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On polynomially integrable planar outer billiards

and curves with symmetry property

A.Glutsyuk∗†‡, E.Shustin§¶

July 26, 2016

Abstract

We show that every polynomially integrable planar outer convex
billiard is elliptic.
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1 Introduction, main result and plan of the paper

1.1 Introduction and main result

Let C ⊂ R2 be a smooth closed strictly convex curve. Let S denote the
complement of the ambient plane R2 to the closure of the interior of the
curve C. The (planar) outer billiard is a dynamical system T : S → S
defined as follows. Pick a point A ∈ S. There are two tangent rays to C
issued from the point A. Let R denote the right tangent ray: the other
tangent ray is obtained from R by rotation around the point A of angle
between zero and π. Let P denote the tangency point of the ray R with
the curve C. By definition, the image T (A) is the point of the ray R that is
symmetric to A with respect to the point P .

Definition 1.1 A planar outer billiard is polynomially integrable, if there
exists a polynomial f(x, y) (called a first integral) whose level curves are
invariant under the outer billiard mapping.

For a survey on outer billiards see [9, 10, 11].
The main result of the paper is the following theorem.

Theorem 1.2 Let a planar outer billiard on a C4-smooth strictly convex
closed curve C be polynomially integrable. Then C is an ellipse.

A particular case of Theorem 1.2 under a non-degeneracy assumption
on the polynomial integral was proved by S.L.Tabachnikov [12, theorem 1].
Analogous statement for polynomially integrable Birkhoff billiards under
assumption that the complexification of the curve C is nonsingular was
proved by S.V.Bolotin in [2]. For a survey and recent results on polynomially
integrable Birkhoff billiards see [1] and references therein.

We also prove the following more general theorems. First, instead of
strictly convex closed (hence, bounded) curves we can consider a (non-
closed) unbounded convex connected curve C ⊂ R2. In general the cor-
responding outer billiard mapping is well-defined not on the whole exterior
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domain, but on some smaller domain. The above definition of polynomial
integrability also makes sense in this case.

Example 1.3 If C is a parabola, then the corresponding outer billiard map-
ping is defined in the whole exterior domain. But if C is a branch of a hyper-
bola, then the set of those points A for which there exist two tangent lines
to C through A is the domain bounded by the branch C and its asymptotic
lines at infinity. This is the intersection of the definition domains of the
corresponding outer billiard mapping and its inverse.

Theorem 1.4 Let C ⊂ R2 be a C4-smooth strictly convex curve that is
either closed or unbounded. Let the corresponding outer billiard be polyno-
mially integrable. Then the curve C lies in a conic.

The next theorem deals with non-convex curves C, for which the outer
billiard mapping is just a multivalued correspondence.

Definition 1.5 A Ck-smoothly immersed curve C ⊂ R2 generates a poly-
nomially integrable multivalued outer billiard, if there exists a polynomial
f(x, y) such that for every P ∈ C and every A,B ∈ TPC symmetric with
respect to the point P one has f(A) = f(B). The latter polynomial is called
an integral of the multivalued outer billiard constructed on the curve C.

Theorem 1.6 Let C ⊂ R2 be a C4-smoothly immersed image of either an
interval, or a circle, and let C have no rectilinear arcs. Let C generate a
polynomially integrable multivalued outer billiard. Then the curve C lies in
a conic.

Theorem 1.4 follows from Theorem 1.6. Theorem 1.2 follows from The-
orem 1.4. Thus, it suffices to prove Theorem 1.6.

Remark 1.7 Let a smooth connected curve C ⊂ R2 generate a polynomi-
ally integrable multivalued outer billiard with the integral f(x, y). Then
one has f |C ≡ const, analogously to [12]; in particular, C is contained in an
algebraic curve. Indeed, let P ∈ C be a regular point of quadratic tangency.
Then for every given k and every point A1 ∈ TPC close enough to P (de-
pendently on k) there exists a piecewise linear curve A1 . . . Ak whose edges
AjAj+1 are small and tangent to C at their middle-points. (This is an orbit
of the point A1 under appropriate branch of the outer billiard mapping.)
One has f(A1) = · · · = f(Ak), by definition. As A1 becomes close to P , the
latter orbits with growing lengths k limit to a strictly convex arc containing
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P of the curve C. Passing to limit, one gets f = const along every strictly
convex arc. The constance of the polynomial f along each rectilinear arc of
the curve C follows immediately from definition. This together with density
of the union of the strictly convex part of the curve C and its rectilinear
pieces and connectivity implies that f |C ≡ const.

Remark 1.8 Let a curve C generate a polynomially integrable multivalued
outer billiard with polynomial integral f . Let C have a bitangent: there
exist a line L that is tangent to C at two distinct points P1 and P2. Then
f |L ≡ const. Indeed, the restriction f |L should be constant on each orbit of
the group generated by the symmetries with respect to the points P1 and
P2. The product of the latter symmetries is a nontrivial translation, whose
orbit is infinite. Thus, the polynomial f is constant on an infinite subset of
the line L, and hence, on all of L.

1.2 Complexification and relative symmetry property. Plan
of the proof of Theorem 1.6

Consider the complexification C2 of the real plane and the ambient projective
plane CP2 ⊃ C2. Let C∞ denote the infinity line:

C∞ = CP2 \ C2.

Let a curve C ⊂ R2 generate a polynomially integrable multivalued outer
billiard with the integral f(x, y). Then f |C ≡ const, by Remark 1.7. We
can and will consider that f |C ≡ 0, adding a constant to f . Then for every
point P ∈ C the intersection TPC ∩ {f = 0} is symmetric with respect to
the point P , since the values of the polynomial f at symmetric points of the
tangent line coincide by assumption. This motivates the following definition.

