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Abstract

We study a family of double confluent Heun equations that are lin-
earizations of nonlinear equations on two-torus modeling the Joseph-
son effect in superconductivity. They have the form LE = 0, where
L = Lλ,µ,n is a family of differential operators of order two acting
on germs of holomorphic functions in one complex variable. They de-
pend on parameters λ, n ∈ R, µ > 0, λ + µ2 ≡ const > 0. We show
that for every b ∈ C and n ∈ R satisfying a certain “non-resonance
condition” and every parameter values λ, µ there exists a unique en-
tire function f± : C → C (up to multiplicative constant) such that
z−bL(zbf±(z±1)) = d0± +d1±z for some d0±, d1± ∈ C. The latter dj,±
are expressed as functions of the parameters. This result has several
applications. First of all, it gives the description of those parameter
values for which the monodromy operator of the corresponding Heun
equation has given eigenvalues. This yields the description of the non-
integer level curves of the rotation number of the family of equations on
two-torus as a function of parameters. In the particular case, when the
monodromy is parabolic (has multiple eigenvalue), we get the complete
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description of those parameter values that correspond to the bound-
aries of the phase-lock areas: integer level sets of the rotation number,
which have non-empty interiors.
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1 Introduction: statement of results, sketch of proof
and plan of the paper

We study the problem to find solutions of non-homogeneous double-confluent
Heun equations that are monodromy eigenfunctions. Our study is motivated
by applications to nonlinear equations modeling the Josephson effect in su-
perconductivity. The main results, their existence and uniqueness (Theo-
rems 1.1 and 1.3) are stated in Subsection 1.1. Applications to monodromy
eigenfunctions and eigenvalues of homogeneous double confluent Heun equa-
tions and to nonlinear equations modeling Josephson effect are presented in
Subsection 1.1, Sections 4 and 5.

Each eigenfunction is the product of a monomial zb and a function f(z)
holomorphic on C∗. The Heun equation is equivalent to recurrence relations
on the Laurent coefficients of the function f . The proofs of the above-
mentioned results are based on studying the latter recurrence relations.
We prove existence and uniqueness Theorem 1.7 for converging solutions
of a more general class of recurrence relations (stated in Subsection 1.2 and
proved in Section 2). Its proof is based on ideas from hyperbolic dynamics
and a fixed point argument for appropriate contracting mapping.

1.1 Main result: existence and uniqueness of monodromy
eigenfunctions of non-homogeneous double confluent Heun
equations

We consider the family of double confluent Heun equations

LE = z2E′′ + (nz + µ(1− z2))E′ + (λ− µnz)E = 0; (1.1)

λ =
1

4ω2
− µ2, n = l + 1, λ, n ∈ R, ω, µ > 0.

Our goal is to study existence of its eigenfunctions with a given eigenvalue
e2πib, b ∈ C: solutions of the form

E(z) = zbf(z), f(z) is holomorphic on C∗. (1.2)

To do this, we study the non-homogeneous equations of type

z−bL(zbf±(z±1)) = d0± + d1±z (1.3)

One of our main results is the next theorem
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Theorem 1.1 For every (n, λ, µ, b) ∈ U ,

U = {(n, λ, µ, b) ∈ C4 | µ 6= 0, b, b+ n /∈ Z}, (1.4)

there exist holomorphic functions f±(z) on a neighborhood of zero, f+(0) =
0 such that the functions f±(z±1) satisfy equations (1.3) for appropriate
d0±(n, λ, µ, b), d1±(n, λ, µ, b). The functions f± are unique up to constant
factor (depending on the parameters), and they are entire functions: holo-
morphic on C. For every sign index ± the corresponding vector (d0±, d1±)
is uniquely defined up to scalar factor depending on parameters. The above
constant factors can be chosen so that both f± and dj± depend holomorphi-
cally on (n, λ, µ, b) ∈ U and f±(z) are real-valued in z ∈ R for real parameter
values.

Corollary 1.2 Let (n, λ, µ, b) ∈ U . The corresponding equation (1.1) has
a monodromy eigenfunction with eigenvalue e2πib, b ∈ C, if and only if the
corresponding vectors d± = (d0±, d1±) are proportional:

d0+d1− − d0−d1+ = 0. (1.5)

Theorem 1.1 will be proved in the next subsection and Section 2. The
corollary will be proved in the next subsection. The explicit formulas for
the functions f± and dj±, together with an explicit form for equation (1.5)
will be given in Section 3.

Theorem 1.3 For every n ∈ N and (λ, µ) ∈ C2 there exists a unique func-
tion E(z) 6≡ 0 (up to constant factor) holomorphic on a neighborhood of zero
such that LE = const(z). The latter constant const(z) = ξn−1(λ, µ) depends
only on the parameters (n, λ, µ).

Theorem 1.3 will be proved in the next subsection.

Remark 1.4 Theorem 1.3 is closely related to the question of the exis-
tence of a solution holomorphic at 0 of equation (1.1) (such a solution is
automatically entire, i.e., holomorphic on C). This question was studied
by V.M.Buchstaber and S.I.Tertychnyi in [8]. The existence of a solution
E from Theorem 1.3 and explicit expressions for E and the corresponding
function ξn−1(λ, µ) (analytic in (λ, µ) ∈ C2) were given in [8, pp. 337–338].
The existence result implies that if ξn−1(λ, µ) = 0, then the homogeneous
equation (1.1), i.e., LE = 0 has a solution holomorphic on C. A conjec-
ture stated by V.M.Buchstaber and S.I.Tertychnyi in loc. cit. said that
the converse is true: if equation (1.1) has a holomorphic solution at 0, then
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ξn−1(λ, µ) = 0. This conjecture was studied in loc. cit and [9], where it
was reduced to a series of conjectures on polynomial solutions of auxiliary
Heun equations and modified Bessel functions of the first kind. All these
conjectures were solved in [11]. As the next corollary shows, Theorem 1.3
implies the conjecture of Buchstaber and Tertychnyi immediately, without
using neither polynomial solutions, nor modified Bessel functions.

Corollary 1.5 [11, theorem 3.5] Equation (1.1) has an entire solution, if
and only if ξn−1(λ, µ) = 0, where ξn−1(λ, µ) is the function from loc. cit.,
introduced in [8, formula (31), p. 337]; see also formula (4.11) in Subsection
4.3 below.

