is the sum of all products
ωj1 · · ·ωjn

such that
j1 + . . .+ jn = n− k

and
j1 + . . .+ js ≥ s− k + 1

for all s < n. Thus, Lemma 7.1 implies that∑
i1,...,ik≥1
i1+...+ik=n

ai1 · · · aik =
k

n
Z(n− k, n). (7.23)

Let (Y
(n−1,n)

1 , . . . , Y
(n−1,n)
n ) denote a random vector of non-negative integers satisfying

Y
(n−1,n)

1 + . . .+ Y (n−1,n)
n = n− 1

and distribution given by

P((Y
(n−1,n)

1 , . . . , Y (n−1,n)
n ) = (j1, . . . , jn)) =

ωj1 · · ·ωjn
Z(n− 1, n)

.

By Equations (7.22) and (7.23) it holds that

1

ωk−1
0 an−k+1

∑
i1,...,ik≥1
i1+...+ik=n

ai1 · · · aik =
kZ(n− k, n)

ωk−1
0 Z(n− k, n− k + 1)

(1 +O(n−1))

= kP(Y
(n−1,n)

1 = 0, . . . , Y
(n−1,n)
k−1 = 0)−1(1 +O(n−1)).

By [69, Thm. 11.7] it holds that

lim
n→∞

P(Y
(n−1,n)

1 = 0, . . . , Y
(n−1,n)
k−1 = 0) = 1.

Thus

lim
n→∞

1

ωk−1
0 an−k+1

∑
i1,...,ik≥1
i1+...+ik=n

ai1 · · · aik = k. (7.24)

Note that a1 = ω0. Hence

1

ωk−1
0 an−k+1

∑
i1,...,ik≥1
i1+...+ik=n

ai1 · · · aik = k +
1

ωk−1
0 an−k+1

∑
1≤i1,...,ik<n−(k−1)

i1+...+ik=n

ai1 · · · aik .

Thus Equation (6.24) follows by Equation (7.24).



7 PROOFS 89

Proof of Theorem 6.18. Let us first argue that it suffices to show that there is a number L
such that with high probability the Gibbs partition Sn has at most L components.

Applying Lemma 4.2 to the composition Fυ≤n ◦ G
γ
≤n yields that we may sample Sn up to

relabelling by choosing an arbitrary number x > 0 and then drawing a random F -object Fn
according to the Boltzmann distribution PFυ≤n,Gγ≤n(x), then for each of its atoms 1 ≤ i ≤ |Fn|
an independent G-object Gi according to a PGγ≤n,x-distribution, and conditioning the resulting

composite structure (Fn, (Gi)i) on having total size n. It follows that for any integer k ≥ 0
with [zk]Fυ(z) > 0 the conditional distribution ((Gi)1≤i≤k | |F| = k) does not depend on the
species Fυ any more In particular, conditioned on having k components, the component sizes
of the Gibbs partition Sn are identically distributed as the component sizes of an n-sized
SEQ{k} ◦ Gγ Gibbs partition. Thus Equation (6.24) yields that the largest component of this
conditioned Gibbs partition has with high probability size n − (k − 1). Thus, in order to
verify Theorem 6.18, it suffices to show that for some fixed number L the Gibbs partition Sn
has with high probability at most L components.

It remains to show that for sufficiently large L it holds that

[zn]Fυ≥L ◦ Gγ(z) = o([zn]Fυ<L ◦ Gγ(z)) (7.25)

as n tends to infinity. This is trivial if the generating series Fυ(z) is a polynomial. Hence
throughout the remaining proof we only consider the case where the set

Ω = {m ∈ N | [zm]Fυ(z) > 0}

is infinite.
By assumption there is a constant d ≥ 1 such that ai = 0 for i /∈ 1 + dZ, and a constant

I ≥ 1 such that ai > 0 for all i ∈ 1 + dZ with i ≥ I. For each 1 ≤ b ≤ d it holds that

(Fυ ◦ Gγ)[n] = (Fυb+dZ ◦ Gγ)[n]

whenever n ≡ b mod d. Thus it suffices to consider the case

Ω ⊂ b+ dZ and n ≡ b mod d. (7.26)

By assumption, the series Fυ(z) has positive radius of convergence. Hence there is a
constant C > 1 such that

[zm]Fυ(z) ≤ Cm (7.27)

for all m ≥ 1. It will be convenient to use the notation

A≥Lm := [zm]
∑
`≥L

C`Gγ(z)`

for all L ≥ 1. Clearly it holds that

[zn]Fυ≥L ◦ Gγ(z) ≤ A≥Ln
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for all n and L. Thus, in order to show Equation (7.25) it suffices to find an integer L such
that

A≥Ln = o([zn]Fυ<L ◦ Gγ(z)) (7.28)

as n ≡ b mod d becomes large.
We choose an integer t ≥ 1 with t ≡ b mod d such that there exists an element s ∈ Ω and

integers j1, . . . , js−1 ≥ 1 with

j1 + . . .+ js−1 = t− 1 and aj1 , . . . , ajs−1 > 0.

This is possible as we assumed that Ω ⊂ b+ dZ is infinite and ai > 0 for all i ∈ b+ dZ with
i ≥ I. Furthermore, we fix an integer L that satisfies

L ≥ 1 + I + t and L ≡ 1 mod d. (7.29)

It follows that there is a constant c > 0 such that

[zn]Fυ<L ◦ Gγ ≥ can−t+1 (7.30)

for all large enough integers n with n ≡ b mod d. Thus, in order to verify Equation (7.28), it
suffices to show

A≥Ln = o(an−t+1), n→∞, n ≡ b mod d. (7.31)

For k = 2 Equation (6.24) yields

m−2∑
i=2

aiam−i = o(am−1), m→∞ (7.32)

with both sides of the equation being equal to zero unless m ≡ 2 mod d. In particular, it
holds that

am−i = o(am), m→∞, m ≡ 1 mod d (7.33)

for all i with ai+1 > 0. If i is not a multiple of d, then am−i = 0 for all m satisfying m ≡ 1
mod d, and Equation (7.33) holds trivially.

We define
χn = max{A≥Lk /ak−t+1 | k ∈ b+ dZ, I − 1 + t ≤ k ≤ n}.

It holds that

A≥Ln =
∑

L≤`≤L+L−2

C`
∑

i1+...+i`=n

ai1 · · · ai` + CL−1
∑

i1+...+iL=n

ai1 · · · aiL−1
A≥LiL

≤ O(1)

( ∑
L≤`≤L+L−2

∑
i1+...+i`=n

ai1 · · · ai` +
∑

i1+...+iL=n

ai1 · · · aiL−1
A≥LiL

)
. (7.34)
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It follows by Equations (7.29), (6.24), and (7.33) that∑
L≤`≤2L−2

∑
i1+...+i`=n

ai1 · · · ai` =
∑

L≤`≤L+L−2
`≡1 mod d

O(an−(`−1))

= o(an−t+1) (7.35)

as n ≡ b mod d becomes large. As for the second sum in Equation (7.34), note that each
summand

ai1 · · · aiL−1
A≥LiL

is equal to zero, unless

i1, . . . , iL−1 ≡ 1 mod d and iL ≥ L.

Using L ≡ 1 mod d, n ≡ b mod d, and i1 + . . . + iL = n it follows that we only need to
consider summands where

L ≤ iL ≤ n− (L− 1) and iL ≡ b mod d.

For such indices, it holds that

A≥LiL ≤ aiL−t+1χiL ≤ aiL−t+1χn−(L−1).

It follows by Equations (6.24) and (7.33) that∑
i1+...+iL=n

ai1 · · · aiL−1
A≥LiL ≤ χn−L+1

∑
i1+...+iL=n

iL≥L

ai1 · · · aiL−t+1

= χn−L+1O(an−(L−1)−(t−1))

= χn−L+1o(an−t+1).

By Equations (7.34), (7.35) and (7.29) it follows that

A≥Ln ≤ o(an−t+1) + χn−L+1o(an−t+1), n→∞, n ≡ b mod d. (7.36)

In particular, there is some n0 ≥ 1 such that n0 ≡ b mod d and for all n ≥ n0 with n ≡ b
mod d it holds that

A≥ln /an−t+1 ≤
1

2
+

1

2
χn−L+1.

Hence

χn = max(A≥Ln /an−t+1, χn−d)

≤ max

(
1

2
+

1

2
χn−(L−1), χn−d

)
≤ max

(
1

2
+

1

2
χn−d, χn−d

)
≤ max(1, χn−d).
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Iterating this inequality yields

χn ≤ max(1, χn0).

Hence χn = O(1) and it follows from Equation (7.36) that

A≥Ln = o(an−t+1).

This verifies Equation (7.31) and hence completes the proof.

Proof of Corollary 6.19. If [z1]Fυ(z) > 0 and a1, a2 > 0, then Equation (7.33) yields

an−1 = o(an). (7.37)

Theorem 6.18 yields that there is some integer L ≥ 2 such that the Gibbs partition Sn has
with high probability less than L components. That is,

[zn]Fυ≥L ◦ Gγ(z) = o([zn]Fυ<L ◦ Gγ(z)).

Equations (6.24) and (7.37) readily yield that

[zn]Fυ{2,...,L−1} ◦ Gγ(z) = o(an).

Hence
[zn]Fυ≥2 ◦ Gγ(z) = o(an).

In other words, the mass of all composite structures with at least two components is negligible
compared to the mass of composite structures with a single component. Thus the Gibbs
partition Sn consists with high probability of a single component.

7.5 Proofs for the component size asymptotics in Section 6.6

Proof of Theorem 6.20. Let Y(1) ≥ Y(2) ≥ . . . ≥ Y(n) denote the descendingly ordered list of
the outdegrees of the vertices in Tn, and v1, . . . , vn the corresponding vertices. Here we fix
the ordering between vertices having the same outdegree in any canonical way, for example
according to the lexicographic ordering of their location in Tn.

If we replace the maximum component-sizes B(j) with the maximum outdegrees Y(j) in
Theorem 6.20 or Proposition 6.21, then all bounds and limit theorems hold by [69, Thm.
19.34, Thm. 19.3, Equation (19.20) and Ch. 9]. (See also [72].) As it always holds that
B(1) ≤ Y(1), this already concludes the proof for the points (1) and (2) of Theorem 6.20.

In the setting of (3), we intend to show weak convergence of the extremal G-component
sizes. The limit theorems for the Y(j) imply that there is a deterministic function `(n)→∞
such that for each fixed j ≥ 1 the probability for the event Y(j) ≥ `(n) tends to one as n
becomes large. Let B+

(j) denote the size of the largest G-structure of the R-object of the vertex
vj . As the composition Fν ◦ Gγ has convergent type by Lemma 6.15, it follows that there is a
random non-negative integer X such that for each fixed j

lim
n→∞

dTV(Y(j) −B+
(j), X) = 0. (7.38)
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As Y(1) ≥ B(1) ≥ B+
(1), this immediately yields B(1) = B+

(1) with high probability and hence

B(1) satisfies the same central limit theorem as Y(1). This concludes the proof of part a) of
Theorem 6.20.

It remains to establish limit theorems for B(j) if j ≥ 2 in the setting of (3). Equation (7.38)
implies that for, let us say tn = log n, it holds with probability tending to one that B+

(i) ≥
Y(i) − tn for all i ≤ j. As Y(i) has polynomial order for any fixed i, it follows that the j
largest G-components lie with high probability in R-structures of different vertices. If this
event takes place, then it must also hold that Y(i) ≥ B(i) for all i ≤ j. This is due to the
fact that if B(`) > Y(`) for some `, then the G-objects corresponding to the B(i) for i ≤ `
would have to belong to the R-structures of the vertices vi for i < `, and then the pigeon
hole principle tells us that at least two such objects must belong to the same vertex. Hence it
holds with high probability that B(i) ≤ Y(i) for all i ≤ j. For the lower bound, we observe
that if B+

(i) ≥ Y(i) − tn for all i ≤ j, then

B(i) ≥ min(B+
(1), . . . , B

+
(i)) ≥ min(Y(1), . . . , Y(i))− tn = Y(i) − tn.

So Y(i) − tn ≤ B(i) ≤ Y(i) and hence the limit theorems for the Y(i) also hold for the B(i). This
concludes the proof.

The proof of Proposition 6.21 is entirely analogous to the proof of Theorem 6.20, only
instead of using the asymptotics given in [69], we build on results by Kortchemski [79, Thm.
1] for the asymptotic behaviour of the largest and second largest degree in non-generic
Galton–Watson trees.

7.6 Proofs of the applications to outerplanar maps in Section 6.7.1

Theorem 6.22 follows by a direct application of Theorems 6.2 and 6.3, that guarantee
convergence of the pruned enriched tree (Tn, βn)[k] in the type I regime.

Proof of Remark 6.23. We have to interpret the limit enriched tree (T̂ , β̂) as a graph. Note
that the fringe subtree at its second spine vertex follows the same distribution as the whole
tree. So we are going to interpret (T̂ , β̂) without this fringe subtree as a graph, and then use
this recursion.

The root o of T̂ receives an R-object β̂(o) of which a uniformly at random drawn atom
forms the second spine vertex. Taking a ξ̂-sized Rκ = SEQ ◦ Dγ object with probability
proportional to its κ-weight and marking a uniformly at random chosen non-∗-vertex, is
equivalent to taking a P(R•)κ,τ object. So, β̂(o) with the marked atom given by the second
spine-vertex follows a P(R•)κ,τ -distribution.

The rules for the operations on species in Section 4.2 show in a purely algebraic fashion,
that

(R•)κ ' (SEQ′ ◦ Dγ) · (D•)γ.

Any SEQ′-object can be decomposed in a unique way into the two linear orders before and
after the ∗-atom, yielding SEQ′ ' SEQ · SEQ. Consequently,

(R•)κ ' (SEQ ◦ Dγ) · (D•)γ · (SEQ ◦ Dγ).
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The interpretation is that, in counter-clockwise order, we first glue a sequence of dissections
together at their ∗-vertices, then comes the marked dissection, and afterwards again a sequence
of unmarked dissections.

Now, the rules in Lemma 4.2 governing the relation between weighted Boltzmann distribu-
tions and operations on species yield that the sequences of dissections before the D•-object,
the D•-object itself, and the sequence of dissections after the D•-object are independent,
and follow Boltzmann distributions P(D•)γ ,τ and PSEQ◦Dγ ,τ . In the tree (T̂ , β̂), each of the
non-marked atoms of the R-object β(o) becomes the root of an independent copy of (T , β).
As graph, (T , β) follows a Boltzmann distribution POω ,τ/φ(τ).

Now, the isomorphism
Oω ' X · (SEQ ◦ Dγ)(Oω)

and the rules in Lemma 4.2 state, that if we glue the ∗-vertices of a PSEQ◦Dγ ,τ -distributed
sequence of dissections together, and identify each non-∗-vertex with the root of a fresh
independent copy of a POω ,τ/φ(τ)-distributed outerplanar map, then the result again follows a
POω ,τ/φ(τ) Boltzmann distribution.

Summing up, the graph corresponding to (T̂ , β̂), without the fringe-subtree at the second
spine vertex, corresponds to a pointed P(D•)γ ,τ -distributed dissection, with two indepen-
dent copies of a POω ,τ/φ(τ)-distributed outerplanar map attached to its root, and one fresh
independent copy attached to every other vertex, except for the marked vertex.

As the fringe subtree at the second spine vertex is distributed like (T̂ , β̂) itself, it follows
that the graph Ô corresponding to (T̂ , β̂) is distributed like an infinite chain of such triples,
where the marked vertex of any triple is identified with the ∗-vertex of the subsequent one.
So Ô has the distribution as described in the remark.

Proof of Remark 6.24. We have to show that the random graph corresponding to the enriched
tree (T ∗, β∗) follows the described distribution. Here we may build on the intermediate results
in the proof of Remark 6.23. The fringe-subtree of (T ∗, β∗) is distributed like (T , β), and
hence corresponds to a POω ,τ/φ(τ)-distributed random outerplanar map. If u0, u1, . . . denotes
the spine of (T ∗, β∗), then for all i ≥ 1 the enriched fringe subtree f((T ∗, β∗), ui) without the
enriched fringe subtree f((T ∗, β∗), ui−1) is distributed like (T̂ , β̂) without the fringe subtree
at its second spine-vertex. The graph corresponding to this object has been identified in
the proof of Remark 6.23 as a P(D•)γ ,τ -distributed dissection, with two independent copies
of a POω ,τ/φ(τ)-distributed outerplanar map attached to its root, and one fresh independent

copy attached to every other vertex, except for the marked vertex. Hence Ô∗ looks like an
infinite chain of these objects, with a single additional independent POω ,τ/φ(τ)-distributed map
attached to the marked vertex of the first element in the spine.