Definition 1.9 A complex algebraic curve γ ⊂ CP2 has a relative symmetry
property, if there exists a bigger algebraic curve Γ ⊃ γ such that for every
t ∈ γ ∩ C2 the intersection Ttγ ∩ Γ is symmetric with respect to the point
t as a subset of the affine complex line Ttγ ∩ C2: it is invariant under the
central symmetry x 7→ −x in affine coordinate x on Ttγ centered at t.

Example 1.10 Let a smoothly immersed curve C ⊂ R2 generate a poly-
nomially integrable multivalued outer billiard with the integral f , f |C ≡ 0.
Let γ ⊂ CP2 denote the minimal complex algebraic curve containing C. Let
Γ ⊃ γ denote the complexification of the algebraic curve {f = 0}. Then
the curve γ has relative symmetry property with respect to the curve Γ, by
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the analogous statement in the real domain given at the beginning of the
subsection.

Remark 1.11 An algebraic curve γ ⊂ CP2 has the relative symmetry prop-
erty with respect to an algebraic curve Γ ⊃ γ, if and only if so does each of
its irreducible components. If in the above example the curve C is analytic
non-singular, then the curve γ is irreducible.

Theorem 1.12 Let a smoothly immersed curve C ⊂ R2 without rectilinear
pieces generate a polynomially integrable multivalued outer billiard. Let γ ⊂
CP2 be the minimal complex algebraic curve containing C. Then the curve
γ has neither singular, nor inflection points in the affine plane C2.

A particular case of Theorem 1.12 was proved by S. Tabachnikov in [12].
M. Bialy and A. E. Mironov have extended his proof to the general case by
using their ideas from [1]. This proof of Theorem 1.12 due to Tabachnikov,
Bialy, and Mironov will be given in Section 1.2.

We will also deal with the local version of the relative symmetry property.

Definition 1.13 Let A ∈ CP2, b ⊂ CP2 be an irreducible germ of an ana-
lytic curve at A, and let b be not a line. The germ b has a (local) relative
symmetry property, if there exists a bigger finite union Γ ⊃ b of irreducible
germs of analytic curves at points of the tangent line TAb ⊂ CP2 such that
for every t ∈ b close enough to A the intersection Ttb ∩ Γ is symmetric with
respect to the point t in the above sense.

Example 1.14 In the conditions of Definition 1.9 each local branch of the
curve γ at every point has the local symmetry property.

Consider an irreducible nonlinear germ b of an analytic curve in CP2 at
a given point A. Let us choose affine coordinates (z, w) centered at A so
that the tangent line TAb be the z-axis. Then one can find a local bijective
parametrization of the germ b by a complex parameter t ∈ (C, 0) of the type

t 7→ (tq, cbt
p(1 + o(1))), q = qb, p = pb ∈ N, q < p, cb 6= 0; (1.1)

q = 1 if and only if b is a smooth germ.

Definition 1.15 The projective Puiseux exponent [4, p. 250, definition 2.9]
of the germ b is the ratio

r = rb =
p

q
.

The germ b is called quadratic, if rb = 2, and is called subquadratic, if rb ≤ 2.
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Theorem 1.16 Let a nonlinear irreducible germ b of an analytic curve in
CP2 at a point A ∈ C∞ be transverse to C∞ and have the local relative
symmetry property. Then it is quadratic.

Theorem 1.16 is proved in Section 2.

Corollary 1.17 Let a nonlinear irreducible germ b of an analytic curve in
CP2 at a point A ∈ C∞ lie in the complexification of a real curve defining a
polynomially integrable (multivalued) outer billiard. Then b is quadratic.

The corollary follows from the statements of Examples 1.10, 1.14 and
Theorem 1.16.

Theorem 1.18 Let an irreducible algebraic curve γ ⊂ CP2 have neither
singular, nor inflection points in an affine chart C2 ⊂ CP2. Let each of
its local branches at every point in γ ∩ C∞ that is transverse to C∞ be
subquadratic. Then γ is a conic.

Theorem 1.18 is proved in Section 3.

Corollary 1.19 Let γ ⊂ CP2 be an irreducible algebraic curve distinct from
a line such that all its singular and inflection points (if any) lie in the infinity
line. Let each local branch β of γ at every point in γ∩C∞ that is transverse
to the infinity line C∞ have the local relative symmetry property with respect
to some collection of germs Γ = Γ(β). Then γ is a conic.

Proof Each local branch β as above is quadratic (Theorem 1.16). Hence,
γ is a conic, by Theorem 1.18. 2

Proof of Theorem 1.6. Each irreducible component of the complexifica-
tion γ of the curve C has relative symmetry property and neither singular,
nor inflection points in C2, by Theorem 1.12. Hence, it is a conic, by Corol-
lary 1.19. Thus, γ is a finite union of conics. This implies that in the case,
when the curve C is analytic nonsingular, the curve γ is irreducible (just
one conic) and hence, C lies in a conic. In the general case the curve C is a
union of arcs of a finite number of conics. Any two adjacent arcs are tangent
with tangency order at least 5, since the curve C is C4-smooth. Therefore,
they lie in the same conic. Indeed, any two conics tangent to each other
with tangency contact of order at least 5 coincide: otherwise, they would
be two distinct conics with intersection index at least 5, which is obviously
impossible. Hence, C lies in just one conic. Theorem 1.6 is proved. 2
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1.3 Singularities and inflection points. Proof of Theorem
1.12

Here we repeat S.Tabachnikov’s arguments from [12] modified by M.Bialy
and A.Mironov using their ideas from [1, section 6].