Proof Let ξn−1(λ, µ) = 0. Then the function E from Theorem 1.3 is an
entire solution of equation (1.1): LE = 0. Conversely, let equation (1.1)
have a solution E holomorphic at 0. If ξn−1(λ, µ) 6= 0, then there exists a
holomorphic function Ê on a neighborhood of zero satisfying the equation
LÊ = ξn−1(λ, µ) 6= 0, by Theorem 1.3. This together with the uniqueness
statement of Theorem 1.3 implies that Ê = E up to constant factor, hence
LÊ = 0. The contradiction thus obtained proves the corollary. 2

1.2 Solutions of three-term recurrence relations

Equation (1.1) is equivalent to the recurrence relations

((k+b)(k+b+n−1)+λ)ak−µ(k+b+n−1)ak−1+µ(k+b+1)ak+1 = 0, (1.6)

which can be written in the matrix form(
ak
ak+1

)
= Ak

(
ak−1
ak

)
,

Ak =
k + b+ n− 1

k + b+ 1

(
0 k+b+1

k+b+n−1
1 −λ+(k+b)(k+b+n−1)

µ(k+b+n−1)

)
. (1.7)

Remark 1.6 A function f+(z) =
∑

k≥1 akz
k satisfies equation (1.3) for

some dj+, if and only if its Taylor coefficients ak satisfy (1.6), or equivalently,
(1.7) for k ≥ 2. Similarly, a function f−(z−1), f−(w) =

∑
k≤0 akw

−k satisfies
(1.3), if and only if its coefficients satisfy (1.6) for k ≤ −1.
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Proof of Corollary 1.2. Let E(z) = zb
∑

k∈Z akz
k be a solution of equa-

tion (1.1) having type (1.2). Then

E(z) = zb(f+(z) + f−(z−1)), f+(z) =
∑
k≥1

akz
k, f−(z) =

∑
k≥0

a−kz
k. (1.8)

The coefficients ak satisfy (1.6) for all k. This together with the above re-
mark implies that the functions f±(z±1) satisfy (1.3). The corresponding
expressions d± = d0± + d1±z should cancel out, since E is a solution of
the homogeneous equation. This implies (1.5). Conversely, let f±(z±1) be
solutions of (1.3), and let (1.5) hold: that is, the vectors d+ and d− are
proportional. Then we can normalize the latter vectors, and hence, the
corresponding solutions by constant factors (not both vanishing simultane-
ously) so that d+ +d− = 0. Then the function E given by (1.8) is a solution
of equation (1.1). This proves the corollary. 2

As it is shown below, Theorem 1.1 is implied by the following general
theorem

Theorem 1.7 Consider recurrence relations

gkak + fkak−1 + hkak+1 = 0 (1.9)

in unknown sequence ak, where sequences gk, fk, hk ∈ C numerated by k ∈ N
satisfy the following conditions:

fk, hk 6= 0, for every k, (1.10)

fk, hk = o(gk), as k →∞. (1.11)

Then there exists a unique series
∑+∞

k=0 akz
k 6≡ 0 with ak satisfying (1.9) for

k ≥ 1 and having positive converging radius. It converges on all of C.

Theorem 1.7 will be proved in the next section.

Remark 1.8 In the series
∑

k akz
k from Theorem 1.7 for every k ≥ 0 the

two neighbor coefficients ak, ak+1 do not vanish simultaneously: hence,
they present a point (ak : ak+1) ∈ CP1. Each pair of neighbor coefficients
(ak, ak+1) determines a unique sequence satisfying (1.9). Both statements
follow from the fact that for every k ≥ 1 the coefficient ak±1 is expressed
as a linear combination of ak∓1 and ak by (1.9), since fk, hk 6= 0. Hence,
if some two neighbor coefficients ak−1, ak vanish, then all the coefficients
vanish, and the series is zero, – a contradiction.
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Theorem 1.9 Let b, n ∈ C, Then for every k0 ∈ Z such that

k + b+ n− 1, k + b+ 1 6= 0 for every k > k0, (1.12)

for every λ, µ ∈ C, µ 6= 0 there exists and unique nonzero one-sided series∑
k≥k0 akz

k (up to multiplicative constant) converging on some punctured
disk centered at 0 that satisfies recurrence relations (1.6) (or equivalently,
(1.7)) for k > k0. Similarly, for every k0 ∈ Z such that

k + b+ n− 1, k + b+ 1 6= 0 for every k < k0 (1.13)

there exists and unique one-sides series
∑

k≤k0 akz
k (up to multiplicative

constant) that satisfies recurrence relations (1.6) for k < k0 and converges
outside some disk centered at 0. Both series converge on the whole punctured
complex line C∗.

Example 1.10 Let in the conditions of Theorem 1.9 one have b, n+ b /∈ Z
(cf. (1.4)). Then its statements hold for all k0 ∈ Z, since inequalities (1.12)
hold for all k ∈ Z. Otherwise, if either b ∈ Z, or b + n ∈ Z, then the
statements of Theorem 1.9

hold for k > k0 whenever k0 ≥ max{m ∈ {−1− b, 1− b− n} | m ∈ Z}
(1.14)

hold for k < k0 whenever k0 ≤ min{m ∈ {−1−b, 1−b−n} |m ∈ Z} (1.15)

Theorem 1.9 together with Remark 1.6 and the first statement of Example
1.10 imply Theorem 1.1.
Proof of Theorems 1.9 and 1.1. The coefficients

gk = (k + b)(k + b+ n− 1) + λ, fk = −µ(k + b+ n− 1), hk = µ(k + b+ 1)

of recurrence relations (1.6) satisfy the conditions of Theorem 1.7 for k > k0
(k < k0). Indeed, the asymptotics (1.11) is obvious. Inequalities fk, hk 6= 0
follow from (1.12) (respectively, (1.13)). This together with Theorem 1.7
proves Theorem 1.9, and hence, Theorem 1.1. 2

Proof of Theorem 1.3. Let b = 0, n ∈ N. Inequalities (1.12) hold for
k > k0 = 0. Therefore, there exists a unique series E(z) =

∑+∞
k≥0 akz

k

converging on a neighborhood of the origin, whose coefficients satisfy (1.6)
for k ≥ 1, and it converges on all of C (Theorem 1.9). The system of relations
(1.6) for k ≥ 1 is equivalent to the statement that LE = const. This proves
Theorem 1.3. 2
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1.3 Historical remarks, applications and plan of the paper

Our results are motivated by applications to the family

dφ

dt
= − sinφ+B +A cosωt, A, ω > 0, B ≥ 0. (1.16)

of nonlinear equations, which arises in several models in physics, mechanics
and geometry: in a model of the Josephson junction in superconductivity
(our main motivation), see [18, 23, 12, 2, 21]; in planimeters, see [13, 14].
Here ω is a fixed constant, and (B,A) are the parameters. Set

τ = ωt, l =
B

ω
, µ =

A

2ω
.

