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On families of differential equations on two-torus

with all phase-lock areas

Alexey Glutsyuk ∗†‡Leonid Rybnikov§¶

October 8, 2016

Abstract

We consider two-parametric families of non-autonomous ordinary
differential equations on the two-torus with the coordinates (x, t) of
the type ẋ = v(x) + A + Bf(t). We study its rotation number as
a function of the parameters (A,B). The phase-lock areas are those
level sets of the rotation number function ρ = ρ(A,B) that have non-
empty interiors. V.M.Buchstaber, O.V.Karpov, S.I.Tertychnyi have
studied the case, when v(x) = sinx in their joint paper. They have
observed the quantization effect: for every smooth periodic function
f(t) the family of equations may have phase-lock areas only for integer
rotation numbers. Another proof of this quantization statement was
later obtained in a joint paper by Yu.S.Ilyashenko, D.A.Filimonov,
D.A.Ryzhov. This implies the similar quantization effect for every
v(x) = a sin(mx) + b cos(mx) + c and rotation numbers that are mul-
tiples of 1

m . We show that for every other analytic vector field v(x)
(i.e., having at least two Fourier harmonics with non-zero non-opposite
degrees and nonzero coefficients) there exists an analytic periodic func-
tion f(t) such that the corresponding family of equations has phase-
lock areas for all the rational values of the rotation number.
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1 Introduction

1.1 Main result

We consider families of ordinary differential equations on the torus T2 = R2/
2πZ2 with the coordinates (x, t) of the type

ẋ = v(x) +A+Bf(t); A,B ∈ R are the parameters. (1.1)

Family (1.1) with v(x) = ν sinx, f(t) = cos t arises in several models in
physics, mechanics and geometry. For example, it describes the overdamped
model of the Josephson junction (RSJ - model) in superconductivity (our
main motivation), see [12, 17, 14, 3, 16]; it arises in planimeters, see [7, 8].

The flow map for the period 2π of equation (1.1) is a circle diffeomor-
phism depending on the parameters (A,B). We study its rotation number
ρ = ρ(A,B) as a function of the parameters A and B. (Normalization
convention: the rotation number of a rotation equals the angle of rotation
divided by 2π.) The r-th phase-lock area is the level set

{(A,B) | ρ(A,B) = r} ⊂ R2

provided it has a non-empty interior.
In 2001 J.Guckenheimer and Yu.S.Ilyashenko [9] studied the family

ẋ = ε−1(a− cosx− cos t) (1.2)

as a slow-fast system with small parameter ε > 0. They observed the follow-
ing new effect: there exists a sequence of intervals Cn ⊂ {ε > 0}, Cn → 0 as
n→∞, such that for every ε ∈ Cn equation (1.2) has an attracting canard
limit cycle. They have conjectured that this effect observed in a very special
family (1.2) should be observed in a generic slow-fast system on two-torus.

In the same year 2001 the family of equations (1.1) with v(x) = sinx,
f(t) = sin t similar to (1.2) was studied by V.M.Buchstaber, O.V.Karpov,
S.I.Tertychnyi [4] from a different point of view. They have observed the
following quantization effect of the rotation number. Another proof of this
quantization statement was later obtained in [11, 10].

Theorem 1.1 [4, 11, 10] Let

v(x) = a sinmx+ b cosmx+ c, a, b, c ∈ R, m ∈ Z. (1.3)

Then for every smooth function f : S1 → R the corresponding family of
equations (1.1) may have phase-lock areas only for those values of the rota-
tion number that are integer multiples of 1

m .
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Remark 1.2 This theorem was stated and proved in loc.cit. for m = 1. Its
generalization to arbitrary integer values of m then follows immediately by
passing to the quotient of the circle by the group of rotations by angles 2πk

m ,
k ∈ Z. The quotient projection transforms a field v(x) as in (1.3) into the
corresponding field with m = 1.

