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Abstract

We study a family of double confluent Heun equations of the form
LE = 0, where L = Lλ,µ,n is a family of differential operators of order
two acting on germs of holomorphic functions in one complex vari-
able. They depend on complex parameters λ, µ, n. Its restriction to
real parameters satisfying the inequality λ+µ2 > 0 is a linearization of
the family of nonlinear equations on two-torus modeling the Josephson
effect in superconductivity. We show that for every b, n ∈ C satisfy-
ing a certain “non-resonance condition” and every parameter values
λ, µ ∈ C, µ 6= 0 there exists an entire function f± : C → C (unique
up to constant factor) such that z−bL(zbf±(z±1)) = d0± + d1±z for
some d0±, d1± ∈ C. The constants dj,± are expressed as functions of
the parameters. This result has several applications. First of all, it
gives the description of those values λ, µ, n, b for which the mon-
odromy operator of the corresponding Heun equation has eigenvalue
e2πib. It also gives the description of those values λ, µ, n for which
the monodromy is parabolic: has multiple eigenvalue. We consider the
rotation number ρ of the dynamical system on two-torus as a function
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of parameters restricted to a surface λ + µ2 = const. The phase-lock
areas are its level sets having non-empty interiors. For general families
of dynamical systems the problem to describe the boundaries of the
phase-lock areas is known to be very complicated. In the present paper
we include the results in this direction that were obtained by methods
of complex variables. In our case the phase-lock areas exist only for
integer rotation numbers (quantization effect), and the complement to
them is an open set. On their complement the rotation number func-
tion is an analytic submersion that induces its fibration by analytic
curves. The above-mentioned result on parabolic monodromy implies
the explicit description of the union of boundaries of the phase-lock ar-
eas as solutions of an explicit transcendental functional equation. For
every θ /∈ Z we get a description of the set {ρ ≡ ±θ(mod2Z)}.
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1 Introduction: statement of results, sketch of proof
and plan of the paper

We study the problem to find those solutions of non-homogeneous double-
confluent Heun equations that are monodromy eigenfunctions. Our study
is motivated by applications to nonlinear equations modeling the Josephson
effect in superconductivity. The main results, the existence and unique-
ness of the above solutions (Theorems 1.1 and 1.3) are stated in Subsection
1.1. Applications to monodromy eigenfunctions and eigenvalues of homoge-
neous double confluent Heun equations and to nonlinear equations modeling
Josephson effect are presented in Subsections 1.1 and 1.3, Sections 4 and 5.

Each eigenfunction is the product of a monomial zb and a function f(z)
holomorphic on C∗. The Heun equation is equivalent to recurrence relations
on the Laurent coefficients of the function f . The proofs of the above-
mentioned results are based on studying the latter recurrence relations.
We prove existence and uniqueness Theorem 1.8 for converging solutions
of a more general class of recurrence relations (stated in Subsection 1.2 and
proved in Section 2). Its proof is based on ideas from hyperbolic dynamics
and a fixed point argument for appropriate contracting mapping.
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1.1 Main result: existence and uniqueness of monodromy
eigenfunctions of non-homogeneous double confluent Heun
equations

We consider the family of double confluent Heun equations

LE = z2E′′+(nz+µ(1−z2))E′+(λ−µnz)E = 0; n, λ, µ ∈ C, µ 6= 0. (1.1)

They are well-known linear differential equations, see [27, formula (3.1.15)]
that have singular points only at zero and infinity, both of them are irregular.
Our goal is to study existence of the eigenfunctions of their monodromy
operators (see [2, chapter 7, subsection 3.2] and the definition in Subsection
4.1) with a given eigenvalue e2πib, b ∈ C: the latter functions are solutions
of equation (1.1) having the form

E(z) = zbf(z), f(z) is holomorphic on C∗. (1.2)

The converging Laurent series of the function f(z) is split into two parts,
f(z) = f+(z) + f−(z−1), where f± are holomorphic functions on C and
f+(0) = 0. These functions satisfy non-homogeneous equations of the type

z−bL(zbf±(z±1)) = d0± + d1±z (1.3)

One of our main results is the following.

Theorem 1.1 For every (n, λ, µ, b) ∈ U ,

U = {(n, λ, µ, b) ∈ C4 | µ 6= 0, b, b+ n /∈ Z}, (1.4)

there exist holomorphic functions f±(z) on a neighborhood of zero, f+(0) =
0 such that the functions f±(z±1) satisfy equations (1.3) for appropriate
d0±(n, λ, µ, b), d1±(n, λ, µ, b). The functions f± are unique up to constant
factors (depending on the parameters), and they are entire functions: holo-
morphic on C. For every sign index ± the corresponding vector (d0±, d1±)
is uniquely defined up to scalar factor depending on parameters. The above
constant factors can be chosen so that both f± and dj± depend holomorphi-
cally on (n, λ, µ, b) ∈ U and f±(z) are real-valued in z ∈ R for real parameter
values.

Corollary 1.2 Let (n, λ, µ, b) ∈ U . The corresponding equation (1.1) has
a monodromy eigenfunction with eigenvalue e2πib, b ∈ C, if and only if the
corresponding vectors d± = (d0±, d1±) are proportional:

d0+d1− − d0−d1+ = 0. (1.5)
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Theorem 1.1 will be proved in the next subsection and Section 2. Corol-
lary 1.2 will be proved in the next subsection. The explicit formulas for
the functions f± and dj± will be given in Section 3. Equivalent versions of
equation (1.5) as explicit functional equations in parameters obtained in a
more direct way will be presented in Section 4.

Theorem 1.3 For every n ∈ C \ Z≤0 and (λ, µ) ∈ C2, µ 6= 0 there ex-
ists a unique function E(z) 6≡ 0 (up to constant factor) holomorphic on a
neighborhood of zero such that LE = c, where c is independent on z. The
function E is entire and can be normalized so that c = ξn−1(λ, µ) depends
holomorphically on (n, λ, µ) and E also depends holomorphically on (n, λ, µ).

Theorem 1.3 will be proved in the next subsection.

Remark 1.4 Theorem 1.3 is closely related to the question of the exis-
tence of a solution holomorphic at 0 of equation (1.1) (such a solution is
automatically entire, i.e., holomorphic on C). This question was studied
by V.M.Buchstaber and S.I.Tertychnyi in [10]. The existence of a solution
E from Theorem 1.3 and explicit expressions for E and the corresponding
function ξn−1(λ, µ) (analytic in (λ, µ) ∈ C2) were given in [10, pp. 337–338].
(This was done for n ∈ N, but these results remain valid for all n ∈ C\Z≤0.)
The existence result implies that if ξn−1(λ, µ) = 0, then the homogeneous
equation (1.1), i.e., LE = 0 has a solution holomorphic on C. A conjec-
ture stated by V.M.Buchstaber and S.I.Tertychnyi in loc. cit. (under the
additional assumption that n ∈ N, which, in fact, can be omitted) said
that the converse is true: if equation (1.1) has a holomorphic solution at
0, then ξn−1(λ, µ) = 0. This conjecture was studied for n ∈ N in loc. cit.
and [11], where it was reduced to a series of conjectures on polynomial so-
lutions of auxiliary Heun equations and non-vanishing of determinants of
modified Bessel functions of the first kind. All these conjectures were solved
in [13]. As the next corollary shows, Theorem 1.3 implies the conjecture of
Buchstaber and Tertychnyi immediately for all n ∈ C \ Z≤0.

Remark 1.5 The method used in [10, 11, 13] was to consider a “conju-
gated” family of Heun equations, for which equations having polynomial
solutions were described by an explicit algebraic equation on parameters in
[9]. The proof of the above-mentioned Buchstaber–Tertychnyi conjecture
was obtained in [13] from a solution of their problem about polynomial so-
lutions. The method of the present paper allows to prove the conjecture di-
rectly, without using the conjugated family and polynomial solutions. A pos-
sibility to prove the conjecture without using the condition of non-vanishing
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of the determinants of modified Bessel functions was mentioned in [10] at
the place, where the conjecture was stated. We realize this possibility in
the present paper. As is explained in [13], positivity of Bessel determinants
proved there is a result interesting itself.

Corollary 1.6 (cf. [13, theorem 3.5]) For every n ∈ C \ Z≤0 and µ 6= 0
equation (1.1) has an entire solution, if and only if ξn−1(λ, µ) = 0, where
ξn−1(λ, µ) is the function from Theorem 1.3 introduced in [10, formula (31),
p. 337], see also formula (4.9) in Subsection 4.3 below.

Proof Let ξn−1(λ, µ) = 0. Then the function E from Theorem 1.3 is an
entire solution of equation (1.1): LE = 0. Conversely, let equation (1.1)
have a solution E holomorphic at 0. If ξn−1(λ, µ) 6= 0, then there exists a
holomorphic function Ê on a neighborhood of zero satisfying the equation
LÊ = ξn−1(λ, µ) 6= 0, by Theorem 1.3. This together with the uniqueness
statement of Theorem 1.3 implies that Ê = E up to constant factor, hence
LÊ = 0. The contradiction thus obtained proves the corollary. 2

1.2 Solutions of three-term recurrence relations

Let us look for formal solutions of equation (1.1) of type (1.2). Equation
(1.1) is equivalent to the recurrence relations

((k+b)(k+b+n−1)+λ)ak−µ(k+b+n−1)ak−1+µ(k+b+1)ak+1 = 0, (1.6)

which can be written in the matrix form(
ak
ak+1

)
= Ak

(
ak−1
ak

)
,

Ak =
k + b+ n− 1

k + b+ 1

(
0 k+b+1

k+b+n−1
1 −λ+(k+b)(k+b+n−1)

µ(k+b+n−1)

)
. (1.7)

Remark 1.7 A function f+(z) =
∑

k≥1 akz
k satisfies equation (1.3) for

some dj+, if and only if its Taylor coefficients ak satisfy (1.6), or equivalently,
(1.7) for k ≥ 2. Similarly, a function f−(z−1) =

∑
k≤0 akz

k satisfies (1.3), if
and only if its coefficients satisfy (1.6) for k ≤ −1.

Proof of Corollary 1.2. Let E(z) = zb
∑

k∈Z akz
k be a solution of equa-

tion (1.1) having type (1.2). Then

E(z) = zb(f+(z) + f−(z−1)), f+(z) =
∑
k≥1

akz
k, f−(z) =

∑
k≥0

a−kz
k. (1.8)
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The coefficients ak satisfy (1.6) for all k. This together with the above re-
mark implies that the functions f±(z±1) satisfy (1.3). The corresponding
expressions d± = d0± + d1±z should cancel out, since E is a solution of
the homogeneous equation. This implies (1.5). Conversely, let f±(z±1) be
solutions of (1.3), and let (1.5) hold: that is, the vectors d+ and d− are
proportional. Then we can normalize the latter vectors, and hence, the
corresponding solutions by constant factors (not both vanishing simultane-
ously) so that d+ +d− = 0. Then the function E given by (1.8) is a solution
of equation (1.1). 2

As it is shown below, Theorem 1.1 is implied by the following general
theorem

Theorem 1.8 Consider recurrence relations

fkak−1 + gkak + hkak+1 = 0 (1.9)

in sequence ak, k ∈ Z≥0, where sequences gk, fk, hk ∈ C satisfy the following
conditions:

fk, hk 6= 0, for every k, (1.10)

fk, hk = o(gk), as k →∞. (1.11)

Then there exists a unique series
∑+∞

k=0 akz
k 6≡ 0 (up to constant factor)

with ak satisfying (1.9) for k ≥ 1 and having non-zero convergence radius.
Moreover, this series converges on all of C.

Addendum to Theorem 1.8. Let in the conditions of Theorem 1.8 the
coefficients fk, gk, hk depend holomorphically on parameters that represent a
point of a finite-dimensional complex manifold. Let asymptotics (1.11) hold
uniformly on compact subsets in the parameter manifold. Then the function∑+∞

k=0 akz
k can be normalized to depend meromorphically on the parameters.

In the case, when the parameter manifold is Stein and contractible1, this
function can be normalized to be holomorphic in the parameters.

Theorem 1.8 and its addendum will be proved in the next section.

1The condition of contractibility may be weakened to the condition of vanishing of the
second cohomology group with integer coefficients. The latter condition implies in par-
ticular that the quotient of the fundamental group by its commutant has trivial torsion.
Vanishing of the second cohomology together with Stein property is needed to guarantee
that each analytic hypersurface in the parameter manifold is the zero locus of a holomor-
phic function [14, chapter VII, section B, proposition 13].
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Remark 1.9 In the series
∑

k akz
k from Theorem 1.8 for every k ≥ 0 the

two neighbor coefficients ak, ak+1 do not vanish simultaneously: hence, they
present a point (ak : ak+1) ∈ CP1. Indeed, each pair of neighbor coefficients
(ak, ak+1) determines a unique sequence satisfying (1.9). This follows from
the fact that for every k ≥ 1 the coefficient ak±1 is expressed as a linear
combination of ak∓1 and ak by (1.9), since fk, hk 6= 0. Hence, if some two
neighbor coefficients ak−1, ak vanish, then all the coefficients vanish, and the
series is zero, – a contradiction.

Theorem 1.10 Let b, n ∈ C, Then for every k0 ∈ Z such that

k + b+ n− 1, k + b+ 1 6= 0 for every k > k0, (1.12)

for every λ, µ ∈ C, µ 6= 0 there exists and unique nonzero one-sided se-
ries

∑
k≥k0 akz

k (up to constant factor) converging on some punctured disk
centered at 0 that satisfies recurrence relations (1.6) (or equivalently, (1.7))
for k > k0. (In what follows this solution of relations (1.6) is called the
forward solution.) Similarly, for every k0 ∈ Z such that

k + b+ n− 1, k + b+ 1 6= 0 for every k < k0 (1.13)

there exists and unique one-sides series
∑

k≤k0 akz
k (up to multiplicative

constant) that satisfies recurrence relations (1.6) for k < k0 and converges
outside some disk centered at 0. In what follows this solution of relations
(1.6) is called the backward solution.) Both series converge on the whole
punctured complex line C∗. They can be normalized to depend holomorphi-
cally on those parameters (n, λ, µ, b) for which inequality (1.12) (respectively,
(1.13)) holds for the given number k0.

Example 1.11 Let in the conditions of Theorem 1.10 one have b, n+ b /∈ Z
(cf. (1.4)). Then its statements hold for all k0 ∈ Z, since inequalities (1.12)
hold for all k ∈ Z. Otherwise, if either b ∈ Z, or b + n ∈ Z, then the
statements of Theorem 1.10

hold for k > k0 whenever k0 ≥ max{m ∈ {−1− b, 1− b− n} | m ∈ Z}
(1.14)

hold for k < k0 whenever k0 ≤ min{m ∈ {−1−b, 1−b−n} |m ∈ Z} (1.15)

Theorem 1.10 together with Remark 1.7 and the first statement of Example
1.11 imply Theorem 1.1.
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Proof of Theorems 1.10 and 1.1 (existence and uniqueness of so-
lutions). The coefficients

fk = −µ(k + b+ n− 1), gk = (k + b)(k + b+ n− 1) + λ, hk = µ(k + b+ 1)

of recurrence relations (1.6) satisfy the conditions of Theorem 1.8 for k > k0
(k < k0). Indeed, the asymptotics (1.11) is obvious. Inequalities fk, hk 6= 0
follow from (1.12) (respectively, (1.13)). This together with Theorem 1.8
implies the statement of Theorem 1.10, and hence, Theorem 1.1 on existence
and uniqueness of solutions. The local holomorphicity in the parameters
follows from the addendum to Theorem 1.8. The global holomorphicity will
be proved later on, in Subsection 3.5. 2

Proof of Theorem 1.3. Let b = 0, n ∈ C \ Z≤0. Then inequalities
(1.12) hold for k > k0 = 0. Therefore, there exists a unique series E(z) =∑+∞

k=0 akz
k converging on a neighborhood of the origin, whose coefficients

satisfy (1.6) for k ≥ 1, and it converges on all of C (Theorem 1.10). The
system of relations (1.6) for k ≥ 1 is equivalent to the statement that LE =
const. This proves Theorem 1.3. Holomorphicity on the parameters follows
from the analogous statement of Theorem 1.10. 2

1.3 Historical remarks, applications and plan of the paper

Our results are motivated by applications to the family

dφ

dt
= − sinφ+B +A cosωt, A, ω > 0, B ≥ 0. (1.16)

of nonlinear equations, which arises in several models in physics, mechanics
and geometry: in a model of the Josephson junction in superconductivity
(our main motivation), see [21, 28, 15, 3, 25]; in planimeters, see [16, 17].
Here ω is a fixed constant, and (B,A) are the parameters. Set

τ = ωt, l =
B

ω
, µ =

A

2ω
.