Proof of Theorem 6.25. In Lemma 6.1, we constructed the enriched plane tree (Tn, βn) by
first generating the random tree Tn, and then sampling for each vertex v ∈ Tn an R-structure
βn(v) ∈ R[d+

Tn(v)] with probability proportional to its κ-weight. The labels of βn(v) correspond
in a canonical way to the ordered set of offspring of the vertex v, which is why the tree (Tn, βn)
may be interpreted as an enriched tree. The final R-enriched tree ARn = (An, αn) is then
obtained by relabelling through a uniformly at random drawn bijection.

The precise way for identifying the offspring of an vertex v with the atoms of the R-
structure βn(v) does not affect the distribution of the resulting random unordered enriched
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tree ARn . We may match the offspring of v and the atoms of βn(v) according to any rule, which
only takes βn(v) into account. Different matchings may very well change the isomorphism type
of the corresponding R-enriched tree, but its distribution does not change. This may verified
by using the fact that (Tn, βn) is distributed like (T , β) conditioned on having n vertices, and
that (T , β) has this invariance property, as any offspring of a vertex v ∈ T becomes the root
of an independent copy of (T , β), regardless to which atom of β(v) it gets matched.

In the case of random outerplanar maps, the species R is given by Rκ = SEQ ◦ (D)γ . We
may consider the random enriched plane tree (Tn, λn) constructed from (Tn, βn) by matching
for each vertex v ∈ Tn the offspring of v with the atoms of βn(v) by ordering them in the
following way. We start by putting the neighbours of the ∗-vertices in the derived dissections
in any canonical order, and then proceed with the vertices at distance 2 from their respective
∗-vertices, and so on. We may construct an outerplanar map out of (Tn, λn) according to the
bijection in Section 6.1.4, which is distributed like the random outerplanar map Oω

n. Thus, in
the following we assume that Oω

n corresponds directly to (Tn, λn).
For any integer m ≥ 0, consider the subset V [m] ⊂ V∞ of the vertices of the Ulam–Harris

tree given by
V [m] = {(i1, . . . , it) | t ≤ m, i1, . . . , i` ≤ m}.

That is, we consider the first m sons of the root, and for each of those again the first m sons,
and so on, until we reach generation m. The reason why we consider (Tn, λn) is that for any
integer ` ≥ 0 and any finite outerplanar map O there exists a constant m(`,O) ≥ 0, such
that the event, that the `-neighbourhood V`(Oω

n) is identical to O as (half-edge-rooted) planar
maps, is already completely determined by the family (λn(v))v∈V [m(`,O)] . There are two reasons
for this. First, vertices with distance at most ` from the origin of the root-edge in Oω

n also
have block-distance at most ` from the origin, and hence height at most ` in Tn. Second, by
the construction of λn, for any vertex v the subset of its ordered sequence of sons, that still
lies in the `-neighbourhood of vn, is an initial segment in the ordered list. If V`(Oω

n) ' O as
(half-edge-rooted) planar maps, then the length of this initial segment must be bounded by
the number of vertices of O. Hence, if we take m(`, O) large enough depending on ` and the
size of the map O, then (λn(v))v∈V [m(`,O)] contains all information necessary to decide whether
V`(Oω

n) ' O as (half-edge-rooted) planar maps.
Janson [69, Sec. 20] constructs a deterministic sequence Ωn →∞ and a modified Galton–

Watson tree T1n that is obtained from T̂ by sampling a random degree D̃n ≥ Ωn independently
from T̂ , and pruning T̂ at its unique vertex v∗ with infinite degree, keeping only the first D̃n

children of v∗. The distribution of D̃n is given in Equation (20.4) of Janson’s survey [69], and
the construction of Ωn in [69, Lem. 19.32]. We will not require detailed knowledge of these,
but will make use of his result [69, Thm. 20.2], which states that for any fixed integer m ≥ 0
it holds that

lim
n→∞

dTV((d+
Tn(v))v∈V [m] , (d+

T1n(v))v∈V [m]) = 0. (7.39)

In other words, the tip of the spine in T̂ corresponds to a vertex with large degree in Tn.
The tree T1n is almost surely finite, and we may turn it into an enriched plane tree

(T1n, β1n), by sampling for each vertex v an element β1n(v) from R[d+
T1n(v)] with probability

proportional to its weight. Again we may match the non-∗-vertices of the set of derived
blocks β1n(v) with the ordered offspring of v according to their distance from their respective
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∗-vertices in order to obtain an enriched tree (T1n, λ1n), in precisely the same way as we
constructed (Tn, λn) out of (Tn, βn). For any finite family of vertices vi, i ∈ I, integers di ≥ 0
and R-structures Ri ∈ R[di], it holds that

P(βn(vi) = Ri, i ∈ I | d+
Tn(vi) = di, i ∈ I) =

∏
i∈I

κ(Ri)/|R[di]|κ

= P(β1n(vi) = Ri, i ∈ I | d+

T̂1n
(vi) = di, i ∈ I).

So, Equation (7.39) already implies

lim
n→∞

dTV((λn(v))v∈V [m] , (λ1n(v))v∈V [m]) = 0. (7.40)

Let Oω
1n denote the outerplanar map corresponding to (T1n, λ1n) according to the bijection in

Section 6.1.4. Setting m = m(`, O), it follows that

lim
n→∞

|P(V`(Oω
n) ' O)− P(V`(Oω

1n) ' O)| = 0. (7.41)

Thus, it remains to determine the limit probability for the event that V`(Oω
1n) is equal to

O as half-edge-rooted planar map. For any k ≥ 0 with |R[k]|κ > 0 let Rk denote a random
R = SEQ ◦ Dγ structure sampled from R[k] with probability proportional to its κ-weight.
Let R̂ and R̂′ denote two independent Boltzmann distributed R-objects with parameter τ .

If |R̂| + |R̂′| ≤ k and |D[k − |R̂|]|γ > 0, then we let R̂k denote the outerplanar map

obtained by identifying the root-vertices of R̂, an independent random dissection D̂k from
D[k − |R̂| − |R̂′|] sampled with probability proportional to its γ-weight, and R̂′, such that in
the resulting outerplanar map is rooted at the oriented root-edge of R̂ and such that in the
counter-clock-wise ordered list of edges incident to the origin of the root-edge, we encounter
the roots of R̂, D̂k and R̂′ in this order. If |R̂| + |R̂′| > k or |D[k − |R̂|]|γ = 0, then we set

R̂k = � for some placeholder symbol �.
As R̂ and R̂′ are almost surely finite, it follows that R̂k 6= � with high probability. By

assumption, the composition SEQ ◦ Dγ has convergent type with parameter τ , so Rk behaves
asymptotically like a Boltzmann-distributed SEQ′ ◦ Dγ object with parameter τ , plus a large
dissection. It holds that SEQ′ ' SEQ · SEQ, since a derived sequence consists of an ordered
initial segment, then the derived atom, and the ordered final segment. This means that as
(unlabelled) half-edge-rooted planar maps, it holds that

lim
k→∞

dTV(Rk, R̂k) = 0. (7.42)

If we let u∗ denote the vertex at the tip of the spine in T1n, then the SEQ ◦ Dγ structure
β1n(u∗) is distributed like RDn with Dn being a copy of D̃n that is independent of all other
random variables considered so far. As Dn ≥ Ωn and Ωn →∞, Equation (7.42) implies that,
up to labelling,

lim
n→∞

dTV(λ1n(u∗), R̂Dn) = 0. (7.43)

For any ordered list R of D-objects let O(R) denote the outerplanar map obtained by
identifying the ∗-vertices of all dissections with each other, such that the result is rooted at the
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root-edge of the first dissection, and the remaining dissections are ordered counter-clockwise
around the origin of the root-edge according to their order in R.

Then, for any r ≥ 0 the r-neighbourhood Vr(O(R)) is given by the union of the r-
neighbourhoods of the ∗-vertices in the components. This may be expressed by

Vr(O(R)) = O((Vr(Q))Q∈R).

The sizes of R̂ and R̂′ are almost surely finite, hence with probability tending to one as k
becomes large it holds that |D̂k| ≥ k− log k. We assumed that random n-sized blocks sampled
with probability proportional to its γ-weight converge in the Benjamini–Schramm sense toward
a limit graph D̂. It follows that D̂k also converges in the local weak sense toward D̂. Let D̂◦

denote the result of declaring the origin of the root-edge of D̂ to be a ∗-placeholder vertex. It
holds that

Vr(O(R̂k)) = O(Vr(R̂), Vr(D̂k), Vr(R̂′)).

Hence, as k becomes large,

Vr(O(R̂k))
d−→O(Vr(R̂), Vr(D̂◦), Vr(R̂′)) = Vr(O(R̂, D̂◦, R̂′)). (7.44)

Since Dn ≥ Ωn and Ωn → ∞, it follows that O(λ1n(u∗)) converges in the local weak sense
toward O(R̂, D̂◦, R̂′). In order to decide whether V`(Oω

1n) ' O as half-edge-rooted planar maps,
it is more than enough to know the `-neighbourhoods V`(O(β1n(v))) for all v ∈ V [m]. (It
would also suffice to just consider the (`− hT1n(v))-neighbourhoods of the vertices v). The
limit (7.44) implies that

(V`(O(λ1n(v))))v∈V [m]
d−→ (V`(O(λ̂(v))))v∈V [m] , (7.45)

where we let (T̂ , λ̂) denote the limit enriched plane tree obtained from (T̂ , β̂) by matching the
offspring of any vertex v with finite outdegree d+

T̂ (v) <∞ with the atoms of the set of derived

blocks β̂(v) in the same way as we did for (Tn, λn). For the unique vertex v∗ with d+

T̂ (v∗) =∞,

we let λ(v∗) be given by (R̂, D̂◦, R̂′), where we also match the countably infinite offspring of
λ(v∗) with the countably infinite number of non-∗-vertices of (R̂, D̂◦, R̂′) in the same way. (It
is easily verified that the random map D̂◦ has countably infinite many vertices. For an upper
bound, we only need the fact that it is locally finite, and the lower bound follows as it is the
limit of a sequence of random graphs whose size deterministically tends to infinity.)

The convergence in (7.45) implies that the random rooted graph Ô that corresponds to
the R-enriched plane tree (T̂ , λ̂) satisfies

lim
n→∞

P(V`(Oω
n) ' O) = P(V`(Ô) ' O).

As O and ` were arbitrary, it follows that Ô is the local weak limit of the random map Oω
n.

It remains to argue, that Ô is distributed as claimed in Theorem 6.25. Recall that we
constructed Ô by concatenating the independent identically distributed dissections (D•i )1≤i≤L,

where L follows a geometric distribution with parameter ν, glue the limit D̂ at the tip of this
chain, and finally identify each vertex of this graph with the root of one or two independent
copies of the Boltzmann-distributed random outerplanar map O.
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The height of the vertex v∗ in T̂ is distributed like L, and the R-structures along the
spine in T̂ actually follow Boltzmann distributions of (SEQ ◦ Dγ)• with parameter τ . As
SEQ′ ' SEQ · SEQ it follows that

(SET ◦ Dγ)• ' (SEQ ◦ Dγ) · D• · (SEQ ◦ Dγ).

The product rule in Section 4.3.2 implies that each of the blocks containing consecutive
spine vertices actually follows a Boltzmann distributions for (D•)γ with parameter τ , and the
remainder of the corresponding (SEQ◦Dγ)•-object is independent from this block is composed
of two independent sequences of blocks following SEQ ◦ Dγ-Boltzmann distributions with
parameter τ . The isomorphism AωR ' X · Rκ(AωR) and the composition rule in Section 4.3.2
imply that if we take a Boltzmann distributed SEQ ◦Dγ-structure with parameter τ , glue the
∗-vertices together, and identify its vertices with the roots of independent copies of O, then
the result follows a Boltzmann distribution for Oω with parameter τ/φ(τ). So, summing up,
the random graph Ô corresponding to (T̂ , β̂) is distributed as described in Theorem 6.25.

Proof of Lemma 6.26. We start with Claim (1). As φ(z) = 1/(1−Dγ(z)), it holds that

ψ(z) = zφ′(z)/φ(z) = z(Dγ)′(z)/(1−Dγ(z)). (7.46)

We have to show that ψ(x) tends to infinity, as x tends from below to the radius of convergence
ρφ of the series φ(z). Equation (7.46) implies that

ψ(z) = z(Dγ)′(z)
∑
k≥0

(Dγ(z))k

is a power series with non-negative coefficients. Consequently, it suffices to show that the
sum ψ(ρφ) is infinite.

Set ψD(z) = zφ′D(z)/φ(z). We assumed that Dγ has type I, hence there is a constant
τ1 that is bounded by the radius of convergence ρφD of φD(z) and satisfies ψD(τ1) = 1. Let
ρD > 0 denote the radius of convergence of Dγ(z). By Equation (3.4) and (3.5) it holds that
ρD = τ1/φD(τ1) and Dγ(ρD) = τ1. We treat the two cases τ1 ≤ 1 and τ1 > 1 separately.

If τ1 ≤ 1, then for all 0 ≤ x < ρD it holds that Dγ(x) < Dγ(ρD) ≤ 1 and consequently also
φ(x) <∞. Hence ρφ ≥ ρD. Equation (6.26) yields

(Dγ)′(ρD) = φD(Dγ(ρD))/(1− ρDφ′D(Dγ(ρD))) = φD(τ1)/(1− ψD(τ1)) =∞,

since ψD(τ1) = 1. The series ψ(x) is non-decreasing in the interval [0, ρφ], hence Equation (7.46)
implies that ψ(ρφ) ≥ ψ(ρD) =∞. Thus Oω

n has type Ia with ν =∞.
If τ1 > 1, then ρφ is the unique number with Dγ(ρφ) = 1. Equation (7.46) immediately

implies that
ψ(ρφ) = ρφ(Dγ)′(ρφ)/(1−Dγ(ρφ)) =∞.

Hence ν =∞ and Claim (1) follows.
As for Claim (2), Dγ having type II means that 0 < νD < 1 and τD = τ1 = ρφD > 0.

If τD < 1, then Dγ(ρD) = τD implies that φ(z) = 1/(1 − Dγ(z)) has radius of convergence
ρφ = ρD. It follows that

ν = ψ(ρφ) =
ρD(Dγ)′(ρD)

1−Dγ(ρD)
=
ρD(Dγ)′(ρD)

1− τD
.
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Since Dγ(z) = zφD(Dγ(z)) it also holds that

(Dγ)′(ρD) =
φD(Dγ(ρD))

1− ρDφ′D(Dγ(ρD))
=

φD(τD)

1− ψD(τD)
=

τD
ρD(1− νD)

.

Hence
ν =

τD
(1− τD)(1− νD)

∈]0,∞[.

If τD ≥ 1 then Equation (3.5) implies that there is a number t0 with Dγ(t0) = 1. Hence
φ(z) has radius of convergence ρφ = t0, and

ψ(ρφ) = t0(Dγ)′(t0)/(1−Dγ(t0)) =∞.

This shows that in this case Oω
n has type Ia with ν =∞.

As for Claim (3), it is clear by the discussion in Section 3.1.2 that Dγ has type III if and
only if Dγ(z) is not analytic (at the origin). In that case φ(z) is also not analytic and hence
Oω
n has type III.

Proof of Theorem 6.27. If w has type I, then we do not have to show anything at all.
If w has type II, then the random dissection Dγ

n also has type II by Lemma 6.26, and
converges by Theorem 6.49 toward a limit graph D̂. By Lemma 6.14 we know that the series
Dγ(z)/z belongs to the class Sd of subexponential sequences with span d for some d ≥ 1.
If d = 1, then it follows that Dγ(z) belongs to S1 and SEQ ◦ Dγ has convergent type by
Lemma 6.15. So in this case, Theorem 6.25 may be applied and readily yields local weak
convergence of Oω

n. For d ≥ 2, the situation is a bit more complicated, because then the
composition SEQ ◦ Dγ does not have convergent type. Instead, by Lemma 6.15 we know that
the limit behaviour of the small fragments not contained in the giant component of a random
element Rk from SEQ ◦ Dγ[k] (drawn with probability proportional to its weight) depends
along which of the lattices a+ dN, 0 ≤ a < d we let k tend to infinity. But this is not really
a problem. Although we cannot apply Theorem 6.25 directly, its proof needs only a small
modification to be adapted to this situation:

Lemma 6.15 states that if SEQa denotes the restriction of SEQ to sequences with length
in a + Z, and if k satisfies k ≡ a mod d, then Rk takes values only in (SEQa ◦ Dγ)[k]. If
Rsk denotes the SEQ′ ◦ Dγ-object obtained by deleting the (or any single) largest component

from Rk, then Rsk converges in total variation toward a PSEQ′a◦Dγ ,τ -distributed limit object R̂a.
Since

SEQ ' SEQ0 + . . .+ SEQd−1,

it follows that
SEQ′ ◦ Dγ ' SEQ′0 ◦ Dγ + . . .+ SEQ′d−1 ◦ Dγ.