Let f be a polynomial integral. Let α ⊂ γ be an irreducible component
of the curve γ. Let (x, y) be affine coordinates on C2. Then for every P ∈ α
and every two points A,B ∈ TPα symmetric with respect to the point P
one has f(A) = f(B): this equality holds in the real domain (by definition)
and extends analytically to the complex domain.

Let Ψ be an irreducible polynomial vanishing on α. Then

f = g(x, y)Ψm(x, y), m ∈ N, g|α 6≡ 0.

Set
F (x, y) = f

1
m (x, y) = g

1
m (x, y)Ψ(x, y).

The function F is multivalued algebraic, and any two of its leaves differ
by multiplication by m-th root of unity. Its branching locus is contained
in the curve {g = 0}. For every P , A, B as above one has F (A) = F (B)
for appropriate choice of leaves of the multivalued function F . Namely,
this holds for every P /∈ {g = 0}, any leaf of the function F analytic in a
neighborhood of the point P , and any two points A,B ∈ TPα symmetric
with respect to P and close enough to it.

Consider the (multivalued) vector field v = Fy
∂
∂x−Fx

∂
∂y , which is tangent

to the level curves of the function F and does not vanish identically on α.
The above symmetry is equivalent to the statement that the function

U(x, y, ε) = F (x+ εFy, y − εFx) (1.2)

is even in ε for all P = (x, y) ∈ α. Equivalently, its Taylor series should
contain only even powers of the variable ε. The linear term in ε obviously
vanishes. The first nontrivial condition is vanishing of the cubic coefficient,
which takes the form

W (F ) := FxxxF
3
y − 3FxxyF

2
yFx + 3FxyyFyF

2
x − FyyyF 3

x = 0. (1.3)

We claim that vanishing of the expression W (F ) implies the statements of
Theorem 1.12. To show that, let us consider the function

H(F ) = FxxF
2
y − 2FxyFxFy + FyyF

2
x ,
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which is equal to the coefficient at ε2 in U multiplied by two. One has

dH(F )

dv
= W (F ),

as in [12]. (This can be proved by straightforward calculation.) This to-
gether with (1.3) implies that

H(F )|α ≡ const. (1.4)

Claim. H(F )(P ) → 0, as P ∈ α tends to either a finite singular point
of the curve γ, or a finite inflection point of the curve α.
Proof The expression H(F )(P ) is the second derivative of the function
(1.2) in ε. That is, the second derivative of the function F at P along the
constant vector field on TPα given by the vector v. Let us show that the
function U(x, y, ε) from (1.2) has asymptotics o(ε2), as ε → 0 and P tends
to a point Q ∈ α that is either a finite singular point of the curve γ, or a
finite inflection point of the curve α. This implies that H(F )(P ) → 0, as
P → Q and will prove the claim.

Case 1): Q is a singular point of the curve γ. Then either g(Q) = 0, or
Q is a cusp of the curve α and g(Q) 6= 0. In both cases v(P ) → 0. One
has Ψ(P + εv) = O(ε2v2) = o(ε2), as P → Q along the curve α and ε→ 0,
since v is tangent to the zero level curve α of the polynomial Ψ. Therefore,
U(x, y, ε) = (gΨ)((x, y) + εv) = o(ε2).

Case 2): Q is a finite inflection point of the curve α that is nonsingular
for the curve γ. Then Ψ(P + εv) = o(ε2), as P → Q, and the function F
and the field v are analytic on a neighborhood of the point Q. Therefore,
U(x, y, ε) = o(ε2), as in the above case. The claim is proved. 2

Proof of Theorem 1.12. Suppose, by contradiction, that the affine curve
α∩C2 contains either its inflection point, or a singular point of the curve γ.
Then H(F )|α ≡ 0, by (1.4) and the claim. Therefore, α is a straight line.
Hence, the real curve C contains a rectilinear segment. The contradiction
thus obtained proves Theorem 1.12. 2

2 Quadraticity of germ. Proof of Theorem 1.16

2.1 Plan of the proof of Theorem 1.16

Let us introduce affine coordinates (x, y) on C2 so that the x-axis be tangent
to b at A. The symmetry property implies that for every t ∈ b close enough to
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A the union of x-coordinates of the points of intersection Ttb∩Γ is invariant
under the symmetry C→ C with respect to the point x(t). In Subsection 2.2
we will write explicit formulas for the asymptotics of the x-coordinates of the
intersection points of Ttb with the germs at A of the curve Γ (Corollaries 2.2
and 2.4). For intersections with the germs tangent to b, these formulas were
basically obtained in [4, p.268, Proposition 2.50]. Most of the next briefly
discussed asymptotic results follow from them. Afterwards in Subsection
2.3 we study those points of intersection Ttb ∩ Γ whose x-coordinates are of
order νx(t), where ν is a nonzero multiplicative constant depending on the
family of intersection points. The above-mentioned corollaries imply that
the latter intersection points lie in the intersection of the line Ttb with those
irreducible germs (a,A) ⊂ Γ tangent to b, for which ra ≥ rb = r. The
intersections with those irreducible tangent germs (ai, A) ⊂ Γ that have
the same projective Puiseux exponent rai =

pai
qai

= r have x-coordinates

asymptotically equivalent to θ
qai
ij x(t), where θij are roots of the polynomial

Wi(θ) = (r−1)θpai−rθpai−qai +ci, ci =
cai
cb
6= 0; j = 1, . . . , pai . In at least one

of these polynomials, one has ci = 1: in the polynomial Wi corresponding
to ai = b, i.e., to the intersection Ttb ∩ b.