The variable change t 7→ τ transforms (1.16) to a non-autonomous ordinary
differential equation on the two-torus T2 = S1×S1 with coordinates (φ, τ) ∈
R2/2πZ2:

φ̇ =
dφ

dτ
= −sinφ

ω
+ l + 2µ cos τ. (1.17)

The graphs of its solutions are the orbits of the vector field{
φ̇ = − sinφ

ω + l + 2µ cos τ

τ̇ = 1
(1.18)

on T2. The rotation number of its flow, see [1, p. 104], is a function ρ(B,A) =
ρ(B,A;ω) of parameters. It is given by the formula

ρ(B,A;ω) = lim
n→+∞

φ(2πn)

n
,

where φ(τ) is an arbitrary solution of equation (1.17).
The phase-lock areas are the level subsets of the rotation number in the

(B,A)-plane with non-empty interior. They have been studied by V.M.Buchstaber,
O.V.Karpov, S.I.Tertychnyi et al, see [8, 11, 15] and references therein. Each
phase-lock area is an infinite chain of adjacent domains separated by ad-
jacency points. The description of their coordinates as solutions of ana-
lytic functional equations was conjecturally stated by V.M.Bushstaber and
S.I.Tertychnyi in [8] and proved by the authors of the present paper in [11].
Namely, the family of non-linear equations was reduced in [7, 24] to two fam-
ilies of second order linear differential equations of double confluent Heun
type: equation (1.1) and the equation

LE = z2E′′ + ((−l + 1)z + µ(1− z2))E′ + (λ+ µ(l − 1)z)E = 0. (1.19)
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The latter equation is obtained by writing equation (1.1) in terms of the pa-
rameter l = n−1 and changing sign at l. In the case, when l ≥ 0, Buchstaber
and Tertychnyi have shown that the adjacencies correspond exactly to those
parameter values, for which equation (1.1) has a non-trivial holomorphic
solution at 0 (which is automatically an entire solution: holomorphic on C);
see the statement in [8, p.332, paragraph 2] and the proof in [11, theorem
3.3 and subsection 3.2]. They have explicitly constructed a family of holo-
morphic solutions for parameters satisfying an explicit functional equation
ξl(λ, µ) = 0, see Corollary 1.5. They have conjectured that the latter func-
tional equation describes the adjacencies completely. They have reduced
this conjecture to another one saying that if equation (1.19) has a polyno-
mial solution, then equation (1.1) does not have an entire solution. Later
they have reduced their second conjecture on polynomial solutions to the
third one saying that appropriate determinants formed by modified Bessel
functions of the first type do not vanish on the positive semiaxis. The latter
conjecture together with the other ones were proved in [11]. The above-
mentioned conjecture of Buchstaber and Tertychnyi on functional equation
describing the adjacencies follows from Corollary 1.5 and their correspon-
dence to entire solutions of Heun equations.

V.M.Buchstaber and S.I.Tertychnyi have constructed symmetries of dou-
ble confluent Heun equation (1.1) [8, 10]. The symmetry # : E(z) 7→
2ωz−l−1(E′(z−1) − µE(z−1)), which is an involution of its solution space,
was constructed in [25, equations (32), (34)]. It corresponds to the symme-
try (φ, t) 7→ (π−φ,−t) of the nonlinear equation (1.16); the latter symmetry
was found in [19]. In [10] they have found new nontrivial symmetries in the
case, when l ∈ Z and equation (1.19) does not have polynomial solutions.

Convention 1.11 Everywhere in the paper by formal solution (ak)k≥k0 (or
(ak)k≤k0) of linear recurrence relation fkak + gkak−1 + hkak+1 = 0 we mean
a (one- or two-sided) sequence of complex numbers ak satisfying the relation
for all k > k0 (respectively, k < k0). (Here one may have two-sided infinite
sequences.) If in addition, the power series

∑
k akz

k converges on some
annulus centered at 0 (for all the relations under consideration, this would
automatically imply convergence on all of C∗) then the formal solution under
question is called simply a solution: the adjective “converging” is omitted
for simplicity.

In Section 3 we write down explicit formulas for solutions of recurrence
relations (1.6) using the proof of Theorem 1.7. Then in Section 4 we deduce
explicit functional equations satisfied by monodromy eigenvalues of double
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confluent Heun equations (explicit versions of Corollary 1.2).
In Section 5 we apply results of Sections 3 and 4 to phase-lock areas

in the model of Josephson effect. It is known that the ratio of the mon-
odromy eigenvalues of equation (1.1) equals e±2πiρ(A,B) and their product
equals e−2πil. This together with results of Section 4 implies an explicit func-
tional equation satisfied by non-integer level curves of the rotation number
as a function of parameters (Theorem 5.7 in Subsection 5.1). The union of
boundaries of the phase-lock areas coincides with the set where the mon-
odromy has multiple eigenvalue and is described by the condition that the
monodromy of equation (1.1) has eigenvalue ±e−πil. This together with
results of Sections 3, 4 implies an explicit description of the boundaries
(Corollary 5.13 in Subsection 5.2). Open problems on phase-lock areas and
possible approaches to some of them using the above description of bound-
aries are discussed in Subsections 5.5 and 5.6.

The following new result will be also proved in Section 5 using results of
Section 4.

Theorem 1.12 Let ω > 0, (B,A) ∈ R2, B,A > 0, l = B
ω , µ = A

2ω ,
λ = 1

4ω2 − µ2, ρ = ρ(B,A). The double confluent Heun equation (1.19)
corresponding to the latter λ, µ and l has a polynomial solution, if and only
if l, ρ ∈ Z, ρ ≡ l(mod2) and 0 ≤ ρ ≤ l, and in addition, the point (B,A) lies
in the boundary of the phase-lock area number ρ and is not an adjacency. In
other terms, the points (B,A) ∈ R2

+ corresponding to equations (1.19) with
polynomial solutions lie in boundaries of phase-lock areas and are exactly
their intersection points with the lines l = B

ω ≡ ρ(mod2), 0 ≤ ρ ≤ l, except
for the adjacencies.