The variable change t 7→ τ transforms (1.16) to a non-autonomous ordinary
differential equation on the two-torus T2 = S1×S1 with coordinates (φ, τ) ∈
R2/2πZ2:

φ̇ =
dφ

dτ
= −sinφ

ω
+ l + 2µ cos τ. (1.17)

The graphs of its solutions are the orbits of the vector field{
φ̇ = − sinφ

ω + l + 2µ cos τ

τ̇ = 1
(1.18)
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on T2. The rotation number of its flow, see [1, p. 104], is a function ρ(B,A) =
ρ(B,A;ω) of the parameters of the vector field. It is given by the formula

ρ(B,A;ω) = lim
k→+∞

φ(2πk)

k
,

where φ(τ) is an arbitrary solution of equation (1.17).
The phase-lock areas are the level subsets of the rotation number in the

(B,A)-plane with non-empty interior. They have been studied by V.M.Buchstaber,
O.V.Karpov, S.I.Tertychnyi et al, see [4]–[13], [18] and references therein.
Each phase-lock area is an infinite chain of adjacent domains separated by
points called the adjacency points (or briefly, adjacencies). The description
of their coordinates as solutions of analytic functional equations was conjec-
turally stated by V.M.Bushstaber and S.I.Tertychnyi in [10] and proved by
the authors of the present paper in [13]. Namely, the family of non-linear
equations was reduced in [9, 29] to the two following families of second order
linear differential equations of double confluent Heun type: equation (1.1)
with

n = l + 1, λ =
1

4ω2
− µ2

and the equation

LE = z2E′′ + ((−l + 1)z + µ(1− z2))E′ + (λ+ µ(l − 1)z)E = 0. (1.19)

Equation (1.19) is obtained from equation (1.1) via the substitution l = 1−n.

Remark 1.12 Heun equations (1.1) and (1.19) corresponding to the family
(1.18) of dynamical systems on torus are those corresponding to real param-
eters n, ω, µ, and thus, real λ. In the present paper we are studying general
Heun equation (1.1) with arbitrary complex parameters n, λ, µ.

It was shown in [18] that l = B
ω ∈ Z at all the adjacencies. In the case,

when l ≥ 0, Buchstaber and Tertychnyi have shown that the adjacencies
correspond exactly to those parameter values, for which l is integer and
equation (1.1) has a non-trivial holomorphic solution at 0 (which is auto-
matically an entire solution: holomorphic on C); see the statement in [10,
p.332, paragraph 2] and the proof in [13, theorem 3.3 and subsection 3.2].
They have explicitly constructed a family of holomorphic solutions for pa-
rameters satisfying an explicit functional equation ξl(λ, µ) = 0, see Corollary
1.6. They have conjectured that the latter functional equation describes the
adjacencies completely. They have reduced this conjecture to another one

10



saying that if equation (1.19) has a polynomial solution (which may hap-
pen only for l ∈ N), then equation (1.1) does not have an entire solution.
Later they have shown that the second conjecture follows from the third one
saying that appropriate determinants formed by modified Bessel functions
of the first type do not vanish on the positive semiaxis. This third conjec-
ture together with the two previous conjectures were proved in [13]. The
statement of the above-mentioned conjecture of Buchstaber and Tertychnyi
on functional equation describing the adjacencies follows from Corollary 1.6
and their correspondence to entire solutions of Heun equations.

V.M.Buchstaber and S.I.Tertychnyi have constructed symmetries of dou-
ble confluent Heun equation (1.1) [10, 12]. The symmetry # : E(z) 7→
2ωz−l−1(E′(z−1) − µE(z−1)), which is an involution of its solution space,
was constructed in [30, equations (32), (34)]. It corresponds to the symme-
try (φ, t) 7→ (π−φ,−t) of the nonlinear equation (1.16); the latter symmetry
was found in [22]. In [12] they have found new nontrivial symmetries in the
case, when l ∈ Z and equation (1.19) does not have polynomial solutions.

Convention 1.13 Everywhere in the paper by formal solution (ak)k≥k0 (or
(ak)k≤k0) of linear recurrence relation fkak−1 + gkak + hkak+1 = 0 we mean
a (one- or two-sided) sequence of complex numbers ak satisfying the relation
for all k > k0 (respectively, k < k0). (Here one may have two-sided infinite
sequences.) If in addition, the power series

∑
k akz

k converges on some
annulus centered at 0 (for all the relations under consideration, this would
automatically imply convergence on all of C∗) then the formal solution under
question is called simply a solution: the adjective “converging” is omitted
for simplicity.

In Section 3 we write down explicit formulas for solutions of recurrence
relations (1.6) using the proof of Theorem 1.8. Then in Section 4 we deduce
explicit functional equations satisfied by monodromy eigenvalues of double
confluent Heun equations (explicit versions of Corollary 1.2).

In Section 5 we apply results of Sections 3 and 4 to phase-lock areas in
the model of Josephson effect.

Remark 1.14 The problem to describe the boundaries of the phase-lock
areas for the considered system was studied in [9, 10, 13]. Special points
of the boundaries (adjacencies and points corresponding to equations (1.19)
with polynomial solutions) were described in [10] and [9] respectively. In the
present paper the union of boundaries is described by an explicit transcen-
dental analytic equation (Corollary 5.16 in Subsection 5.4). It is known that
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the ratio of the monodromy eigenvalues of the corresponding equation (1.1)
equals e±2πiρ(A,B) and their product equals e−2πil. The union of boundaries
coincides with the set where the monodromy has multiple eigenvalue and is
described by the condition that the monodromy of equation (1.1) has eigen-
value ±e−πil. We get a similar description of non-integer level curves of the
rotation number function. Namely, for θ /∈ Z the above relation between
monodromy eigenvalues and the rotation number together with the results
of Sections 3, 4 imply an explicit functional equation satisfied by the set
{ρ ≡ ±θ(mod2Z)} (Theorem 5.10 in Subsection 5.3).

Open problems on phase-lock areas and possible approaches to some of them
using the above description of boundaries are discussed in Subsections 5.5–
5.8.

The following new result will be also proved in Section 5 using results of
Section 4.

Theorem 1.15 Let ω > 0, (B,A) ∈ R2, B,A > 0, l = B
ω , µ = A

2ω ,
λ = 1

4ω2 − µ2, ρ = ρ(B,A). The double confluent Heun equation (1.19)
corresponding to the above λ, µ and l has a polynomial solution, if and only
if l, ρ ∈ Z, ρ ≡ l(mod2Z), 0 ≤ ρ ≤ l, the point (B,A) lies in the boundary
of a phase-lock area and is not an adjacency. In other terms, the points
(B,A) ∈ R2

+ corresponding to equations (1.19) with polynomial solutions lie
in boundaries of phase-lock areas and are exactly their intersection points
with the lines l = B

ω ≡ ρ(mod2Z), 0 ≤ ρ ≤ l that are not adjacencies.

Remark 1.16 V.M.Buchstaber and S.I.Tertychnyi have shown in [9] that
if a point (B,A) ∈ R2

+ corresponds to equation (1.19) with a polynomial
solution, then l, ρ are integers, 0 ≤ ρ ≤ l and ρ ≡ l(mod2Z).

1.4 A sketch of proof of Theorem 1.8.

For every initial condition (a0, a1) there exists a unique sequence (ak)k≥0
satisfying recurrence relations (1.9), by Remark 1.9. But in general, the
series

∑
k akz

k may diverge. We have to prove that it converges for appro-
priately chosen unknown initial condition. To do this, we use the following
trick: we run the recursion in the opposite direction, “from infinity to zero”.
That is, take a big k and a given “final condition” qk = (ak, ak+1). Then
the inverse recursion gives all aj = aj(qk), 0 ≤ j ≤ k. It appears that the
initial condition (a0, a1) we are looking for can be obtained as a limit of the
initial conditions (a0(qk), a1(qk)) obtained by the above inverse recursion
(after rescaling), as k → ∞. The latter holds for appropriate choice of the
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final vector qk: it should be appropriately normalized by scalar factor and its
projectivization [qk] = (ak : ak+1) ∈ CP1 should avoid some small explicitly
specified “bad region”, which contracts to the point (0 : 1), as k →∞.

The projectivized inverse recursion

Pk : CP1 → CP1 : [qk] = (ak : ak+1) 7→ [qk−1] = (ak−1 : ak)

defined by (1.9) can be considered as the dynamical system

T : (N≥2 ∪ {∞})× CP1 → (N ∪ {∞})× CP1, N≥2 = N ∩ [2,+∞),

where for every x ∈ CP1 and k ∈ N≥2 one has

T : (k, x) 7→ (k − 1, Pk(x)); T :∞× CP1 7→ ∞× (1 : 0).

It appears that for every k large enough Pk has a strongly attracting fixed
point tending to (1 : 0) and a strongly repelling fixed point tending to (0 : 1),
as k → ∞. This together with the ideas from basic theory of hyperbolic
dynamics implies that the fixed point p∞ =∞×(1 : 0) of the transformation
T should have a unique unstable manifold: an invariant sequence (k, [qk])
converging to p∞. We show that a solution (ak) of recurrence relations
(1.9) gives a converging Taylor series

∑
k akz

k on some neighborhood of
zero, if and only if (ak : ak+1) = [qk] for all k, and then the series converge
everywhere. This will prove Theorem 1.8.

The existence and uniqueness of the above-mentioned unstable manifold
is implied by the following discrete analogue of the classical Hadamard–
Perron Theorem on the unstable manifold of a dynamical system at a hy-
perbolic fixed point.

Theorem 1.17 Let E1, E2, . . . be a sequence of complete metric spaces with
uniformly bounded diameters. For brevity, the distance on each of them will
be denoted d. Let Pk : Ek → Ek−1 be a sequence of uniformly contracting
mappings: there exists a λ, 0 < λ < 1 such that d(Pk(x), Pk(y)) < λd(x, y)
for every x, y ∈ Ek and k ≥ 2. Then there exists a unique sequence of points
xk ∈ Ek such that xk−1 = Pk(xk) for all k ≥ 2. One has

xk−1 = lim
m→∞

Pk ◦ · · · ◦ Pm(x), (1.20)

and the convergence is uniform in x: for every ε > 0 there exists some
l ∈ N such that for every m ≥ l and every x ∈ Em one has d(Pk ◦ · · · ◦
Pm(x), xk−1) < ε. If in addition the spaces Ek coincide with one and the
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same space E and the fixed points of the mappings Pk tend to some x∞ ∈ E,
as k →∞, then

lim
k→∞

xk = x∞. (1.21)

Proof The proof repeats the argument of the classical proof of Hadamard–
Perron Theorem. Consider the space S of all sequences X = (xk)k∈N, xk ∈
Ek, equipped with the distance

D(X,Y ) = sup
k
d(xk, yk).

The transformation

T : S → S, (x1, x2, . . . ) 7→ (P2(x2), P3(x3), . . . )

is a contraction. Therefore, it has a unique fixed point, which is exactly
the sequence we are looking for. The second statement of the theorem on
the uniform convergence of compositions to xk−1 follows from the uniform
convergence of iterations of the contracting map T to its fixed point. In the
last condition of Theorem 1.17 statement (1.21) follows by the above fixed
point argument in the subspace in S of the sequences (xk) tending to x∞,
as k →∞: this is a complete T -invariant metric subspace in S, and hence,
T has a fixed point there, which coincides with the previous sequence (xk)
by uniqueness. Theorem 1.17 is proved. 2

2 Proof of Theorem 1.8 and its addendum

Recurrence relations (1.9) can be written in the matrix form(
ak
ak+1

)
= Λk

(
ak−1
ak

)
, Λk = h−1k

(
0 hk
−fk −gk

)
. (2.1)

Consider the inverse matrices

Λ−1k =

(
− gk
fk
−hk
fk

1 0

)
(2.2)

and their projectivizations Pk : CP1 → CP1 acting on the projective line
CP1 = C with homogeneous coordinates (z1 : z2). In the affine chart {z1 6=
0} ⊂ CP1 with the coordinate w = z2

z1
for every C > 0 we denote

DC = {|w| < C} ⊂ C ⊂ C.
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Proposition 2.1 The transformations Pk converge to the constant mapping
CP1 7→ {w = 0} uniformly on every closed disk DC , C > 0, as k → ∞.
Their inverses converge to the constant mapping CP1 7→ {w =∞} uniformly
on the complement of every disk DC .

Proof The image of a vector (1, w) with |w| ≤ C under the matrix Λ−1k is
the vector

(uk(w), vk(w)) = −gk
fk

(1 +
hk
gk
w,−fk

gk
).

Recall that hk
gk
, fkgk → 0, see (1.11), hence, gk 6= 0 for all k large enough.

The latter asymptotics and formula together imply that vk(w)
uk(w)

→ 0 uni-

formly on DC and prove the first statement of the proposition. Let us prove
its second statement. For every fixed C > 0 and every k large enough
(dependently on C) one has P−1k (CP1 \DC) ⊂ CP1 \DC , by the first state-
ment of the proposition. The image of a vector (1, w) under the matrix Λk
is (sk(w), tk(w)) = (w,−gkw+fk

hk
). This together with (1.11) implies that

sk(w)
tk(w)

→ 0 uniformly on |w| ≥ C, as k → ∞; or equivalently, Pk → ∞
uniformly on CP1 \DC . The proposition is proved. 2

Proof of Theorem 1.8. Let C > 1, EC denote the closed disk DC ⊂ CP1

equipped with the Euclidean distance. There exist a λ, 0 < λ < 1 and a
N = N(λ,C) ∈ N such that for every k > N one has Pk(EC) ⊂ EC and the
mapping Pk : EC → EC is a λ-contraction: |Pk(x)−Pk(y)| < λ|x− y|. This
follows from the first statement of the proposition and the fact that uniform
convergence of holomorphic functions implies uniform convergence of their
derivatives on compact sets (Cauchy bound): here uniform convergence of
the mappings Pk to the constant mapping on DC′ with C ′ > C implies uni-
form convergence of their derivatives to zero on DC . The fixed point of the
mapping Pk|EC

tends to 0, as k →∞, by uniform convergence (Proposition
2.1). This together with Theorem 1.17 implies that there exists a unique
sequence (xk)k≥N such that Pk(xk) = xk−1 for all k > N and |xk| ≤ C.
The latter sequence corresponds to a unique sequence (ak)k≥N (up to multi-
plicative constant) such that xk = (ak : ak+1); one has |w(xk)| = |ak+1

ak
| ≤ C

for every k ≥ N . The sequence (ak) satisfies relations (1.9) for k > N ,
which are equivalent to the equalities Pk(xk) = xk−1. It extends to a unique
sequence (ak)k≥0 satisfying (1.9) for k ≥ 1, as in Remark 1.9. In addition,
xk → 0, i.e.,

ak+1

ak
→ 0, as k → ∞, by (1.21) and since the attracting fixed

points of the mappings Pk converge to 0, by Proposition 2.1. Therefore, the
series

∑
k≥0 akz

k converges on the whole complex line C. The existence is
proved. Now let us prove the uniqueness. Let, by contradiction, there exist
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a series
∑
akz

k satisfying relations (1.9), having a positive convergence ra-
dius and not coinciding with the one constructed above. Then there exists
a k > N such that |ak+1

ak
| > C, i.e., xk /∈ DC . For every l > k one has

xl = P−1l ◦ · · · ◦P
−1
k+1(xk)→∞, that is,

al+1

al
→∞, as l→∞, by the second

statement of Proposition 2.1. Hence the series diverges everywhere: has zero
convergence radius. The contradiction thus obtained proves Theorem 1.8.