Our main result is the theorem below showing that for any other analytic
vector field v the statement of Theorem 1.1 becomes drastically false.

Theorem 1.3 Let v be an analytic vector field on the circle S1 = R/2πZ
different from (1.3). Then there exists an analytic function f : S1 → R such
that the corresponding family of differential equations (1.1) has phase-lock
areas for all the rational values of the rotation number.

Remark 1.4 A vector field on S1 is not of type (1.3), if and only if its
Fourier series has at least two harmonics of nonzero non-opposite degrees
with nonzero coefficients:

v(x) =
∑
k

ake
ikx, ak ∈ C; al, an 6= 0 for some l, n 6= 0, l 6= ±n. (1.4)

Remark 1.5 Each phase-lock area intersects each horizontal lineB = const
by a segment (or a point). This follows from continuity of the rotation
number and its monotonicity in A (see Proposition 1.10 below). If the field
v is analytic, then for every given small ε > 0 the intersections of the phase-
lock areas with the strip |B| < ε also have non-empty interiors and are
usually called the Arnold tongues. The classical Arnold tongue picture for
the Arnold family of circle diffeomorphisms can be found in [1, p. 110]. The
statement of Theorem 1.3 implies that the corresponding family of equations
restricted to the latter strip has Arnold tongues for all the rational values
of the rotation number.

1.2 Plan of the paper and sketch of proof of Theorem 1.3

The definition and basic properties of the rotation number are recalled in
the next subsection. Theorem 1.3 is proved in Section 2.

Everywhere below for a vector field w by gtw we denote its time t flow
map. By (gtw1

)∗w2 we denote the image of the field w2 under the time t flow
map of the field w1.

Let v be a vector field on S1. Denote m = m(v) the greatest common
divisor of the degrees of its Fourier harmonics with non-zero coefficients:

m(v) = G.C.D.{k ∈ Z \ 0; ak 6= 0} ∈ N, see (1.4). (1.5)
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We say that v has coprime harmonics, if m(v) = 1.

Remark 1.6 The group Zm acts on S1 by rotations of order m. For m =
m(v) the quotient projection S1 7→ S1

m = S1/Zm transforms the field v to
that with coprime harmonics: it divides the degrees of its harmonics by m.

Let v be a vector field that is not of type (1.3). Without loss of generality
we consider that v has coprime harmonics: one can achieve this by passing to
the above quotient. Let Λ denote the Lie algebra generated by the constant
vector field d

dx , the commutator v′ = [ ddx , v] and its images under all the
circle rotations.

Theorem 1.3 and its proof are motivated by the following theorem proved
in Subsection 2.2.

Theorem 1.7 For every C∞-smooth vector field v on S1 having coprime
harmonics there is the following alternative:

- either v(x) = a sinx+ b cosx+ c and the Lie algebra Λ coincides with
that of Möbius group PSL2(R) of conformal automorphisms of the unit disk;

- or Λ is C∞- dense in the space χ(S1) of C∞ vector fields on S1.

Thus, in our case, when v is not of type (1.3), Λ is dense in χ(S1).

Remark 1.8 A theorem of Sophus Lie [13] says that every Lie algebra of
smooth germs at 0 of vector fields on R is either at most three-dimensional,
or infinite-dimensional (see a recent proof in [15, p. 132]). Some classes of
infinite-dimensional Lie algebras of germs of vector fields in any dimension
were classified by Elie Cartan, see [6] for references and related results on
filtered Lie algebras. A related result on actions of groups of circle diffeo-
morphisms on tuples of points in terms of the group structure was obtained
in [15, theorem A, p. 125]. Specialists believe that Theorem 1.7 is known,
but we have not found it in literature.

Let Diff∞+ (S1) denote the group of positive (i.e., orientation-preserving)
circle diffeomorphisms. Let G = G(v) ⊂ Diff∞+ (S1) denote the group
generated by flows of the vector fields d

dx and v. It consists of products

g(t1, . . . , tk, τ1, . . . , τk) = gt1d
dx

◦ gτ1v ◦ · · · ◦ g
tk
d
dx

◦ gτkv .