Remark 1.13 V.M.Buchstaber and S.I.Tertychnyi have shown in [7] that
if a point (B,A) ∈ R2

+ corresponds to equation (1.19) with a polynomial
solution, then l, ρ are integers, 0 ≤ ρ ≤ l and ρ ≡ l(mod2).

1.4 A sketch of proof of Theorem 1.7.

For every initial condition (a0, a1) there exists a unique sequence (ak)k≥0
satisfying recurrence relations (1.9), by Remark 1.8. But in general, the
series

∑
k akz

k may diverge. We have to prove that it converges for appro-
priately chosen unknown initial condition. To do this, we use the following
trick: we run the recursion in the opposite direction, “from infinity to zero”.
That is, take a big k and a given “final condition” qk = (ak, ak+1). Then the
inverse recursion gives all aj = aj(qk), 0 ≤ j ≤ k. It appears that the initial

10



condition (a0, a1) we are looking for can be obtained as a limit of the ini-
tial conditions (a0(qk), a1(qk)) obtained by the above inverse recursion (after
rescaling), as k → ∞; the only condition on qk is that its projectivization
[qk] = (ak : ak+1) ∈ CP1 should avoid some small explicitly specified “bad
region”, which contracts to the point (0 : 1), as k →∞.

The projectivized inverse recursion

Pk : CP1 → CP1 : [qk] = (ak : ak+1) 7→ [qk−1] = (ak−1 : ak)

defined by (1.9) can be considered as the dynamical system

T : (N≥2 ∪ {∞})× CP1 → (N ∪ {∞})× CP1, N≥2 = N ∩ [2,+∞),

where for every x ∈ CP1 and k ∈ N≥2 one has

T : (k, x) 7→ (k − 1, Pk(x)); T :∞× CP1 7→ ∞× (1 : 0).

It appears that for every k large enough Pk has a strongly attracting fixed
point tending to (1 : 0) and a strongly repelling fixed point tending to (0 : 1),
as k → ∞. This together with the ideas from basic theory of hyperbolic
dynamics implies that the fixed point p∞ =∞×(1 : 0) of the transformation
T should have a unique unstable manifold: an invariant sequence (k, [qk])
converging to p∞. We show that a solution (ak) of recurrence relations
(1.9) gives a converging Taylor series

∑
k akz

k on some neighborhood of
zero, if and only if (ak : ak+1) = [qk] for all k, and then the series converge
everywhere. This will prove Theorem 1.7.

The existence and uniqueness of the above-mentioned unstable manifold
is implied by the following discrete analogue of the classical Hadamard–
Perron Theorem on the unstable manifold of a dynamical system at a hy-
perbolic fixed point.

Theorem 1.14 Let E1, E2, . . . be a sequence of complete metric spaces with
uniformly bounded diameters. For brevity, the distance on each of them will
be denoted d. Let Pk : Ek → Ek−1 be a sequence of uniformly contracting
mappings: there exists a λ, 0 < λ < 1 such that d(Pk(x), Pk(y)) < λd(x, y)
for every x, y ∈ Ek and k ≥ 2. Then there exists a unique sequence of points
xk ∈ E such that xk−1 = Pk(xk) for all k ≥ 2. One has

xk−1 = lim
m→∞

Pk ◦ · · · ◦ Pm(x), (1.20)

and the convergence is uniform in x: for every ε > 0 there exists some
l ∈ N such that for every m ≥ l and every x ∈ Em one has d(Pk ◦ · · · ◦
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Pm(x), xk−1) < ε. If in addition the spaces Ek coincide with one and the
same space E and the fixed points of the mappings Pk tend to some x∞ ∈ E,
as k →∞, then

lim
k→∞

xk = x∞. (1.21)

Proof The proof repeats the argument of the classical proof of Hadamard–
Perron Theorem. Consider the space S of all sequences X = (xk)k∈N, xk ∈
Ek, equipped with the distance

D(X,Y ) = sup
k
d(xk, yk).

The transformation

T : S → S, (x1, x2, . . . ) 7→ (P2(x2), P3(x3), . . . )

is a contraction. Therefore, it has a unique fixed point, which is exactly
the sequence we are looking for. The second statement of the theorem on
the uniform convergence of compositions to xk−1 follows from the uniform
convergence of iterations of the contracting map T to its fixed point. In the
last condition of Theorem 1.14 statement (1.21) follows by the above fixed
point argument in the subspace in S of the sequences (xk) tending to x∞,
as k →∞: this is a complete T -invariant metric subspace in S, and hence,
T has a fixed point there, which coincides with the previous sequence (xk)
by uniqueness. Theorem 1.14 is proved. 2

2 Proof of Theorem 1.7

Recurrence relations (1.9) can be written in the matrix form(
ak
ak+1

)
= Λk

(
ak−1
ak

)
, Λk = h−1k

(
0 hk
−fk −gk

)
. (2.1)

Consider the inverse matrices

Λ−1k =

(
− gk
fk
−hk
fk

1 0

)
(2.2)

and their projectivizations Pk : CP1 → CP1 acting on the projective line
CP1 = C with homogeneous coordinates (z1 : z2). Let us introduce the
affine coordinate w = z2

z1
on it. For every C > 0 we denote

DC = {|w| < C} ⊂ C ⊂ C.
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Proposition 2.1 The transformations Pk converge to the constant mapping
CP1 7→ {w = 0} uniformly on every closed disk DC , C > 0, as k → ∞.
Their inverses converge to the constant mapping CP1 7→ {w =∞} uniformly
on the complement of every disk DC .

Proof The image of a vector (1, w) with |w| ≤ C under the matrix Λ−1k is
the vector

(uk(w), vk(w)) = −gk
fk

(1 +
hk
gk
w,−fk

gk
).

Recall that hk
gk
, fkgk → 0, see (1.11), hence, gk 6= 0 for all k large enough.