We prove Theorem 1.16 by contradiction. The contrary assumption r 6=
2 is equivalent to the statement that the qai-th powers of roots of each
individual polynomial Wi are not all equal to one. Those intersection points
with the germs ai that correspond to θ

qai
ij = 2 (and only them) should be

symmetric to those points of intersection Ttb ∩ Γ whose x-coordinates are
o(x(t)). For every family ξ(t) of intersection points of the line Ttb with a
germ (a,A) tangent to b with ra > rb such that x(ξ(t)) = νx(t)(1 + o(1)),
ν 6= 0, one has ν = r

r−1 (Corollary 2.4). Therefore, the latter intersection
points should be symmetric to those points of intersection of the line Ttb
with the germs ai that correspond to θ

qai
ij = 2 − r

r−1 = r−2
r−1 . Let k1 and k2

denote the numbers of those roots θij whose qai-th powers are equal to 2 and
r−2
r−1 respectively. The collection of the powers θ

qai
ij 6= 2, r−2r−1 is symmetric

with respect to 1, by the above statements. Hence, their sum equals their
cardinality. This implies an explicit relation on k1, k2 and the sum of qai-th
powers of all the roots θij through all i and j. We show that the latter
relation is impossible, whenever r 6= 2, by applying an explicit formula for
the sum of powers of roots of each individual polynomial Wi (elementary
algebra). This will prove Theorem 1.16.
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2.2 Asymptotics of intersection points

Proposition 2.1 Let a, b be transverse irreducible germs of holomorphic
curves at the origin in C2. Let (z, w) be coordinates in a neighborhood of
the origin in C2 centered at 0 such that b is tangent to the z-axis at 0.
Let t be the local parameter of the curve b as in (1.1): z(t) = tqb; w(t) =
cbt

pb(1+o(1)). Then for every t small enough the intersection Ttb∩a consists
of qa points ξ1, . . . , ξqa whose coordinates have the following asymptotics, as
t→ 0:

z(ξj) = O(tpb) = o(tqb) = o(z(t)), w(ξj) = (1− rb)w(t)(1 + o(1)). (2.1)

Proof It suffices to prove just the second asymptotic formula in (2.1).
Indeed, one has z(ξj) = O(w(ξj)), by transversality. This together with the
second formula in (2.1) implies the first one: z(ξj) = O(w(t)) = O(tpb).

For every t small enough the tangent line Ttb intersects the z-axis at a
point Pt with the coordinate

z(Pt) = νz(t)(1 + o(1)) = νtqb(1 + o(1)), ν =
rb − 1

rb
, (2.2)

by [4, Proposition 2.10, p. 250]. Let Qt denote the intersection point of the
line Ttb with the w-axis. One has

w(Qt) =
ν

ν − 1
w(t)(1 + o(1)) = (1− rb)w(t)(1 + o(1)). (2.3)

Indeed, the triangle with the vertices Pt, t, (z(t), 0) is “complex-similar”
to the triangle PtQtO (O is the origin), since their sides opposite to the
vertex Pt lie in parallel affine complex lines. That is, in the new affine
coordinates centered at Pt the second triangle is obtained from the first
one by multiplication by the complex number z(Pt)

z(Pt)−z(t) = ν
ν−1(1 + o(1)),

see (2.2). This implies (2.3). Let now a be an arbitrary irreducible germ
of holomorphic curve at the origin that is transverse to b. Every family
of points ζ(t) of the intersection Ttb ∩ a has w-coordinate asymptotically
equivalent to w(Qt), by transversality and since the line Ttb = Qtζ(t) tends
to the z-axis. This together with (2.3) proves the second equality in (2.1).
The proposition is proved. 2

Corollary 2.2 Let A ∈ C∞, and let (b, A) ⊂ CP2 be an irreducible germ of
an analytic curve that is transverse to C∞. Let (a,A) be another irreducible
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germ transverse to b, and let ξ1, . . . , ξqa, ξj = ξj(t) be the points of inter-
section Ttb∩ a. Let (x, y) be affine coordinates in C2 such that the x-axis is
tangent to b at A. Then

x(t) = o(x(ξj(t))) for all j, as t→ A. (2.4)

Proof Take the local coordinates (z, w) = ( 1x ,
y
x) centered at A and apply

the first formula in (2.1). 2

Proposition 2.3 (cf. [4, p. 268, Proposition 2.50]1) Let a, b be irreducible
germs of holomorphic curves at the origin in the plane C2 with coordinates
(z, w) that are tangent to the z-axis. Let ca and cb be the corresponding coef-
ficients in (1.1). Then for every t small enough the intersection Ttb ∩ a con-
sists of pa points ξ1, . . . , ξpa whose z-coordinates have the following asymp-
totics, as t→ 0.

Case 1): ra > rb. One has

z(ξj) =
rb − 1

rb
z(t)(1 + o(1)) =

rb − 1

rb
tqb(1 + o(1)) for 1 ≤ j ≤ qa, (2.5)

z(t) = O((z(ξj))
ra−1
rb−1 ) = o(z(ξj)) for j > qa. (2.6)

Case 2): ra = rb. One has

z(ξj) = ζqaj z(t)(1 + o(1)) = ζqaj t
qb(1 + o(1)), (2.7)

where ζj are the roots of the polynomial

Rpa,qa,c(ζ) = cζpa − rζqa + r − 1; r =
pa
qa

> 1, c =
ca
cb
. (2.8)

(In the case, when b = a, one has c = 1, and the above polynomial has the
double root 1 corresponding to the tangency point t.)