Hence the rules for weighted Boltzmann distributions given in Lemma 4.2 imply that the
PSEQa◦Dγ ,τ -distributed Boltzmann object R̂ is distributed like R̂a0 for an independent random
number 0 ≤ a0 < d with distribution

P(a0 = a) = (SEQ′a ◦ Dγ)(τ)/(SEQ′ ◦ Dγ)(τ).

The idea of the proof of Theorem 6.25 was that instead of showing convergence of the
graph corresponding to the enriched tree (Tn, βn), it suffices to show convergence of the graph
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corresponding to a modified enriched tree (T1n, β1n). This tree was obtained from (T̂ , β̂)
by taking a certain deterministic sequence Ωn, sampling a certain random degree D̃n ≥ Ωn

independently from T̂ , and pruning T̂ at its unique vertex v∗ with infinite degree, keeping
only the first D̃n children of v∗. The Rκ = SEQ ◦ Dγ object β1n(v∗) corresponding to v∗ is
distributed like RD̃n . In the proof, the assumption that limk→∞ dTV(Rsk, R̂) = 0 (as unlabelled

SEQ′ ◦ Dγ-objects) was combined with D̃n ≥ Ωn →∞ to deduce

lim
n→∞

dTV(Rs
D̃n
, R̂) = 0. (7.47)

This is the only place where the assumption, that SEQ ◦ Dγ has convergent type, was used.
So the only modification we need to make is how to deduce Equation (7.47).

The construction of Ωn was done in [69, Lem. 19.32] such that if Nk denotes the number
of vertices with degree k in Tn, then∑

k≤Ωn

kNk = νn+ op(n) and
∑
k>Ωn

kNk = (1− ν)n+ op(n). (7.48)

If o denotes the root vertex of Tn, then

P(d+
Tn(o) = k) =

n

n− 1
E[
kNk

n
], (7.49)

by [69, Lem. 15.7], so Equations (7.48) may be reformulated as

P(d+
Tn(o) ≤ Ωn) = ν + o(1) and P(d+

Tn(o) > Ωn) = 1− ν + o(1). (7.50)

The distribution of D̃n is given in [69, Equation (20.4)] by P(D̃n = k) = 0 for k ≤ Ωn, and

P(D̃n = k) =
kE[Nk]∑
`>Ωn

`E[N`]
(7.51)

for all k > Ωn. By Equations (7.49) and (7.50) this may be expressed by

P(D̃n = k) = P(d+
Tn(o) = k | d+

Tn(o) > Ωn). (7.52)

For any set E of SEQ′ ◦ Dγ-objects we have

P(Rs
D̃n
∈ E) =

d−1∑
a=0

P(D̃n ≡ a mod d)P(Rs
D̃n
∈ E | D̃n ≡ a mod d).

It follows from Lemma 6.15 and D̃n ≥ Ωn →∞ that uniformly for all E

lim
n→∞

P(Rs
D̃n
∈ E | D̃n ≡ a mod d) = P(R̂a ∈ E).

So in order to verify (7.47), it remains to check that

lim
n→∞

P(D̃n ≡ a mod d) = P(a0 = a). (7.53)
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The offspring distribution ξ of the Galton–Watson tree T is distributed like the size of a
PSEQ◦Dγ ,τ -distributed compound structure. That is,

E[zξ] = SEQ(Dγ(τz))/SEQ(Dγ(τ)).

Consequently, the size-biased version ξ̂ with P(ξ̂ = ∞) = 1− ν and P(ξ̂ = k) = kP(ξ = k)
satisfies

P(ξ̂ = k) = [zk](z
d

dz
E[zξ]) = [zk]

(SEQ ◦ Dγ)•(τz)

(SEQ ◦ Dγ)(τ)
= [zk]

(SEQ ◦ Dγ)•(τz)

(SEQ ◦ Dγ)•(τ)
E[ξ].

Since P(ξ̂ < ∞) = ν = E[ξ], it follows that (ξ̂ | ξ̂ < ∞) is distributed like the size of a
P(SEQ◦Dγ)•,τ -distributed structure. As

(SEQ ◦ Dγ)• ' (SEQ′ ◦ Dγ)(D•)γ,

it follows from Lemma 4.2 that the size of a P(SEQ◦Dγ)•,τ -distributed composite structure is
distributed like the sum of the sizes of a PSEQ′◦Dγ ,τ -distributed composite structure X and an
independent P(D•)γ ,τ -distributed dissection Y . The latter may always be expressed as 1 plus a
multiple of d. Hence

P(ξ̂ ≡ a mod d | ξ̂ <∞) = P(X + Y ≡ a mod d) = P(X ≡ a− 1 mod d).

Recall that SEQa ◦ Dγ are precisely the composite structures from SEQ ◦ Dγ with size in
a+ dZ, so SEQ′a ◦ Dγ are precisely the structures from SEQ′ ◦ Dγ with size in a− 1 + dZ.
Hence

P(X ≡ a− 1 mod d) = PSEQ′◦Dγ ,τ (
⋃
k

(SEQ′a ◦ Dγ)[k])

= (SEQ′a ◦ Dγ)(τ)/(SEQ′ ◦ Dγ)(τ)

= P(a0 = a).

It follows by Equation (7.52) that in order to verify (7.53), we need to check that

lim
n→∞

P(d+
Tn(o) ≡ a mod d | d+

Tn(o) > Ωn) = P(ξ̂ ≡ a mod d | ξ̂ <∞). (7.54)

Note that Equation (7.50) states that

P(d+
Tn(o) ≤ Ωn) ∼ P(ξ̂ <∞)

and hence for any fixed integer k it holds that as n becomes large

P(d+
Tn(o) = k | d+

Tn(o) ≤ Ωn) = P(d+
Tn(o) = k)/(o(1) + P(ξ̂ <∞))

= P(ξ̂ = k | ξ̂ <∞) + o(1).

This verifies
(d+
Tn(o) | d+

Tn(o) ≤ Ωn)
d−→ (ξ̂ | ξ̂ <∞).
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Thus it follows by Equation (7.50) that Equation (7.54) is actually equivalent to

lim
n→∞

P(d+
Tn(o) ≡ a mod d) = P(ξ̂ ≡ a mod d | ξ̂ <∞). (7.55)

Note that

P(d+
Tn(o) ≡ a mod d) =

[zn]z(SEQa ◦ Dγ ◦ Z)(z)

[zn]Z(z)
(7.56)

with Z(z) being given by

Z(z) = zφ(Z(z)), φ(z) = 1/(1−Dγ ◦ Z(z)).

This implies that

Z̄(z) := Z(z)/z − 1 = f((Dγ ◦ Z)(z)), with f(x) =
x

1− x
.

Taking the inverse of f , it follows that

(Dγ ◦ Z)(z) = g(Z̄(z)), with g(x) =
x

1 + x
.

The (sequence of coefficients of the) series Z̄(z) belongs to the class S1 of subexponential
sequences by Lemma 6.14. The function g(x) is analytic on C \ {−1}. Hence we may apply
Proposition 6.16 to obtain

[zn−1](Dγ ◦ Z)(z) = [zn−1]g(Z̄(z)) ∼ g′(Z̄(ρZ))[zn]Z(z), (7.57)

with ρZ denoting the radius of convergence of Z(z). But Equation (7.57) also implies that
(Dγ ◦ Z)(z) also belongs to the class S1 with radius of convergence ρZ . So we may apply
Proposition 6.16 to obtain

[zn−1](SEQa ◦ Dγ ◦ Z)(z) ∼ SEQ′a((Dγ ◦ Z)(ρZ))[zn−1](Dγ ◦ Z)(z)

and

[zn−1](SEQa ◦ Dγ ◦ Z)(z) ∼ SEQ′((Dγ ◦ Z)(ρZ))[zn−1](Dγ ◦ Z)(z).

Thus it follows from Equation (7.56) that

P(d+
Tn(o) ≡ a mod d) ∼ SEQ′a((Dγ ◦ Z)(ρZ))

SEQ′((Dγ ◦ Z)(ρZ))

Note that in the type II setting it holds that Z(ρZ) = ρφ, And an elementary computation
shows that

SEQ′a(Dγ(ρφ))

SEQ′(Dγ(ρφ))
= P(ξ̂ ≡ a mod d)/ν = P(ξ̂ ≡ a mod d | ξ̂ <∞).

This verifies Equations (7.54) and (7.55), and thus concludes the proof for the case where the
weight sequence w has type II.
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It remains to treat the case where w has type III. Equation (6.11) stated an isomorphism

Oω ' X + (X · Dγ)(Oω), (7.58)

which represents face-weighted outerplanar maps as X · Dγ-enriched parenthesizations. Thus
Lemma 6.7 provides a coupling of Oω

n with an enriched plane tree (τn, δn), such that τn is a
simply generated tree with leaves as atoms.

Recall that in Lemma 6.7, we constructed the enriched plane tree (τn, λn) by first generating
the random tree τn, and then sampling for each vertex v ∈ Tn an N = X ◦ Dγ-structure
δn(v) ∈ R[d+

τn(v)] with probability proportional to its weight. The labels of δn(v) correspond
in a canonical way to the ordered set of offspring of the vertex v, which is why the tree
(τn, δn) may be interpreted as an enriched tree. The final enriched parenthesization SNn is then
obtained by relabelling through a uniformly at random drawn bijection.

The precise way for identifying the offspring of an vertex v with the atoms of the N -
structure δn(v) does not affect the distribution of the resulting random unordered enriched
parenthesization SNn . We may match the offspring of v with the atoms of δn(v) according to
any rule, which only takes δn(v) into account. Different matchings may very well change the
corresponding N -enriched Schröder parenthesization, but its distribution does not change.

Thus we may consider the random enriched plane tree (τn, λn) constructed from (τn, δn)
by matching for each vertex v ∈ τn the offspring of v with the atoms of the dissection τn(v)
by ordering them in a canonically non-decreasing way according to their distance from the
root-vertex of the dissection. This way, for any ` ≥ 0 the `-neighbourhood of the root in λn(v)
corresponds to an initial segment of the ordered offspring of v in τn.

The outerplanar map corresponding to (τn, λn) is distributed like Oω
n, so we may assume

without loss of generality that Oω
n corresponds directly to (τn, λn).

By Lemma 6.10 and Lemma 6.8 it holds that τn converges weakly in T toward an infinite
star, that is, a tree consisting of a single root-vertex with infinitely many offspring, all of
which are leaves. Hence there is a deterministic sequence of integers Ωn with Ωn →∞ such
that with probability tending to 1 as n becomes large the root o of τn has at least Ωn children
and the first Ωn of them are all leaves.

Since the weight-sequence w has type III, it follows that the random dissection Dγ
n also

has type III by Lemma 6.26, and converges in the local weak sense by Theorem 6.51 toward
a doubly infinite rooted path P . As d+

τn(o) ≥ Ωn with high probability, it follows that the
dissection λn(o) also converges in the local weak sense toward P .

Let ` ≥ 0 be a fixed integer, it follows that with high probability the `-neighbourhood
V`(λn(o)) is a path with length 2` that is rooted at its center vertex. All its 2`+ 1 vertices
have with high probability also no children in τn (since they form an initial segment with
fixed finite length of the offspring of the root). Hence, with high probability it holds that
V`(Oω

n) ' V`(λ
ω
n) ' V`(P ). This confirms that the doubly infinite path P is the local weak

limit of Oω
n. This concludes the proof.

Proof of Theorem 6.29. The type I case is fully described by Theorem 6.22, so it remains to
treat the other two cases. Suppose that the weight-sequence w has type II or III.

Let v0 denote a uniformly at random selected vertex of the simply generated tree Tn. Let
v0, . . . , vh denote the path joining v0 with the root of Tn, that is, the spine of the pointed tree
(Tn, v0). Given the location of v0 as a coordinate in V∞, and the outdegrees d+

Tn(vi) for all
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1 ≤ i ≤ h, the fringe subtrees at the non-spine offspring of the vi for i ≥ 1 and at the vertex
v0 are exchangeable. This gives a certain degree of freedom in matching the vertices of the
R-structures βn(vi) to the offspring of vi in the tree Tn without changing the distribution of
the unordered labelled enriched tree ARn , as long as we do not change which atom corresponds
to vi−1.

For each R = SEQ◦Dγ structure R let G(R) denote the rooted outerplanar map obtained
by gluing together the ∗-vertices of the dissections in R. Note that in the map G(βn(vi)) there
is a priori no relation between the distance of a vertex to the distinguished vertex vi−1, and
its location in the linearly ordered list of offspring of vi. This is not ideal, as we would like to
have siblings of vi−1 that are close in the offspring list also to be close in the map G(βn(vi)).

For each 1 ≤ i ≤ h let ai ∈ [d+
Tn ] denote the atom corresponding to the vertex vi−1. Let

σi : [d+
Tn(vi)] → [d+

Tn(vi)] denote the permutation that fixes the atom ai, and permutes the
remaining elements in a canonical way such that the R-structure λn(vi) := R[σi](βn(vi))
has the property, that in the map G(λn(vi)) it holds that the distance dG(λn(vi))(a, ai) is
non-decreasing along a = ai, ai − 1, . . . and also non-decreasing along a = ai, ai + 1, . . .. This
way, for each finite pointed map G and each ` ≥ 0 there is a finite number m such that
whenever the `-neighbourhood V`(G(λn(vi))) is equal to G as rooted map, then all its vertices
correspond to siblings of vi−1 that lie at most m to the left or m to the right of vi−1.

Let ((Tn, λn), v0) denote the pointed R-enriched plane tree obtained in this way, where
we let λn(vi) for 1 ≤ i ≤ h be constructed as above, and for all other vertices v we set
λn(v) = βn(v). By the discussion above, the unordered pointed enriched tree corresponding
to ((Tn, λn), v0) is up to vertex labelling identically distributed as the random enriched tree
ARn pointed at a uniformly selected vertex. As the unlabelled outerplanar map corresponding
to an enriched tree does not depend on the vertex ordering or labelling, we may assume that
((Tn, λn), v0) corresponds directly to the outerplanar map Oω

n rooted at a uniformly at random
selected vertex.

Recall that in Subsection 6.3.2 we defined a random pointed R-enriched plane tree (T ∗n , β∗n)
having a finite spine u0, . . . , uk, with random length k ≥ 1 and root-degree d∗T ∗n (uk) given

by a random variable D̃n defined in Equation (6.20). Again, by exchangeability, we may
modify the matchings of the atoms of the R-structures with the offspring vertices in the
same way as we did for ((Tn, βn), v0), without changing the distribution of the corresponding
pointed outerplanar map. This yields a pointed enriched tree (T ∗n , λ∗n). Let Ôn denote the
corresponding outerplanar map.

In Equation (6.19) we characterized a certain deterministic sequence Ωn →∞ that satisfies
D̃n > Ωn for all n by Equation (6.20).

If the weight-sequence w has type II, then it follows by Lemma 6.26 that the species of
dissections Dγ also has type II. Hence by Lemma 6.14 we know that Dγ(z)/z belongs to the
class Sd of subexponential series with span d for some d ≥ 1. It follows from Lemma 6.15 and
D̃n ≥ Ωn →∞ that the largest block in the SEQ ◦ Dγ-structure λ∗n(uk) has size D̃n +Op(1)
that converges in probability toward ∞ in the space N̄0.

If the weight-sequence w has type III, then by Lemma 6.26 the species of dissections Dγ
also has type III. By Theorem 6.18 and Lemma 6.17 it follows that with high probability
the largest dissection in λ∗n(uk) has size D̃n + Op(1) with the Op(1)-term even admitting a
deterministic upper bound with high probability.

Thus, regardless whether the weight-sequence w has type II or III, the vertex uk−1 lies
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with probability tending to 1 as n becomes large in a large component Dn of λ∗n(uk), which up
to relabelling is distributed like drawing a dissection from Dγ [sn] with probability proportional

to its γ-weight for some random integer sn with sn
p−→∞ in the space N̄0. Moreover, given

that uk−1 lies in Dn, its location is uniformly distributed among all non-∗-vertices of Dn. By
Theorems 6.49 and 6.51 it follows that Dn rooted at its ∗-vertex converges toward a limit
dissection D̂. In particular, for any fixed ` ≥ 0, the size of the `-neighbourhood of the ∗-vertex
in D̂ is stochastically bounded, and hence uk−1 does not lie in there with probability tending

to 1 as n becomes large. As this holds for arbitrary ` ≥ 0, this implies that dDn(∗, uk−1)
p−→∞

in the space N̄0. The total variational distance between the location of uk−1 and a uniformly
at random chosen vertex of Dn (including the ∗-vertex) tends to zero as n becomes large.
Since Dn satisfies the rerooting invariance, it follows that Dn rooted at uh− 1 also converges
toward the limit D̂ in the local weak sense. As dDn(∗, uk−1)

p−→∞, we know that for any fixed
` the `-neighbourhood of uk−1 in the map G(λ∗n(uk)) lies with high probability entirely in Dn

and does not contain the ∗-vertex. It follows that the random map G(λ∗n(uk)) rooted at uk
converges in the local weak sense toward the dissection limit D̂.