Set
Gs = {g(t1, . . . , τk) ∈ G |

∑
j

τj = 2πs};

G1
+ = {g(t1, . . . , τk) ∈ G1 | τj > 0 for all j}. (1.6)
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Definition 1.9 A circle diffeomorphism φ : S1 → S1 belongs to the class
F(v), if it can be realized as a period 2π flow map of a differential equation
of the type (1.1) with f(t) being a trigonometric polynomial.

Recall that a q-periodic point x0 of a positive circle diffeomorphism f
is hyperbolic, if its multiplier (f q)′(x0) is different from 1; then its periodic
orbit is also called hyperbolic. A positive circle diffeomorphism is hyperbolic,
if it has periodic orbits and all of them are hyperbolic.

For any family of differential equations depending on parameters ana-
lytically, the condition that the corresponding flow map has a given rational
rotation number and at least one hyperbolic periodic orbit is an open condi-
tion on the parameters. Thus, to prove Theorem 1.3, we have to show that
for every ρ ∈ Q there exists at least some class F(v) diffeomorphism with
the rotation number ρ and at least one hyperbolic orbit.

The proof of Theorem 1.3 is done as follows.
Step 1. We show (Proposition 2.1 in Subsection 2.1) that the class F (v)

diffeomorphisms accumulate to all of G1
+.

Step 2. We show that the set G1 ⊃ G1
+ is C∞-dense in Diff∞+ (S1)

(Corollary 2.7). This basically follows from density of the Lie algebra Λ
(Theorem 1.7). In more detail, the density of the algebra Λ implies that
the group F generated by the flows of its generators d

dx and [ ddx , v] is dense
(Theorem 2.5). This implies that the group G0 is dense, since its closure
contains all of F (Proposition 2.6). This immediately implies density of G1.

Step 3. We show (Lemma 2.8 in Subsection 2.3) that for every rational
number p

q the set G1
+ contains a diffeomorphism with rotation number p

q
and at least one hyperbolic periodic orbit (either attractor, or repeller).
We already know (step 2) that G1 is dense and hence, contains hyperbolic
circle diffeomorphisms with all the rotation numbers (since the existence
of a hyperbolic orbit with a given rotation number is an open condition).
We show that each one of them can be analytically deformed in G1 to an
element of the set G1

+ without changing rotation number and keeping one
and the same point periodic. The multiplier of the corresponding periodic
orbit will be an analytic function of the deformation parameters that is not
identically equal to one. Thus, we can achieve that the deformed element in
G1

+ have the given rotation number and a hyperbolic orbit. This will prove
Lemma 2.8. This is the main place where we use the analyticity of the field
v.

Step 4. Constructing families (1.1) with all phase-lock areas. Proposi-
tion 2.1 and Lemma 2.8 together imply that for every p

q ∈ Q there exists a
trigonometric polynomial f(t) for which the corresponding family of equa-
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tions (1.1) has phase-lock area with rotation number p
q . We then deduce

that for every p
q there exists an N = N(pq ) such that for a generic1 trigono-

metric polynomial f(t) of degree at most N the corresponding family of
equations (1.1) has phase-lock area corresponding to the rotation number
value p

q . This together with persistence of phase-lock areas under small per-

turbations shows that for an appropriate analytic function f : S1 → R the
corresponding family (1.1) has phase-lock areas for all the rational values of
the rotation number. This will prove Theorem 1.3.