2

Proof of the addendum to Theorem 1.8. The transformations Pk
from Proposition 2.1 depend holomorphically on the parameters. The con-
vergence in the proposition is uniform on compact subsets in the parameter
manifold, by similar uniform convergence of the sequences hk

gk
and fk

gk
to zero

(see the condition of the addendum). Then for every compact subset K in
the parameter manifold there exists a N > 1 such that for every k > N
the mapping Pk are contractions of the closed disk DC for all the parame-
ters from the set K, with one and the same uniform bound λ = λ(K) < 1
for the contraction rate: the proofs of Proposition 2.1 and Theorem 1.8
remain valid with uniform convergence in the parameters from the set K.
The expression under the limit (1.20) is well-defined and holomorphic in the
parameters from the set K, and the convergence in (1.20) is uniform on K,
by uniformness of the contraction. This together with Weierstrass Theorem
implies that the limit is also holomorphic in the parameters from the set K.
Finally, the sequence (xk), xk ∈ CP1 = C depends holomorphically on the
parameters, and thus, for every k the ratio xk =

ak+1

ak
is a C-valued holo-

morphic, hence meromorphic function in the parameters. Fix a k for which
it is not identically equal to ∞ and put ak ≡ 1, ak+1 = xk. Then the vector
(ak, ak+1) depends meromorphically on the parameters, and hence, so do all
the aj , which are expressed via (ak, ak+1) by linear recurrence relations. The
poles of the functions aj are obviously contained in the pole divisor of the
function ak+1. In the case, when the parameter manifold is Stein and con-
tractible, every analytic hypersurface (e.g., the pole divisor under question)
is the zero locus of a holomorphic function Φ, see [14, chapter VIII, section
B, lemma 12]. Replacing all aj by Φaj yields a series

∑
k akz

k depending
holomorphically on the parameters. The addendum is proved. 2
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3 Explicit formulas for solutions and the coeffi-
cients dj±

Here we present explicit formulas for the unique converging series from The-
orem 1.10 solving recurrence relations (1.6). First in Subsection 3.1 we
provide a general method for writing them, which essentially repeats and
slightly generalizes the method from [10, section 3, pp. 337–338]. Then
we write the above-mentioned formulas for k → +∞, and afterwards for
k → −∞. At the end of the section we prove the statement of Theorems
1.1 and 1.10 on global holomorphic dependence of the solutions on the pa-
rameters.

3.1 Solution of recurrence relation via infinite matrix prod-
uct: a general method

Here we consider a solution of general recurrence relations (1.9) from The-
orem 1.8. Let gk, fk, hk be the coefficients in (1.9). Let Pk : CP1 → CP1

be the projectivizations of the transformations Λ−1k , see (2.2). Let
∑

k akz
k

be a solution to (1.9). Recall that xk = (ak : ak+1) ∈ CP1 ' C, in the
standard coordinate w on C one has xk =

ak+1

ak
. We have xk−1 = Pk(xk),

and for every k the infinite product PkPk+1 . . . converges to xk−1. More
precisely, Pk ◦ · · · ◦Pm(z)→ xk−1, as m→∞ uniformly on compact subsets
in C = C \ {∞}, as in the proof of Theorem 1.8.

One can then deduce that there exists a number sequence rk such that
for every k the infinite matrix product (rkΛ

−1
k )(rk+1Λ

−1
k+1) . . . converges to

a rank 1 matrix Rk such that(
ak−1
ak

)
= Rk

(
1
0

)
. (3.1)

The latter relation allows to write an explicit formula for the solution
∑

k akz
k

in the following way. The infinite product of the matrices Λ−1k themselves
diverges, since their terms − gk

fk
tend to infinity: one has to find a priori un-

known normalizing constants rk. To construct a converging matrix product
explicitly, we will consider a rescaled sequence ak, that is

ck = qkak, qk ∈ C,
qk−1
qk
' −fk

gk
→ 0, as k →∞.

Rewriting relations (1.9) in terms of the new sequence ck yields(
ck−1
ck

)
= Mk

(
ck
ck+1

)
, (3.2)
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Mk =

(
− qk−1

qk

gk
fk
− qk−1

qk+1

hk
fk

1 0

)
=

(
1 + o(1) o(1)

1 0

)
.

The matrices Mk converge to the projector

P : C2 → C2, P =

(
1 0
1 0

)
.

Our goal is to choose the rescaling factors qk so that the infinite products

Rk = MkMk+1 . . .

converge: then the limit is a one-dimensional operator Rk with kerRk being
generated by the vector (0, 1). It appears that one can achieve the latter
convergence by appropriate choice of normalizing constants qk.

We use the following sufficient conditions of convergence of products of
almost projectors Mk.

Lemma 3.1 Let H be either a finite dimensional, or a Hilbert space. Let
Mk : H → H be a sequence of bounded operators that tend (in the norm) to
an orthogonal projector P : H → H. Let

Mk = P + Sk,
∑
k

||Sk|| <∞. (3.3)

Then the infinite product Rk = MkMk+1 . . . converges in the norm, and
kerP ⊂ kerRk. One has Rk → P , as k → ∞, in the operator norm, and
kerRk = kerP for every k large enough.

Proof Fix a k and set Tn = Tk,n = Mk . . .Mn for n ≥ k; Tk = Mk. One
has

Tn+1 = TnMn+1 = Tn(P + Sn+1), Tn+1 − TnP = TnSn+1.

The latter equality implies that

||Tn+1|| ≤ ||Tn||(1 + ||Sn+1||) ≤ e||Sn+1||||Tn||.

This implies that

||Tk,n|| ≤ Ck, Ck = e
∑

j≥k ||Sj ||||Mk||. (3.4)

Now one has
Tk,n = Tk,n−1P + Tk,n−1Sn,

Tk,n+1 = Tk,nP + Tk,nSn+1 = Tk,n−1P
2 + Tk,n−1SnP + Tk,nSn+1
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= Tk,n−1P + Tk,n−1SnP + Tk,nSn+1 :

here we have used the fact that P is a projector, that is, P 2 = P . The two
latter formulas together with (3.4) imply that

||Tk,n+1 − Tk,n|| ≤ Ck(2||Sn||+ ||Sn+1||).

The latter right-hand side being a converging series in n, the sum of the
left-hand sides in n converges and so does Tk,n, as n → ∞, in the operator
norm. This also implies that the norm distance of each Tk,n to the limit Rk =
limn→∞ Tk,n is bounded from above by ∆k,n = 3Ck

∑
j≥n ||Sj ||. Applying

this estimate to Tk,k = Mk, we get dist(Mk, Rk) ≤ ∆k,k = 3Ck
∑

j≥k ||Sj ||.
One has ∆k,n → 0, as n → ∞ uniformly in k, and also ∆k,n → 0, as
k, n → ∞ so that k ≤ n. This implies that Rk and Mk converge to the
same limit P in the operator norm, as k →∞. For every v ∈ kerP one has
Mnv = Snv → 0. Hence, Tk,nv = Tk,n−1(Snv) → 0, as n → ∞. Therefore,
Rkv = 0 and kerP ⊂ kerRk. Let N > 0 be such that for every k > N one
has ||Rk − P || < 1. Let us show that kerRk = kerP for these k. Indeed,
suppose the contrary: kerRk is strictly bigger than kerP for some k > N .
Note that H = kerP ⊕ P (H) (orthogonal decomposition), since P is an
orthogonal projector. Therefore, there exists a vector uk ∈ P (H) such that
Rk(uk) = 0. Hence,

||P (uk)|| = ||(P −Rk)(uk)|| < ||uk||,

while P (uk) = uk, since P is a projector. The contradiction thus obtained
proves the lemma. 2

Addendum to Lemma 3.1. Let in Lemma 3.1 the operators Sn depend
holomorphically on some parameters so that the series

∑
n ||Sn|| converges

uniformly on compact subsets in the parameter space. Then the infinite
products Rk are also holomorphic in the parameters.
Proof The above proof implies that the sequence Tk,n converges uniformly
on compact subsets in the parameter space. This together with the Weier-
strass Theorem implies the holomorphicity of the limit. 2

Corollary 3.2 Let

Mk =

(
1 + δ11,k δ12,k

1 0

)
,
∑
k

|δij,k| <∞ for (ij) = (11), (12). (3.5)

Then the infinite product Rk = MkMk+1 . . . converges, and the right column
of the limit product matrix Rk vanishes. In the case, when δ12,k 6= 0 for all k,
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the limit matrix Rk has rank 1 for all k: its kernel is generated by the vector
(0, 1). In the case, when δij,k depend holomorphically on some parameters
and the convergence of the corresponding series is uniform on compact sets
in the parameter manifold, the limit Rk is also holomorphic.

Addendum to Corollary 3.2. In the conditions of the corollary set

ck = (0, 1)Rk

(
1
0

)
. (3.6)

Then the sequence ck is a solution of recurrence relations (3.2) such that
ck
ck−1

→ 1, as k →∞, and one has(
ck−1
ck

)
= Rk

(
1
0

)
. (3.7)

Proof of Corollary 3.2. This is the direct application of the lemma and
its addendum for the norm induced by appropriate scalar product: the latter
product should make the matrix

P =

(
1 0
1 0

)
an orthogonal projector. The kernel kerRk contains the kernel kerP , which
is generated by the vector (0, 1); kerRk = kerP , i.e., rk(Rk) = 1 for all
k large enough, by the lemma. In particular, the right column in each Rk
vanishes. Now it remains to note that rk(Rk) = 1 for all k, since the matrices
Mk are all non-degenerate: δ12,k 6= 0. The corollary is proved. 2

Proof of the Addendum to Corollary 3.2. Consider the affine chart
C = CP1 \ {(1 : −1)} with the coordinate w = z1−z2

z1+z2
centered at (1 : 1).

The projectivizations Pk of the linear operators Mk : C2 → C2 converge to
the constant mapping CP1 7→ (1 : 1) uniformly on compact subsets in C.
Hence, for every C > 0 there exist a N = N(C) > 0 and a λ, 0 < λ < 1
such that for every k ≥ N one has Pk(DC) b DC , and Pk is a λ-contraction
of the disk DC , as in the proof of Theorem 1.8 in the previous section. This
together with Theorem 1.17 implies that there exists a sequence (xk)k≥N(C),

xk ∈ C = CP1, w(xk) → 0, as k → ∞, such that Pk(xk) = xk−1 and
Pk ◦ · · · ◦ Pm converges to the constant mapping CP1 7→ xk−1 uniformly
on compact subsets in C, as m → ∞. Convergence at (1 : 0) implies that
xk−1 = (Rk,11 : Rk,21). Moreover, Rk,21 = Rk+1,11, since Rk = MkRk+1 and
the matrix Mk has lower raw (1, 0). The two last statements together imply
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that the sequence ck = Rk,21 satisfies recurrence relations (3.2) and formulas
(3.6), (3.7). One has

ck+1

ck
→ 1, since xk = (ck : ck+1)→ (1 : 1). This proves

the addendum. 2

Corollary 3.3 Consider recurrence relations (1.9). Let qk ∈ C be a se-
quence such that the rescaling ck = qkak transforms (1.9) to (3.2). Let the
corresponding matrices Mk from (3.2) be the same, as in (3.5). Let ck be
the same, as in (3.6). Then the sequence

ak = q−1k ck

is a solution of relations (1.9) for k ≥ 1 such that the series
∑

k≥0 akz
k

converges on all of C.

Proof The sequence (ak) is a solution of (1.9), by construction and the
Addendum to Corollary 3.2. One has

qk−1

qk
' −fk

gk
→ 0, as k →∞, since the

above sequence rescaling transforms (1.9) to (3.2). Therefore, ak
ak−1

→ 0, by

the latter statement and since ck
ck−1

→ 1, as was shown above. This implies

the convergence of the series
∑

k≥0 akz
k on C and proves the corollary. 2

3.2 Forward solutions from Theorems 1.1 and 1.10

Here we give explicit formulas for the solution
∑

k akz
k of recurrence rela-

tions (1.6) converging, as k → +∞.
Case 1): b, b+ n /∈ Z (i.e., the conditions of Theorem 1.1 hold).

Let us invert matrix relation (1.7). We get(
ak−1
ak

)
= Wk

(
ak
ak+1

)
, (3.8)

Wk =

(
k+b
µ (1 + λ

(k+b)(k+b+n−1))
k+b+1

k+b+n−1
1 0

)
.

To obtain an explicit formula for solution of relation (1.6), we will use results
of Subsection 3.1. To do this, we reduce equation (3.8) to a similar equation
with the matrix in the right-hand side converging to a projector. This is
done by renormalizing the sequence ak by multiplication by appropriate
constants depending on k ≥ 0. Namely, set

ck =
ak(b)k+1

µk
, (b)l := b . . . (b+ l − 1) =

Γ(b+ l)

Γ(b)
.

21



Recall that the symbol (b)l is called the Pochhammer symbol. Translating
relations (3.8) in terms of the sequence ck yields(

ck−1
ck

)
= Mk

(
ck
ck+1

)
,

Mk =

(
1 + λ

(k+b)(k+b+n−1)
µ2

(k+b)(k+b+n−1)
1 0

)
(3.9)

=

(
(b)k
µk−1 0

0
(b)k+1

µk

)
Wk

(
µk

(b)k+1
0

0 µk+1

(b)k+2

)
.

The infinite matrix product

Rk = MkMk+1 . . . (3.10)

converges and depends analytically on (λ, µ, n, b) at those points, where the
denominators in its definition do not vanish, by Corollary 3.2.

Theorem 3.4 Let b, b+ n /∈ Z. For k ≥ 0 set

ck =
(
0 1

)
Rk

(
1
0

)
, (3.11)

ak =
µk

(b)k+1
ck (3.12)

The coefficients ak satisfy recurrence relations (1.6) for all k ≥ 1, and the
series

f+(z) =
∑
k≥1

akz
k (3.13)

converges on all of C.

Proof The sequence ck satisfies relations (3.9), and ck
ck−1

→ 1, as k → ∞,

by the Addendum to Corollary 3.2. This implies that ak satisfy (1.6). The
series (3.13) converges on all of C, by Corollary 3.3. This proves the theorem.