Case 3): ra < rb. One has

z(ξj) = O((z(t))
rb
ra ) = o(z(t)),

Proof All the statements of the proposition were proved in loc. cit. except
for the statement saying that in Case 1) one has exactly qa intersection
points with asymptotics (2.5) and exactly pa − qa intersection points with

1The formulas from loc. cit. provide the inverse expressions, for the coordinate z(t) in
terms of z(ξj(t)). They are equivalent to the formulas given here.
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asymptotics (2.6). Let us prove the latter statement. Thus, we consider
that ra > rb. Let τ denote the value of the local parameter of the curve a
at a point of intersection ξ(t) ∈ Ttb ∩ a. The obvious analytic equality

G(t, τ) = w(t) +
w′(t)

z′(t)
(z(ξ(t))− z(t))− w(ξ(t)) = 0 (2.9)

has asymptotic form

G(t, τ) = tpb(1 + o(1)) + rbt
pb−qb(τ qa − tqb)(1 + o(1))− cτpa(1 + o(1)) = 0,

(2.10)
c = ca

cb
6= 0, as in [4, p. 269, proof of Proposition 2.50]. The Newton

diagram of the germ of analytic function G(t, τ) is generated by the three
monomials: (1− rb)tpb , rbtpb−qbτ qa , −cτpa . It consists of two edges: the first
one with the vertices (pb, 0) and (pb−qb, qa); the second one with the vertices
(pb−qb, qa) and (0, pa). The latter edges lie on distinct lines. The three above
statements on Newton diagram follow from the inequality ra > rb, as in loc.
cit. The germ of analytic curve {G = 0} ⊂ C2

(t,τ) at the origin is a union of
two germs η1 ∪ η2 corresponding to the edges of the Newton diagram, as in
loc. cit. Namely, the monomials (1 − rb)tpb and rbt

pb−qbτ qa generating the
first edge are asymptotically opposite (asymptotically “cancel out”) along
the germ η1, and all the other Taylor monomials of the function G are of
higher order along η1, as in loc. cit. This implies that for every fixed small
t there are exactly qa parameter values τ for which (t, τ) ∈ η1, and they
satisfy asymptotic equality (2.5). Similarly, the monomials rbt

pb−qbτ qa and
−cτpa are asymptotically opposite along the germ η2, and for every fixed
small t there are exactly pa − qa values τ such that (t, τ) ∈ η2, and they
satisfy asymptotic equality (2.6). Proposition 2.3 is proved. 2

Corollary 2.4 Let a, b ⊂ CP2 be irreducible germs of holomorphic curves
at a point A ∈ C∞ that are tangent to each other and transverse to C∞.
Let (x, y) be affine coordinates on C2 with the x-axis being tangent to b at
A. Let ξ1, . . . , ξpa, ξj = ξj(t) be the points of intersection Ttb ∩ a. Their
x-coordinates have the following asymptotics, as t→ A:

Case 1): ra > rb. One has

x(ξj) =
rb

rb − 1
x(t)(1 + o(1)) for 1 ≤ j ≤ qa, (2.11)

x(ξj) = o(x(t)) for j > qa. (2.12)

Case 2): ra = rb. One has

x(ξj) = θqaj x(t)(1 + o(1)), (2.13)
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where θj are the roots of the polynomial2

Qpa,qa,c(θ) = θpaRpa,qa,c(θ
−1) = (r − 1)θpa − rθqa + c; (2.14)

r =
pa
qa

=
pb
qb
> 1, c =

ca
cb
.

Case 3): ra < rb. One has

x(t) = o(x(ξj)).

The corollary follows from Proposition 2.3 by writing its asymptotics in
the local coordinates (z, w) = ( 1x ,

y
x).

2.3 Intersections with the germs having the same projective
Puiseux exponents. Proof of Theorem 1.16

Let A ∈ C∞, and let b be an irreducible germ of analytic curve at A that is
transverse to C∞. Let Γ ⊃ b be an arbitrary finite union of germs of analytic
curves at points of the line TAb including b.

Proposition 2.5 Those points of intersection Ttb ∩ Γ whose x-coordinates
are asymptotically equivalent to x(t) times a nonzero multiplicative constant
lie in the intersection of the line Ttb with those irreducible germs (a,A) ⊂ Γ
tangent to b for which ra ≥ rb. The asymptotics of their x-coordinates are
given by either (2.11) if ra > rb, or (2.13) if ra = rb.

The proposition follows immediately from Corollaries 2.2 and 2.4.
In what follows we assume that the curve b has relative symmetry prop-

erty with respect to the curve Γ. First we prove Theorem 1.16 in the next
simplest special case and then in the general case.

Special case: Γ \ b is a union of germs at A transverse to b. Let us
prove quadraticity of the germ b. To do this, we consider those intersection
points of the tangent line Ttb with Γ, whose x-coordinates have asymptotics
νx(t)(1 + o(1)), ν 6= 0, as t → A. These are exactly the points of the
intersection Ttb∩ b (Proposition 2.5). Their x-coordinates have asymptotics
θqjx(t)(1 + o(1)), where θ1, . . . , θp are the roots of the polynomial W (θ) =

Qp,q,1(θ) = (r−1)θp−rθp−q+1; here p = pb and q = qb are the degrees from
the parametrization (1.1) of the germ b (Corollary 2.4). The intersection