1.3 Rotation numbers and phase-lock areas

Let T2 = R2/2πZ2 be a torus with coordinates (x, t). Consider the flow
given by the nonautonomous differential equation

ẋ =
dx

dt
= φ(x, t) (1.7)

with smooth right-hand side. The time t flow mapping is a diffeomorphism
ht : S1 → S1 of the space circle. Consider the universal covering

R→ S1 = R/2πZ

over the space circle. The flow mappings of equation (1.7) can be lifted to
the universal covering and induce a smooth family of diffeomorphisms

Hr,t : R× {r} → R× {r + t}, Hr,0 = Id.

Recall that for every (x, r) ∈ R× S1 there exists a limit

ρ = lim
n→+∞

1

2πn
Hr,2πn(x) ∈ R, (1.8)

which depends neither on r, nor on x and is called the rotation number of
the flow of equation (1.7) (e.g., see [1, p. 104]).

Now consider an arbitrary analytic family of equations

ẋ = ψ(x, t, B) +A, (x, t) ∈ T2, A,B ∈ R. (1.9)

Proposition 1.10 [1, pp. 104, 109] The rotation number ρ = ρ(A,B) of
the flow of equation (1.9) is a continuous function of the parameters (A,B)

1Everywhere in the paper by “generic” we mean “topologically generic”: belonging to
an open dense subset.
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and a nondecreasing function of A. If, for some parameter value, the flow
mapping h2π = hA,B,2π : S1×{0} → S1×{0} of equation (1.9) has a periodic
orbit of period q, and the cyclic order of the orbit on the circle is the same
as for an orbit of the rotation x 7→ x + p

q , p ∈ Z, then the rotation number

is equal to p
q (mod Z).

Remark 1.11 The rotation number of an orientation preserving diffeomor-
phism h : S1 → S1, S1 = R/2π is defined analogously. Let us consider its
lifting H : R → R to the universal cover, which is uniquely defined up to
post-composition with translation by an integer multiple of 2π. The limit
ρ = limn→+∞

1
2πnH

n(x) exists. It is independent on x, well-defined modulo
Z and is called the rotation number ρ = ρ(h), see the same chapter in loc.cit.
The rotation number of the time 2π flow mapping of a differential equation
(1.7) coincides modulo Z with the rotation number of the equation.

2 Realization of phase-lock areas: Proof of Theo-
rem 1.3

2.1 Approximations of products of flows of vector fields by
flows of periodic equations

Proposition 2.1 For every smooth vector field v on S1 the corresponding
subset G1

+ ⊂ Diff∞+ (S1) from (1.6) is contained in the C∞-closure of class
F (v) diffeomorphisms. In more detail, consider an arbitrary g ∈ G1

+, let
ρ = ρ(g) denote its rotation number. Then for every α ≡ ρ(modZ), k ∈ N,
ε > 0 there exist a trigonometric polynomial f(t) such that the corresponding
equation (1.1) with A = 0, B = 1 has rotation number α and its time 2π
flow map is ε-close to g in the Ck topology.

Proof Fix a diffeomorphism

g = g(t1, . . . , tk, τ1, . . . , τk) = gt1d
dx

◦ gτ1v ◦ · · · ◦ g
tk
d
dx

◦ gτkv ; τj > 0;
∑
j

τj = 2π.

Let ρ ∈ S1 = R/Z denote its rotation number. Fix an arbitrary α ≡
ρ(mod Z). Let us construct a trigonometric polynomial f(t) such that the
flow of the corresponding equation (1.1) with A = 0, B = 1 approximates
g and has rotation number α. Without loss of generality we assume that
tj 6= 0. For every s ∈ Z, 0 ≤ s ≤ k, set

Ts = 2π −
∑
j≤s

τj ; 2π = T0 > T1 > · · · > Tk = 0.
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Fix a small δ > 0. Let us split the segment [0, 2π] into 4k segments

Is = [Ts, Ts−1 − δ − δ2], Js = [Ts−1 − δ − δ2, Ts−1 − δ];

Rs = [Ts−1 − δ, Ts−1 − δ2], Vs = [Ts−1 − δ2, Ts−1]; s = 1, . . . , k.