2

Case 2): some of the numbers b or b+ n is an integer. Set

k0+ = max{m ∈ {−1− b, 1− b− n} | m ∈ Z}. (3.14)

Note that now the product (b)l = b(b+ 1) . . . (b+ l−1) can be equal to zero,
and thus, the sequence ak defined by (3.12) is not necessarily well-defined.
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Let us modify the above rescaling coefficients relating ak and ck as follows.
For every s ≤ l + 1 set

(b)s,l+1 = (b+ s) . . . (b+ l) =
(b)l+1

(b)s
; (b)0,l+1 = (b)l+1; (b)s,s = 1. (3.15)

Set

ck = akµ
k0++1−k(b)k0++2,k+1 for every k > k0+; ck0++1 = ak0++1. (3.16)

The sequence (ak) satisfies (1.7), if and only if the sequence (ck) satisfies
(3.9). The above formulas remain valid with the same matrices Mk, which
are well-defined for k ≥ k0+ + 2: the denominators in its fractions do not
vanish. Therefore, the infinite product Rk = MkMk+1 . . . is well-defined for
the same k in the case under consideration.

Theorem 3.5 Let b, n, k0+ be as above, Mk be as in (3.9), Rk = MkMk+1 . . . ,

ck = Rk,21 for k ≥ k0+ + 2, ck0++1 = Rk0++2,11, (3.17)

ak = µk−k0+−1
ck

(b)k0++2,k+1
for k ≥ k0+ + 1, (3.18)

ak0+ =
((k0+ + b+ 1)(k0+ + b+ n) + λ)ak0++1 + µ(k0+ + b+ 2)ak0++2

µ(k0+ + b+ n)
.

(3.19)
The sequence (ak)k≥k0+ satisfies recurrence relations (1.6) for k > k0+. The

series
∑+∞

k=k0+
akz

k converges on all of C∗.

Proof The sequence ck satisfies relations (3.9) for k ≥ k0+ + 2, by the
Addendum to Corollary 3.2. Therefore, ak satisfy relations (1.7), which are
equivalent to (1.6), see the previous discussion. Formula (3.19) is equivalent
to relation (1.6) for k = k0+ + 1. The denominator µ(k0+ + b+ n) in (3.19)
does not vanish. In the case, when b + n /∈ Z, this is obvious. In the case,
when b+ n ∈ Z, one has k0+ + b+ n ≥ 1, by (3.14). The series

∑
k≥k0 akz

k

converges on C∗, by Corollary 3.3. The theorem is proved. 2

3.3 Backward solutions

Here we give explicit formulas for the solution
∑

k akz
−k of recurrence rela-

tions (1.6) with k → −∞. Set

m = −k, âm = a−m.
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Relation (1.7) in new variables m and âm takes the matrix form(
âm
âm−1

)
= A−m

(
âm+1

âm

)
.

Writing the latter equation with permuted order of vector components (we
place âs having smaller indices above) yields the same equation with the
new matrix obtained from A−m by permutation of lines and columns:(

âm−1
âm

)
= Âm

(
âm
âm+1

)
, (3.20)

Âm =
b+ n−m− 1

b−m+ 1

(
−λ+(b−m)(b−m+n−1)

µ(b−m+n−1) 1
b−m+1

b−m+n−1 0

)
. (3.21)

Case 1): b, b + n /∈ Z, as in the conditions of Theorem 1.1. Let
us renormalize the sequence âm: for m ≥ 0 set

ĉm =
âm(2− n− b)m+1

µm
.

Translating equation (3.20) in terms of the sequence ĉm yields(
ĉm−1
ĉm

)
= Sm

(
ĉm
ĉm+1

)
, (3.22)

Sm = Sm(b, n) =

(
1 + λ−n+2

(b−m+1)(b−m+n−2)
µ2(b−m+n−1)

(b−m+1)(b−m+n−2)(b−m+n−3)
1 0

)
(3.23)

=

(
(2−n−b)m
µm−1 0

0 (2−n−b)m+1

µm

)
Âm

(
µm

(2−n−b)m+1
0

0 µm+1

(2−n−b)m+2

)
.

Theorem 3.6 Let b, b+ n /∈ Z. Let the matrices Sm be as above,

Tm = SmSm+1 . . . , (3.24)

ĉm =
(
0 1

)
Tm

(
1
0

)
, âm =

ĉmµ
m

(2− n− b)m+1
, ak = â−k. (3.25)

The sequence (ak) satisfies recurrence relations (1.6) for k ≤ −1, and the
series

f−(z) =
∑
k≤0

akz
−k (3.26)

converges on C.
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Proof The above matrix product converges, and the sequence ĉm satisfies
equation (3.22), by Corollary 3.2 and its addendum. This implies that the
corresponding sequence âm satisfies (3.20), the sequence ak satisfies (1.6)
and the series f−(z) converges, as in the previous subsection. This proves
the theorem. 2

Case 2): some of the numbers b or b+ n is an integer. Let

k0− = min{r ∈ {−1− b, 1− b− n} | r ∈ Z}, m0 = −k0−. (3.27)

The above Pochhammer symbol may be not well-defined in the case, when
n+ b ∈ Z, 2− n− b < 0. We use the inequalities

b−m+ 1 6= 0 for every m > m0;

2− n− b+m, 3− n− b+m 6= 0 for every m ≥ m0, (3.28)

which follow immediately from (3.27). The sequence rescaling

ĉm =
âm(2− n− b)m0,m+1

µm

is well-defined and invertible for all m ≥ m0, by (3.28). It differs from
the previous sequence rescaling from Case 1) by multiplication by constant
independent on m, and hence, transforms (3.20) to (3.22), as above. The
matrices Sm are well-defined form > m0: the denominators in their fractions
do not vanish, by (3.28). Let Tm be their products (3.24) defined form > m0.

Theorem 3.7 Let Sm and Tm be the same, as in (3.24),

ĉm =
(
0 1

)
Tm

(
1
0

)
for m > m0, cm0 = Tm0+1, 11,

âm =
ĉmµ

m

(2− n− b)m0,m+1
for m ≥ m0, ak = â−k. (3.29)

The sequence (ak)k≤k0− satisfies recurrence relations (1.6) for k < k0−, and
the series

∑
k≤k0− akz

−k converges on C∗.

The proof of Theorem 3.7 repeats the proof of Theorem 3.6 with obvious
changes.

25



3.4 Theorem 1.1: formulas for d0± and d1±

Lemma 3.8 Let (n, λ, µ, b) ∈ U , see (1.4). Let f+(z) =
∑

k≥1 akz
k and

f−(z) =
∑

k≤0 akz
−k be the functions from (3.13) and (3.26) constructed in

the two previous subsections, case 1). Then

z−bL(zbf±(z±1)) = d0± + d1±z, (3.30)

d0+ = µ(b+ 1)a1; d1+ = ((b+ 1)(b+ n) + λ)a1 + µ(b+ 2)a2, (3.31)

where a1 and a2 are the same, as in (3.12);

d0− = (b(b+ n− 1) + λ)a0 − µ(b+ n− 1)a−1; d1− = −µ(b+ n)a0, (3.32)

where a−1 and a0 are the same, as in (3.25).

Proof The left-hand side in (3.30) with index “+” is a Taylor series with
coefficients at zk being equal to the left-hand side of the corresponding recur-
rence relation (1.6). The latter relation holds for all k ≥ 2, by construction.
This implies (3.30) with d0+, d1+ being equal to the left-hand sides of rela-
tions (1.6) for k = 0 and k = 1 respectively. This implies (3.31). The proof
for the index “−” is analogous. 2

3.5 End of proof of Theorems 1.1 and 1.10: holomorphic
dependence of solutions on the parameters

Proposition 3.9 The solutions (ak) of recurrence relations (1.6) constructed
above via infinite matrix products depend holomorphically on the parameters
from the domain, where all the factors of the matrix product are well-defined.

The proposition follows immediately from construction and Corollary
3.2. It implies the statements of Theorems 1.1 and 1.10 on holomorphic
dependence of the corresponding solutions on the parameters.

4 Application: monodromy eigenvalues

Here we study the eigenfunctions of the monodromy operator of Heun equa-
tion (1.1). Recall that the monodromy operator of a linear differential equa-
tion on the Riemann sphere acts on the space of germs of its solutions at a
nonsingular point z0. Namely, fix a closed path α starting at z0 in the com-
plement to the singular points of the equation. The monodromy operator
along the path α sends each germ to the result of its analytic extension along
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the path α. It is completely determined by the homotopy class of the path
α in the complement to the singular points of the equation. In the case un-
der consideration of double confluent Heun equations (1.1) there are exactly
two singular points: zero and infinity. By the monodromy operator of dou-
ble confluent Heun equation (1.1) we mean the monodromy operator along a
counterclockwise circuit around zero. Each monodromy eigenfunction with
an eigenvalue e2πib has the form of a series

E(z) =
∑
k∈Z

akz
k+b, b ∈ C, (4.1)

converging on C∗. Here we write down an explicit analytic equation on those
b, for which the latter solution E(z) of equation (1.1) exists, i.e., there exists
a bi-infinite sequence (ak)k∈Z satisfying recurrence relations (1.6) such that
the the bi-infinite series

∑
k∈Z akz

k converges on C∗.
We consider different cases, but the method of finding the above b is gen-

eral for all of them. The coefficients ak with k → +∞ should form a unique
converging series (up to constant factor) that satisfies recurrence relations
(1.6). Similarly, its coefficients with k → −∞ should form a unique converg-
ing series satisfying (1.6). Finally, the above positive and negative parts of
the series should paste together and form a solution of Heun equation. In
the simplest, non-resonant case, when b, b + n /∈ Z, the pasting equation is
given by (1.5). The coefficients ak, k ≥ 1 satisfying (1.6) for k ≥ 2 and form-
ing a converging series are given by formulas (3.12); the sequence (ak)k≤0,
ak = â−k, satisfying (1.6) for k < 0 and forming a converging series is given
by formula (3.25).

It appears that substituting the above-mentioned formulas for ak to for-
mulas (3.31) and (3.32) for dj± and then substituting the latter formulas
to (1.5) yields a rather complicated pasting equation. To obtain a simpler
formula, we proceed as follows. In the non-resonant case we extend the se-
quence (ak)k≥1 to k = 0 by putting appropriate α ∈ C instead of a0 (we get
α, a1, a2, . . . ) so that the longer sequence thus obtained satisfies (1.6) also
for k = 1. Similarly, we extend the sequence (ak)k≤0 to k = 1 by putting
appropriate β ∈ C instead of a1 (we get . . . a−1, a0, β) in order to satisfy
equation (1.6) for k = 0. The positive and negative series thus constructed
paste together to a converging bi-infinite series

∑
k∈Z akz

k satisfying (1.6)
(after their rescaling by constant factors), if and only if

αβ = a0a1. (4.2)

We obtain an explicit expression for equation (4.2).
In what follows, we use the two next propositions.
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Proposition 4.1 The determinant of the monodromy operator of Heun equa-
tion (1.1) equals e−2πin.

Proof We prove the statement of the proposition for µ 6= 0: then it will
follow automatically for µ = 0, by continuity. The monodromy matrix is the
product of the formal monodromy matrix diag(1, e−2πin) and a pair of unipo-
tent matrices: the inverse to the Stokes matrices, cf. [18, formulas (2.15)
and (3.2)]. Therefore, its determinant equals e−2πin. Another possible proof
would be to use the formula for Wronskian of two linearly independent so-
lutions of equation (1.1) from [10, p. 339, proof of theorem 4]. It shows that
the Wronskian equals z−n times a function holomorphic on C∗, and hence, it
gets multiplied by e−2πin after analytic continuation along a positive circuit
around zero. 2

Recall, see [30, equations (32), (34)], [10, p. 336, lemma 1] that the
transformation # : E 7→ #E:

(#E)(z) := 2ωz−n(E′(z−1)− µE(z−1)), λ+ µ2 =
1

4ω2
, ω > 0 (4.3)

is an involution acting on the space of solutions of equation (1.1).

Proposition 4.2 Let the monodromy operator of Heun equation have dis-
tinct eigenvalues. Then the involution # permutes the corresponding eigen-
functions.

Proof The involution under question is a composition of transformation of
a function to its linear combination with its derivative, the variable change
z 7→ z−1 and multiplication by z−n. Let now E be a monodromy eigenfunc-
tion with eigenvalue λ1. The composition of the first and second operations
transforms E to a function, whose analytic extension along a counterclock-
wise closed path around zero multiplies it by λ−11 : the second operation
inverses the direction of the path. The multiplication by z−n multiplies
the above result of analytic extension by e−2πin. Therefore, #E is a mon-
odromy eigenfunction with the eigenvalue λ2 = λ−11 e−2πin. It coincides with
the second monodromy eigenvalue, since it is found by the condition that
λ1λ2 = e−2πin, see Proposition 4.1. This proves the proposition. 2

4.1 Nonresonant case: b, b+ n /∈ Z

In this case the denominators in formulas (3.9) and (3.23) for the ma-
trices Mk and Sm respectively are nonzero for all integer k and m, and
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hence, the matrices are well-defined together with the infinite products
Rk = MkMk+1 . . . , Tm = SmSm+1 . . . .

Theorem 4.3 Let b, b + n /∈ Z. Equation (1.1) has a monodromy eigen-
function with eigenvalue e2πib, b ∈ C, if and only if

(b+ 1)(b+ n− 2)R1,11T0,11 + µ2R1,21T0,21 = 0. (4.4)

Proof Let f+(z) =
∑

k≥1 akz
k be a converging series satisfying (1.6) for

k ≥ 2. Recall, see (3.12), that

a1 =
µ

b(b+ 1)

(
0 1

)
R1

(
1
0

)
.

Let us extend formula (3.12) to k = 0: set

α =
1

b

(
0 1

)
R0

(
1
0

)
=

1

b

(
1 0

)
R1

(
1
0

)
.

The sequence α, a1, a2, . . . satisfies (1.6) for k ≥ 1, by Theorem 3.4. Recall,
see (3.25), that

ĉ0 =
(
0 1

)
T0

(
1
0

)
, â0 = a0 =

ĉ0
2− n− b

.

Let us extend formula (3.25) to k = 1, m = −1: set

β = µ−1
(
0 1

)
T−1

(
1
0

)
= µ−1

(
1 0

)
T0

(
1
0

)
.

The sequence . . . , a−2, a−1, a0, β satisfies (1.6) for all k ≤ 0, by Theorem 3.6.
Substituting the above formulas for a1, α, a0, β to pasting equation (4.2)
yields (4.4). The theorem is proved. 2

4.2 Resonant case: at least one of the numbers b, b + n is
integer

Proposition 4.4 Let at least one of the numbers b, b+ n be integer. Then
Heun equation (1.1) has a solution of type E(z) = zbf(z) with f(z) being
a holomorphic function on C∗, if and only if it has a solution holomorphic
on C∗, i.e., corresponding to b = 0. In this case the monodromy eigenvalues
are 1 and e−2πin.
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Proof Let the above solution E exist. Then it is a monodromy eigenfunc-
tion with the eigenvalue e2πib. The other eigenvalue equals e−2πi(b+n), by
Proposition 4.1. At least one eigenvalue equals one, since either b, or b+ n
is integer, by assumption. The monodromy eigenfunction corresponding to
unit eigenvalue is holomorphic on C∗. Conversely, a solution holomorphic
on C∗ is a solution E as above with b = 0. It is a monodromy eigenfunction
with unit eigenvalue. Then the other eigenvalue equals e−2πin, by Proposi-
tion 4.1. This proves proposition 4.4. 2

Corollary 4.5 A solution E as in Proposition 4.4 exists, if and only if the
recurrence relations (1.6) with b = 0:

(k(k + l) + λ)ak − µ(k + l)ak−1 + µ(k + 1)ak+1 = 0, l = n− 1 (4.5)

have a solution (ak)k∈Z such that the series
∑

k∈Z akz
k converges on C∗.