Let Ô∗ denote the rooted map obtained by taking the map corresponding to the pointed
enriched fringe subtree of (T ∗n , λ∗n) at the vertex uk−1, identifying the vertex uk−1 with the
root vertex of the dissection limit D̂, and identifying the each non-root vertex of D̂ with the
root vertex of an independent copy of the map corresponding to the enriched tree (T , β).
Note that Ô∗ does not depend on n, as the only part of (T ∗n , λ∗n) that does is the degree
of the vertex uk. By the discussion above, it follows that Ô∗ is the local weak limit of the
map G(T ∗n , λ∗n) centered at u0, as every offspring of uk in (T ∗n , λ∗n) becomes the root of an
independent copy of (T , β).

In Theorem 6.6 we stated that the pointed enriched fringe subtree of ((Tn, βn), v0) at the
first ancestor of the vertex v0 with degree at least Ωn behaves like (T ∗n , β∗n), and hence the
same holds for ((Tn, λn), v0) with (T ∗n , λ∗n). That is, if Hkn denotes the pointed enriched fringe
subtree of ((Tn, λn), v0) at the first ancestor vkn of v0 that has degree bigger than Ωn, then it
holds that

dTV(Pm(Hkn), Pm(T ∗n , λ∗n))→ 0 (7.59)

as n becomes large, with Pm(·) denoting the pruning operator defined in Section 6.3.3. That
is, roughly speaking, Pm(·) prunes away all offspring of sons of the root vertex that lie more
than m to the left or right from the unique spine offspring.

Let G• be a given rooted outerplanar map and ` ≥ 1 a fixed integer. By the construction
of λn it follows that for any fixed m > max(`, |G•|) the pruned tree Pm(T ∗n , λ∗n) contains
all information necessary to decide whether the `-neighbourhood V`(Ôn, u0) is equal to G•

as rooted outerplanar map. Likewise, Pm(Hkn) contains all information to decide whether
V`(G(Hkn)) = G•. The reason for this is that we constructed the λn in such a way that vertices
that siblings of uk−1 that are close to uk−1 in the map G(T ∗n , λ∗n) are also close to uk−1 in the
linear order of the offspring of uk in the tree T ∗n , and likewise for Pm(Hkn).

Since the random map Ôn rooted at u0 converges in the local weak sense toward the limit
map Ô∗, the limit in (7.59) implies that

P(V`(G(Hkn), v0) = G•)→ P(V`(Ôn, u0) = G•)
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as n becomes large. As ` and G• where arbitrary, it follows that (G(Hkn), v0) converges in the
local weak sense toward Ô∗.

Above we verified that dDn(∗, uk−1)
p−→∞ and consequently for any fixed ` ≥ 1 it holds

that with high probability the `-neighbourhood V`(Ôn, u0) does not contain the ∗-vertex of
Dn, that is, the vertex uk. By the limit in (7.59) it follows that likewise the `-neighbourhood
V`(G(Hkn), v0) does with high probability not contain the spine-vertex vkn . But this implies
also that V`(Oω

n, v0) = V`(G(Hkn), v0) holds with probability tending to 1. It follows that
(Oω

n, v0) converges in the local weak sense toward the limit Ô∗.
It remains to describe the distribution of Ô∗. If the weight sequence w has type III, then

D̂ is a deterministic doubly-infinite path and the tree T consists almost surely of a single
vertex. Thus, in this case Ô∗ is also a deterministic doubly infinite path.

Suppose that the weight sequence w has type II. In order to describe the distribution of
Ô∗ we make use of the following observations.

1. The enriched tree (T , β) corresponds to a POω ,τ/φ(τ)-distributed map.

2. For each 1 ≤ i ≤ uk−1 the R•-structure λ∗n(ui) (pointed at ui−1) is distributed like
G(S1,D

•, S2), with S1 and S2 being independent PR,τ -distributed sequences of dissections,
and D• an independent P(D•)γ ,τ -distributed pointed dissection.

3. If we assign PR,τ -distributed R-structure to a single vertex, and attach an independent
copy of (T , β) to each of its atoms, then the outerplanar map corresponding to this
enriched tree follows a POω ,τ/φ(τ) distribution.

4. If we draw a random P(D•)γ ,τ -distributed structure and then switch the ∗-vertex with
the pointed vertex, the distribution does not change. (That is, the ∗-vertex becomes a
regular vertex with the label of the pointed vertex, and the pointed vertex becomes a
label-free ∗-vertex.)

The first claim follows from the fact that the size of |T | is distributed like the size of a
POω ,τ/φ(τ)-distributed map, and the map corresponding to the conditioned tree (Tn, βn) is
drawn up to relabelling from Oω[n] with probability proportional to its weight.

As for the second claim, notice first that the R-structure λ∗n(ui) with the distinguished
atom ui−1 is up to relabelling distributed like a (ξ̂ | ξ̂ < ∞)-sized random R• structure
drawn with probability proportional to its weight. As (ξ̂ | ξ̂ < ∞) follows the size of a
PR•,τ -distributed object, it already follows that λ∗n(ui) with the distinguished atom ui−1

follows up to relabelling a PR•,τ -distribution. Using the chain rule of Proposition 4.1 and the
isomorphism

SEQ′ ' SEQ2

it follows that
R• ' (SEQ ◦ Dγ)(D•)γ(SEQ ◦ Dγ).

By the product rule of Lemma 4.2 it follows that, up to relabelling, we may sample a PR•,τ -
distribution by taking two independent PR,τ -distributed sequences of dissection and placing
an independent P(D•)γ ,τ pointed dissection in the middle.

In order to verify the third claim, notice that the isomorphism

AωR ' X · R ◦ AωR
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combined with the product and composition rule of Lemma 4.2 tells us that we may sample
a PAωR,τ/φ(τ)-distributed R-enriched tree by assigning a PR,τ -distributed structure to a root
vertex and identifying each of its atoms with an independent PAωR,τ/φ(τ)-distributed enriched
tree. Together with the first claim, this verifies the third claim.

The fourth claim follows easily by symmetry.
Thus, for 1 ≤ i ≤ k − 1 the pointed map corresponding to the pointed enriched fringe

subtree of (Tn, λ∗n) at the spine vertex ui is distributed like the result of taking G(O1,D
•,O2),

with Oi denoting independent maps following a POω ,τ/φ(τ)-distribution, and identifying the
pointed vertex of D• with the root of the pointed map corresponding to the enriched fringe
subtree of (Tn, λ∗n) at the vertex ui−1.

So, summing up, the map Ô∗ may be sampled as follows.

1. Let (D•i )1≤i≤k−1 be a family of independent identically distributed D•-objects following
a P(D•)γ ,τ -distribution. Concatenate the D•i by identifying the pointed vertex of D•i with
the root ∗-vertex of D•i−1 for all i ≥ 2. Identify the ∗-vertex of Dk−1 with the root-vertex

of the dissection limit D̂. This vertex corresponds to uk−1. Likewise, the ∗-vertex of Di

corresponds to ui for i ≥ 1 and the pointed vertex of D1 to the vertex u0. We let C
denote the result and mark the vertices u1, . . . , uk−1 with the colour blue.

2. Each vertex of C gets identified with the root vertex of an independent copy of a
POω ,τ/φ(τ)-distributed outerplanar map that gets attached from outside, except for the
blue vertices, which receive two such maps, one from each side.

The Benjamini–Schramm limit Ô∗ is similar to the local weak limit Ô of Theorem 6.27. In
the construction of Ô∗, the roles of the ∗-vertex and pointed vertex of the pointed dissection
are reversed compared to the construction of Ô. But, as we argued in the fourth claim above,
this makes no difference for the resulting distribution. Thus the only difference between Ô∗
and Ô is that the root of Ô is identified with the root of a P(D•)γ ,τ -distributed dissection

and two POω ,τ/φ(τ)-distributed outerplanar maps, and the root of Ô∗ on the other hand gets
identified with the root of a P(D•)γ ,τ -distributed dissection but only one POω ,τ/φ(τ)-distributed

outerplanar map. Thus Ô is distributed like the result of taking the Benjamini–Schramm
limit Ô∗ and identifying its root vertex with the root of an independent POω ,τ/φ(τ)-distributed
outerplanar map.

Proof of Corollary 6.31. We assumed that Oω
n has type II, hence Theorem 6.27 implies that

Dγ
n has type II with SEQι

≥1 having radius of convergence τD and SEQι
≥1(τD) < 1. We also

assumed that

[zk]SEQι
≥1(z) = f(k)k−βr−β (7.60)

for a constant β > 2 and some constant r > 0 which necessarily must be equal to τD. It
follows by Propositions 6.16 and 6.13 that the series φD(z) = SEQ ◦ SEQι

≥1(z) satisfies

[zk]φD(z) ∼ (1− SEQι
≥1(τD))−2f(k)k−βτ−kD . (7.61)

By a general result for the partition function of simply generated trees [79, Eq. (14)], that
is based on a local large-deviation theorem established in [45], it follows that

[zk]Dγ(z) ∼ τD(1− νD)−β(1− SEQι
≥1(τD))−2f(k)k−βρ−kD (7.62)



7 PROOFS 108

with
ρD = τD(1− SEQι

≥1(τD)).

Since
Dγ(ρD) = τD < 1,

we may apply Proposition 6.16 to obtain

[zk]1/(1−Dγ(z)) ∼ ĉf(k)k−βρ−kD , ĉ = τD(1− νD)−β(1− τD)−2(1− SEQι
≥1(τD))−2.

Let Y(1) and Y(2) denote the size of the largest and second-largest block of Oω
n. By [79, Thm. 1]

it follows from (7.62) that there is a slowly varying function g1 such that Y(2) = Op(g1(n)n1/α)
and that

(1− ν)n− Y(1)

g1(n)n1/α

d−→Xα, (7.63)

where Xα is an α-stable random variable with Laplace transform

E[e−tXα ] = exp(Γ(−α)tα), Re t ≥ 0.

For each 1 ≤ i ≤ n let B+
i denote the largest dissection in the SEQ ◦ Dγ-structure βn(vi) of

the vertex vi, and let F+
i denote the size of the largest face of B+

i . Lemma 6.15 and (7.62)
imply that

Y(1) − |B+
1 | = Op(1). (7.64)

Consequently

(1− ν)n− |B+
1 |

g1(n)n1/α

d−→Xα. (7.65)

By Corollary 6.50 and Equation (7.60) we know that the largest face F(1)(Dγ
k) and second

largest face F(2)(Dγ
k) in a random dissection Dγ

k of a k-gon satisfy F(2)(Dγ
k) = Op(g2(k)k1/α)

and

(1− νD)k − F(1)(Dγ
k)

g2(k)k1/α

d−→Xα (7.66)

as k becomes large for some slowly varying function g2(k). For any k it holds that

(B+
1 | |B+

1 | = k)
d
= Dγ

k.

By the limit in (7.65) it follows that

(1− νD)|B+
1 | − F+

1

g2(|B+
1 |)|B+

1 |1/α
d−→Xα. (7.67)

Any slowly varying function h has the property, that for any compact interval [a, b] with a > 0
it holds that

lim
x→∞

sup
t∈[a,b]

∣∣∣∣h(tx)

h(x)
− 1

∣∣∣∣ = 0.
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(See for example Feller’s book [57] for this standard fact.) Hence (7.65) implies that

g2(|B+
1 |) = g2(n)(1 + op(1)).

Moreover,
|B+

1 |1/α = (1− ν)1/αn1/α(1 + op(1)).

Setting g(n) = g2(n)(1− ν)1/α, it follows from (7.67) that

(1− ν)(1− νD)n− F+
1

g(n)n1/α

d−→Xα.

Equation (7.64) implies that the second largest block of βn(v1) has size Op(1). Hence the size
of the second largest face in βn(v1) has order Op(g2(n)n1/α) and the size of the largest face
outside of βn(v1) is bounded by Y(2) = Op(g1(n)n1/α). Thus

F(2) = Op(max(g1(n), g2(n))n1/α).

Any slowly varying function h satisfies h(t)t−ε → 0 as t becomes large for all ε > 0 [57], and
hence so does max(g1(n), g2(n)).

7.7 Proofs of the applications to random weighted graphs in Sec-
tion 6.7.2

We are going to list the proof of the results from Section 6.7.2 roughly in order of their
appearance, with the exception of the observations that were already sufficiently justified
there.

Proof of Theorem 6.32. We need to show that the Gibbs partition SEQ ◦ Cω admits a giant
component with size n+Op(1). This was observed in Stufler [101, Thm. 4.2 and Section 5]
for the case where the weight-sequence w has type I or II.

In the superexponential case, when w has type III, we know by Lemma 6.17 that the
coefficients

an = [zn](C•)ω(z)

satisfy ∑
i1+...+ik=n

1≤i1,...,ik<n−(k−1)

ai1 · · · aik = o(an−(k−1)).

for all k ≥ 2. It follows that the coefficients of the unrooted graphs

cn = [zn]Cω(z) =
an
n
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satisfy ∑
i1+...+ik=n

1≤i1,...,ik<n−(k−1)

ci1 · · · cik =
∑

i1+...+ik
1≤i1,...,ik<n−(k−1)

1

i1 · · · ik
ai1 · · · aik

≤ O(n−1)
∑

i1+...+ik=n
1≤i1,...,ik<n−(k−1)

ai1 · · · aik

= o(nan−(k−1))

= o(cn−(k−1)).

Hence we may apply Theorem 6.18 to obtain that there is a fixed integer n0 ≥ 0 such that
the size Kn of the largest connected component satisfies

Kn ≥ n− n0 (7.68)

with probability tending to 1 as n becomes large.

Proof of Corollary 6.33. Suppose that the weight-sequence w has type III. It was already
observed in Equation (7.68) that there is a constant n0 ≥ 0 such that the largest connected
component of the random graph Gυ

n has size at least n ≥ n0 with high probability.
If the complete graph with 2 vertices receives positive weight, then it holds that

[z2]Cω(z) > 0

and hence it follows from Corollary 6.19 that Gυ
n is with high probability connected.

Theorem 6.34 and Corollary 6.38 are direct applications of Theorems 6.2 and 6.3. The
claims made in Example 6.41 for random weighted outerplanar graphs may be justified by
analogous arguments as for Theorem 6.27 and Lemma 6.26 for random weighted outerplanar
maps, which we do not aim to repeat here.

Corollaries 6.42 and 6.46 are sufficiently justified by the explanations given in Section 6.7.2,
except for the fact that we need to check that they apply to uniform random planar graphs,
which we do here:

Lemma 7.2. If Cωn is the uniform n-vertex planar graph, then the weight-sequence w has
type II and the corresponding probability weight-sequence πk given in Equation 3.1 satisfies
πk ∼ ck−5/2 as k →∞ for some constant c > 0.

Proof. By enumeration results given in [62], there are constants c1, ρB > 0 such that the
number of 2-connected planar graphs is asymptotically equivalent to c1n

−7/2ρ−nB . So the
exponents of (B′)γ(z) admit the same asymptotic expression, only with the exponent −5/2
instead of −7/2. It follows by general properties for functions of power-series, see for example
Embrechts and Omney [56, Sec. 2.2], that there is a constant c2 > 0 such that

ωk = [zk] exp((B′)γ(z)) ∼ c2n
−5/2ρ−nB .

Moreover, by [62, Claim 1] we know that

ν = ρBB′′(ρB) < 1.

(See Section 3.1 for the definition of the parameter ν.) Hence the weight sequence w = (ωk)k
has type II and τ = ρB. Thus πk ∼ c3k

−5/2 as k →∞. This concludes the proof.
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Proof of Remark 6.35. Essentially, we have to show that the description of the limit graph
follows the distribution of the limit enriched tree (T̂ , β̂) interpreted as a graph according to
the bijection in Section 6.1.2.

Here it is useful to note that the fringe subtree at its second spine vertex follows the same
distribution as the whole tree. So we are going to interpret (T̂ , β̂) without this fringe subtree
as a graph, and then use this recursion.

The root o of T̂ receives an R-object β̂(o) of which a uniformly at random drawn atom
forms the second spine vertex. Taking a ξ̂-sized Rκ = SET ◦ (B′)γ object with probability
proportional to its κ-weight and marking a uniformly at random chosen non-∗-vertex, is
equivalent to taking a P(R•)κ,τ object. So, β̂(o) with the marked atom given by the second
spine-vertex follows a P(R•)κ,τ -distribution.