The latter asymptotics and formula together imply that vk(w)
uk(w)

→ 0 uni-

formly on DC and prove the first statement of the proposition. Let us prove
its second statement. For every fixed C > 0 and every k large enough
(dependently on C) one has P−1k (CP1 \DC) ⊂ CP1 \DC , by the first state-
ment of the proposition. The image of a vector (1, w) under the matrix Λk
is (sk(w), tk(w)) = (w,−gkw+fk

hk
). This together with (1.11) implies that

sk(w)
tk(w)

→ 0 uniformly on |w| ≥ C, as k → ∞; or equivalently, Pk → ∞
uniformly on CP1 \DC . The proposition is proved. 2

Proof of Theorem 1.7. Let C > 1, EC denote the closed disk DC ⊂ CP1

equipped with the Euclidean distance. There exist a 0 < λ < 1 and a
N = N(λ,C) ∈ N such that for every k > N one has Pk(EC) ⊂ EC and the
mapping Pk : EC → EC is a λ-contraction: |Pk(x)−Pk(y)| < λ|x− y|. This
follows from the first statement of the proposition and Schwarz Lemma.
The fixed point of the mapping Pk tends to 0, as k → ∞, by uniform
convergence (Proposition 2.1). This together with Theorem 1.14 implies
that there exists a unique sequence (xk)k≥N such that Pk(xk) = xk−1 for all
k > N and |xk| ≤ C. The latter sequence corresponds to a unique sequence
(ak)k≥N (up to multiplicative constant) such that xk = (ak : ak+1); one has
|w(xk)| = |ak+1

ak
| ≤ C for every k ≥ N . The sequence (ak) satisfies relations

(1.9) for k > N , which are equivalent to the equalities Pk(xk) = xk−1. It
extends to a unique sequence (ak)k≥0 satisfying (1.9) for k ≥ 1, as in Remark
1.8. In addition, xk → 0, i.e.,

ak+1

ak
→ 0, as k → 0, by (1.21) and since the

attracting fixed points of the mappings Pk converge to 0, by Proposition
2.1. Therefore, the series

∑
k≥0 akz

k converges on the whole complex line
C. The existence is proved. Now let us prove the uniqueness. Let, by
contradiction, there exist a series

∑
akz

k satisfying relations (1.9), having
a positive convergence radius and not coinciding with the one constructed
above. Then there exists a k > N such that |ak+1

ak
| > C, i.e., xk /∈ DC . For

13



every l > k one has xl = P−1l ◦ · · · ◦ P−1k+1(xk) → ∞, that is,
al+1

al
→ ∞,

as l → ∞, by the second statement of Proposition 2.1. Hence the series
diverges everywhere: has zero convergence radius. The contradiction thus
obtained proves Theorem 1.7. 2

3 Explicit formulas for solutions and the coeffi-
cients dj±

Here we present explicit formulas for the unique converging series from Theo-
rem 1.9 solving recurrence relations (1.6). First in Subsection 3.1 we provide
a general method for writing them, which essentially repeats and slightly
generalizes the method from [8, section 3, pp. 337–338]. Then we write
them for k → +∞, and afterwards for k → −∞.

3.1 Solution of recurrence relation via infinite matrix prod-
uct: a general method

Here we consider a solution of general recurrence relations (1.9) from The-
orem 1.7. Let gk, fk, hk be the coefficients in (1.9). Let Pk : CP1 → CP1 be
the projectivizations of the transformations Λ−1k , see (2.2). Let

∑
k akz

k be a
solution to (1.9). Recall that we denote xk = (ak : ak+1) ∈ CP1 ' C, in the
standard coordinate w on C one has xk =

ak+1

ak
. We have xk−1 = Pk(xk),

and for every k the infinite product PkPk+1 . . . converges to xk−1. More
precisely, Pk ◦ · · · ◦Pm(z)→ xk−1, as m→∞ uniformly on compact subsets
in C = C \ {∞}, as in the proof of Theorem 1.7.

One can then deduce that there exists a number sequence rk such that
for every k the infinite matrix product (rkΛ

−1
k )(rk+1Λ

−1
k+1) . . . converges to

a rank 1 matrix Rk such that(
ak−1
ak

)
= Rk

(
1
0

)
. (3.1)

This would be an explicit formula for the solution
∑

k akz
k.

However the infinite product of the matrices Λ−1k themselves diverges,
since their terms − gk

fk
tend to infinity: one has to find a priori unknown nor-

malizing constants rk. To construct a converging matrix product explicitly,
we will consider a rescaled sequence ak, that is

ck = qkak, qk ∈ C,
qk−1
qk
' −fk

gk
→ 0, as k →∞.
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Rewriting relations (1.9) in terms of the new sequence ck yields(
ck−1
ck

)
= Mk

(
ck
ck+1

)
, (3.2)

Mk =

(
− qk−1

qk

gk
fk
− qk−1

qk+1

hk
fk

1 0

)
=

(
1 + o(1) o(1)

1 0

)
.

The matrices Mk converge to the projector

P : C2 → C2, P =

(
1 0
1 0

)
.

Our goal is to choose the above rescaling so that the infinite products

Rk = MkMk+1 . . .

converge: then the limit is a one-dimensional operator Rk with kerRk being
generated by the vector (0, 1). It appears that one can achieve the latter
convergence by appropriate choice of normalizing constants qk.

We use the following sufficient conditions of convergence of products of
almost projectors Mk.

Lemma 3.1 Let H be either a finite dimensional, or a Hilbert space. Let
Mk : H → H be a sequence of bounded operators that tend (in the norm) to
an orthogonal projector P : H → H. Let

Mk = P + Sk,
∑
k

||Sk|| <∞. (3.3)

Then the infinite product Rk = MkMk+1 . . . converges in the norm, and
kerP ⊂ kerRk. One has Rk → P , as k → ∞, in the operator norm, and
kerRk = kerP for every k large enough.

Proof Fix a k and set Tn = Tk,n = Mk . . .Mn for n ≥ k; Tk = Mk. One
has

Tn+1 = TnMn+1 = Tn(P + Sn+1), Tn+1 − TnP = TnSn+1.

The latter equality implies that

||Tn+1|| ≤ ||Tn||(1 + ||Sn+1||) ≤ e||Sn+1||||Tn||.

This implies that

||Tk,n|| ≤ Ck, Ck = e
∑

j≥k ||Sj ||||Mk||. (3.4)
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Now one has
Tk,n = Tk,n−1P + Tk,n−1Sn,

Tk,n+1 = Tk,nP + Tk,nSn+1 = Tk,n−1P
2 + Tk,n−1SnP + Tk,nSn+1

= Tk,n−1P + Tk,n−1SnP + Tk,nSn+1 :

here we have used the equality P 2 = P , which holds for all the projectors.
The two latter formulas together with (3.4) imply that

||Tk,n+1 − Tk,n|| ≤ Ck(2||Sn||+ ||Sn+1||).