2In the case, when b = a, one has c = 1, and the polynomial Qpa,qa,1 has double
root 1 corresponding to the tangency point t. It has roots θ with θqa 6= 1, if and only if
r = pa

qa
6= 2.
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points of the line Ttb with the other, transverse germs of the curve Γ have
x-coordinates with bigger asymptotics, by Corollary 2.2. This together with
the relative symmetry property implies that the collection of x-coordinates
of the points of intersection Ttb ∩ b is invariant under the symmetry with
respect to the point x(t). This implies that the collection of powers θqj is
invariant under the symmetry with respect to 1. Therefore,

p∑
j=1

θqj = p, (2.15)

by symmetry. On the other hand,

p∑
j=1

θqj =
p

r − 1
. (2.16)

Indeed, the latter sum is independent of the free term of the polynomial W ,
being expressed via elementary symmetric polynomials of degrees at most
q < p, which are independent of the free term. Therefore, it equals the sum
of the q-th powers of nonzero roots of the polynomial (r− 1)θp− rθp−q. All
the latter q-th powers are equal to r

r−1 , hence their sum equals qr
r−1 = p

r−1 .
This proves (2.16). Formulas (2.15) and (2.16) together imply that p = p

r−1 .
Hence, r = 2. Theorem 1.16 is proved.

General case. Let a1, . . . , al ⊂ Γ be the irreducible germs at A that are
tangent to b and have the same projective Puiseux exponent: rai = rb = r.
Let qai , pai , cai be the corresponding degrees and coefficients from their
parametrizations (1.1) in the local chart (z, w) = ( 1x ,

y
x). Let

ci =
cai
cb
, Wi = Qpai ,qai ,ci(θ)

be the corresponding constants and polynomials from (2.14). Let θij , i =
1, . . . , l, j = 1, . . . , pai denote the roots of the polynomials Wi.

Let k1 denote the number of those points ξ(t) of intersection Ttb∩Γ, for
which x(ξ(t)) = o(x(t)), as t → A. Let k2 denote the number of points of
intersection of the line Ttb with the union of those irreducible germs at A in
Γ that are tangent to b and have projective Puiseux exponent bigger than
r = rb.

Proposition 2.6 Let r = rb 6= 2. The collection of powers θ
qai
ij of the above

roots contains exactly k1 powers equal to 2 and exactly k2 powers equal to
r−2
r−1 . The collection M of the other powers θ

qai
ij 6= 2, r−2r−1 is invariant under

the symmetry of the line C with respect to 1.
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Proof The points of intersection Ttb ∩ Γ whose x-coordinates are o(x(t))
should be symmetric with respect to t to other intersection points with x-
coordinates asymptotically equivalent to 2x(t) and vice versa. The latter
should be points of intersection with the germs ai. This follows from Propo-
sition 2.5 and the fact that they cannot be points of intersection with germs
a having ra > r. The latter statement follows from (2.11) and the inequality
r
r−1 6= 2, which follows from the assumption that r 6= 2. This together with

Corollary 2.4 and Proposition 2.5 implies that exactly k1 powers θ
qai
ij are

equal to 2. Similarly, the points of intersection of the line Ttb with germs
(a,A) tangent to b and having ra > r have x-coordinates asymptotic to
r
r−1x(t), by (2.11). Vice versa, the points of intersection Ttb ∩ Γ with the
latter asymptotics are the intersection points of the line Ttb with the germs
(a,A), ra > r, tangent to b. This follows from Corollary 2.4, Proposition
2.5 and the fact that they cannot be points of intersection with the germs

ai: no number s = ( r
r−1)

1
qai can be a root of a polynomial Wi with ci 6= 0.

Indeed,

Wi(s) = (r − 1)spai − rspai
(

r

r − 1

)−1
+ ci = ci 6= 0.

The above intersection points with the germs (a,A), ra > r should be sym-
metric to points of intersection Ttb ∩ Γ with x-coordinates asymptotically
equivalent to (2 − r

r−1)x(t) = r−2
r−1x(t). The latter points of intersection lie

in the union of the germs ai, by Proposition 2.5 and due to r−2
r−1 6=

r
r−1 .

Therefore, exactly k2 powers θ
qai
ij are equal to r−2

r−1 . The collection M of the

powers θ
qai
ij 6= 2, r−2r−1 is symmetric with respect to 1, by relative symmetry

property and the above arguments. The proposition is proved. 2

Set

Π =
∑
i

pai = the cardinality of the collection of all the roots θij .

Corollary 2.7 Let r = rb 6= 2. Then

(r − 2)Π = k2 − k1(r − 1). (2.17)

Proof The invariance of the collection M under the symmetry with respect
to 1 implies that the sum of its elements equals the cardinality card(M) =
Π− k1 − k2. On the other hand,

Π− k1 − k2 =
∑
x∈M

x =
∑
i,j

θ
qai
ij − 2k1 −

r − 2

r − 1
k2, (2.18)
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by definition. Let us calculate the latter right-hand side. One has∑
ij

θ
qai
ij =

∑
i

pai
r − 1

=
Π

r − 1
, (2.19)

as in (2.16). Substituting (2.19) to (2.18) yields

Π

r − 1
− 2k1 −

r − 2

r − 1
k2 = Π− k1 − k2,

which is equivalent to (2.17). 2

Proof of Theorem 1.16. Suppose the contrary: the germ b is not
quadratic, i.e., r = rb 6= 2. Let us write r = p

q with p and q being co-
prime. Then

pai = sip, qai = siq, si = gcd(pai , qai). (2.20)