Set Ik+1 = I1, Jk+1 = J1, Rk+1 = R1, Vk+1 = V1. Note that the segments
Ij and Rs are all disjoint, have size of order at least δ (for small δ) and
are separated by segments Jp and Vi of size δ2. Let us choose a C∞ 2π-
periodic function φδ : R → R satisfying the following conditions for every
s = 1, . . . , k:

φδ|Is ≡ 0, φδ|Rs ≡
ts
δ
, φδ(Js ∪ Vs) ∈ [0,

ts
δ

]. (2.1)

More precisely, we choose the function φδ on the segments Js and Vs as
follows. Fix a C∞ function ψ : [0, 1]→ [0, 1] such that ψ|[0, 1

3
] ≡ 0, ψ|[ 2

3
,1] ≡ 1.

Set

φδ(t) =
ts
δ
ψ(δ−2(t− Ts−1 + δ + δ2)) for t ∈ Js;

φδ(t) =
ts
δ
ψ(δ−2(Ts−1 − t)) for t ∈ Vs.

Lemma 2.2 The 2π time flow mapping of the differential equation

ẋ = v(x) + φδ(t) (2.2)

tends to the mapping g in C∞, as δ → 0.

Proof The flow map of equation (2.2) through each segment Is coincides
with gτs−δ−δ

2

v , which tends to gτsv , as δ → 0. The flow through a segment
Rs tends to gtsd

dx

. Indeed, let us write down the differential equation in the

rescaled time variable t̂ = δ−1(t − Ts−1 + δ). The rescaling transforms the
segment Rs to [0, 1− δ]. The rescaled equation takes the form

ẋ = δv(x) + ts.

Its flow through the latter segment obviously converges to gtsd
dx

. Let us show

that the flow map of equation (2.2) through each segment Js or Vs tends
to the identity. Let us prove this statement for a segment Vs: the proof
for the segments Js is the same. The time rescaling t̂ = δ−2(t − Ts−1 + δ2)
transforms Vs to the segment [0, 1] and equation (2.2) to

ẋ = δ2v(x) + δtsψ(1− t̂).
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Its time one flow mapping obviously converges to the identity together with
derivatives, as δ → 0. This proves Lemma 2.2. 2

The rotation number of equation (2.2) tends to β ≡ ρ(g)(modZ), as
δ → 0, see Lemma 2.2 and its proof. This implies that replacing t1 in
formula (2.1) by t1 + 2πn + σ with n = α − β ∈ Z and an appropriate
small σ = σ(δ), one can achieve that the rotation number of equation (2.2)
be equal to the given α. The corresponding flow map with thus changed
φδ will again converge to g. Moreover, we can approximate each φδ by a
trigonometric polynomial fδ(t) so that the flow map of the corresponding
equation be close to that of equation (2.2) and the rotation number remains
the same. Finally we get a family of analytic differential equations of type
(1.1) with f(t) being a trigonometric polynomial such that for A = 0, B = 1
its rotation number equals α and its time 2π flow mapping is arbitrarily
C∞-close to g. Proposition 2.1 is proved. 2

2.2 Lie algebra generated by v and d
dx

and group generated
by their flows

Let R ' S1 denote the group of circle rotations.

Theorem 2.3 Let a C∞ vector field v on S1 be not of type (1.3) and have
coprime harmonics: m(v) = 1, see (1.5). Then the Lie algebra Λ generated
by the vector field d

dx , the bracket v′ = [ ddx , v] and all the R-images of the
field v′ is dense in the space χ(S1) of C∞ vector fields on S1.

Remark 2.4 The condition that Λ contains the R-images of the bracket v′

is needed only in the case, when v is non-analytic: if v is analytic, then the
latter images are automatically contained in the C∞-closure of the algebra
Λ.