We may apply the rules for operations on species in Section 4.2 and the isomorphism
SET′ ' SET to deduce that

(R•)κ ' (SET′ ◦ (B′)γ) · (B′•)γ ' (SET ◦ (B′)γ) · (B′•)γ.

The interpretation is that an unordered sequence of derived blocks where one atom is marked
consists of a distinguished marked block and an unordered collection of unmarked blocks.

We apply the rules in Lemma 4.2 governing the relation between weighted Boltzmann
distributions and operations on species. This yields that the marked block and the collection of
unmarked blocks are independent, and follow Boltzmann distributions P(B′•)γ ,τ and PSET◦(B′)γ ,τ .

In the tree (T̂ , β̂), each of the non-marked atoms of the R-object β(o) becomes the root of an
independent copy of (T , β). As graph, (T , β) follows a Boltzmann distribution P(C•)ω ,τ/φ(τ).

The isomorphism
(C•)ω ' X · (SET ◦ (B′•)γ)((C•)ω)

and the rules in Lemma 4.2 imply, that if we glue the ∗-vertices of a PSET◦(B′)γ ,τ -distributed
collection of blocks together, and identify each non-∗-vertex with the root of a fresh independent
copy of a P(C•)ω ,τ/φ(τ)-distributed connected rooted graph, then the result again follows a
P(C•)ω ,τ/φ(τ) Boltzmann distribution.

Thus, the graph corresponding to (T̂ , β̂), without the fringe-subtree at the second spine
vertex, corresponds to a pointed P(B′•)γ ,τ -distributed block, where every vertex except for
the pointed vertex gets identified with the root of a fresh copy of a P(C•)ω ,τ/φ(τ)-distributed
random connected graph.

Since the fringe subtree at the second spine vertex of (T̂ , β̂) is distributed like (T̂ , β̂) itself,
it follows that the graph Ĉ corresponding to (T̂ , β̂) is distributed like an infinite chain of such
joint objects, where the marked vertex of any object is identified with the ∗-vertex of the
subsequent one. Thus, Ĉ follows the distribution described in the remark.

Proof of Corollary 6.36. We have to check if w has type Ia, then for arbitrarily large p the
root-degree of Cωn is bounded in Lp as n becomes large. This implies arbitrarily high uniform
integrability and hence verifies the requirements of Lemma 2.1.

In the coupling with the simply generated tree Tn, the root-degree in the graph is bounded
by the root-degree d+

Tn(o) in the tree. So it suffices to consider the moments of d+
Tn(o). As w

has type Ia, the offspring distribution ξ has finite exponential moments, and P(|T | = n) has
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order n−3/2. That is, there are constants C, c > 0 such that for all x ≥ 0

P(d+
Tn(o) ≥ x) ≤ P(|T | = n)−1P(ξ ≥ x) ≤ Cn3/2 exp(−cx).

In particular,
lim
n→∞

npP(d+
T (o) ≥ log2 n) = 0.

Equation (7.11) implies that

lim
n→∞

sup
x≤log2 n

|P(d+
Tn(o) = x)/P(d+

T̂ (o) = x)| − 1| = 0,

with d+

T̂ (o)
d
= ξ̂ also having finite exponential moments. This yields

E[(d+
Tn(o))p)] = o(1) +

blog2 nc∑
x=1

xpP(ξ̂ = x)(1 + o(1)) = o(1) + E[ξ̂p].

Proof of Theorem 6.39. The proof is rather lengthy, hence we divide it into parts, starting
with the overall strategy.

The proof strategy.

1. We first show that we may work with a modified version (Tn, λn) obtained from the
tree (Tn, λn) by matching the vertices of the R-structures with the offspring sets in
a more convenient way, such that `-neighbourhoods of the corresponding graph are
determined initial segments of the offspring sets. This is important as we are going to
encounter a vertex with large degree for which we, by this trick, require information on
the structures corresponding to the atoms of an initial segment of its offspring.

2. The next step is that we to approximate the tree (Tn, λn) by a tree (T1n, λ1n) obtained
from the enriched tree (T̂ , β̂) by replacing its tip of the spine by a large R-structure
having an independent random size D̃n, that has a deterministic lower bound which
tends to infinity. We have full information on the behaviour of the tree (T1n, λ1n), except
for the Gibbs partition Sn at the tip of its spine that gets sampled from R[D̃n] with
probability proportional to its κ-weight. Studying its behaviour takes two steps.

3. First, we show that the composition of SET with (B′)γ ◦ AωR has convergent type.
Roughly speaking, this states that in the R-structure corresponding to the root of Tn
there is a typically a distinguished block such that the union of the block, and all the
fringe subtrees dangling from it, has size n+Op(1).

4. We combine this fact together with properties of the coupling of (Tn, λn) with (T1n, λ1n)
to deduce that Sn may be approximated in total variation by a large randomly sized
block B̂n and a PSET◦(B′)γ ,τ -distributed remainder R̂. Thus we may approximate the
enriched tree (T1n, λ1n) by a modified version (T ∗1n, λ∗1n), where the tip of the spine v∗

receives a copy of R̂ and the block B̂n.
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5. The coupling that we construct has the property, that the `-neighbourhood of the
random root of the graph Cωn is, as unlabelled rooted graph, with high probability equal
to the `-neighbourhood of the graph (Cω1n, v1n) that corresponds to the tree (T ∗1n, λ∗1n).
The only part in the construction of this enriched tree, that depends on n, is the
randomly sized block B̂n. If the random block B̂n converges in the local weak sense
toward a limit B̂, then Benjamini–Schramm convergence of Cω1n and hence also of Cωn
follows.

6. In the statement Theorem 6.39 we gave an explicit and simple description of the limit
object. We check that its distribution coincides with the distribution of the graph
corresponding to the limit enriched tree.

7. We have verified that weak convergence of the randomly sized 2-connected graph B̂n

implies convergence of the random connected graph Cωn. Conversely, if we know that
Cωn (and hence also Cω1n) converges in the Benjamini–Schramm sense, then our coupling
allows us to deduce local weak convergence of the randomly sized block B̂n. We do this
in two steps. The first step is to verify that for all ` ≥ 0, the graph Gn, obtained by
gluing the blocks of λ∗1n(v∗) together at their ∗-vertex, has the property that V`(Gn)
converges weakly for all fixed `.

8. The second step is to use the convergence of the neighbourhoods V`(Gn) to deduce that
for each fixed `, the neighbourhood V`(B̂n) converges weakly toward a limit distribution
µ`. The family (µ`)` is projective, hence we may deduce from this that the graph B̂n

converges in the local weak sense toward the projective limit of (µ`)`.

1. Matching the vertices in a convenient manner: the enriched tree (Tn, λn).
Recall that in Lemma 6.1, we construct the enriched plane tree (Tn, βn) by first generating the
random tree Tn, and then sampling for each vertex v ∈ Tn an R-structure βn(v) ∈ R[d+

Tn(v)]
with probability proportional to its κ-weight. The labels of βn(v) correspond in a canonical
way to the ordered set of offspring of the vertex v, which is why the tree (Tn, βn) may be
interpreted as an enriched tree. The final R-enriched tree ARn = (An, αn) is then obtained by
relabelling through a uniformly at random drawn bijection.

As we already noted in the proof of Theorem 6.25, the precise way for identifying the
offspring of an vertex v with the atoms of the R-structure βn(v) does not affect the distribution
of the resulting random unordered enriched tree ARn . We may match the offspring of v and
the atoms of βn(v) according to any rule, which only takes βn(v) into account. Different
matchings may change the isomorphism type of the corresponding R-enriched tree, but its
distribution does not change. It is not hard to verify this by using the fact that (Tn, βn) is
distributed like (T , β) conditioned on having n vertices, and that (T , β) has this invariance
property: any offspring of a vertex v ∈ T becomes the root of an independent copy of (T , β),
regardless to which atom of β(v) it gets matched.

In the case of random connected graphs, the species R is given by Rκ = SET ◦ (B′)γ . We
may consider the random enriched plane tree (Tn, λn) constructed from (Tn, βn) by matching
for each vertex v ∈ Tn the offspring of v with the atoms of βn(v) by ordering them following
way. We start with the neighbours of the ∗-vertices in the derived block and order them in
any canonical way, and then proceed with the vertices at distance 2 from their respective
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∗-vertices, and so on. We may construct a rooted graph out of (Tn, λn) according to the
bijection in Section 6.1.2, which is distributed like the random graph Cωn rooted at a uniformly
at random drawn vertex vn. So, in the following we assume that (Cωn, vn) corresponds directly
to (Tn, λn).

The reason why we consider the modified tree (Tn, λn) instead of working with (Tn, βn)
directly is that for any integer ` ≥ 0 and any finite rooted connected graph G• there exists a
constant m(`, G•) ≥ 0, such that the event, that the `-neighbourhood V`(Cωn, vn) is isomorphic
to G• as rooted graphs, is already completely determined by the family (λn(v))v∈V [m(`,G•)] .
There are two reasons for this. First, vertices with distance at most ` from vn in Cωn also
have block-distance at most ` from vn, and hence height at most ` in Tn. Second, by the
construction of λn, for any vertex v the subset of its ordered sequence of sons, that still lies in
the `-neighbourhood of vn, is an initial segment in the ordered list. If V`(Cωn, vn) ' G•, then
the length of this initial segment must be bounded by the number of vertices of G•. Hence,
if we take m(`,G•) large enough depending on ` and the size of G•, then (λn(v))v∈V [m(`,G•)]

contains all information necessary to decide whether V`(Cωn, vn) ' G•. The same holds in
general for arbitrary R-enriched plane trees, as long as the matching of the R-structures with
the offspring sets is done in the same way.

2. Coupling the tree (Tn, λn) with the tree (T1n, λ1n) For any integer m ≥ 0, we
consider the subset V [m] ⊂ V∞ of the vertices of the Ulam–Harris tree given by

V [m] = {(i1, . . . , it) | t ≤ m, i1, . . . , i` ≤ m}.

Here we consider the first m sons of the root, and for each of those again the first m sons,
and so on, until we reach generation m.

Janson [69, Sec. 20] constructs a deterministic sequence Ωn →∞ and a modified Galton–
Watson tree T1n that is obtained from T̂ by sampling a random degree D̃n ≥ Ωn independently
from T̂ , and pruning T̂ at its unique vertex v∗ with infinite degree, keeping only the first D̃n

children of v∗. In [69, Thm. 20.2] it is stated that for any fixed integer m ≥ 0 it holds that

lim
n→∞

dTV((d+
Tn(v))v∈V [m] , (d+

T1n(v))v∈V [m]) = 0. (7.69)

That is to say, the tip of the spine in T̂ corresponds to a vertex with large degree D̃n in Tn.
The construction of Ωn is stated in [69, Lem. 19.32] such that if Nk denotes the number

of vertices with degree k in Tn, then∑
k≤Ωn

kNk = νn+ op(n) and
∑
k>Ωn

kNk = (1− ν)n+ op(n). (7.70)

Letting o denote the root vertex of Tn, it holds by [69, Lem. 15.7] that

P(d+
Tn(o) = k) =

n

n− 1
E[
kNk

n
]. (7.71)

Hence Equations (7.70) may be rephrased by

P(d+
Tn(o) ≤ Ωn) = ν + o(1) and P(d+

Tn(o) > Ωn) = 1− ν + o(1). (7.72)
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The distribution of D̃n is stated in [69, Equation (20.4)] by P(D̃n = k) = 0 for k ≤ Ωn, and

P(D̃n = k) =
kE[Nk]∑
`>Ωn

`E[N`]
(7.73)

for all k > Ωn. By Equations (7.71) and (7.72) it follows that

P(D̃n = k) = P(d+
Tn(o) = k | d+

Tn(o) > Ωn). (7.74)

Since the tree T1n is almost surely finite, we may turn it into an enriched plane tree
(T1n, β1n), by sampling for each vertex v an element β1n(v) from R[d+

T1n(v)] with probability
proportional to its weight. Again we may match the non-∗-vertices of the set of derived
blocks β1n(v) with the ordered offspring of v according to their distance from their respective
∗-vertices in order to obtain an enriched tree (T1n, λ1n), in precisely the same way as we
constructed (Tn, λn) out of (Tn, βn). For any finite family of vertices vi, i ∈ I, integers di ≥ 0
and R-structures Ri ∈ R[di], it holds that

P(βn(vi) = Ri, i ∈ I | d+
Tn(vi) = di, i ∈ I) =

∏
i∈I

κ(Ri)/|R[di]|κ

= P(β1n(vi) = Ri, i ∈ I | d+

T̂1n
(vi) = di, i ∈ I).

So, Equation (7.69) already implies

lim
n→∞

dTV((λn(v))v∈V [m] , (λ1n(v))v∈V [m]) = 0. (7.75)

3. The randomly sized Gibbs partition at the tip of the spine - first part. The
asymptotic behaviour of the graph corresponding to (T1n, λ1n) depends on the behaviour of
the randomly sized Gibbs partition λ1n(v∗), that gets sampled from (SET ◦ (B′)γ)[D̃n] with
probability proportional to its weight. The problem is, that it does not need to hold that
SET ◦ (B′)γ has convergent type, so there may be no sensible limit for a random element
from (SET ◦ (B′)γ)[k] as k deterministically tends to infinity. However, we are dealing with a
randomly sized Gibbs partition, and this makes all the difference. We are going to verify that
the composition of SET with (B′)γ ◦ AωR has convergent type, and then use the fact that D̃n
is distributed like the root degree of Tn conditioned to be large.

The equation
z exp((B′)γ(AωR(z))) = AωR(z)

may be rewritten by
exp((B′)γ(AωR(z))) = 1 + a(z)

with a(z) satisfying a(0) = 0. Consequently,

(B′)γ(AωR(z)) = log(1 + a(z)).

Here log denotes the principal branch of the logarithm, which is holomorphic in the domain
C\] − ∞, 0]. The power series a(z) has radius of convergence τ/φ(τ) < ∞ and satisfies
a(τ/φ(τ)) = φ(τ)− 1 <∞. We may check that the set

{1 + a(z) | z ∈ C, |z| ≤ τ/φ(τ)}
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is contained in the domain C\]−∞, 0]. Indeed,

ν = τφ′(τ)/φ(τ) = τ(B′′)γ(τ) ≥ (B′)γ(τ) = (B′)γ(AωR(τ/φ(τ))).

Since all coefficients of (B′)γ(AωR(z)) are non-negative, it follows that for all z ∈ C with
|z| ≤ τ/φ(τ)

|(B′)γ(AωR(z))| ≤ ν.

As w has type II, we know that ν < 1. By basic properties of the complex exponential
function, it follows that

1 + a(z) = exp((B′)γ(AωR(z))) /∈]−∞, 0]

whenever |z| ≤ τ/φ(τ).
The (sequence of coefficients of the) series a(z) belongs to the class Sd with d = span(w)

by Lemma 6.14. Hence we may apply Proposition 6.16 to obtain, since we always assume
that n ≡ 1 mod span(w),

[zn−1]((B′)γ ◦ AωR)(z) = [zn−1] log(1 + a(z))

∼ 1

1 + a(τ/φ(τ))
[zn−1]a(z),

Since a(z) belongs to the class Sd, this also implies that ((B′)γ ◦ AωR)(z) belongs to Sd. Thus
the composition of SET with (B′)γ ◦ AωR has convergent type.

4. Randomly sized Gibbs partitions and the tree (T ∗1n, λ∗1n) Knowing that the compo-
sition SET with (B′)γ ◦ AωR has convergent type will help us to determine the limit behaviour
of the randomly sized Gibbs partition drawn from (SET ◦ (B′)γ)[D̃n] with probability propor-
tional to its weight. We are going to show that it consists typically of a giant component with a
stochastically bounded rest that converges in total variation toward a PSET◦(B′)γ ,τ -distribution.
Hence, it behaves precisely as if the composition SET ◦ (B′)γ had convergent type, although
the latter need not hold at all.

The isomorphism
AωR ' X · SET ◦ ((B′)γ ◦ AωR)

allows us to view the forest obtained from (Tn, βn) by removing the root-vertex as a Gibbs
partition corresponding to the composition of SET and (B′)γ ◦ AωR. As this composition has
convergent type, it follows that it exhibits a giant component with a stochastically bounded
remainder, that converges in total variation to a PSET′◦(B′)γ◦AωR,τ/φ(τ)-distribution. Applying
the rules for Boltzmann distributions in Lemma 4.2, we obtain that the collection of blocks
of this limit, that correspond to the root of the tree, follow a PSET′◦(B′)γ ,τ -distribution. Note
that SET′ and SET are isomorphic species, so there is no real difference to a PSET◦(B′)γ ,τ -
distribution.