Case 1): Suppose that r > 2. Hence, r − 2 ≥ 1
q . One has

k2 ≥ (r − 2)Π ≥ 1

q
Π >

1

p
Π,

by (2.17). This implies that there exists a polynomial Wi for which more
than 1

p -th part of its roots have qai-th powers equal to r−2
r−1 . Thus, the

number of the latter roots is no less than si + 1 =
pai
p + 1. We will show

that the above Wi cannot exist. Let it exist, and let us fix it. None of its
roots θij with θ

qai
ij = r−2

r−1 can be a multiple root. Indeed, the derivative of
the polynomial Wi(θ) equals

θpai−qai−1(pai(r − 1)θqai − r(pai − qai)) = pai(r − 1)θpai−qai−1(θqai − 1),

since r(pai − qai) = rqai(r− 1) = pai(r− 1). Therefore, the qai-th powers of
the roots of the derivative are equal to 0, 1 6= r−2

r−1 . Hence, the si + 1 roots

θ = θij of the polynomial Wi with θ
qai
ij = r−2

r−1 are distinct and satisfy the
equality

θpai−qai ((r − 1)θqai − r) + ci = θpai−qai ((r − 2− r) + ci

= −2θpai−qai + ci = 0. (2.21)

Therefore, equation (2.21) has at least si+1 distinct solutions obtained from
each other by multiplication with qai-th roots of unity. Their pai-th powers
are equal, by (2.21). Therefore, the ratio of any two distinct solutions is
simultaneously a qai-th and pai-th root of unity, and hence, an si-th root
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of unity, since pai = sip, qai = siq and p, q are coprime. This implies that
equation (2.21) may have at most si distinct solutions with equal qai-th
powers. The contradiction thus obtained proves Theorem 1.16.

Case 2): Suppose that 1 < r < 2. One has

k1 ≥ Π
2− r
r − 1

= Π
2q − p
p− q

≥ 1

p− q
Π >

1

p
Π,

by (2.17). This implies that the there exists a polynomial Wi that has at
least si+ 1 roots whose qai-th powers are equal to 2, as in the previous case.
We then get a contradiction, as in the above discussion. Theorem 1.16 is
proved. 2

3 Invariants of singularities, Plücker formulas, and
the proof of Theorem 1.18

The proof essentially uses general Plücker and genus formulas for plane
algebraic curves. The main observation is that the upper bound 2 to the
projective Puiseux exponents of all local branches of the curve and Plücker
formulas yield that the singularity invariants of the considered curve must
obey a relatively high lower bound. On the other hand, the contribution
of the points in the infinite line C∞ appears to be not sufficient to fit that
lower bound unless the curve is a conic.

3.1 Invariants of plane curve singularities

For the reader’s convenience, we recall here main definitions and formulas.
Almost all this stuff is classically known (see [3, Chapter III], [7, §10], and
the modern exposition in [5, Section I.3]).

Let (x0 : x1 : x2) be homogeneous coordinates on CP2. Let γ ⊂ CP2 be
a reduced, irreducible curve of degree d > 1, i.e., given by a homogeneous
square-free, irreducible polynomial F (x0, x1, x2) of degree d > 1. For any
point A ∈ γ, denote by (γ,A) the germ of γ at A, or, more precisely, an
intersection γ∩V , where V ⊂ CP2 is a sufficiently small closed ball centered
at A. Topologically, (γ,A) is a bouquet of discs bi, 1 ≤ i ≤ r, called local
branches of γ at A. In an affine plane in CP2 containing A and having
affine coordinates (x, y) such that A = (0, 0) and the x-axis is tangent to
the branch bi, the branch bi admits a Puiseux parametrization (1.1).

(1) Multiplicity and dual multiplicity of a local branch. Given a local
branch bi of the curve γ at A ∈ γ and its Puiseux parametrization (1.1), the
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number s(bi) = q is called the multiplicity, and the number s∗(bi) = p − q
the dual multiplicity of the branch bi. Note that s(bi) is the intersection
multiplicity of the branch bi with a transversal line, while s∗(bi) + s(bi) is
the intersection multiplicity with the tangent line TAbi. Observe also that
the subquadraticity condition for bi is equivalent to the relation

s∗(bi) ≤ s(bi) . (3.1)

(2) δ-invariant. Let f(x, y) = 0 be an equation of the germ (γ,A) (just
F = 0 rewritten in the coordinates x, y). Then γε := {f(x, y) = ε} ∩ V , for
0 < |ε| � 1, is a smooth surface with r holes (Milnor fiber). The δ-invariant
of the germ (γ,A) admits several equivalent definitions and topologically can
be defined as the genus of the closed surface obtained by attaching a sphere
with r holes to the surface γε. The genus formula, originally discovered by
Hironaka [6], reads

(d− 1)(d− 2)

2
= g(γ) +

∑
A∈Sing(γ)

δ(γ,A) ,

where g(γ) is the geometric genus of γ, i.e., the genus of the Riemann surface
obtained by the resolution of singularities of γ. In particular, we have∑

A∈Sing(γ)

δ(γ,A) ≤ (d− 1)(d− 2)

2
. (3.2)

(3) Class of the singular point (κ-invariant). Given a germ (γ,A) and
local affine coordinates (x, y) as above, suppose that the y-axis is not tangent
to any of the local branches bi, 1 ≤ i ≤ r. Denote by γ′ the polar curve of γ
defined by the equation ∂f

∂y = 0. The class of the germ (γ,A) is defined by

κ(γ,A) = (γ · γ′)A ,

the intersection multiplicity of γ and γ′ at A. It is well-known that

κ(γ,A) = 2δ(γ,A) +
r∑
i=1

(s(bi)− 1) . (3.3)