Proposition 4.6 Every semiinfinite sequence (ak)k≥−2 satisfying equations
(4.5) for k ≥ −1 (without convergence condition) satisfies the relation

(1− l + λ)a−1 − µ(l − 1)a−2 = 0. (4.6)

Proof Equation (4.6) coincides with (4.5) for k = −1. 2

Proposition 4.7 Let l /∈ Z, n = l + 1. A solution of Heun equation (1.1)
holomorphic on C∗ exists, if and only if at least one of the two following
statements holds:

- either the unique semiinfinite sequence (ak)k≤−1 solving relations (4.5)
for k ≤ −2 with series

∑−1
k=−∞ akz

k converging on C∗ satisfies relation
(4.6);

- or Heun equation (1.1) has an entire solution: holomorphic on C.

Proof Let

f(z) =

−1∑
k=−∞

akz
k (4.7)

be a semiinfinite solution of recurrence relations (4.5) for k ≤ −2. Note
that for every k ≤ −1 its coefficient ak is uniquely determined as a linear
combination of the two previous ones ak−2 and ak−1, see (4.5) written for
k ≤ −2, since µ 6= 0, see (1.1). The same holds in the opposite direction:
for every k ≤ −3 the coefficient ak is expressed as a linear combination
of the coefficients ak+1 and ak+2 by (4.5), since l /∈ Z. The two latter
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statements together imply that a−2 and a−1 do not both vanish. Therefore,
the above negative semiinfinite series can be extended to positive k as a (may
be just formal) two-sided solution of (4.5) only in the case, when relation
(4.6) holds. Let us show that in this case it does extend to a true (not just
formal) two-sided solution.

Note that a−1 6= 0, by relation (4.6) and since a−2, a−1 do not vanish
both, µ 6= 0 and l 6= 1. Equation (4.5) with k = −1 has zero multiplier
at a0, see (4.6), and hence, holds for arbitrary a0. The same equation with
k = 0 yields

λa0 − lµa−1 + µa1 = 0. (4.8)

This is a linear non-homogeneous equation on the pair (a0, a1). Hence, its
solutions form a line L1 ⊂ C2 that does not pass through the origin: a−1 6= 0.
On the other hand, the pairs (a0, a1) extendable to true (not just formal)
semiinfinite solutions in positive k exist and are all proportional (uniqueness
of solution up to constant factor and since for every k ≥ 1 the coefficient
ak±1 is uniquely determined by ak and ak∓1 via relations (4.5), since l /∈ Z).
Hence, they form a line L0 through the origin. Let us choose (a0, a1) to be
the intersection of the above lines L0 and L1, provided they are not parallel
(the case of parallel lines is discussed below). Then the pair (a0, a1) extends
to a semiinfinite solution of relations (4.5) in positive k, by construction.
The complete Laurent series

∑+∞
k=−∞ akz

k thus constructed is a solution to
equations (4.5) and hence, to Heun equation (1.1).

Case, when L0 and L1 are parallel. In this case L0 = {λa0 + µa1 =
0}, and (a0, a1) defines a solution to (4.5) with positive k, if and only if
(a0, a1) ∈ L0. This solution extends to negative k by putting ak = 0 for
k < 0, since relation (4.5) for k = −1, 0 is equivalent to (4.6) and (4.8)
respectively. Finally we obtain a converging Taylor series satisfying (4.5)
and hence, presenting a solution of Heun equation (1.1) holomorphic on C.
Proposition 4.7 is proved. 2

The next theorem describes those parameter values for which Heun equa-
tion (1.1) has an entire solution. To state it, consider the following matrices
Mk, Rk and numbers ak, ξl:

Mk =

(
1 + λ

k(k+l)
µ2

k(k+l)

1 0

)
, Rk = MkMk+1 . . . for k ≥ 1,

ak =
µk

k!
Rk,21 for k ≥ 1, a0 = R1,11,

ξl = ξl(λ, µ) = λa0 + µa1 = λR1,11 + µ2R1,21. (4.9)
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Theorem 4.8 A Heun equation (1.1) with n = l + 1, l ∈ C \ Z<0 has an
entire solution, if and only if ξl(λ, µ) = 0.

Theorem 4.8 is equivalent to Corollary 1.6. It was partly proved and con-
jectured in [10, section 3, theorem 2] and proved completely for entire l ≥ 0
in [13, subsection 3.1, theorem 3.5]. For completeness of presentation let us
give its direct proof without using results of loc. cit.
Proof of Theorem 4.8. The above matrices Mk and numbers ak coin-
cide with those from (3.9) and (3.18) respectively constructed for recurrence
relations (1.6) with b = 0, n = l + 1,

(k(k + l) + λ)ak − µ(k + l)ak−1 + µ(k + 1)ak+1 = 0; (4.10)

here k0+ = −1. The matrices Mk are well-defined for all k ∈ N, whenever
l /∈ Z<0. (If l = 0, then k0+ = 0, but the corresponding sequence ak from
(3.18) remains the same, as in (4.9), up to constant factor.) This together
with Theorem 3.5 implies that the sequence (ak) satisfies (4.10) for k ≥ 1 and
the series E(z) =

∑+∞
k=0 akz

k converges on C. Therefore, LE = const, and
the latter constant is the left-hand side of the relation (4.10) corresponding
to k = 0: that is, λa0 + µa1 = ξl(λ, µ). This together with the uniqueness
of an entire function E for which LE = const (Theorem 1.3) implies the
statement of Theorem 4.8. 2

Theorem 4.9 Let n /∈ Z, µ 6= 0,

Sm =

(
1 + λ−n+2

(1−m)(n−m−2)
µ2(n−m−1)

(1−m)(n−m−2)(n−m−3)
1 0

)
for m ≥ 2,

Tm = SmSm+1 . . . .

Heun equation (1.1) has a solution holomorphic on C∗, if and only if either
ξl(λ, µ) = 0, or

(2− n+ λ)(4− n)T2,11 − µ2(n− 2)T2,21 = 0. (4.11)

Proof A solution of Heun equation holomorphic on C∗ exists if and only
if some of the two statements of Proposition 4.7 holds. The second one, the
existence of an entire solution is equivalent to the equation ξl(λ, µ) = 0, by
Theorem 4.8. Let us show that the first statement of Proposition 4.7, that
is, equation (4.6) on the coefficients a−2, a−1 of the backward solution of
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recurrence relations (4.5) is equivalent to (4.11). To do this, let us recall the
formulas for the sequence ak (up to common constant factor), see (3.29):

ĉm = Tm,21 = Tm+1,11, ĉ1 = T2,11,

âm =
ĉmµ

m

(2− n)m+1
= a−m, m ≥ 1.

The sequence (ak)k≤−1 satisfies recurrence relations (4.5) for k ≤ −2, as in
Subsection 3.3, and the series

∑
k≤−1 akz

−k converges on C: here we have
rewritten the formulas from Subsection 3.3 for b = 0. One has

a−2 =
µ2T2,21

(2− n)(3− n)(4− n)
, a−1 =

µT2,11
(2− n)(3− n)

,

by definition. Substituting the latter formulas and l = n− 1 to (4.6) yields
(4.11). This together with Proposition 4.7 proves the theorem. 2

4.3 Double resonant subcase: n, b ∈ Z

Recall that we study the existence of solution (4.1) of Heun equation of
the type (1.1). In the case under consideration b ∈ Z, and without loss
of generality we can and will consider that b = 0. In this case a solution
we are looking for is holomorphic on C∗ and presented by a Laurent series
E(z) =

∑
k∈Z akz

k converging on C∗. Recall that l = n − 1. Without loss
of generality we will consider that l ≥ 0. One can achieve this by applying
the transformation

3 : E(z) 7→ eµ(z+z
−1)E(−z−1),

which is an isomorphism of the solution space of equation (1.1) and equation

LE = z2E′′ + ((−l + 1)z + µ(1− z2))E′ + (λ+ µ(l − 1)z)E = 0, (4.12)

see [10, section 4, formula (39)]. It sends solutions of equation (1.1) holo-
morphic on C∗ onto solutions of equation (4.12) holomorphic on C∗.

Theorem 4.10 Let l ∈ Z, l ≥ 0, µ 6= 0. Equation (1.1) with n = l + 1 has
a solution holomorphic on C∗, if and only if its monodromy is unipotent.
This happens, if and only if equation (1.1) satisfies one of the two following
statements:

1) either it has an entire solution, i.e., holomorphic on C; this holds if
and only if the monodromy is trivial;
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2) or the corresponding equation (4.12) has a nontrivial polynomial so-
lution.

In the case, when the parameters λ and µ are real and µ > 0, statements
1) and 2) are incompatible: if statement 2) holds, then the monodromy is
nontrivial (a unipotent Jordan cell).

Remark 4.11 The incompatibility of statements 1) and 2) for real param-
eter values was proved in [13, theorem 3.10]. It follows from our result on
positivity of determinants of modified Bessel functions [13, theorem 1.3] and
results of [11]. (Incompatibility for real parameters was proved for µ > 0,
but it holds whenever µ 6= 0: cases µ > 0 and µ < 0 are symmetric and
one is reduced to the other via appropriate transformation of the equation.)
However as it will be shown below in Proposition 4.15, statements 1) and 2)
hold simultaneously for an infinite set of complex parameter values already
for l = 1.

Theorem 4.10 will be proved below. The sets of parameter values for
which statements 1) or 2) hold were already described in [9, 10, 13]. The set
of parameters corresponding to Heun equations (1.1) having entire solutions
is given by equation ξl(λ, µ) = 0, see Theorem 4.8. Let us recall the descrip-
tion of the parameters corresponding to equations (4.12) with polynomial
solutions. To do this, consider the three-diagonal l × l-matrix

H =



0 µ 0 0 0 0 . . . 0
µ(l − 1) 1− l 2µ 0 0 . . . 0

0 µ(l − 2) −2(l − 2) 3µ 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 2µ −2(l − 2) (l − 1)µ
0 . . . 0 0 0 µ 1− l

 :

(4.13)
Hij = 0 if |i−j| ≥ 2; Hjj = (1−j)(l−j+1); Hj,j+1 = µj; Hj,j−1 = µ(l−j+1).

The matrix H belongs to the class of the so-called Abelian matrices that
arise in different questions of mathematics and mathematical physics2.

Theorem 4.12 [9, section 3] A Heun equation (4.12) with µ 6= 0 has a
polynomial solution, if and only if l ∈ N and the three-diagonal matrix H +
λId has zero determinant.

2Ilyin, V.P.; Kuznetsov, Yu.I. Three-diagonal matrices and their applications. Moscow,
Nauka, 1985.
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Remark 4.13 Let us explain why a Heun equation (4.12) cannot have a
polynomial solution for l /∈ N, µ 6= 0. Indeed, the corresponding three-term
relations are of the form (4.10) with l replaced by −l. For every k ≥ 1
the coefficients at ak±1 in these relations are non-zero. Hence their solution
cannot be a polynomial, and it is an infinite series.

Proof of Theorem 4.10. The monodromy of equation (1.1) has unit
determinant, since l ∈ Z and by Proposition 4.1. Let equation (1.1) have a
solution E(z) holomorphic on C∗. The latter solution is a monodromy eigen-
function with eigenvalue one. Hence, the other monodromy eigenvalue also
equals one, by unimodularity of the monodromy, Conversely, let the mon-
odromy be unipotent. Then it has an eigenfunction with eigenvalue one, and
hence, the latter eigenfunction is a solution of equation (1.1) holomorphic
on C∗.

Now let us show that existence of a solution E(z) holomorphic on C∗ is
equivalent to the statement that one of the two statements 1) or 2) holds.
Let the above solution E =

∑
k∈Z akz

k exist. Let us prove that one of the
two statements 1) or 2) holds.

The Laurent series of the solution E(z) converges on C∗ and the co-
efficients ak satisfy recurrence relations (4.10). For k = −l and k = −1
respectively these relations take the form

λa−l + µ(1− l)a1−l = 0, (4.14)

(1− l + λ)a−1 − µ(l − 1)a−2 = 0. (4.15)

In particular, they do not contain aj , j /∈ {−l, . . . ,−1}. Therefore, given a
solution holomorphic on C∗ of Heun equation (1.1), its Laurent coefficients
ak with−l ≤ k ≤ −1 should form a vector (a−l, . . . , a−1) satisfying equations
(4.14), (4.15) and the l − 2 recurrence equations (4.10) for intermediate
k = −l+1, . . . ,−2. In other terms, the latter vector should be in the kernel of
the three-diagonal l×l- matrix H̃ of equations (4.10) with k = −1, . . . ,−l: its
line number −k consists of the coefficients of the k-th relation; the coefficient
at a−j stands at the column number j.

Proposition 4.14 Let H̃ be the latter matrix, and let Ht be the transposed
matrix (4.13). One has

H̃ = Q(Ht + λId)Q−1, Q =


0 0 0 . . . 1
0 . . . 0 −1 0
. . . 0 1 0 0
. . . . . . . . . . . . . . .

(−1)l−1 0 0 . . . 0

 .
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The statement of Proposition 4.14 can be checked immediately.
Case 1). There exists a solution E(z) of Heun equation (1.1)

holomorphic on C∗ such that either l = 0 in (1.1), or l ≥ 1 and aj = 0
for all j ∈ {−l, . . . ,−1}. Then the series Ê(z) =

∑
k≥0 akz

k is an entire
solution, i.e., holomorphic on C: it satisfies relations (4.10) for all k ∈ Z.
Indeed, relations (4.10) hold for all k > 0, by assumption. For k < 0 they do
not contain aj with j ≥ 0, by (4.15), and hence, hold automatically, if we put
aj = 0 for all j < 0. Relation (4.10) for k = 0 takes the form λa0 +µa1 = 0,
and hence, does not contain a−1 and holds automatically for the series Ê,
as for E: for l = 0 this is obvious; for l ≥ 1 this follows from the assumption
that a−1 = 0 in E. A priori, it may happen that the series

∑+∞
k=0 akz

k is
identically zero: in our assumptions, this holds exactly when aj = 0 for
every j ≥ −l. In this case the function #E(z) = 2ωz−(l+1)E(z−1), which is
also a solution of equation (1.1), is an entire solution linearly independent
with E. It is known that if (1.1) has an entire solution and l ∈ Z≥0, then
each solution of equation (1.1) is holomorphic on C∗, and if l ≥ 1, then its
Laurent series does not contain monomials zj , j ∈ {−l, . . . ,−1}, see [11,
lemma 3, statement 6]. Hence, the monodromy is trivial.

Let us prove the converse: if the monodromy of equation (1.1) is trivial,
then l ∈ Z and equation (1.1) has an entire solution. Indeed, Heun equation
(1.1) is analytically equivalent to the system of equations{

v′ = 1
2iωzu

u′ = z−2(−(lz + µ(1 + z2))u+ z
2iωv)

, (4.16)

where E(z) = eµzv(z). The formal normal form at the origin of system
(4.16) is the system {

v̂′ = 0

û′ = −z−2(lz + µ)û
.

The monodromy matrix of system (4.16) written in a canonical sectorial
solution base in appropriate sector is the product of three matrices: the
monodromy diag(1, e−2πil) of the formal normal form and two unipotent
matrices, one upper-triangular and the other lower-triangular (the inverse
to the Stokes matrices). See [18, formulas (2.15) and (3.2)] for more detail.
The latter product is identity, if and only if l ∈ Z and the Stokes matrices
are trivial, as in loc. cit. Triviality of the Stokes matrices is equivalent to
the existence of a variable change (v, u) = H(z)(v̂, û) transforming system
(4.16) to its formal normal form, where H : C → GL2(C) is a holomorphic
mapping, H(0) = Id, as in loc. cit. The formal normal form has an ob-
vious holomorphic solution (v̂(z), û(z)) ≡ (1, 0). Its image under the latter
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variable change is a solution (v(z), u(z)) of system (4.16) holomorphic on
C. Therefore, the corresponding solution E(z) = eµzv(z) of Heun equation
(1.1) is also holomorphic on C. The converse statement is proved.