Proof The algebra Λ is R-invariant, by definition. The idea of the proof
is to study the action of the group R on a closure of the algebra Λ (i.e.,
its adjoint action) and to split it as a sum of irreducible representations.
For every s ∈ N let Λs denote the closure of the algebra Λ in the Sobolev
space Hs(S

1) of vector fields. The group R acts on each Sobolev space
by unitary transformations, hence the Hilbert space Hs(S

1) is naturally
a unitary representation of the group R. This representation is completely
reducible, i.e. it splits into an orthogonal sum of irreducible representations,
as does every unitary representation of the circle. The decomposition of
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Hs(S
1) into the direct sum of irreducibles is Hs(S

1) =
⊕

j∈Z≥0

Hs(S
1)j , where

Hs(S
1)0 = R d

dx is one-dimensional, and Hs(S
1)j = R cos jx d

dx + R sin jx d
dx

for j > 0 are two-dimensional. Note that the irreducible representations
Hs(S

1)j are pairwise non-isomorphic, and hence each R-invariant subspace
in Hs(S

1) is the direct sum of some of the Hs(S
1)j ’s.

Since the Hilbert subspace Λs ⊂ Hs(S
1) is an R-invariant Hilbert sub-

space we have Λs =
⊕
j∈Γ

Hs(S
1)j , where Γ ⊂ Z≥0. Note that

[Hs(S
1)j , Hs(S

1)k] = Hs(S
1)|j−k| +Hs(S

1)j+k

for j 6= k (this is an elementary calculation). Since the subspace Λs ⊂
Hs(S

1) contains a dense subset Λ that is closed with respect to commutator
operation, for any j, k ∈ Γ such that j 6= k we have j+k ∈ Γ and |j−k| ∈ Γ.
Hence for the indexing set Γ ⊂ Z≥0 we have two possibilities: either Γ =
{0,m} or Γ = mZ≥0, where m = G.C.D.(Γ).

Since v is not of type (1.3), Λ is not contained in Hs(S
1)0 + Hs(S

1)m

for any m ∈ Z≥0. Since m(v) = 1, we have m = G.C.D.(Γ) = 1. Therefore,
Γ = Z≥0 and Λs = Hs(S

1) for every s. Thus, the Lie algebra Λ is dense
in the Sobolev space Hs(S

1) for every s. This together with Sobolev’s Em-
bedding Theorem [5, p. 411] implies that Λ is dense in χ(S1). This proves
Theorem 2.3. 2

Theorem 2.5 Let a family V of C∞ vector fields on a compact manifold
generate a Lie algebra that is dense in the Lie algebra of all the C∞ vector
fields. Then the group generated by the flows of the fields from V is dense
in the space of all the C∞ diffeomorphisms isotopic to the identity.

The specialists believe that Theorem 2.5 is known, but we have not found
it in literature explicitly.
Proof Let Λ denote the Lie algebra generated by V. The group generated
by flows of the fields from the family V is obviously dense in the group
generated by flows of the fields from Λ. Hence, it is dense in the group G
generated by flows of all the smooth vector fields. It suffices to show that G
is dense.

The authors’ original proof of density of the group G was to consider an
isotopy of a given diffeomorphism g to the identity and to show directly that
g can be approximated by products of flows. To do this, we split the isotopy
into small pieces of length ε: this expesses g as a composition of N = O(1

ε )
diffeomorphisms hj ε-close to the identity. We approximate each hj by a
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flow; the approximation is of order ε2. The products of approximating flows
converge to g, as ε→ 0.

Here we present another argument suggested by Yu.A.Neretin. The sub-
group G of the group of diffeomorphisms is normal. But the identity com-
ponent of the group of diffeomorphisms is simple (Thurston’s theorem, see
[2, p.24, theorem 2.1.1]. Hence, the group G is dense there. This proves
Theorem 2.5. 2

Let G0 ⊂ G denote the subset defined by (1.6). It is obviously a sub-
group.

Proposition 2.6 The closure in Diff∞+ (S1) of the group G0 contains the
flows of both vector fields d

dx and v′ = [ ddx , v].