The question is, how does the size of the root block of the giant (B′)γ ◦ AωR-component
behave? To answer this, note that since the limit (7.75) holds for arbitrarily large m, there is
a coupling of (Tn, λn) and (T1n, λ1n) such that

(1 + sup{m ≥ 0 | λn(v) = λ1n(v) for all v ∈ V [m]})−1 p−→ 0. (7.76)
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We know that λn(o) consists of a single block B(n), whose asymptotic size we do not know yet,
and a remainder R(n) that converges in total variation toward a PSET◦(B′)γ ,τ -distributed limit.
Moreover, we know that the total size of the union S(n) of fringe subtrees dangling from the
remainder R(n) in Tn is stochastically bounded. As λn(o) = λ1n(o) with probability tending
to 1 as n becomes large, we may also express λ1n(o) as the disjoint union of a block B(1n)
and a remainder R(1n) such that with high probability B(1n) = B(n) and R(1n) = R(n).
We are going to argue, that with high probability the vertex v∗ does not lie in the union
S(1n) of fringe subtrees dangling from R(1n) in the tree T1n. Indeed, given ε > 0 we may
take m large enough such that v∗ ∈ V [m] with probability at least 1− ε for all n. As with high
probability R(n) = R(1n) and λn(v) = λ1n(v) for all v ∈ V [m], it follows that whenever v∗ lies
in V [m] ∩S(1n), then the size of S(n) is at least Ωn →∞. As the size of S(n) is stochastically
bounded it follows that the probability for v∗ to lie in S(1n) is bounded from below by 1− 2ε
for all large enough n. As ε > 0 was arbitrary, it follows that with high probability v∗ does
not lies in S(1n).

Depending on the location of the vertex v∗, there are two possible behaviours for B(1n)
and R(1n). If the tip of the spine v∗ has height at least 1, then the SET ◦ (B′)γ-object
λ1n(o) together with its unique atom that belongs to the spine of T1n gets drawn from
(SET ◦ (B′)γ)•[ξ̂] with probability proportional to its weight. By the rules for Boltzmann
samplers in Lemma 4.2, this means that it follows a P(R•)κ,τ -distribution. As

R• ' (B′•)γ · (SET ◦ (B′)γ),

it follows that in this case, as unlabelled objects, the block containing the spine vertex follows
a P(B′•)γ ,τ -distribution (and is with high probability equal to B(1n)), and is independent from
its remainder, which follows a PSET◦(B′)γ ,τ -distribution.

If the tip v∗ is equal to the root o, then the corresponding SET ◦ (B′)γ-object gets drawn
from SET ◦ (B′)γ [D̃n] with probability proportional to its weight. It holds uniformly for every
set E of unlabelled SET ◦ (B)γ-objects that

P(R(1n) ∈ E | v∗ = o) =
P(R(1n) ∈ E)− P(R(1n) ∈ E | v∗ 6= o)P(v∗ 6= o)

P(v∗ = 0)

∼ PRκ,τ (E)− PRκ,τ (E)ν

1− ν
= PRκ,τ (E).

As D̃n ≥ Ωn →∞ and the size of R(1n) is stochastically bounded, it follows that in this case
the block B(1n) becomes large. Note that conditioned on having specific size k, the block
B(1n) gets drawn with probability proportional to its γ-weight among all elements from B′[k].
Let R̂ denote a PRκ,τ -distributed collection of blocks, and B̂n a block drawn from B′[D̃n − |R̂|]
with probability proportional to its weight. The latter is only possible if D̃n − |R̂| > 0 and
|B′[D̃n − |R̂|]|γ > 0, but this holds with high probability. We have shown that if we draw a
composite structure Sn from R[D̃n] with probability proportional to its weight, then

dtv(Sn, {B̂n} ∪ R̂)→ 0 (7.77)

as n becomes large. Let (T ∗1n, λ∗1n) denote the tree constructed by modifying the tree (T̂ , β̂)
in a similar way as we did for (T1n, λ1n), with the sole difference that instead of assigning a



7 PROOFS 118

D̃n-sized random R-object to the tip of the spine, we use the union {B̂n}∪ R̂. Equation (7.77)
shows that for all m ≥ 0 it holds that

dTV((λ1n(v))v∈V [m] , (λ∗1n(v))v∈V [m] → 0.

Hence, by the limit in (7.76) it follows that there is a coupling of (Tn, λn) and (T1n, λ1n) such
that

(1 + sup{m ≥ 0 | λn(v) = λ∗1n(v) for all v ∈ V [m]})−1 p−→ 0.

5. Weak convergence of B̂n implies Benjamini–Schramm convergence of Cωn. Let
(Cω1n, v1n) denote the rooted graph corresponding to (T ∗1n, λ∗1n) according to the bijection
in Section 6.1.2. Let G• be an arbitrary finite rooted graph and let ` ≥ 1 be an integer.
As discussed in the first step, there is an integer m(`,G•) ≥ 0 such that for any fixed
m ≥ m(`,G•) the family (λ∗1n(v))v∈V [m] already contains all information necessary to decide
whether V`(Cω1n, v1n) ' G• as rooted graphs.

For any set R of derived graphs let G(R) denote the derived graph obtained by identifying
the ∗-vertices of all blocks with each other. Then, for any r ≥ 0 the r-neighbourhood Vr(G(R))
is given by the union of the r-neighbourhoods of the ∗-vertices in the components. This may
be expressed by

Vr(G(R)) = G({Vr(Q) | Q ∈ R}).
Suppose that the randomly sized derived 2-connected graph B̂n converges in the local weak

sense toward a limit B̂. To unify notation, we treat the root-vertex of B̂ like a ∗-placeholder
vertex. It holds that

Vr(G(λ∗1n(v∗))) = G({Vr(R̂), Vr(B̂n)}) d−→G({Vr(R̂), Vr(B̂)}) = Vr(G(R̂ ∪ {B̂})). (7.78)

In order to decide whether V`(Cω1n, v1n) ' G•, it is more than enough to know the `-
neighbourhoods V`(G(β1n(v))) for all v ∈ V [m]. (It would also suffice to just consider
the (`− hT1n(v))-neighbourhoods of the vertices v). The limit (7.78) implies that

(V`(G(λ1n(v))))v∈V [m]
d−→ (V`(G(λ̂(v))))v∈V [m] , (7.79)

where we let (T̂ , λ̂) denote the limit enriched plane tree obtained from (T̂ , β̂) by matching
the offspring of any vertex v with finite outdegree d+

T̂ (v) <∞ with the atoms of the set of

derived blocks β̂(v) in the same way as we did for (Tn, λn). For the unique vertex u∗ with
d+

T̂ (u∗) =∞, we let λ(u∗) be given by R̂ ∪ {B̂}, where we also match the countably infinite

offspring of λ(v∗) with the countably infinite number of non-∗-vertices of R̂ ∪ {B̂◦} in the
same way. This is possible, since it is easily verified that the random graph B̂ has countably
infinite many vertices. For an upper bound, we only need the fact that it is locally finite,
and the lower bound follows as it is the limit of a sequence of random graphs whose size
deterministically tends to infinity.

The convergence in (7.79) implies that the random rooted graph Ĝ• that corresponds to
the R-enriched plane tree (T̂ , λ̂) satisfies

lim
n→∞

P(V`(Cωn, vn) ' G•) = P(V`(Ĝ•) ' G•).

As G• and ` where arbitrary, it follows that Ĝ• is the Benjamini–Schramm limit of the random
graph Cω1n and thus also of Cωn.
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6. Distribution of the limit We are going to argue, that Ĝ• is distributed like the graph
Ĉ described in Theorem 6.39. Recall that we constructed Ĉ by concatenating the independent
identically distributed blocks (B′•i )1≤i≤K , where K follows a geometric distribution with

parameter ν, glue the limit B̂ at the tip of this chain, and finally identify each vertex of this
graph with the root of an independent copy of the Boltzmann-distributed random graph C•.
The height of the vertex u∗ in T̂ is distributed like K, and the R-structures along the spine
in T̂ actually follow Boltzmann distributions of (SET ◦ B′)• with parameter τ . As

(SET ◦ (B′)γ)• ' (SET ◦ (B′)γ) · B′•,

the product rule in Section 4.3.2 implies that each of the blocks containing consecutive spine
vertices actually follows a Boltzmann distributions for (B′•)γ with parameter τ , and the
remainder of the corresponding (SET ◦ (B′)γ)•-object is independent from this block and
follows a SET ◦ (B′)γ distribution with parameter τ . The isomorphism AωR ' X · Rκ(AωR)
and the composition rule in Section 4.3.2 imply that if we take a Boltzmann distributed
SET ◦ B′-structure with parameter τ , glue the ∗-vertices together, and identify its vertices
with the roots of independent copies of C•, then the result follows a Boltzmann distribution
for (C•)ω with parameter τ/φ(τ). So, summing up, the random graph Ĝ• corresponding to
(T̂ , β̂) is distributed like Ĉ.

7. Convergence of Cωn implies convergence of B̂n - first part. We have shown
that weak convergence of the random 2-connected graph B̂n implies Benjamini–Schramm
convergence of the random connected graph Cωn. Conversely, we may deduce that if Cωn
converges in the Benjamini–Schramm sense, then so does the random graph B̂n.

Indeed, suppose that Cωn admits a distributional limit Ĉ◦. It follows that this graph is also
the distributional limit of the rooted graph (C1n, v1n) that corresponds to the enriched tree
(T ∗1n, λ∗1n).

We are first going to show that the derived graph Gn := G(λ∗1n(v∗)) has the property, that
for each ` ≥ 1 the neighbourhood V`(Gn) converges weakly in the countable discrete set of
unlabelled rooted graph with height at most `. Let us start with the root-degree. For any k it
holds that

P(dC1n(v1n) = k) = P(dC1n(v1n) = k | v∗ = o)(1− ν) + P(dC1n(v1n) = k | v∗ 6= o)ν

= P(d(Gn) = k)(1− ν) + P(d(R̂•) = k)ν, (7.80)

with R̂• denoting a P(R•)κ,τ -distributed random object. Since

P(dC1n(v1n) = k)→ P(d(C◦) = k),

it follows that
P(d(Gn) = k)→ dk

for some dk ≥ 0. Equation (7.80) also implies that the limits (dk)k≥0 satisfy
∑

k≥0 dk = 1. In
other words, the 1-neighbourhood V1(Gn) converges weakly.

We proceed to show weak convergence of the `-neighbourhood V`(Gn) by induction on `. So
assume that Vi(Gn) admits a weak limit for all i < `. Let G• denote a finite graph. Recall that
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there is a m = m(G•, `) such that the family (λ∗1n(v))v∈V [m] contains all informations to decide
whether V`(C1n) ' G•. A bit more precise, we only require knowledge of the neighbourhoods
V`−hT ∗1n

(v)(G(λ∗1n(v))) for all v ∈ V [m] with hT ∗1n(v) < `. Let V (`) ⊂ V [m] denote the subset of

vertices with height less than `. Thus, there is a finite set M of families (Gv)v∈V (`) of rooted
graphs such that

V`(C1n) ' G• if and only if
(
V`−hT ∗1n

(v)(G(λ∗1n(v)))
)
v∈V (`)

∈M .

Thus

P(V`(C1n) ' G•) =
∑̀
h=0

P
(
V`−hT ∗1n

(v)(G(λ∗1n(v)))v∈V (`) ∈M | hT ∗1n(v∗) = h
)
νh(1− ν).

(7.81)

Note that the left-hand side of this equation converges, since we assumed that C1n has a weak
limit. As for the right hand-side, all summands with h ≥ 1 converge by induction, as they
depend on the neighbourhood Vi(λ

∗
1n(v∗)) only for i < `. Let

M0 = {(Gv)v∈V (`) ∈M | Go ' G•}

denote the subset that corresponds to the event that the `-neighbourhood at the root vertex o
is already isomorphic to G•. Note that all elements (Gv)v∈V (`) ∈M \M0 satisfy |Go| < |G•|.

If v∗ = o, then any non-root vertex that belongs to the tree T ∗1n receives an R-structure
according to a PSET◦(B′)γ ,τ -distribution, which assumes a zero-sized object with positive
probability. Hence

P(V`−hT ∗1n
(v)(G(λ∗1n(v)))v∈V (`) ∈M0 | hT ∗1n(v∗) = 0) = P(V`(Gn) ' G•)C(G•) (7.82)

for some constant C(G•) > 0. In fact, we may set

C(G•) = p|V`−1(G•)| (7.83)

with p > 0 denoting the probability, that a PSET◦(B′)γ ,τ -distributed structure has size 0. To
justify this, note that when P(V`(Gn) ' G•) = 0, then both sides of Equation (7.82) are
always zero. If P(V`(Gn) ' G•) > 0, then it holds that

P(V`−hT ∗1n
(v)(G(λ∗1n(v)))v∈V (`) ∈M0 | hT ∗1n(v∗) = 0)P(V`(Gn) ' G•)−1 =

P(V`(C1n) ' G• | v∗ = o, V`(G(λ∗1n(o))) ' G•).

Conditional on v∗ = o and V`(G(λ∗1n(o))) ' G•, the event V`(C1n) ' G• takes place if and only
if each offspring vertex v of the root that corresponds to a vertex in V`−1(G(λ∗1n(o))) ' V`−1(G•)
satisfies |λ∗1n(v)| = 0. There are precisely V`−1(G•) many such vertices, and each receives an
independent PSET◦(B′)γ ,τ -distributed structure. Hence this conditional probability is equal to
p|V`−1(G•)|.
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Having verified that Equation (7.83), it follows from Equation (7.81) that

P(V`(C◦) ' G•) + o(1) =
∑̀
h=1

P
(
V`−hT ∗1n

(v)(G(λ∗1n(v)))v∈V (`) ∈M | hT ∗1n(v∗) = h
)
νh(1− ν)

+ P
(
V`−hT ∗1n

(v)(G(λ∗1n(v)))v∈V (`) ∈M \M0 | hT ∗1n(v∗) = 0
)

(1− ν)

+ P(V`(Gn) ' G•)C(G•)(1− ν). (7.84)

On the right-hand side, the first summand converges, since we assumed that Vi(Gn) converges
for i < `. The second summand contains only conditions of the form V`(Gn) ' G′ for graphs
G′ with size |G′| < |G•|. Since C(G•) > 0, it follows by induction on |G•| that

P(V`(Gn) ' G•)→ p`(G
•)

for some p`(G
•) ≥ 0 as n becomes large.

In order to deduce weak convergence of V`(Gn), it remains to verify that
∑

G• p`(G
•) = 1,

with the sum index G• ranging over all unlabelled rooted graphs. Suppose that this does not
hold, that is,

∑
G• p`(G

•) = 1− ε for some ε > 0. Then for any fixed s ≥ 1

P(|V`(Gn)| ≥ s) = 1− P(|V`(Gn)| < s)→ 1−
∑

G•,|G•|<s

p`(G
•) ≥ ε.

Thus, there is a sequence sn →∞ such that

P(|V`(Gn)| ≥ sn) ≥ ε/2

We know that |V`−1(Gn)| is stochastically bounded, hence there is a constant S > 0 such that

P(|V`−1(Gn)| ≤ S) ≥ 1− ε/4

for all n. Consequently,

P(|V`(Gn)| ≥ sn, |V`−1(Gn)| ≤ S) ≥ ε/4

for all n. Using the third term in Equation (7.84) as a lower bound, it follows that

P(|V`(C1n)| ≥ sn) ≥
∑

G•,|V`(G•)|≥sn
|V`−1(Gn)|≤S

P(V`(Gn) ' G•)p|V`−1(G•)|(1− ν)

≥ pS(1− ν)(1− ν)P(|V`(Gn)| ≥ sn, |V`−1(Gn)| ≤ S)

≥ pS(1− ν)(1− ν)ε/4

for all n. But clearly P(|V`(C1n)| ≥ sn) tends to zero. Hence it must hold that∑
G•

p`(G
•) = 1.