Case 2): l ≥ 1 and there exists a solution of Heun equation
(1.1) holomorphic on C∗ with ak 6= 0 for some k ∈ {−l, . . . ,−1}. In
this case the three-diagonal matrix H̃ of relations (4.10) with k = −l, . . . ,−1
has nonzero kernel containing the vector (a−1, . . . , a−l) (see the above ar-
guments), and hence, zero determinant. Thus, the matrix H + λId, whose
transposed is conjugated to H̃ (Proposition 4.14), also has zero determinant.
Therefore, equation (4.12) has a polynomial solution (Theorem 4.12). It is
known that if the parameters λ and µ are real, µ > 0 and equation (4.12)
has a polynomial solution, then the corresponding equation (1.1) does not
have entire solution [13, theorem 3.10]: cases 1) and 2) are incompatible.
Therefore, if λ, µ ∈ R, µ > 0 and case 2) takes place, then the monodromy
is non-trivial: it is a unipotent Jordan cell,

Let us now prove the converse: each statement 1) or 2) implies the exis-
tence of a solution E(z) holomorphic on C∗ of equation (1.1). For statement
1) this is obvious: the solution from 1) is even holomorphic on C. Let
statement 2) hold: equation (4.12) have a polynomial solution Ẽ. Let 3 be
the transformation from the beginning of the subsection, which is an iso-
morphism between the solution spaces of equations (1.1) and (4.12). The
function E = 3−1Ẽ is a solution of equation (1.1) holomorphic on C∗, since
3 is an isomorphism of the space of functions holomorphic on C∗. Theorem
4.10 is proved. 2

To show that statements 1) and 2) of Theorem 4.10 can be compatible,
let us recall the definition of modified Bessel functions Ik(x) of the first kind:
they are the Laurent coefficients of the family of analytic functions

gx(z) = e
x
2
(z+ 1

z
) =

+∞∑
k=−∞

Ik(x)zk;

Ik(x) = i−kJk(ix),

where Jk is the usual k-th Bessel function. Recall that each function Jk of
complex variable x has infinite number of zeros (roots), all of them are real
(non-zero for k = 0) and symmetric: that is, if x is a root of the function
Jk, then so is −x. This follows from their infinite product decomposition,
see [24, p.235]:

Jk(z) =
1

k!

(z
2

)k∏
j≥1

(1− z2

x2k,j
) for k ≥ 0,
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where xk,1 < xk,2, · · · ∈ R+ are the positive roots of the function Jk. This
implies that each function Ik has infinite number of roots, namely, ±ixk,j
(and the additional root 0, if k 6= 0).

Proposition 4.15 Let l = 1, n = l + 1 = 2. Heun equation (4.12) has a
polynomial solution, if and only if λ = 0: the latter solution is a constant.
For λ = 0 equation (1.1) has an entire solution, if and only if I1(2µ) = 0,
i.e., µ = ±ix1,j2 for some j. Thus, for l = 1, n = l + 1 = 2, (λ, µ) =
(0,±ix1,j2 ) equation (4.12) has a constant solution and equation (1.1) has
an entire solution.

Proof The first statement of the proposition follows from Theorem 4.12:
the corresponding three-diagonal matrix for l = 1 is the scalar number λ.
Note that a polynomial solution of equation (4.12) has degree at most l− 1,
as was shown in [9, section 3]. Hence, in our case it is a constant, which

can be normalized to be Ê(z) ≡ 1. Its image E = 3Ê = eµ(z+
1
z
) under

the transformation 3 from the beginning of the subsection is a solution of
equation (1.1). The Laurent coefficient of the function E(z) at the power
z−1 equals I1(2µ), by definition. If it vanishes, then equation (1.1) has an
entire solution, as in the above proof of Theorem 4.10, case 1). If it does
not vanish, then (1.1) has no entire solution, as was mentioned at the same
place, see [11, lemma 3, statement 6]. This proves the proposition. 2

5 Applications to phase-lock areas in the model of
Josephson effect

5.1 Phase-lock areas in Josephson effect: brief geometric de-
scription and plan of the section

Here we apply the above results to the family of nonlinear equations (1.16):

φ̇ =
dφ

dt
= − sinφ+B +A cosωt, A, ω > 0, B ≥ 0. (5.1)

We fix an arbitrary ω > 0 and consider family (5.1) depending on two
variable parameters (B,A). The variable change τ = ωt transforms (5.1) to
differential equation (1.17) on the two-torus T2 = S1 × S1 with coordinates
(φ, τ) ∈ R2/2πZ2. Its solutions are tangent to the vector field{

φ̇ = − sinφ
ω + l + 2µ cos τ

τ̇ = 1
, l =

B

ω
, µ =

A

2ω
(5.2)
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on the torus. The rotation number of the equation (5.1) is, by definition,
the rotation number of the flow of the field (5.2), see [1, p. 104]. It is a
function ρ(B,A) of the parameters:

ρ(B,A;ω) = lim
k→+∞

φ(2πk)

k
.

Here φ(τ) is a general solution of the first equation of system (1.18), whose
parameter is the initial condition at τ = 0. Recall that the rotation number
does not depend on the choice of the initial condition [1, p. 104].

We consider the B-axis as the abscissa, and the A-axis as the ordinate.

Definition 5.1 (cf. [18, definition 1.1]) The r-th phase-lock area is the level
set {(B,A) | ρ(B,A) = r} ⊂ R2, provided it has a non-empty interior.

Remark 5.2 : phase-lock areas and Arnold tongues. The behavior
of phase-lock areas for small A demonstrates the effect discovered by V.I.
Arnold [1, p. 110]. That is why the phase-lock areas became “Arnold
tongues”, see [18, definition 1.1].

Recall that the rotation number of equation (5.1) has the physical mean-
ing of the mean voltage over a long time interval. The segments in which the
phase-lock areas intersect horizontal lines correspond to the Shapiro steps
on the voltage-current characteristic [4].

It has been shown earlier that
- the phase-lock areas exist only for integer values of the rotation number

(a “quantization effect” observed in [7] and later also proved in [20, 19]);
- the boundary of each phase-lock area {ρ = r} consists of two analytic

curves, which are the graphs of two functions B = gr,±(A) (see [8]; this fact
was later explained by A.V.Klimenko via symmetry, see [22]);

- the latter functions have Bessel asymptotics (observed and proved on
physical level in [26], see also [23, chapter 5], [3, section 11.1], [6]; proved
mathematically in [22]).

- each phase-lock area is an infinite chain of bounded domains going to
infinity in the vertical direction, in this chain each two subsequent domains
are separated by one point. Those of these points that lie in the horizontal
B-axis are calculated explicitly, and we call them exceptional. The other sep-
aration points, lie outside the horizontal B-axis and are called the adjacency
points (or briefly adjacencies), see Fig.1.

In the present section we obtain functional equations satisfied by non-
integer level curves {ρ(B,A) = r} of the rotation number (Subsection 5.4)
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and the boundaries of the phase-lock areas (Subsection 5.5) using relation
of equation (5.1) to Heun equation (1.1) (recalled in Subsection 5.3) and
the results on monodromy eigenvalues of Heun equations from the previous
section. The above-mentioned functional equations will be written in the
complement to the adjacencies and the discriminant set (with fixed ω) of
the parameter values corresponding to the existence of a polynomial solu-
tion of equation (4.12). Afterwards we discuss open problems and possible
approaches to them using the above-mentioned results on Heun equations.

Symmetries of the phase-lock area portrait are presented in the next
subsection.

5.2 Symmetries and the portraits of the phase-lock areas

It is known that
- for every r ∈ Z the r-th phase-lock area is symmetric to the −r-th one

with respect to the vertical A-axis;
- every phase-lock area is symmetric with respect to the horizontal B-

axis.
These symmetry statements follow the fact that the transformations

(φ, τ) 7→ (−φ, τ + π) (φ, τ) 7→ (φ, τ + π) send system (5.2) to the system of
the same form, where B is changed to −B in the first case and A is changed
to −A in the second case.

In what follows we present pictures of the phase-lock area portraits.
Taking into account the above symmetries, it is enough to present only the
parts of portraits lying in the upper half-plane.

5.3 Transformation to double confluent Heun equations. The
boundary points of the phase-lock areas corresponding
to entire and polynomial solutions of the Heun equation

Set
Φ = eiφ, z = eiτ = eiωt. (5.3)

Considering equation (5.1) with complex time t we get that transformation
(5.3) sends it to the Riccati equation

dΦ

dz
= z−2((lz + µ(z2 + 1))Φ− z

2iω
(Φ2 − 1)).
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Figure 1: Phase-lock areas and their adjacencies for ω = 2. The abscissa is
B, the ordinate is A.

This equation is the projectivization of the following linear equation in vector
function (u, v) with Φ = v

u , see [13, subsection 3.2]:{
v′ = 1

2iωzu

u′ = z−2(−(lz + µ(1 + z2))u+ z
2iωv)

(5.4)

The above-described reduction to a system of linear equations was earlier
obtained in slightly different terms in [5, 16, 10, 20]. It is easy to check that
a function v(z) is the component of a solution of system (5.4), if and only if
the function E(z) = eµzv(z) satisfies equation (1.1) with n = l + 1 and

λ =

(
1

2ω

)2

− µ2. (5.5)
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Figure 2: Phase-lock areas and their adjacencies for ω = 1. The abscissa is
B, the ordinate is A.

The next fact has important applications to the problems discussed in the
paper.

Proposition 5.3 The rotation number function is a real-analytic function
of the parameters (B,A) on the set U = ρ−1(R\Z), which is the complement
to the union of the phase-lock areas of system (5.2). Moreover, its restriction
to U is an analytic submersion U → R \Z inducing an analytic fibration by
curves

Lr = {(B,A) ∈ R2 | ρ(B,A) = r},
and these curves are graphs of analytic functions in the variable A defined
for all A ∈ R.

Proof The variable change (5.3) reducing family of equations (5.1) on the
torus to the Riccati equation sends the space circle with the coordinate φ to
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Figure 3: Phase-lock areas and their adjacencies for ω = 0.7. Figure taken
from [10, p. 331].

the unit circle in the Riemann sphere with the coordinate Φ. The time 2π
flow mapping (i.e., the first return mapping) of the corresponding family of
vector fields (5.2) on the torus is the restriction to the unit circle in the Rie-
mann sphere of a transformation from the Möbius group: the monodromy
transformation of the Riccati equation. That is, the restriction to the unit
circle of a conformal automorphism of the unit disk. The rotation number
function ρ considered as a function on the group Aut(D1) ' PSL2(R) is
analytic on the set of transformations analytically conjugated to nontrivial
rotations. (Recall that these transformations are called elliptic.). This fol-
lows from the fact that each elliptic transformation of the unit disk has a
fixed point inside the disk, its multiplier depends analytically on the trans-
formation and equals e2πiρ. The set of elliptic transformations coincides
with the complement of the subset in Aut(D1) consisting of transformations
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Figure 4: Phase-lock areas and their adjacencies for ω = 0.5.

whose restrictions to S1 = ∂D1 have integer rotation number. The points
of the set U correspond to non-integer values of the rotation number, and
hence, to Riccati equation with elliptic monodromy. This proves analyticity
of the rotation number function on the set U .

Now let us prove the second statement of the proposition: the restriction
ρ|U is a submersion, and each its level set Lr is the graph {B = gr(A)} of a
function gr analytic on R. Indeed, let r /∈ Z. The set Lr is an analytic curve,
by analyticity of the rotation number function on U (the first statement of
the proposition). Let us prove that it is a graph of function. To do this, let us
check that ∂ρ

∂B (B,A) > 0 for every (B,A) ∈ U , and hence, one can apply the
Implicit Function Theorem to the function ρ. The time 2π flow mapping of
the corresponding vector field (5.2) has a non-integer rotation number, and
hence, is analytically conjugated to the rotation by angle 2πρ0, ρ0 = ρ(B,A),
as was shown above. Perturbation of the time 2π flow mapping via increasing
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Figure 5: Phase-lock areas and their adjacencies for ω = 0.3.

B by δB is conjugated to a perturbed rotation, which is the composition of
the above rotation with a diffeomorphism h close to identity, the difference
h(x)−x > 0 being uniformly bounded from below by cδB, c > 0. The latter
perturbed rotation has rotation number bounded from below by ρ0 + c

2π δB,
which follows from the definition of the rotation number. This implies the
above statement on positivity of the derivative in B of the rotation number
function. Thus, the mapping ρ|U is an analytic submersion, and the set Lr
with r /∈ Z is the graph of an analytic function gr(A). Now it remains to
show that the function gr is analytic on the whole line R, i.e., the curve Lr
does not go to infinity in the horizontal direction so that the ordinate A
remains bounded. This follows from the fact that the curve Lr is contained
in the domain between the phase-lock areas with the rotation numbers [r]
and [r] + 1, and the abscissa B is uniformly bounded on this domain. The
latter statement follows from the fact that each phase-lock area {ρ = l}
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tends to infinity in the vertical direction approaching the line {B = lω}: its
boundary consists of graphs of two functions {B = gl,±(A)} defined on R
and having Bessel asymptotics at infinity [22]. This proves the proposition.

2

Remark 5.4 The adjacencies of the phase-lock areas of family of equation
(5.1) are characterized by the condition that the corresponding period 2π
flow mapping (i.e., the Poincaré mapping) of vector field from family (5.2) is
the identity, see [18, proposition 2.2]. It was shown in [10, lemmas 3, 4] that if
a point (B,A) corresponds to a Heun equation (1.1) with an entire solution,
then the Poincaré mapping corresponding to this point is the identity, and
hence, it is an adjacency. The complete result is the following.

Theorem 5.5 (see [13, theorems 3.3, 3.5]). For every ω > 0, l ≥ 0 a point
(B,A) ∈ R2 with A ≥ 0, B = lω is an adjacency for family of equations
(5.1), if and only if l ∈ Z and the corresponding equation (1.1) with n = l+1
and µ, λ as in (5.2) and (5.5) has a nontrivial entire solution, i.e., if and
only if equation ξl(λ, µ) = 0 holds; ξl is the same, as in (4.9).

In what follows we will use the next result.

Proposition 5.6 Let ω > 0, (B,A) ∈ R2, and let ρ = ρ(B,A) denote
the corresponding rotation number. Let (B,A) do not lie in the interior
of a phase-lock area: it may lie either in the complement of the union of
phase-lock areas, or in its boundary. Then the monodromy operator of the
corresponding Heun equation (1.1) with n = l + 1, l = B

ω has eigenvalues

eπi(ρ−l) and e−πi(ρ+l).