The latter right-hand side being a converging series in n, the sum of the
left-hand sides in n converges and so does Tk,n, as n → ∞, in the operator
norm. This also implies that the norm distance of each Tk,n to the limit
Rk = limn→∞ Tk,n, and in particular, dist(Mk, Rk) is bounded from above
by ∆k,n = 3Ck

∑
j≥n−1 ||Sj ||. One has ∆k,n → 0, as n → ∞ uniformly in

k, and also ∆k,n → 0, as k, n → ∞ so that k ≤ n. This implies that Rk
and Mk converge to the same limit P in the operator norm, as k →∞. For
every v ∈ kerP one has Mnv = Snv → 0. Hence, Tk,nv = Tk,n−1(Snv)→ 0,
as n→∞. Therefore, Rkv = 0 and kerP ⊂ kerRk. Let N > 0 be such that
for every k > N one has ||Rk−P || < 1. Let us show that kerRk = kerP for
these k. Indeed, suppose the contrary: kerRk is strictly bigger than kerP .
Note that H = kerP ⊕ P (H) (orthogonal decomposition), since P is an
orthogonal projector. Therefore, there exists a vector uk ∈ P (H) such that
Rk(uk) = 0. Hence,

||P (uk)|| = ||(P −Rk)(uk)|| < ||uk||,

while P (uk) = uk, since P is a projector. The contradiction thus obtained
proves the lemma. 2

Addendum to Lemma 3.1. Let in Lemma 3.1 the operators Sn depend
holomorphically on some parameters so that the series

∑
n ||Sn|| converges

uniformly on compact subsets in the parameter space. Then the infinite
products Rk are also holomorphic in the parameters.
Proof The above proof implies that the sequence Tk,n converges uniformly
on compact subsets in the parameter space. This together with the Weier-
strass Theorem implies the holomorphicity of the limit. 2

Corollary 3.2 Let

Mk =

(
1 + δ11,k δ12,k

1 0

)
,
∑
k

|δij,k| <∞ for (ij) = (11), (12). (3.5)
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Then the infinite product Rk = MkMk+1 . . . converges, and the right column
of the limit product matrix Rk vanishes. In the case, when δ12,k 6= 0 for all k,
the limit matrix Rk has rank 1 for all k: its kernel is generated by the vector
(0, 1). In the case, when δij,k depend holomorphically on some parameters
and the convergence of the corresponding series is uniform on compact sets,
the limit Rk is also holomorphic.

Addendum 1 to Corollary 3.2. In the conditions of the corollary set

ck = (0, 1)Rk

(
1
0

)
. (3.6)

Then the sequence ck is a solution of recurrence relations (3.2) such that
ck
ck−1

→ 1, and one has (
ck−1
ck

)
= Rk

(
1
0

)
. (3.7)

Proof of Corollary 3.2. This is the direct application of the lemma and
its addendum for the norm induced by appropriate scalar product: the latter
product should make the matrix

P =

(
1 0
1 0

)
an orthogonal projector. The kernel kerRk contains the kernel kerP , which
is generated by the vector (0, 1); kerRk = kerP , i.e., rk(Rk) = 1 for all
k large enough, by the lemma. In particular, the right column in each Rk
vanishes. Now it remains to note that rk(Rk) = 1 for all k, since the matrices
Mk are all non-degenerate: δ12,k 6= 0. The corollary is proved. 2

Proof of Addendum 1. Consider the affine chart C = CP1 \ {(1 : −1)}
with the coordinate w = z1−z2

z1+z2
centered at (1 : 1). The projectivizations

Pk of the linear operators Mk : C2 → C2 converge to (1 : 1) uniformly on
compact subsets in C. Hence, for every C > 0 there exist a N = N(C) > 0
and an 0 < λ < 1 such that for every k ≥ N one has Pk(DC) b DC , and
Pk is a λ-contraction of the disk DC , as in the proof of Theorem 1.7 in
the previous section. This together with Theorem 1.14 implies that there
exists a sequence (xk)k≥N(C), xk ∈ C = CP1, w(xk) → 0, as k → ∞,
such that Pk(xk) = xk−1 and Pk ◦ · · · ◦ Pm converges to xk−1 uniformly
on compact subsets in C, as m → ∞. Convergence at (1 : 0) implies
that xk−1 = (Rk,11 : Rk,21) = (ck−1 : ck). Moreover, Rk,21 = Rk+1,11,
since Rk = MkRk+1 and the matrix Mk has lower raw (1, 0). The two last
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statements together imply that the sequence ck = Rk,21 satisfies recurrence
relations (3.2). One has

ck+1

ck
→ 1, since xk = (ck : ck+1) → (1 : 1). This

proves the addendum. 2

Corollary 3.3 Consider recurrence relations (1.9). Let qk ∈ C be a se-
quence such that the rescaling ck = qkak transforms (1.9) to (3.2). Let the
corresponding matrices Mk from (3.2) be the same, as in (3.5). Let ck be
the same, as in (3.6). Then the sequence

ak = q−1k ck

is a solution of relations (1.9) such that the series
∑

k≥0 akz
k converges on

all of C.

Proof The sequence (ak) is a solution of (1.9), by construction and Ad-
dendum 1. One has

qk−1

qk
' −fk

gk
→ 0, as k → ∞, since the above sequence

rescaling transforms (1.9) to (3.2). Therefore, ak
ak−1

→ 0, by the latter state-

ment and since ck
ck−1

→ 1, as was shown above. This implies the convergence

of the series
∑

k≥0 akz
k on C and proves the corollary. 2

3.2 Forward solutions from Theorems 1.1 and 1.9

Here we give explicit formulas for the solution
∑

k akz
k of recurrence rela-

tions (1.6) converging, as k → +∞.
Case 1): b, b+ n /∈ Z (i.e., the conditions of Theorem 1.1 hold).

Let us invert matrix relation (1.7). We get(
ak−1
ak

)
= Wk

(
ak
ak+1

)
, (3.8)

Wk =

(
k+b
µ (1 + λ

(k+b)(k+b+n−1))
k+b+1

k+b+n−1
1 0

)
.

To obtain an explicit formula for solution of relation (1.6), we will use results
of Subsection 3.1. To do this, we reduce equation (3.8) to a similar equation
with the matrix in the right-hand side converging to a projector. This is
done by renormalizing the sequence ak by multiplication by appropriate
constants depending on k ≥ 0. Namely, set

ck =
ak(b)k+1

µk
, (b)l := b . . . (b+ l − 1) =

Γ(b+ l)

Γ(b)
.
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Recall that the symbol (b)l is called the Pochhammer symbol. Translating
relations (3.8) in terms of the sequence ck yields(

ck−1
ck

)
= Mk

(
ck
ck+1

)
,

Mk =

(
1 + λ

(k+b)(k+b+n−1)
µ2

(k+b)(k+b+n−1)
1 0

)
(3.9)

=

(
(b)k
µk−1 0

0
(b)k+1

µk

)
Wk

(
µk

(b)k+1
0

0 µk+1

(b)k+2

)
.