In other words V`(Gn) converges weakly.
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8. Convergence of Cωn implies convergence of B̂n - second part. Recall that λ∗1n(v∗)
is the union of the graph B̂n and the Boltzmann-distributed object R̂. Let ` ≥ 1 be given,
and let G• denote a rooted (connected) graph with height at most `. Then it holds that

P(V`(Gn) ' G•) =
∑

(H1,H2)`G•
P(V`(Bn) ' H1)P(V`(G(R̂)) ' H2), (7.85)

with the index (H1, H2) ranging over all ordered pairs of unlabelled connected graphs that
are rooted at a ∗-placeholder vertex, such that the graph obtained by identifying the roots of
H1 and H2 is equal to G•. It follows that

P(V`(Bn) ' G•) = p−1

P(V`(Gn) ' G•)−
∑

(H1,H2)`G•
H2 6=∗

P(V`(Bn) ' H1)P(V`(G(R̂)) ' H2)


with p = P(|R̂| = 0) > 0. Note that in this sum it always holds that |H1| < |G•|. Since
P(V`(Gn) ' G•) converges toward p`(G

•), it follows by induction on |G•| that

P(V`(Bn) ' G•)→ q`(G
•)

for some constant q`(G
•) ≥ 0. Equation (7.85) implies that

1 =
∑
G•

∑
(H1,H2)`G•

q`(H1)P(V`(G(R̂)) ' H2)

=
∑
H

q`(H)
∑
H′

P(V`(G(R̂)) ' H ′)

=
∑
H

q`(H),

with the sum indices H and H ′ ranging over all rooted unlabelled (connected) graphs. This
shows that V`(B̂n) converges weakly toward a random graph Q` for all ` ≥ 1. Clearly it holds
that

Q` ' V`(Qk)

for all k ≥ `, since
V`(B̂n) = V`(Vk(B̂n))

for all n and V`(·) is a continuous map from the Polish space of locally finite graphs, equipped
with the metric from Equation (2.1), to itself. This means that the distributions µ` = L(Q`)
form a projective family (µ`)`∈N with projections fi,j = Vi(·) for all i ≤ j. Note that if we
form the projective limit of the copies of (B, dBS) with respect to the projections (fi,j)i≤j,
then each of its element may be interpreted as a locally finite graph. By Lemma 5.1, it follows
that there exists a random locally finite rooted graph B̂ such that for all ` ≥ 1 it holds that

L(V`(B̂)) = µ`.

Thus B̂ is the local weak limit of the sequence B̂n of randomly sized 2-connected graphs.
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Figure 21: Correspondence of trees to ”dissections with faces of infinite degrees”. The
letters show how the vertices of the tree correspond to the edges of the dissection.

7.8 Proofs of the applications to random weighted dissections in
Section 6.7.3

As discussed in Section 6.1.3, the species Dω of dissections, where each face with degree k
receives weight γk, satisfies an isomorphism of the form

Dω ' X + SEQγ′

≥2 ◦ Dω, SEQγ′

≥2(z) =
∞∑
k=2

γk+1z
k.

The species T ω` of plane trees with leaves as atoms, where each vertex with out-degree k ≥ 2
receives weight γk+1, satisfies by the discussion in Section 6.1.7 also an isomorphism

T ω` ' X + SEQγ′

≥2 ◦ T ω` . (7.86)

We may use this to construct a bijection τ from the set of unlabelled D-objects to the set of
locally finite plane trees that have no vertex with outdegree 1, such that dissections with n
non-root vertices correspond to trees with n leaves and the weight ω(D) of a dissection D
equals the weight ω(τ(D)) of the corresponding tree. This implies that the random tree

τn := τ(Dω
n) (7.87)

gets drawn from T ω` [n] with probability proportional to its weight.
Given a dissection D we let τ(D) denote the rooted plane tree whose vertices correspond

to the edges of D, and whose root is given by the root-edge of D. The offspring of the root
is given by the non-root edges incident to the root-face, in a canonical order. It will be
convenient to order the edges in a monotonically increasing way according to their proximity
to the root-edge, by starting with the first edge to the left of the root-edge, then the first to
the right, then the second to the left of the root-edge, then the second to the right, and so
on. Each of these edges may be interpreted as the root-edge of the dissection attached to the
root-face as in Figure 4. Hence we may recurse to complete the construction of τ(D). Note
that the leaves of τ(D) correspond to non-root edges incident to the outer face of D. Hence
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we may say that the origin of the root edge of D corresponds to the root vertex of τ(D), and
each leaf of τ(D) corresponds to a unique non-∗-vertex of D.

In Section 3.2.2 we discussed the compact Polish space T of plane trees that may have
vertices with infinite degree. We let the T` ⊂ T denote the compact subspace of trees that
have no vertex with outdegree 1. We let D denote the set of all unlabelled D-objects where
we additionally allow ”faces of infinite degree”, given by doubly infinite paths. This allows us
to extend the bijection τ to a bijection τ̄ from D to T` as illustrated in Figure 21. The set D
is a collection of rooted plane graphs that we may equip with the metric

dD(D1, D2) = 1/(1 + sup{` ≥ 0 | V`(D1) = V`(D2) as edge-rooted planar maps}).

The following observation is analogous to a lemma by Björnberg and Stefánsson [28, Lem.
2.1], who studied infinite discrete looptrees.

Lemma 7.3 (Correspondence between dissections and trees). The bijection τ̄ : D→ T` is a
homeomorphism.

Proof. The space T` is compact, hence it suffices to show that the inverse τ̄−1 is continuous.
To this end, let (Ti)i≥1 be a sequence in T` that converges toward a limit tree T0, and set
Di = τ̄−1(Ti) for all i ≥ 0. We need to show that the Di converges toward D0 in the space D
as i becomes large.

Let ` ≥ 1 be an arbitrarily large integer. The neighbourhood V`(D0) contains only finitely
many edges, since D0 is locally finite. Consequently, there is a finite subset V ⊂ V∞ of the
vertex set of the Ulam–Harris tree described in Section 3.2.2, and a family of subsets (E(v))v∈V
with

E(v) ∈ {{0}, {1}, . . .} ∪ {{0, 1, . . . ,∞}, {1, 2, . . . ,∞}, . . .}
for all v, such that any dissection D ∈ D satisfies V`(D) = V`(D0) if and only if the plane
tree T = τ̄(D) satisfies d+

T (v) ∈ E(v) for all v ∈ V . Since E(v) is an open subset of the space
N0 ∪ {∞} equipped with the one-point compactification topology, it follows that

U = {T ∈ T` | d+
T (v) ∈ E(v) for all v ∈ V }

is an open neighbourhood of T0 in T`. Since limi→∞ Ti = T0, this implies that for sufficiently
large i it holds that Ti ∈ U , and hence V`(Di) = V`(D0) and

dD(Di, D0) ≤ 1/(1 + `).

As ` ≥ 1 was arbitrary, it follows that D0 = limi→∞Di in the space D.

Recall that any tree T ∈ T ω` [n] receives the weight

ω(T ) =
∏
v∈T

pd+T (v),

with p0 = 1 and pk = γk+1 for k ≥ 1. In Section 6.4 we associated a probability distribution p(t0)

to (pk)k and showed in Lemma 6.8 that the modified Galton–Watson tree from Section 3.2.1,
that corresponds to the offspring distribution p(t0), is the weak limit of τn in the space T. Let
τ̂ denote this limit tree.



7 PROOFS 125

We are now in the position to provide the proofs of the results stated in Section 6.7.3.
Lemma 6.8 and Lemma 7.3 prove the Benjamini–Schramm convergence of the random
dissection Dω

n for arbitrary weights. Verifying the convergence of o(
√
n)-neighbourhoods in

the Ia regime requires some additional arguments, for which we build on the work by Curien,
Haas and Kortchemski [42].

Proof of Theorem 6.47 and Remark 6.48. Suppose that the weight-sequence w has type I.
Note that since τ = t0 by Lemma 6.10, the distribution of the number F given in Equation 6.32
corresponds to the number of non-root edges in a dissection corresponding to a tree with a
root and size-biased p(t0) offspring. Moreover, a PDω ,τ/φ(τ)-distributed dissection corresponds
to a Galton–Watson tree with offspring distribution p(t0). Hence the description of the
limit in Remark 6.48 is identical to the distribution of the dissection corresponding to the
modified Galton–Watson tree τ̂ . This verifies that the graph described in Remark 6.48 is the
Benjamini–Schramm limit of Dω

n.
The infinite Rκ = SEQ◦SEQγ

≥1 enriched tree (T̂ , β̂) corresponds to a locally finite rooted

plane graph D̂. We now verify D̂ is also the Benjamini–Schramm limit of Dω
n, which implies

D̂
d
= τ−1(τ̂) and hence verifies Remark 6.48. For any ` ≥ 1 and any rooted graph G there is

an integer h ≥ 1 and a set E of trimmed R-enriched trees such that any R-enriched tree
(T, α) corresponding to a rooted dissection D, the `-graph-distance neighbourhood V`(D) is
isomorphic as plane graph to G if and only if the trimming (T, α)[h] at height h belongs to
the set E . Consequently, Theorem 6.2 implies that

P(V`(Dω
n) ' G) = P((Tn, βn)[h] ∈ E)→ P((T̂ , β̂)[h] ∈ E) = P(V`(D̂) ' G),

as n ≡ 1 mod span(w) becomes large. This establishes D̂ as the Benjamini–Schramm limit

of Dω
n, and consequently it must hold that D̂

d
= τ−1(τ̂).

In order to conclude the proof of Theorem 6.47, we need to show the convergence of
o(
√
n)-neighbourhoods in the Ia setting. Let tn = o(

√
n) be sequence of non-negative integers.

We need to show that

lim
n→∞

dTV(Vtn(Dω
n), Vtn(D̂)) = 0. (7.88)

Without loss of generality we may assume that tn tends to infinity as n becomes large. If the
weight-sequence w has type Ia, then Theorem 6.3 says that for any sequence hn = o(

√
n) it

holds that
lim
n→∞

dTV((Tn, βn)[hn], (T̂ , β̂)[hn]) = 0.

Hence in order to verify (7.88), it suffices to show that there is a sequence hn = o(
√
n) such

that with high probability all vertices in Vtn(Dω
n) have height most hn in (Tn, βn).

It was shown by Curien, Haas and Kortchemski in [42, Lem. 9, Eq. (8)] that there is a
constant C > 0 such that for all ε > 0 it holds with high probability that all vertices v ∈ Dω

n

satisfy
hτn(v) ≤ ChDωn(v) + Cεmax(D(τn),

√
n).

The rescaled tree (τn, n
−1/2dτn) converges toward the CRT in the Gromov–Hausdorff topology

by results of Kortchemski [76], consequently the rescaled diameter D(τn)/
√
n) is tight. It
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follows that there is a sequence hn = o(
√
n) such that with high probability all vertices v with

hDωn(v) ≤ tn satisfy hτn(v) ≤ hn. It is easy to check that hTn(u) ≤ hτn(u) for all vertices u of
Dω
n, so all vertices in Vtn(Dω

n) have with high probability height at most hn in (Tn, βn). This
verifies (7.88).

If the weight-sequence w has type II, then analogously to the type I case the limit τ̂
corresponds to the dissection D̂ of Theorem 6.49. Hence Lemma 6.8 and Lemma 7.3 prove
Theorem 6.49. If w has type III, then τ̂ is the infinite star that corresponds to a dissection
with a single face of infinite degree, in other words, a doubly infinite path. This verifies
Theorem 6.51.

7.9 Proofs of the applications to random k-trees in Section 6.7.4

Proof of Theorem 6.53. It was established in [47, Lem. 6] that there are constants mk, C, c > 0
such that with probability at least 1− Cn− logc n any two vertices x, y ∈ Tn satisfy

|dK◦1,n(x, y)−mkdTn(x, y)| ≤ max(dTn(x, y)3/4, log3(n)). (7.89)

Note that the vertices of Tn correspond to the vertices of K◦1,n outside of the k-element
root-front. The behaviour around a uniform random vertex of K◦1,n is asymptotically identical
to uniform random vertex un of Tn, because the probability to hit the root-front tends to zero
as n becomes large.

Without loss of generality we may assume that tn ≥ n1/4. It follows that with probability
tending to one as n becomes large the tn graph-distance neighbourhood Vtn(K◦1,n, un) is a

subset of the union of the root-front of K1,n and the sn = tn + t
3/4
n = o(

√
n) tree-distance

neighbourhood of un in Tn. But sn = o(
√
n) implies that hTn(un) > sn with probability

tending to one, so Vtn(K◦1,n, un) does not contain the root of Tn and hence no vertex of the
root-front of K◦1,n at all.

In particular, if (Hn
i )i≥0 denotes the growing enriched fringe subtree representation of

(Tn, βn) at un (that is, Hn
i is the enriched fringe subtree at the ith ancestor of un), then

with high probability the vector (Hn
1 , . . . ,H

n
sn) contains all information about Vtn(K◦1,n, un).

Theorem 6.5 ensures that

lim
n→∞

dTV((Hn
1 , . . . ,H

n
sn), (Ĥ1, . . . , Ĥ

n
sn)) = 0,

with (Ĥi)i≥0 denoting the growing enriched fringe tree representation of (T ∗, β∗) along its
backwards growing spine. This completes the proof.

Proof of Remark 6.54. Let (Ĥi)i≥0 denote the growing enriched fringe tree representation

of (T ∗, β∗) along its backwards growing spine u0, u1, . . . (That is, Ĥi is the enriched fringe
subtree at the vertex ui). Then Ĥ0 is distributed like the R = SETk enriched tree (T , β)
and the corresponding k-tree follows a Boltzmann distribution PK◦1 , 1

ek
. The decomposition

K◦1 ' X · SETk(K◦1) together with the rules of Lemma 4.2 then show that Ĥ0 corresponds to
a root-front consisting of placeholder ∗-vertices, such that u0 is connected to each vertex of
the root-front, and each of the k fronts incident to u0 is identified with the root-front of an
independent copy of K◦.
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For any i ≥ 1, the R-object of the offspring of ui in Ĥi follows a PR•,K◦1( 1
ek

) distribution. It
holds that

R• ' SET• · SETk−1 + SET · SET• · SETk−2 + . . .+ SETk−1SET• '
k∑
i=1

X · SETk,

since SET• ' X · SET′ ' X · SET. This may be interpreted by stating that an R•-object
consists of an R-object, with one additional hedron attached to any of the k possible locations.

Hence Lemma 4.2 yields that Ĥi is distributed like taking a hedra consisting of ui and
a root-front of k distinct ∗-placeholder vertices, identifying each of the k fronts incident to
ui with the root-front of a fresh independent copy of K◦, and then selecting one of the k
fronts uniformly at random and identifying it with the root-front of Ĥi−1 in any canonical way.
Permuting the vertices of the root-front of Ĥi−1 by any fixed permutation does not change its
distribution, so it does not matter which matching of the front-vertices we choose.

Letting i formally tend to infinity yields the limit K̂. Now, instead of attaching the
independent copies of K◦ in each step, we may just as well procrastinate and do that after
having glued together the infinitely many hedra containing the root-fronts. This yields the
description with the random walker in Remark 6.54.

Proof of Remark 6.55. In the description of the limit K̂ in Remark 6.54, the vertex u0 is at
first incident to precisely k fronts, and then each front gets identified the root-front of an
independent copy of K◦. So

dK̂(u0)
d
= k +

k∑
i=1

di

with di being independent copies of the number d of non-root-front vertices incident to a fixed
root-front vertex in K◦. As K◦ follows a PSET◦K◦1 ,

1
ek

-distribution with K◦1( 1
ek

) = 1/k, it follows

from Lemma 4.2 and the decomposition K◦1 ' X · SETk(K◦1), that d is distributed like the
sum of Z and (k− 1)Z many independent copies of d. This recursion yields the description of
d in terms of mono-type vertices in a 2-type Galton–Watson tree.

In particular, we may stochastically bound the number dK̂(u0) by the size of a Poisson((k−
1)/k)-Galton–Watson tree, by considering the tree obtained from the 2-type tree by identifying
for each vertex the Z type A offspring vertices with any Z type B offspring. This verifies that
dK̂(u0) has finite exponential moments.

7.10 Proofs of the applications to random weighted planar maps
in Section 6.7.5

Proof of Theorem 6.57. As for Claim (1), let k be a positive integer and M an edge-rooted
planar map. We have to be careful as the k-neighbourhood Vk(Mω

n) may contain vertices
of arbitrarily large height in the corresponding tree (T2n+1, β2n+1). However, as M has only
finitely many edges, there is an integer K and a (possibly infinite) set EK of Q-enriched
planed trees trimmed at height K such that any Q-enriched plane tree (T, α) that corresponds
to a map N satisfies Vk(N) ' M if and only if (T, α)[K] ∈ EK . Theorem 6.2 implies that
P((T2n+1, β2n+1)[K] ∈ EK) converges toward P((T̂ , β̂)[K] ∈ EK), and consequently

lim
n→∞

P(Vk(Mω
n) 'M) = P(Vk(M̂) 'M).
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For Claim (2), we are faced with the same problem on how to relate graph-metric neighbour-
hoods to trimming heights. In Theorem 6.60 we establish a scaling limit for a general model
of semi-metric spaces based on random enriched trees, which as described in Theorem 6.62
yields a scaling limit for type Ia block-weighted planar maps with respect to the first-passage
percolation metric. The idea there is to relate the metric on Mn metric to a semi-metric on
the set of corners of Mn, and then in turn this metric to the tree-distance in the coupled
enriched plane tree. As kn = o(

√
n), it follows by Equations (7.90) and (7.91) in the proof of

Theorem 6.60 that there is another, larger sequence sn = o(
√
n) such that with probability

tending to one as n becomes all corners c incident to a vertex v with height hMω
n
(v) ≤ kn

satisfy hT2n+1(c) ≤ sn. Whenever this event takes place, the trimmed tree (T2n+1, β2n+1)
[sn]

already contains all information on the graph metric neighbourhood Vkn(Mω
n). Theorem 6.3

ensures that
lim
n→∞

dTV((T2n+1, β2n+1)[sn], (T̂ , β̂)[sn]) = 0,

since sn = o(
√
n). Consequently,

lim
n→∞

dTV(Vkn(Mω
n), Vkn(M̂)) = 0.