Proof Let λ1, λ2 be the eigenvalues of the above monodromy operator of
Heun equation. The point (B,A) does not lie in the interior of a phase-lock
area. If r = ρ(B,A) /∈ Z, then the monodromy of the corresponding Riccati
equation is an elliptic Möbius transformation conformally conjugated to the
rotation by angle 2πr. Therefore, it has two fixed points with multipliers
e±2πir. The latter multipliers are ratios of the eigenvalues λj , and without
loss of generality we consider that λ1

λ2
= e2πir. On the other hand, λ1λ2 =

e−2πil, by Proposition 4.1. This implies that the eigenvalues under question
are equal to ±eπi(r−l), ±e−πi(r+l). In the case, when r ∈ Z, the point (B,A)
lies in the boundary of a phase-lock area and the monodromy of the Riccati
equation is either parabolic, or identity. The corresponding monodromy of
the Heun equation has multiple eigenvalue given by same (now coinciding)
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formulas. The correct sign should be the same for all the points (B,A) in the
complement of the parameter plane to the union of the interiors of phase-lock
areas, by path connectivity of the latter complement and continuity of the
rotation number function. Indeed, the phase-lock areas are disjoint closed
subsets in R2, the complement of each of them consists of two connected
components. The interior of each phase-lock area is disconnected: one can
pass from one its side to the other via any adjacency. The sign is “+” at
each adjacency, since the corresponding monodromy is trivial (Remark 5.4).
Hence, it is “+” everywhere. This proves the proposition. 2

Corollary 5.7 The pair of eigenvalues from Proposition 5.6 correspond-
ing to a given point (B,A) is the same for all other points (B,A′) with
ρ(B,A′) ≡ ±ρ(B,A)(mod2Z).

Theorem 5.8 Let ω > 0, (B,A) ∈ R2, B,A > 0, l = B
ω , µ = A

2ω , λ = 1
4ω2 −

µ2, ρ = ρ(B,A). The double confluent Heun equation (4.12) corresponding
to the latter λ, µ and l has a polynomial solution, if and only if l, ρ ∈ Z,
0 ≤ ρ ≡ l(mod2Z) and ρ ≤ l, and in addition, the point (B,A) lies in
the boundary of the phase-lock area number ρ and is not an adjacency. In
other terms, the points (B,A) ∈ R2

+ corresponding to equations (4.12) with
polynomial solutions lie in boundaries of phase-lock areas and are exactly
their intersection points with the lines l = B

ω ≡ ρ(mod2Z), 0 ≤ ρ ≤ l, except
for the adjacencies, see Fig. 6.

Proof It is known that every point (B,A) ∈ R2
+ corresponding to equation

(4.12) with a polynomial solution lies in the boundary of the phase-lock area
number ρ, and one has l, ρ ∈ Z, l = B

ω ≡ ρ(mod2Z), 0 ≤ ρ ≤ l [9, corollary
6 and theorem 5]. In addition, (B,A) is not an adjacency [13, theorem
3.10]. Let us prove the converse: if (B,A) satisfy all the latter statements,
then the corresponding equation (4.12) has a polynomial solution. Indeed, if
(B,A) ∈ R2

+ lies in the boundary of the phase-lock area number ρ, l ∈ Z and
ρ ≡ l(mod2Z), then the monodromy of Heun equation (1.1) is unipotent, by
Proposition 5.6: the corresponding eigenvalues are equal to e−πi(ρ+l) = 1.
Let us now suppose that (B,A) is not an adjacency, or equivalently, equation
(1.1) does not have an entire solution. Then equation (4.12) has a polynomial
solution, by Theorem 4.10. Theorem 5.8 is proved. 2

5.4 Equation on non-integer level sets of rotation number

Recall that in the classical Arnold family of circle diffeomorphisms the phase-
lock areas (i.e., the Arnold tongues) exist exactly for the rational values
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Figure 6: Approximate phase-lock areas for ω ' 0.27; the marked points
correspond to equations (4.12) with polynomial solutions.

of the rotation number. In family (5.1) we have the quantization effect
mentioned in the Subsection 5.1: phase-lock areas exist only for integer
values of the rotation number. Therefore, in our case the rational non-integer
values of the rotation number do not differ from the irrational values.

Recall that Lr = {(B,A) ∈ R2 | ρ(B,A) = r}, and for r /∈ Z this is
the graph {B = gr(A)} of an analytic function (Proposition 5.3). For given
ω > 0 and r > 0 set

L<r> = tv≡±r(mod2Z)Lv.

Remark 5.9 Our goal is to describe the sets Lr for r /∈ Z by analytic equa-
tions in terms of the monodromy eigenvalues of Heun equations, by using
their expressions eπi(±ρ−l) via the rotation number function (Proposition
5.6). The latter pair of eigenvalues is in a one-to-one correspondence with
the value ±ρ(mod2Z). Therefore, the pair of eigenvalues corresponding to
a given value r of the rotation number function coincides with all the other
pairs corresponding to the values r′ ≡ ±r(mod2Z), see Corollary 5.7. Our
methods allows to describe the union L<r> by analytic equation, and not
each individual level set Lr separately.

We consider the case, when r /∈ Z. Let us write down analytic equations
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defining the set L<r> in the complement R2 \ Σ<r>, where

Σ<r> = ∪±{(B,A) ∈ R2 | l =
B

ω
≡ ±r(mod2Z)}. (5.6)

For every (B,A) ∈ L<r> the corresponding Heun equation (1.1) has a mon-
odromy eigenfunction of the type

E(z) = zb
∑
k∈Z

akz
k, b =

r − l
2

, l =
B

ω
,

by Proposition 5.6. On has b, b + l /∈ Z, if (B,A) /∈ Σ<r>. Therefore, the
analytic subset L<r> \ Σ<r> ⊂ (R2 \ Σ<r>) is described by equation (4.4).
Let us write it down explicitly. The corresponding matrices Mk, Rk, Sm,
Tm, see (3.9) and (3.23) have the form

Mk =

(
1 + λ

(k+ r
2
)2− l2

4

µ2

(k+ r
2
)2− l2

4

1 0

)
, Rk = MkMk+1 . . . ,

Sm =

(
1 + λ−l+1

( r−l
2
−m+1)( r+l

2
−m−1)

µ2( r+l
2
−m)

( r−l
2
−m+1)( r+l

2
−m−1)( r+l

2
−m−2)

1 0

)
,

Tm = SmSm+1 . . . .

Theorem 5.10 Let ω > 0, r ∈ R, r /∈ Z. The set L<r> ∩ (R2 \ Σ<r>) is
defined by the following equation in the variables (B,A) ∈ R2 \Σ<r>, where
B = lω, A = 2µ, λ+ µ2 = 1

4ω2 :

(
r − l

2
+ 1)(

r + l

2
− 1)R1,11T0,11 + µ2R1,21T0,21 = 0. (5.7)

Proof A point (B,A) ∈ R2 \ Σ<r> is contained in L<r>, if and only if
ρ = ρ(A,B) ≡ ±r(mod2Z). Or equivalently, some of the corresponding
monodromy eigenvalues eπi(±ρ−l) equals e2πib = eπi(r−l). The latter state-
ment is equivalent to (5.7), by Theorem 4.3 and since b, b + l /∈ Z. This
proves Theorem 5.10. 2

5.5 Description of boundaries of phase-lock areas

Proposition 5.11 A point in the parameter space of equation (5.1) lies
in the boundary of a phase-lock area, if and only if the monodromy of the
corresponding Heun equation (1.1) is parabolic: has multiple eigenvalue.
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Proof The point under question lyes in the boundary of a phase-lock area,
if and only if the flow mapping of the vector field (5.2) for the period 2π
(restricted to the coordinate φ-circle) is parabolic: has a fixed point with
unit derivative. The period mapping is the restriction to the unit circle
of the monodromy of the corresponding Riccati equation: the projectivized
monodromy. Parabolicity of the projectivization of a two-dimensional linear
operator is equivalent to its own parabolicity. The proposition is proved. 2

Proposition 5.12 Let a Heun equation (1.1) have a parabolic monodromy.
Then the monodromy either has Jordan cell type, or is the identity.

Proof The monodromy matrix is the product of the formal monodromy
matrix diag(1, e−2πin) and a pair of unipotent matrices: the inverse to the
Stokes matrices at 0, cf. [18, formulas (2.15) and (3.2)]. If the monodromy
of a Heun equation (1.1) is parabolic but not a Jordan cell, then it is a
multiplication by scalar number. If the monodromy is scalar, then the Stokes
matrices are trivial, and the monodromy coincides with the formal one, see
[18, proof of lemma 3.3]. Hence, both monodromies are scalar and given by
the above diagonal matrix with unit eigenvalue. Thus, they are trivial. The
proposition is proved. 2

The condition saying that the monodromy has multiple eigenvalue is
equivalent to the statement that it has eigenvalue ±e−πil, by Proposition
4.1. This is equivalent to the statement that there exists a multivalued
solution zb

∑
k∈Z akz

k of Heun equation with b ∈ {− l
2 , −

l+1
2 }: a monodromy

eigenfunction with the above eigenvalue. The corresponding parameter set
of Heun equations (1.1) for b /∈ Z will be described below (Cases 1 and 2)
by using the following proposition. Afterwards we immediately obtain the
description of boundaries of phase-lock areas.

Proposition 5.13 Let a Heun equation (1.1) have a Jordan cell monodromy.
Then its eigenfunction is either invariant, or anti-invariant under the invo-
lution #:

(#E)(z) = 2ωz−l−1(E′(z−1)− µE(z−1)).

The proposition follows from the fact that the involution # sends mon-
odromy eigenfunctions to eigenfunctions (Proposition 4.2).

Case 1: l /∈ 2Z, b = − l
2 : the monodromy eigenvalue equals

e−πil 6= 1. Then the monodromy operator of Heun equation (1.1) is a
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Jordan cell, by Proposition 5.12. Consider the matrices

Mk =

(
1 + λ

k2− l2

4

µ2

k2− l2

4

1 0

)
, Rk = MkMk+1 . . . . (5.8)

Theorem 5.14 Let λ + µ2 = 1
4ω2 , ω, µ 6= 0, n = l + 1, l /∈ 2Z. The mon-

odromy operator of the corresponding Heun equation (1.1) has eigenvalue
e−πil, if and only if

R0,21 ± ωl(R0,21 −R0,11) = 0. (5.9)

with some choice of sign.

Proof The corresponding eigenfunction E has the form

E(z) = z−
l
2 f(z), f(z) =

∑
k∈Z

akz
k is holomorphic on C∗. (5.10)

Equation (1.1) is equivalent to recurrence equations (1.6) with b = − l
2 :

(k2 − l2

4
+ λ)ak − µ(k +

l

2
)ak−1 + µ(k − l

2
+ 1)ak+1 = 0. (5.11)

The series f(z) should converge on C∗. The above matrices Mk and Rk
coincide with those constructed in (3.9), and they are well-defined for all
k ∈ Z. Therefore, the coefficients ak, k ≥ 0 are given by formulas (3.12) up
to common constant factor, by Theorems 1.10 and 3.4:

a0 = −2

l
R0,21, a−1 = µ−1R0,11. (5.12)

Now we will use the condition of (anti-) invariance #E = ±E (Proposi-
tion 5.13), which takes the form∑

k∈Z
akz

k− l
2 = ±2ω(

∑
k∈Z

(k − l

2
)akz

−k− l
2 − µ

∑
k∈Z

akz
− l

2
−k−1),

or equivalently,∑
akz

k = ±2ω(
∑

(k − l

2
)akz

−k − µ
∑

akz
−k−1). (5.13)

The free (zero power) term of the latter equation is equivalent to the relation

(1± lω)a0 ± 2ωµa−1 = 0, (5.14)
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which is in its turn equivalent to (5.9), by (5.12). Therefore, existence of
the above solution E implies (5.9).

Let us prove the converse: each equation (5.9) implies the existence
of a solution (5.10) of Heun equation. To do this, consider the action of
the transformation # on the formal series (5.10) (with f not necessarily
converging). It sends formal solutions of Heun equation (equivalently, for-
mal solutions of (5.11)) to formal solutions. (The proof of symmetry of
Heun equation under the transformation # uses only Leibniz differentiation
rule and remains valid for formal series.) The space of formal solutions is
two-dimensional, and it is identified with the space of its initial conditions
(a−1, a0). The transformation # is its involution. Its eigenvalues are equal
to ±1, and the corresponding eigenspaces are defined by initial conditions
that satisfy (5.14). Therefore, both eigenspaces are one-dimensional and are
exactly characterized by equations (5.14), since both equations (5.14) are
nontrivial. Thus, a formal solution (ak)k∈Z of recurrence relations (5.11) is
#-(anti)-invariant, if and only if its coefficients a−1, a0 satisfy (5.14) with
the corresponding sign.

Fix the one-sided solution
∑

k≥−1 akz
k of recurrence relations (5.11) for

k ≥ 0. It satisfies (5.14), by (5.9). The sequence (ak)k≥−1 extends uniquely
to a two-sided formal solution (ak)k∈Z of (5.11) (a priori, not necessarily
presenting a converging series for k → −∞), since the coefficients at ak±1
in (5.11) do not vanish. The latter formal solution should be #-(anti-)
invariant, by (5.14) and the previous statement. Hence,

ak = ±2ω((−k − l

2
)a−k − µa−(k+1))

by (5.13). The series
∑

k<0 akz
k converges on C∗, since it is bounded from

above by converging series 2ω
∑

k≥0(k + |l| + µ + 1)|akzk|, by the latter
formula. This together with the above argument proves the theorem. 2

Case 2: l /∈ 2Z + 1 and b = − l+1
2 : the monodromy eigenvalue

equals −e−πil 6= 1. Then the monodromy of equation (1.1) is a Jordan cell,
as above. Consider the matrices

Mk =

(
1 + λ

(k− 1
2
)2− l2

4

µ2

(k− 1
2
)2− l2

4

1 0

)
, Rk = MkMk+1 . . . . (5.15)

Theorem 5.15 Let λ + µ2 = 1
4ω2 , ω, µ 6= 0, n = l + 1, l /∈ 2Z + 1. The

monodromy operator of the corresponding Heun equation (1.1) has eigen-
value −e−πil, if and only if

R1,11 ± 2ωµ(R1,11 −R1,21) = 0 (5.16)
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with some choice of sign.

Proof We are looking for a double-infinite solution of Heun equation (1.1)
of the type

E(z) = z−
l+1
2 f(z), f(z) =

∑
k∈Z

akz
k (5.17)

of Heun equation (1.1) with f holomorphic on C∗. That is, with ak satisfying
recurrence relations (1.6) for b = − l+1

2 , which take the form

((k − 1

2
)2 − l2

4
+ λ)ak − µ(k +

l − 1

2
)ak−1 + µ(k − l − 1

2
)ak+1 = 0. (5.18)

The above matrices Mk and Rk coincide with those constructed in (3.9),
and they are well-defined for all k ∈ Z. Therefore, the coefficients ak, k ≥ 0
are given by formulas (3.12) up to common constant factor, by Theorems
1.10 and 3.4. In particular,

a0 =
1

b
R0,21 =

1

b
R1,11 = − 2

l + 1
R1,11, a1 =

µ

b(b+ 1)
R1,21 =

4µ

l2 − 1
R1,21.

The condition of (anti-) invariance under the involution # of the solution
takes the form∑

akz
k− l+1

2 = ±2ω(
∑

(k − l + 1

2
)akz

−k− l−1
2 − µ

∑
akz
−k− l+1

2 ),

or equivalently,∑
akz

k = ±2ω(
∑

(k − l + 1

2
)akz

−k+1 − µ
∑

akz
−k).