The infinite matrix product

Rk = MkMk+1 . . . (3.10)

converges and depends analytically on (λ, µ, n, b) whenever the denominators
in its definition do not vanish, by Corollary 3.2.

Theorem 3.4 Let b, b+ n /∈ Z. Set

ck =
(
0 1

)
Rk

(
1
0

)
, (3.11)

ak =
µk

(b)k+1
ck (3.12)

The coefficients ak satisfy recurrence relations (1.6), for all k, and the series

f+(z) =
∑
k≥1

akz
k (3.13)

converges on all of C.

Proof The sequence ck satisfies relations (3.9), and ck
ck−1

→ 1, as k →∞, by

Addendum 1 to Corollary 3.2. This implies that ak satisfy (1.6). The series
(3.13) converges on all of C, by Corollary 3.3. This proves the theorem. 2

Case 2): some of the numbers b or b+ n is an integer. Set

k0+ = max{m ∈ {−1− b, 1− b− n} | m ∈ Z}. (3.14)

Note that now the product (b)l = b(b+ 1) . . . (b+ l−1) can be equal to zero,
and thus, the sequence ak defined by (3.12) is not necessarily well-defined.
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Let us modify the above rescaling coefficients relating ak and ck as follows.
For every s ≤ l + 1 set

(b)s,l+1 = (b+ s) . . . (b+ l) =
(b)l+1

(b)s
; (b)0,l+1 = (b)l+1; (b)s,s = 1. (3.15)

Set

ck = akµ
k0++1−k(b)k0++2,k+1 for every k > k0+; ck0++1 = ak0++1. (3.16)

The sequence (ak) satisfies (1.7), if and only if the sequence (ck) satisfies
(3.9). The above formulas remain valid with the same matrices Mk, which
are well-defined for k ≥ k0+ + 2: the denominators in its fractions do not
vanish. Therefore, the infinite product Rk = MkMk+1 . . . is well-defined for
the same k in the case under consideration.

Theorem 3.5 Let b, n, k0+ be as above, Mk be as in (3.9), Rk = MkMk+1 . . . ,

ck = Rk,21 for k ≥ k0+ + 2, ck0++1 = Rk0++2,11, (3.17)

ak = µk−k0+−1
ck

(b)k0++2,k+1
for k ≥ k0+ + 1, (3.18)

ak0+ =
((k0+ + b+ 1)(k0+ + b+ n) + λ)ak0++1 + µ(k0+ + b+ 2)ak0++2

µ(k0+ + b+ n)
.

(3.19)
The sequence (ak)k≥k0+ satisfies recurrence relations (1.6) for k > k0+. The

series
∑+∞

k=k0+
akz

k converges on all of C.

Proof The sequence ck satisfies relations (3.9) for k ≥ k0++2, by Corollary
3.2. Therefore, ak satisfy relations (1.7), which are equivalent to (1.6), see
the previous discussion. Formula (3.19) is equivalent to relation (1.6) for
k = k0+ + 1. The denominator µ(k0+ + b+ n) in (3.19) does not vanish. In
the case, when b+ n /∈ Z, this is obvious. In the case, when b+ n ∈ Z, one
has k0+ + b+n ≥ 1, by (3.14). The series

∑
k≥k0 akz

k converges on C, as in
the previous subsection. The theorem is proved. 2

3.3 Backward solutions

Here we give explicit formulas for the solution
∑

k akz
−k of recurrence rela-

tions (1.6) with k → −∞. Set

m = −k, âm = a−m.
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Relation (1.7) in new variables m and âm takes the matrix form(
âm
âm−1

)
= A−m

(
âm+1

âm

)
.

Writing the latter equation with permuted order of vector components (we
place âs having smaller indices above) yields the same equation with the
new matrix obtained from A−m by permutation of lines and columns:(

âm−1
âm

)
= Âm

(
âm
âm+1

)
, (3.20)

Âm =
b+ n−m− 1

b−m+ 1

(
−λ+(b−m)(b−m+n−1)

µ(b−m+n−1) 1
b−m+1

b−m+n−1 0

)
. (3.21)

Case 1): b, b + n /∈ Z, as in the conditions of Theorem 1.1. Let
us renormalize the sequence âm: set

ĉm =
âm(2− n− b)m+1

µm
.

Translating equation (3.21) in terms of the sequence ĉm yields(
ĉm−1
ĉm

)
= Sm

(
ĉm
ĉm+1

)
, (3.22)

Sm = Sm(b, n) =

(
1 + λ−n+2

(b−m+1)(b−m+n−2)
µ2(b−m+n−1)

(b−m+1)(b−m+n−2)(b−m+n−3)
1 0

)
(3.23)

=

(
(2−n−b)m
µm−1 0

0 (2−n−b)m+1

µm

)
Âm

(
µm

(2−n−b)m+1
0

0 µm+1

(2−n−b)m+2

)
.

Theorem 3.6 Let b, b+ n /∈ Z. Let the matrices Sm be as above,

Tm = SmSm+1 . . . , (3.24)

ĉm =
(
0 1

)
Tm

(
1
0

)
, âm =

ĉmµ
m

(2− n− b)m+1
, ak = â−k. (3.25)

The sequence (ak) satisfies recurrence relations (1.6), and the series

f−(z) =
∑
k≤0

akz
−k (3.26)

converges on C.
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Proof The above matrix product converges, and the sequence ĉm satis-
fies equation (3.22), by Corollary 3.2. This implies that the corresponding
sequence âm satisfies (3.20), the sequence ak satisfies (1.6) and the series
f−(z) converges, as in the previous subsection. This proves the theorem. 2

Case 2): some of the numbers b or b+ n is an integer. Let

k0− = min{r ∈ {−1− b, 1− b− n} | r ∈ Z}, m0 = −k0−. (3.27)

The above Pochhammer symbol may be not well-defined in the case, when
n+ b ∈ Z, 2− n− b < 0. We use the inequalities

b−m+ 1 6= 0 for every m > m0;

2− n− b+m, 3− n− b+m 6= 0 for every m ≥ m0, (3.28)

which follow immediately from (3.27). The sequence rescaling

ĉm =
âm(2− n− b)m0,m+1

µm

is well-defined and invertible for all m ≥ m0, by (3.28). It differs from the
previous one by multiplication by constant independent on m, and hence,
transforms (3.20) to (3.22), as above. The matrices Sm are well-defined for
m > m0: the denominators in their fractions do not vanish, by (3.28). Let
Tm be their products (3.24) defined for m > m0.