Proof The group G0 itself contains the flow of the constant field d
dx , by

definition. For every t ∈ R the composition (g
1
N
d
dx

◦ g
t
N
v ◦ g

− 1
N

d
dx

◦ g−
t
N

v )N
2

belongs to G0 and converges in C∞ to the time t flow map of the Lie bracket
v′ = [ ddx , v], as N →∞ (the classical argument). This implies the statement
of the proposition. 2

Corollary 2.7 Let a smooth vector field v on S1 be not of type (1.3) and
have coprime harmonics: m(v) = 1. Then the sets G0 and G1 are dense in
Diff∞+ (S1).

Proof Recall that by F ⊂ Diff∞+ (S1) we denote the group generated by
the flows of the fields d

dx and [ ddx , v]. The group F is dense in Diff∞+ (S1).
Indeed, it contains the group generated by flows of the fields from the Lie
algebra Λ, by definition and the same classical argument, as in the proof of
Proposition 2.6. This together with Theorems 2.3 and 2.5 implies its density.
The C∞-closure of the groupG0 contains all of F , by Proposition 2.6. Hence,
G0 is dense, as is F . Thus G1 = G0◦g1

v is also dense. The corollary is proved.
2

2.3 Construction of a family with all phase-lock areas

Everywhere below, whenever the contrary is not specified, we consider that
v is an analytic vector field on S1 that is not of type (1.3) and has coprime
collection of harmonics: m(v) 6= 1.
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Lemma 2.8 For every rational number p
q the set G1

+ contains a diffeo-

morphism with rotation number p
q and at least one hyperbolic periodic orbit

(either attractor, or repeller).

Proof Fix a hyperbolic diffeomorphism h : S1 → S1 with the rotation
number p

q . Fix an l > 2 and a diffeomorphism g0 = g(t01, . . . , t
0
k, τ

0
1 , . . . , τ

0
k ) ∈

G1 that is C l-close to h so that g0 is also a hyperbolic diffeomorphism with
the same rotation number p

q . The latter g0 exists by Corollary 2.7. Fix a q-

periodic point x0 ∈ S1 of the diffeomorphism g0. By definition, gq0(x0) = x0,
(gq0)′(x0) 6= 1 (hyperbolicity). Let

T = T (t2, . . . , tk, τ1, . . . , τk)

be the continuous function defined by the equations

g(T, t2, . . . , tk, τ1, . . . , τk)
q(x0) = x0, T (t02, . . . , t

0
k, τ

0
1 , . . . , τ

0
k ) = t01. (2.3)

The function T is analytic, and the corresponding diffeomorphisms
g(T, t2, . . . , tk, τ1, . . . , τk) have one and the same rotation number p

q . This
follows by definition, Proposition 1.10 and implicit function theorem. Re-
call that

∑
j τ

0
j = 2π. The multiplier (gq)′(x0) is an analytic function of the

parameters. It is not identically equal to 1 on the hyperplane
∑

j τj = 2π,
since it is different from one for g = g0 (since g0 is hyperbolic). Therefore,
for a generic collection of parameter values t2, . . . , tk, τ1, . . . , τk in the latter
hyperplane with τj > 0 the above multiplier is different from one. By con-
struction, the corresponding diffeomorphism g from (2.3) belongs to G1

+, has
rotation number p

q and the orbit of the point x0 is q-periodic and hyperbolic.
The lemma is proved. 2

Corollary 2.9 For every rational number p
q there exists an N = N(p, q) ∈

N such that for a generic trigonometric polynomial f(t) of degree at most
N the family of equations (1.1) has a phase-lock area corresponding to the
value p

q of the rotation number.