The free term of the latter equation is given by the relation

(1± 2ωµ)a0 ± ω(l − 1)a1 = 0, (5.19)

which is equivalent to (5.16). The rest of proof of Theorem 5.15 is analogous
to the proof of Theorem 5.14. 2

Corollary 5.16 Let ω, µ > 0, λ + µ2 = 1
4ω2 , l ≥ 0, n = l + 1, B = lω,

A = 2µω. The point (B,A) lies in the boundary of a phase-lock area, if and
only if one of the following four incompatible statements holds:

1) (B,A) is an adjacency: l ∈ Z and ξl(λ, µ) = 0;
2) Heun equation (4.12) has a polynomial solution: l ∈ N and det(H +

λId) = 0, where H is the l × l-matrix from (4.13);
3) l /∈ 2Z and equation (5.9) holds;
4) l /∈ 2Z + 1 and equation (5.16) holds.
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Proof If one of the above statements holds, then (B,A) lies in the bound-
ary of a phase-lock area, by Proposition 5.11 and Theorems 4.10, 5.14, 5.15.
Conversely, let (B,A) lie in the boundary of a phase-lock area. The mon-
odromy of the corresponding Heun equation (1.1) is parabolic, by Proposi-
tion 5.11. If it is uniponent, then l ∈ Z, since its determinant e−2πil should
be unit. If l ∈ Z, then it is unipotent, if and only if some of the two incom-
patible statements 1) or 2) holds, by Theorems 4.10 and 5.5. Otherwise,
the monodromy has Jordan cell type with eigenvalue ±e−πil 6= 1, by Propo-
sitions 5.6 and 5.12. Therefore, one of the statements 3) or 4) holds, by
Theorems 5.14 and 5.15. Statements 3) and 4) are incompatible: they cor-
respond to Heun equation (1.1) with monodromy having multiple eigenvalue
e−πil or −e−πil respectively. This proves the corollary. 2

Proposition 5.17 Let l ∈ Z. For given ω, µ > 0 and n = l + 1 the corre-
sponding Heun equation (1.1) has a monodromy eigenfunction with eigen-
value −1, if and only if the corresponding point (B,A) ∈ R2 lies in the
boundary of a phase-lock area with a rotation number ρ ≡ l + 1(mod2Z).

Proof For l ∈ Z the monodromy has unit determinant (Proposition 4.1).
Therefore, if it has eigenvalue −1, then its other eigenvalue is also −1.
Hence, the point (B,A) lies in the boundary of the phase-lock area number
ρ = ρ(B,A) (Proposition 5.11). Thus, eπi(±ρ−l) = −1 for both signs, by
Proposition 5.6. The latter equality holds if and only if ρ ≡ l + 1(mod2Z).
Conversely, if a point (B,A) with l = B

ω ∈ Z lies in the boundary of a phase-
lock area, and ρ(B,A) satisfied the above equality, then the monodromy
eigenvalues are equal to −1, by Proposition 5.6. The proposition is proved.

2

5.6 Conjectures on geometry of phase-lock areas

Here we state conjectures that are motivated by numerical simulations and
theoretical results of [9, 10, 13, 18]. Recall that for every r ∈ Z we denote

Lr = the phase-lock area number r.

The next five conjectures are due to the first author (V.M.Buchstaber) and
S.I.Tertychnyi.

Conjecture 5.18 The upper part L+
r = Lr ∩ {A ≥ 0} of each phase-lock

area Lr is a garland of infinitely many connected components separated by
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adjacencies Ar,1,Ar,2 . . . lying in the line {B = rω} and ordered by their
A-coordinates.

Remark 5.19 It was shown in [18, theorems 1.2, 3.17] that for every r ∈ Z
the abscissa of each adjacency in Lr equals lω, l ∈ Z, l ≡ r(mod2Z); 0 ≤
l ≤ r if r ≥ 0; r ≤ l ≤ 0 if r ≤ 0.

Conjecture 5.20 For every k ≥ 2 the k-th component in L+
r contains the

interval (Ar,k−1,Ar,k).

Let us introduce the function η(P ) defined on the interior of each phase-
lock area Lr: the value η(P ) is defined to be the length of the Shapiro step
through the point P , that is, the length of the intersection of the phase-lock
area Lr with the horizontal line {A = A(P )}. For physical applications it
is important to know how to find the maxima of the function η(P ) on the
connected components of the interior Int(Lr).

Problem 5.21 Find the maximal value of the function η(P ) on each con-
nected component of every phase-lock area.

Problem 5.22 Is it true that for every given k ∈ N all the adjacencies Ar,k,
r = 1, 2, . . . , lie on the same line with azimuth depending on k, see Fig. 1–5?

Proposition 5.23 The first component of the zero phase-lock area contains
the interior of the square with vertices (0,±1), (±1, 0).

Proof Let Q denote the interior of the square under question: it is defined
by the inequality |A|+ |B| < 1. Let us show that for every (B,A) ∈ Q the
φ-component of vector field (5.2) is negative whenever φ = π

2 and positive
whenever φ = −π

2 . This implies that its flow map for any time sends the
space segment [−π

2 ,
π
2 ] strictly to itself and hence, has a fixed point there,

and thus, has zero rotation number. Indeed, the φ-component of vector field
(5.2) equals

φ̇ =
1

ω
(− sinφ+B +A cos τ).

Therefore, for every (B,A) ∈ Q it lies strictly between 1
ω (− sinφ − 1) and

1
ω (− sinφ + 1). This implies the above-mentioned inequalities at φ = ±π

2
and proves the proposition. 2
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Example 5.24 In the case, when A = 0, the differential equation defined
by vector field (5.2) takes the form

dφ

dτ
=

1

ω
(B − sinφ).

This is an autonomous differential equation that can be solved explicitly, see,
e.g., [3, p. 126, formula (6.2.6)]. In the case, when |B| ≤ 1, its right-hand
side vanishes at the points, where sinφ = B, and these are fixed points
for the flow maps, and hence, the rotation number equals zero. Let now
B > 1. Then the right-hand side is positive everywhere, hence the rotation
number is positive. Let u1 and u2 be the roots of the quadratic polynomial
B(1 + u2)− 2u = 0:

u1,2 =
1± i

√
B2 − 1

B
= e±iβ, β = arccos

1

B
.

The general solution of the above equation is given by the implicit function

τ = ω

∫ φ

φ0

dφ

B − sinφ
= −iα−1 ln(

u− u1
u− u2

) + c, u = tan
φ

2
,

α = −iω−1u1 − u2
u1 + u2

= ω−1
√
B2 − 1, c ≡ const.

Then we get

tan
φ

2
=

exp(iα(τ − c))u2 − u1
exp(iα(τ − c))− 1

=
sin(α2 (τ − c)− β)

sin(α2 (τ − c))
, c ≡ const.

For l ∈ N let Pl ∈ {B = lω} be the point with the maximalA−coordinate,
for which the corresponding Heun equation (1.19) has a polynomial solution.

Conjecture 5.25 All Pl lie on the same line, see Fig. 7.

Conjecture 5.26 As ω → 0, for every r the set Lr,1 := Lr∩{A ≥ A(Ar,1)}
tends to the ray {A ≥ 1} in the A-axis. Namely, the maximal distance of a
point of the set Lr,1 to the ray {A ≥ 1} tends to zero.

In what follows we will discuss in detail the next two conjectures that
are closely related to Conjectures 5.18 and 5.20.

Conjecture 5.27 For r ∈ N the phase-lock area with rotation number r+1
does not intersect the line

Λr = {B = ωr} ⊂ R2.
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Figure 7: Phase-lock areas for ω = 0.3; the marked points correspond to
Heun equations (1.19) with polynomial solutions. They are described by
Theorem 5.8.

Conjecture 5.28 For r ∈ N the phase-lock area with rotation number r
does not intersect the line Λr−2.

Remark 5.29 Conjecture 5.27 implies Conjecture 5.28. Indeed, the points
(B,A) with A > 0 large enough of the phase-lock area Lr, r ∈ Z lie close to
Λr, i.e., they are separated from the line Λr−2 by Λr−1. This follows from
the fact that its boundary consists of graphs of two functions B = g±r(A)
and g±r(A) → rω, as A → +∞ (follows from results of [22]). Therefore,
if the phase-lock area Lr does not intersect the line Λr−1, then it also does
not intersect Λr−2. Each one of Conjectures 5.27, 5.28 together with [18,
theorems 1.2, 3.17] (see Remark 5.19) imply Conjecture 5.18.

A possible strategy for Conjecture 5.27. If the boundary of the
phase-lock area with rotation number r + 1 intersects the line Λr, then the
intersection points correspond to parabolic monodromy operator of Jordan
cell type with both eigenvalues equal to -1 (Proposition 5.17). That is, some
of equations (5.9) or (5.16) should hold at each intersection point.

Conjecture 5.30 Let l ∈ N, and let the parameter µ satisfy some of equa-
tions (5.9) if l /∈ 2Z, or (5.16) if l ∈ 2Z. Consider the corresponding mon-
odromy eigenfunction of Heun equation (1.1) from Proposition 5.17 with
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eigenvalue −1. Then the corresponding solution of the Riccati equation
from the beginning of Subsection 5.3 gives a periodic solution of the cor-
responding equation (5.2) on two-torus having rotation number between 0
and l.

Conjecture 5.30 would imply Conjecture 5.27.

A possible strategy for Conjecture 5.28. We know that for ω ≥ 1
the statements of Conjecture 5.27 and hence Conjecture 5.28 hold (Chap-
lygin Theorem argument, see [8, lemma 4] and [18, proposition 3.4]). The
adjacencies of a phase-lock area with rotation number ρ cannot lie on lines Λl
with l 6≡ ρ(mod2Z), see [18, theorem 3.17]; this also follows from Proposition
5.17. Suppose that for a certain “critical” value ω = ω0 < 1 the boundary
of the phase-lock area number l+ 2 > 0 moves from the right to the left, as
ω decreases to ω0, and touches the line Λl at some point (B,A), as ω = ω0.
Then there are two possibilities for the corresponding Heun equation:

- the associated Heun equation (4.12) (equation (1.1) with l replaced by
−l) has a polynomial solution. But this case is forbidden by Buchstaber–
Tertychnyi result [9, theorem 4], which states that then the corresponding
rotation number cannot be greater than l.

- the point (B,A) an adjacency: Heun equation (1.1) has a solution
holomorphic on C. This together with the above-mentioned known fact
that the boundaries of phase-lock areas are graphs of functions (Remark
5.29) implies that both boundary components of the phase-lock area with
rotation number l + 2 are tangent to the line Λl at the point (B,A).

Conjecture 5.31 For every ω > 0 for every adjacency (B0, A0) ∈ R2
+ of

any phase-lock area the branches of its boundary at (B0, A0) cannot be both
tangent to the vertical line {B = B0}.

Proposition 5.32 Conjecture 5.31 implies Conjecture 5.28, and hence, 5.18.

The proposition follows from the above argument and Remark 5.29.
A possible approach to Conjecture 5.31 could be studying equations (5.9)

and (5.16) defining the boundaries and to see what happens with them when
the “non-resonant” parameters approach the resonant ones. A first step is
done below.
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5.7 Description of boundaries of phase-lock areas near adja-
cencies. Relation to Conjecture 5.28

Let us write down equation (5.9) on the boundaries in a neighborhood of a
line Λl0 , l0 ∈ 2Z. Let us recall the formulas for the corresponding matrices:

Mk = Mk(λ, µ, l) =

(
1 + λ

k2− l2

4

µ2

k2− l2

4

1 0

)
, Rk = MkMk+1 . . . .

Equation (5.9) for the boundaries is

R0,21 ± ωl(R0,21 −R0,11) = 0.

Note that the matrices Mk are analytic in a neighborhood of the hyperplane
{l = l0} except for the matrix M l0

2

, which has pole of order one along the

latter hyperplane. One has

l20 − l2

4
M l0

2

=

((
λ µ2

0 0

)
+
l20 − l2

4

(
1 0
1 0

))
.

Set

R =
l20 − l2

4
R0, X = M0 . . .M l0

2
−1, X = Id for l0 = 0.

One has

R = X

((
λ µ2

0 0

)
+
l20 − l2

4

(
1 0
1 0

))
R l0

2
+1
,(

λ µ2

0 0

)
R l0

2
+1
|l=l0 =

(
ξl0(λ, µ) 0

0 0

)
,

by (4.9), the equality Rs,12 = Rs,22 = 0 for every s (Corollary 3.2) and since
the matrices M l0

2
+k

(λ, µ, l0), R l0
2
+k

(λ, µ, l0) coincide with the matrices Mk,

Rk preceding (4.9) with l = l0. Therefore,

R = ξl0(λ, µ)

(
X11 0
X21 0

)
+ (l − l0)χ(l, λ, µ), (5.20)

where χ(l, λ, µ) is a holomorphic matrix-valued function on a neighborhood
of the hyperplane {l = l0}. Now equation (5.9) can be rewritten as

R21 ± ωl(R21 −R11) = 0. (5.21)
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Taking into account asymptotics (5.20) one gets asymptotic form of equation
(5.21):

ξl0(λ, µ)(X21 ± ωl(X21 −X11)) + (l − l0)(χ21 ± ωl(χ21 − χ11)) = 0. (5.22)

Now let us consider the case, when l0 ∈ 2Z + 1, and let us write down
equation (5.16) in a neighborhood of the line Λl0 . The corresponding ma-
trices from (5.15) are

Mk =

(
1 + λ

(k− 1
2
)2− l2

4

µ2

(k− 1
2
)2− l2

4

1 0

)
, Rk = MkMk+1 . . . .

Set

R =
l20 − l2

4
R1, X = M1 . . .M l0+1

2
−1; X = Id for l0 = 1.

Analogously to the above calculations, we get asymptotic relation (5.20).
Together with (5.16), it implies

ξl0(λ, µ)(X11±2ωµ(X11−X21))+(l− l0)(χ11±2ωµ(χ11−χ21)) = 0, (5.23)

where χ(l, λ, µ) is a holomorphic matrix-valued function on a neighborhood
of the hyperplane {l = l0}. Set

ζl(ω, µ) = ξl(λ, µ) = ξl(
1

4ω2
− µ2, µ).

Conjecture 5.33 For every ω > 0 and l ∈ Z, l ≥ 0 the zeros of the function
ζl are simple, that is, ∂ζl

∂µ 6= 0 at zeros of the function ζl.

Remark 5.34 The matricesX in both cases treated above are non-degenerate
for l = l0. This implies that in formulas (5.22) and (5.23) the multiplier at
ξl0 is non-zero for at least one choice of sign.

Conjecture 5.33 together with the above remark would imply that for
every l ∈ Z at every adjacency in the line Λl at least one boundary component
of the corresponding phase-lock area (depending on the above-chosen sign)
is transversal to the line Λl.

Proposition 5.35 Conjecture 5.33 implies Conjectures 5.31, 5.28, 5.18.

Proof Conjecture 5.33 implies that no adjacency can be born at a tangency
of both boundary components with a line l = l0, l0 ∈ Z, by transversality
of one of them to the latter line (the above statement). In other words, it
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implies Conjecture 5.31, and hence, Conjectures 5.28, 5.18, by Proposition
5.32. 2

Open Question. Study the degeneracy of equation (5.7) on non-integer
level curves of rotation number, as the latter number tends to an integer
value. The level curves should tend to boundaries of phase-lock areas. How
to retrieve equations (5.9), (5.16), (5.22) and (5.23) on the boundaries and
equation ξl(λ, µ) = 0 on the adjacencies from asymptotics of degenerating
equation (5.7), as r tends to an integer number? Find a method to calcu-
late the coordinates of the adjacencies corresponding to an integer rotation
number r0 via the level curves {ρ = r}, as r → r0.

5.8 Asymptotic behavior of phase-lock areas for small ω

The problem to describe the behavior of the phase-lock areas, as ω → 0,
is known and motivated by physical applications. Concerning this problem
V.M.Buchstaber and S.I.Tertychnyi, and later D.A.Filimonov, V.A.Kleptsyn
and I.V.Schurov have done numerical experiments. These experiments have
shown that after appropriate rescaling of the variables (B,A), the phase-
lock areas tend to open sets (which we will call the limit rescaled phase-lock
areas) whose components form a partition of the whole plane similar to a
chess table turned by π

4 , see Fig. 5 for ω = 0.3.
Open Question 7. Obtain theoretical results on the problem described

above.
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