(4) Hessian of the singular (or inflection) point. The Hessian Hγ of the

curve γ is the curve given by the equation det
(

∂2F
∂xi∂xj

)
0≤i,j≤2

= 0. The

Hessian of the germ (γ,A) is

h(γ,A) = (γ ·Hγ)A ,
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the intersection multiplicity of γ and Hγ at A. It vanishes in all smooth
points of γ, where γ quadratically intersects its tangent line. An expression
for h(γ,A) via the preceding invariants was found in [8, Formula (2)]. It can
be written as

h(γ,A) = 3κ(γ,A) +

r∑
i=1

(s∗(bi)− s(bi)) . (3.4)

In view of degHγ = 3(d− 2), Bézout’s theorem yields (a Plücker formula)

3d(d− 2) =
∑
A∈γ

h(γ,A) . (3.5)

3.2 Proof of Theorem 1.18

Let γ ⊂ CP2 be a curve of degree d ≥ 2, satisfying the hypotheses of
Theorem 1.18. We will show that d = 2.

Observe that δ(γ,A) = κ(γ,A) = h(γ,A) = 0 for all points A ∈ γ \ C∞.
Denote by Btr, resp. Btan the set of the local branches of γ centered on C∞
and transversal, resp. tangent to C∞. Relation (3.1) holds for all the local
branches b ∈ Btr. Thus, from (3.4) and (3.5), we get

3d(d− 2) ≤ 3
∑

A∈γ∩C∞

κ(γ,A) +
∑
b∈Btan

(s∗(b)− s(b)) . (3.6)

Together with (3.2) and (3.3) this yields

3d(d− 2) ≤ 6
∑

A∈γ∩C∞

δ(γ,A) + 3
∑

b∈Btr∪Btan

(s(b)− 1) +
∑
b∈Btan

(s∗(b)− s(b))

≤ 3(d− 1)(d− 2) + 3
∑

b∈Btr∪Btan

(s(b)− 1) +
∑
b∈Btan

(s∗(b)− s(b))

= 3(d− 1)(d− 2) +
∑

b∈Btr∪Btan

(s(b)− 1) +
∑
b∈Btr

s(b)

+
∑
b∈Btr

(s(b)− 2) +
∑
b∈Btan

(s∗(b) + s(b)− 2) . (3.7)
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Developing d = (γ ·C∞) into contributions of local branches b ∈ Btr ∪ Btan,
we obtain

∑
b∈Btr∪Btan(s(b)− 1) = d− |Btr ∪ Btan| −

∑
b∈Btan s

∗(b)

≤ d− |Btr| − 2|Btan|,∑
b∈Btr s(b) = d−

∑
b∈Btan(s∗(b) + s(b)) ≤ d− 2|Btan|,∑

b∈Btr(s(b)− 2) +
∑

b∈Btan(s∗(b) + s(b)− 2)

= d− 2|Btr ∪ Btan|,

(3.8)

and hence the sequence of relations (3.7) reduces to

2 ≥ |Btr|+ 2|Btan| . (3.9)

If Btan = ∅ and all the branches b ∈ Btr are centered at one point, then∑
b∈Btr s(b) = d, and the intersection multiplicity of γ with the tangent to

one of the branches b ∈ Btr appears to be greater than d. This implies that
the latter tangent line is contained in γ. Thus, γ splits off a line, contrary
to the irreducibility assumption.

If Btan = ∅, |Btr| = 2, and the two branches b1, b2 ∈ Btr have distinct
centers, we have an equality in (3.9); hence, equalities in all the above rela-
tions, in particular, in (3.6). Thus, in view of (3.4), (3.5) and the inequality
s∗(bi) ≤ s(bi) (subquadraticity), it means s∗(bi) = s(bi), i = 1, 2. Intersect-
ing C with the tangent lines to b1 and b2, we obtain s(bi) ≤ d

2 , i = 1, 2,
while the intersection with C∞ yields s(b1) + s(b2) = d. It follows that
s(b1) = s(b2) = d

2 . Choosing affine coordinates in CP2 \ C∞ so that the
coordinate axes are tangent to b1 and b2 (at infinity) respectively, we obtain
that the Newton polygon of the defining polynomial of γ is just the segment
[(0, 0), (d/2, d/2)]. Indeed, in local affine coordinates z1, w1 in a neighbor-
hood of the center A of the branch b1 such that the tangent line TAb1 is the
z1-axis and C∞ is the w1-axis, we have b1 given by

z1 = td/2, w1 = c1t
d(1 + o(1)), t ∈ (C, 0)

which means that the Newton diagram of γ in these coordinates is the
segment [(d, 0), (0, d/2)], i.e., the coefficients of all the monomials zi1w

j
1 with

(i, j) below this segment vanish. In the coordinates x = 1
z1

, y = w1
z1

, this

yields that the coefficients of all monomials xiyj with j < i vanish. The
same consideration with the affine coordinates z2, w2 in a neighborhood of
the center B of the branch b2 such that TBb2 is the z2 -axis and C∞ is the w2-
axis leads to the conclusion that the coefficients of all monomials xiyj with
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j > i vanish. This finally leaves the only Newton segment [(0, 0), (d/2, d/2)].
Note that a polynomial with such a Newton segment factors into the product
of d

2 binomials of type xy − λ. Thus, d = 2 due to the irreducibility of γ.
If |Btan| = 1 and |Btr| = 0, then we have an equality in (3.9); hence, all

the above inequalities turn to be equalities, in particular, the second relation
in (3.8), that is, s∗(b) + s(b) = 2 for the unique branch of γ centered on C∞,
which finally means that d = 2.
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