Proof Given a rational number p
q , let g ∈ G1

+ be the corresponding diffeo-

morphism from Lemma 2.8, which has rotation number p
q and a hyperbolic

q-periodic orbit. For every k ∈ N there exists a trigonometric polynomial
f(t) such that the time 2π flow mapping of the corresponding equation (1.1)
with A = 0, B = 1 is arbitrarily Ck-close to g and the equation has the same
rotation number p

q (Proposition 2.1). In particular, one can achieve that
the flow mapping has a periodic orbit with non-unit multiplier, as does g.

12



This means that the parameters (0, 1) belong to the interior of the level set
ρ = p

q of the rotation number, and hence, family (1.1) has a phase-lock area

corresponding to the value p
q of the rotation number. Let N be the degree of

the trigonometric polynomial f(t). The latter statement implies that for an
open and dense set of trigonometric polynomials f(t) of degree N the corre-
sponding family of equations (1.1) has p

q -th phase-lock area. Indeed, let x0

be a hyperbolic q-periodic point of the time 2π flow mapping corresponding
to the above parameters (A0, B0) = (0, 1). Consider the continuous func-
tion A = A(B,φ) defined on the product of the set of real numbers B and
trigonometric polynomials φ of degree N by the two following conditions:
1) x0 is a q-periodic point of the time 2π flow map of equation (1.1) with f
replaced by φ; 2) A(1, f) = 0. The function A(B,φ) is well-defined and ana-
lytic, by monotonicity and implicit function theorem. The rotation number
of the corresponding equations (1.1) with A = A(B,φ) is constant and equal
to p

q , by construction and continuity. The multiplier µ = µ(B,φ) at x0 of
the time 2πq flow mapping of the corresponding equation is also an analytic
function of (B,φ); µ 6≡ 1, since µ(1, f) 6= 1 by construction. Therefore for an
open and dense set of trigonometric polynomials φ of degree N the function
µ(B,φ) with fixed φ and variable B is not identically equal to one. This
means exactly that the family of equations (1.1) corresponding to f = φ has
p
q -th phase-lock area. This proves Corollary 2.9. 2

Proof of Theorem 1.3. First let us reduce the general case to the case,
when v has coprime collection of harmonics. Let v be an arbitrary analytic
vector field on S1 that is not of type (1.3). In the case, when the collection
of its harmonics is not coprime, i.e., m(v) = m ≥ 2, the field v is invariant
under the action of the group Zm of rotations of order m. The quotient
projection S1 → S1

m = S1/Zm ' S1 transforms v to the quotient vector
field vm, which is analytic, not of type (1.3) and has a coprime collection of
harmonics: passing to the quotient divides the Fourier harmonics by m. In
what follows we show that for an appropriate analytic function f : S1 → R
the family of differential equations

ẋ = vm(x) +A+Bf(t) (2.4)

on S1
m × S1 has phase-lock areas for all the rational values of the rotation

number. A phase-lock area corresponding to a rotation number ρ in the
family of equations (2.4) is a phase-lock area corresponding to the rotation
number ρ

m of the lifted family to S1×S1. This implies that the lifted family
also has phase-lock areas for all the rational values of the rotation number.

13



Thus, from now on without loss of generality we consider that the field
v has a coprime collection of harmonics.

Let us numerate all the rational numbers by natural numbers: p1
q1
, p2q2 , . . .

There exists a trigonometric polynomial f1(t) of some degree N1 for which
the corresponding family of equations (1.1) has a phase-lock area corre-
sponding to ρ = p1

q1
(Corollary 2.9). We can approximate it by a trigono-

metric polynomial f2 of certain degree N2 > N1 such that the corresponding
family (1.1) has p2

q2
-th phase-lock area etc. On each step we choose approx-

imating trigonometric polynomial fj+1 so close to fj that the previously
constructed phase-lock areas persist and the trigonometric polynomials fj
thus constructed converge to an analytic function f . The family (1.1) cor-
responding to the function f has phase-lock areas for all the rational values
of the rotation number, by construction. Theorem 1.3 is proved. 2
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