Proof of Theorem 6.59. The proof is analogous to the proof of Theorem 6.25 for the local
weak limit of random outerplanar maps. In fact, it is much simpler, as R = Q is not a
compound structure and hence we do not have to implement the limits of convergent type
Gibbs partitions.

Similar as in the proof of Theorem 6.25 (and as justified in detail there), we may modify
the matching of the 2-connected maps (βn(v))v∈Tn to the offspring sets in Tn in a canonical
way to create an enriched tree (Tn, λn) such that for each v ∈ Tn with offspring v1, . . . , vk the
sequence of heights (that is, distance from the origin of the root-edge) hλn(v)(v1), . . . , hλn(v)(vk)
in the map λn(v) is non-decreasing. (By abuse of notation, we identify here the height of a
corner with the height of the unique incident vertex.) So (Tn, βn) and (Tn, λn) correspond to
different maps, but they follow the same distribution, and we may assume that Mω

n corresponds
directly to (Tn, λn). Likewise we may construct an enriched tree (T̂ , λ̂) out of (T̂ , β̂) in the
same way without changing the distribution of the corresponding map, and let M̂ denote
the map that corresponds directly to (T̂ , λ̂) where the offspring of the unique vertex with
infinite degree is identified with the corners of the limit Q̂ of non-separable maps in the same
height-preserving way.

As the ordering on the offspring sets respects the heights, it follows that for each integer
` ≥ 1 and each finite planar map M (considered as rooted at the origin of its root-edge) there
is a constant integer m = m(`,M) ≥ 1 that does not depend on n, such that we may decide
whether V`(Mω

n) = M (as unlabelled edge-rooted planar maps) by only looking at the family
(λn(v))v∈V [m] , with

V [m] = {(i1, . . . , it) | t ≤ m, i1, . . . , i` ≤ m} ⊂ V∞

a left-ball subset of the Ulam–Harris tree. Likewise, the event V`(M̂) = M is entirely
determined by the family (λ̂(v))v∈V [m] .
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Janson [69, Sec. 20] constructs a deterministic sequence Ωn →∞ and a modified Galton–
Watson tree T1n that is obtained from T̂ by sampling a random degree D̃n ≥ Ωn independently
from T̂ , and pruning T̂ at its unique vertex v∗ with infinite degree, keeping only the first
D̃n children of v∗. The tree T1n is almost surely finite, and we may turn it into an enriched
plane tree (T1n, λ1n), by sampling for each vertex v ∈ T1n an element from Q[d+

T1n(v)] with
probability proportional to its κ-weight, and matching its vertices with the offspring of v in a
canonical way that respects their height, in the same way as in the construction of (Tn, λn)
out of (Tn, βn). Janson’s result [69, Thm. 20.2] ensures that

lim
n→∞

dTV((d+
Tn(v))v∈V [m] , (d+

T1n(v))v∈V [m]) = 0.

For each family (kv)v∈V [m] of non-negative integers with P(d+
Tn(v) = kv for all v ∈ V [m]) > 0 it

holds that

((λn(v))v∈V [m] | d+
Tn(v) = kv for all v ∈ V [m])

d
= ((λ1n(v))v∈V [m] | d+

T1n(v) = kv for all v ∈ V [m]).

This is easily verified, as for each v ∈ V [m] the conditional distribution of λ(v) given d+
Tn(v) = kv

samples a random kv-sized R-object from R[kv] with probability proportional to its weight,
and likewise for λ1n(v). It follows that

lim
n→∞

dTV((λn(v))v∈V [m] , (λ1n(v))v∈V [m]) = 0.

By the construction of m = m(`,M), this implies

lim
n→∞

|P(V`(Mω
n) = M)− P(V`(Mω

1n) = M)| = 0.

with Mω
1n denoting the planar map corresponding to (T1n, β1n).

The only part of (T1n, β1n) that actually depends on n is the offspring of the vertex v∗.
We assumed that the random non-separable map Qκ

n has a distributional limit Q̂. As
dT +

1n(v∗)
≥ Ωn →∞, it follows that λ1n(v∗) also converges toward Q̂ in the local weak sense.

As M̂ corresponds to (T̂ , λ̂), and (T̂ , λ̂) is distributed like (T1n, β1n) if we would replace the
offspring of v∗ by the limit Q̂, it follows that

lim
n→∞

P(V`(Mω
n) = M) = P(V`(M̂) = M).

That is, the map M̂ is the local weak limit Mω
n.

It remains to explain the distribution of the limit map. The tree T̂ is composed of
normal vertices, that receive offspring according to an independent copy of ξ, and special
vertices, that receive offspring according to an independent copy of ξ̂. The root is special, if
a special vertex has finitely many offspring one selected uniformly at random and declared
special. Thus the length of the spine of T̂ follows a geometric distribution with parameter
ν, and the tip of the spine is a vertex having an infinite number of normal offspring. The
distribution of the limit map is then easily deduced from the fact that drawing a Q-structure
from Q[ξ] with probability proportional to its weight follows a PQ•,τ -Boltzmann distribution,

and sampling a (ξ̂ | ξ̂ < ∞)-sized Q-structure with probability proportional to its weight
follows a P(Q•)κ,τ -distribution.
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7.11 Proofs of the scaling limits and diameter tail bounds in Sec-
tion 6.8

Proof of Theorem 6.60. Consider the coupling of the random enriched tree ARn with the
enriched plane tree (Tn, βn) given in Lemma 6.1. By assumption, the weight sequence w has
type Ia. Hence by the discussion in Section 3.1 the simply generated tree Tn is distributed
like a critical Galton–Watson tree T conditioned on having size n, such that the offspring
distribution (πk)k has finite exponential moments. In particular, as n ≡ 1 mod span(w)
tends to infinity, we have that σTn/(2

√
n) converges towards the CRT Te with σ2 denoting

the variance of the offspring distribution.
For any finite set U and R-structure R ∈ R[U ] let ηR denote the δR-distance from the

∗U point to a uniformly at random chosen label from U . Moreover, let η denote the random
number given by choosing an integer k according to the distribution (kπk)k, choosing a random
R-structure R from R[k] with probability proportional to its κ-weight and setting η = ηR.
By assumption, for any R-structure R the random variable ηR is bounded by the sum of |R|
copies of a random variable χ ≥ 0 having finite exponential moments. Since the distribution
(kπk)k also has finite exponential moments, it follows that η has finite exponential moments.

We are going to show that the Gromov–Hausdorff distance between E[η]Tn/
√
n and Xn/

√
n

converges in probability to zero. This immediately implies that

σXn/(2E[η]
√
n)

d−→Te

and we are done.
Let s > 1 and t > 0 be arbitrary constants and set sn = log(n)s and tn = nt. Let ε > 0 be

given and let E1 denote the event that there exists a vertex v ∈ Tn and an ancestor u of v
with the property that

dTn(u, v) ≥ sn and dXn(u, v) /∈ (1± ε)E[η]dTn(u, v).

Likewise, let E2 denote the event that there exists a vertex v and an ancestor u of v with

dTn(u, v) ≤ sn and dXn(u, v) ≥ tn.

We are going to show that with high probability none of the events E1 and E2 takes place.
This suffices to show the claim: Take s = 2 and t = 1/4 and suppose that the complemen-

tary events Ec1 and Ec2 hold. Given vertices a 6= b let x denote their lowest common ancestor
in the tree Tn. If x ∈ {a, b} then we have

dXn(a, b) = dXn(a, x) + dXn(b, x).

If x 6= a, b, then let a′ denote the offspring of x that lies on the Tn-path joining a and x and
likewise b′ the offspring of x lying on the path joining x and b. Hence we have that

dXn(a, b) = dXn(a, x) + dXn(b, x) +R with R = dXn(a, a′)− dXn(a′, x)− dXn(b′, x).

By property Ec2 and the triangle inequality it follows that |R| = −R ≤ 2n1/4. Thus, regardless
whether x ∈ {a, b}, it holds that

dXn(a, b) = dXn(a, x) + dXn(b, x) +O(n1/4).
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Moreover, if dTn(a, x) ≥ log(n)2, then it follows by property Ec1 that

dXn(a, x) ∈ (1± ε)E[η]dTn(a, x). (7.90)

Otherwise, if dTn(a, x) < log(n)2 then it follows by property Ec2 that dXn(a, x) ≤ n1/4 and thus

|dXn(a, x)− E[η]dTn(a, x)| ≤ Cn1/4 (7.91)

for a fixed constant C that does not depend on n or the points a and x. It follows that

|dXn(a, b)/
√
n− E[η]dTn(a, b)/

√
n| ≤ εD(Tn)/

√
n+ o(1),

with D(Tn) denoting the diameter. Thus

dGH(Xn,E[η]Tn) ≤ εD(Tn)/
√
n+ o(1)

holds with high probability. Since we may choose ε arbitrarily small, and D(Tn)/
√
n converges

in distribution (to a multiple of the diameter of the CRT), it follows that dGH(Xn,E[η]Tn)→ 0
in probability and we are done.

It remains to show that the events Eci hold with high probability. To this end, recall the
construction of the modified Galton–Watson tree T̂ from Section 3.1 that corresponds to the
distribution (πk)k. Given ` ≥ 0 we may consider the truncated version T̂ (`) which has a finite
spine of length `. At the top of the spine the special node becomes normal and reproduces
normally. We call this vertex the outer root, i.e. T̂ (`) is a random pointed plane tree. This
construction was introduced in [5, Ch. 3] and has the property, that for any plane tree T with
a distinguished vertex r that has height ` = hT (r) we have that

P(T̂ (`) = (T, r)) = P(T = T ).

This is due to the fact that the probability, that a special node has offspring of size k and
precisely the ith child is declared special, is given by kπk/k = πk. For any vertices v of T
and u of T̂ (`) we choose random R-structures β(v) ∈ R[dT (v)] and β̂(`)(u) ∈ R[d+

T̂ (`)
(u)], each

with probability proportional to its κ-weight. In particular, (Tn, βn) is distributed like (T , β)
conditioned on having n vertices. For any pointed enriched plane tree ((T, r), γ) we have that

P((T̂ (`), β̂(`)) = ((T, r), γ)) = P((T , β) = (T, γ)).

For each R ∈
⋃
n≥0R[n] let (δiR)i∈N0 be a family of independent copies of δR. Given

an R-enriched plane S = (T, γ) we may form the family (δS(v))v∈T of random metrics by
traversing bijectively the vertices of T in a fixed order, let’s say in depth-first-search order,
and assigning to each vertex v the ”leftmost” unused copy from the list (δ1

γ(v), δ
2
γ(v), . . .). The

metrics can be patched together to a metric dS on the vertex set of the plane tree T just as
described in Section 6.8.

We may assume that all random variables considered so far are defined on the same
probability space and that the metric dXn of Xn coincides with the metric d(Tn,βn). Given
(δiR)R,i let H denote the finite set of R-enriched plane trees of size n such that the event E1
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takes place if and only if (Tn, βn) ∈ H. By the definition of the event E1 for any H = (T, γ) ∈ H
we may fix a vertex vH of H = (T, γ) having the property that there exists an ancestor u with

dT (u, vH) ≥ sn and dH(u, vH) /∈ (1± ε)E[η]dT (u, v).

Let `H denote the height hT (vH). The probability for the critical Galton–Watson tree T to
have size n is Θ(n−3/2) and hence the conditional distribution of the event E1 given (δiR)R,i
equals∑

H∈H

P((Tn, βn) = H | (δiR)R,i) = Θ(n3/2)
∑

(T,γ)∈H

P((T̂ (`H), β̂) = ((T, vH), γ) | (δiR)R,i).

Let v0, . . . , v` denote the spine of T̂ (`), i.e. v` is the outer root, v0 is the inner root, and
(v0, . . . , v`) is the directed path connecting the roots. It follows that the probability for the
event E1 is bounded by

Θ(n3/2)
n∑
`=1

`−sn∑
k=0

P(d(T̂ (`),β̂)(vk, v`) /∈ (1± ε)E[η](`− k)) (∗)

But the d(T̂ (`),β̂)-distance between two spine vertices vi and vj is distributed like the sum
η1 + . . . + η|i−j| of independent copies (ηi)i of η. We know that η has finite exponential
moments and hence, by the deviation inequality in Lemma 5.3, the bound (∗) converges to
zero as n ≡ 1 mod span(w) tends to infinity. Thus the event E1 holds with high probability.
By the same arguments we may bound the probability for the event E2 by

Θ(n3/2)
n∑
`=1

min(sn,`)∑
k=1

P(η1 + . . .+ ηk ≥ tn)

which also converges to zero. This concludes the proof.

Proof of Lemma 6.61. It suffices to show that there are constants C, c,N > 0 such that for
all n ≥ N and h ≥

√
n we have that

P(H(Xn) ≥ h) ≤ C(exp(−ch2/n) + exp(−ch)).

Recall the coupling in Lemma 6.1 of the random graph ARn with a simply generated tree
Tn sharing the same vertex set. The weight sequence w has type Iα by assumption, hence Tn
is distributed like a critical Galton–Watson tree conditioned on having n vertices with the
offspring distribution having finite non-zero variance.

For any vertex v set `(v) =
∑

u d
+
Tn(u) with the sum index u ranging over all ancestors

(not equal to v) of the vertex v in the plane tree Tn. Let s > r > 0 be constants. Given
h ≥
√
n let Eh denote the event that H(Xn) ≥ h. Clearly

Eh ⊂ Eh1 ∪ Eh2 ∪ Eh3

with Eh1 the event that H(Tn) ≥ rh, Eh2 the event that H(Tn) ≤ rh, and there exists a vertex v
with `(v) ≥ sh and Eh3 the event that H(Tn) ≤ rh, `(v) ≤ sh for all vertices v and H(Xn) ≥ h.
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We are going to show that if we choose r and s sufficiently small then each of these events
is sufficiently unlikely. By the tail bound (3.7) for Galton–Watson trees it follows that there
are constants C1, c1 > 0 such that

P(Eh1 ) ≤ C1 exp(−c1h
2/(r2n)).

In order to bound the probability for the event Eh2 suppose that we are given a vertex v
with hTn(v) ≤ rh, and `(v) ≥ sh. Let (Qi)i and (Q′i)i denote the DFS and reverse DFS queues
as defined in Section 3.3.3 and let j and k denote the indices corresponding to the vertex v
in the lexicographic ordering of Tn and its mirror image, respectively. By Equality (3.11) it
follows that

Qj +Q′k = 2 + `(v)− hTn(v) ≥ (s− r)h

and hence Qj ≥ (s− r)/2 or Q′k ≥ (s− r)/2. It follows by Inequality 3.10 that

P(Eh2 ) ≤ C2 exp(−c2h
2/n)

for some constants C2, c2 > 0 that do not depend on n or h.
We assumed that there is a real-valued random variable χ ≥ 0 such that for anyR-structure

R the diameter of the metric δR is bounded by the sum of |R| independent copies χR1 , . . . , χ
R
|R|

of χ. In particular, for any vertex v of Xn the height hXn(v) is bounded by the sum of `(v)
independent copies of χ. It follows that

P(Eh3 ) ≤ nP(χ1 + . . .+ χbshc ≥ h)

with (χi)i∈N a family of independent copies of χ. By the inequality in Lemma 5.3 it follows
that there are constants λ, c > 0 such that

P(Eh3 ) ≤ 2 exp(log(n) + bshc(cλ2 + λE[χ])− λh).

We assumed that h ≥
√
n and n ≥ N , hence we may take s sufficiently small and N sufficiently

large (depending only on λ and c and thus not depending on h or n) such that there are
constants C3, c3 with

P(Eh3 ) ≤ C3 exp(−c3h)

for all h and n ≥ N . Hence

P(Eh) ≤ P(Eh1 ) + P(Eh2 ) + P(Eh3 ) ≤ C4(exp(−c4h
2/n) + exp(−c4h))

for some constants C4, c4 > 0 and we are done.
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conditioned Galton-Watson trees. In Séminaire de Probabilités XLV, volume 2078 of
Lecture Notes in Math., pages 537–558. Springer, Cham, 2013.

[78] Igor Kortchemski. Random stable laminations of the disk. Ann. Probab., 42(2):725–759,
2014.

[79] Igor Kortchemski. Limit theorems for conditioned non-generic Galton-Watson trees.
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