Theorem 3.7 Let Sm and Tm be the same, as in (3.24),

ĉm =
(
0 1

)
Tm

(
1
0

)
for m > m0, cm0 = Tm0+1, 11,

âm =
ĉmµ

m

(2− n− b)m0,m+1
for m ≥ m0, ak = â−k. (3.29)

The sequence (ak)k≤k0− satisfies recurrence relations (1.6), and the series∑
k≤k0− akz

−k converges on C.

The proof of Theorem 3.7 repeats the proof of Theorem 3.6 with obvious
changes.
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3.4 Theorem 1.1: formulas for d0± and d1±

Lemma 3.8 Let f+(z) =
∑

k≥1 akz
k and f−(z−1) =

∑
k≤0 akz

−k be the
functions from (3.13) and (3.26) constructed in the two previous subsections,
case 1). Then

z−bL(zbf±(z±1)) = d0± + d1±z, (3.30)

d0+ = µ(b+ 1)a1; d1+ = ((b+ 1)(b+ n) + λ)a1 + µ(b+ 2)a2, (3.31)

where a1 and a2 are the same, as in (3.12);

d0− = (b(b+ n− 1) + λ)a0 − µ(b+ n− 1)a−1; d1− = −µ(b+ n)a0, (3.32)

where a−1 and a0 are the same, as in (3.25).

Proof The left-hand side in (3.30) with index “+” is a Taylor series with
coefficients at zk being equal to the left-hand side of the corresponding recur-
rence relation (1.6). The latter relation holds for all k ≥ 2, by construction.
This implies (3.30) with d0+, d1+ being equal to the left-hand sides of rela-
tions (1.6) for k = 0 and k = 1 respectively. This implies (3.31). The proof
for the index “−” is analogous. 2

4 Application: monodromy eigenvalues

Here we study the eigenfunctions of the monodromy operator of Heun equa-
tion (1.1). This is the operator acting on the space of germs of solutions at
a point z0 6= 0 by analytic extension along a positive circuit around zero.
Each monodromy eigenfunction with eigenvalue e2πib has the form of a series

E(z) =
∑
k∈Z

akz
k+b, b ∈ C, (4.1)

converging on C∗. Here we write down an explicit analytic equation on those
b, for which the latter solution E(z) of equation (1.1) exists, i.e., there exists
a bi-infinite sequence (ak)k∈Z satisfying recurrence relations (1.6) such that
the the bi-infinite series

∑
k∈Z akz

k converges on C∗.
We consider different cases, but the method of finding the above b is

general for all of them. The coefficients ak with k → +∞ should form a
unique converging series (up to multiplicative constant) that satisfies recur-
rence relations (1.6). Similarly, its coefficients with k → −∞ should form
a unique converging series satisfying (1.6). Finally, the above positive and
negative parts of the series should paste together and form a solution of
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Heun equation. In the simplest, non-resonant case, when b, b + n /∈ Z, the
pasting equation is given by (1.5). The coefficients ak, k ≥ 1 satisfying
(1.6) for k ≥ 2 and forming a converging series are given by formulas (3.12);
the sequence (ak)k≤0, ak = â−k, satisfying (1.6) for k < 0 and forming a
converging series is given by formula (3.25).

It appears that substituting the above-mentioned formulas for ak to for-
mulas (3.31) and (3.32) for dj± and then substituting the latter formulas
to (1.5) yields a rather complicated pasting equation. To obtain a simpler
formula, we proceed as follows. In the non-resonant case we extend the se-
quence (ak)k≥1 to k = 0 by putting appropriate α ∈ C instead a0 (we get
α, a1, a2, . . . ) so that the longer sequence thus obtained satisfies (1.6) also
for k = 1. Similarly, we extend the sequence (ak)k≤0 to k = 1 by putting
appropriate β ∈ C instead of a1 (we get . . . a−1, a0, β) in order to satisfy
equation (1.6) for k = 0. The positive and negative series thus constructed
paste together to a converging bi-infinite series

∑
k∈Z akz

k satisfying (1.6)
(after their rescaling by multiplicative constants), if and only if

αβ = a0a1. (4.2)

We obtain an explicit expression for equation (4.2).
In what follows, we use the two next propositions.

Proposition 4.1 The determinant of the monodromy operator of Heun equa-
tion (1.1) equals e−2πin.

Proof The monodromy matrix is the product of the formal monodromy
matrix diag(e−2πin, 1) and a pair of unipotent matrices: the inverse to the
Stokes matrices, cf. [15, formulas (2.15) and (3.2)]. Therefore, its determi-
nant equals e−2πin. Another possible proof would be to use the formula for
Wronskian of two linearly independent solutions of equation (1.1) from [8,
p. 339, proof of theorem 4]. It shows that the Wronskian equals z−n times
a function holomorphic on C∗, and hence, it gets multiplied by e−2πin after
analytic continuation along a positive circuit around zero. 2

Recall [8, p. 336, lemma 1] that the transformation # : E 7→ #E:

(#E)(z) := 2ωz−n(E′(z−1)− µE(z−1)), λ+ µ2 =
1

4ω2
, ω > 0 (4.3)

is an involution acting on the space of solutions of equation (1.1).

Proposition 4.2 Let the monodromy operator of Heun equation have dis-
tinct eigenvalues. Then the involution # permutes the corresponding eigen-
functions.
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Proof The involution under question is a composition of transformation of
a function to its linear combination with its derivative, the variable change
z 7→ z−1 and multiplication by z−n. Let now E be a monodromy eigenfunc-
tion with eigenvalue λ1. The composition of the first and second operations
transforms E to a function whose monodromy extension along positive cir-
cuit around the origin multiplies it by λ−11 : the second operation inverses
the direction of the circuit. The multiplication by z−n multiplies the above
result of analytic extension by e−2πin. Therefore, #E is a monodromy eigen-
function with the eigenvalue λ2 = λ−11 e−2πin. It coincides with the second
monodromy eigenvalue, since it is found by the condition that λ1λ2 = e−2πin,
see Proposition 4.1. This proves the proposition. 2

4.1 Nonresonant case: b, b+ n /∈ Z

In this case the denominators in formulas (3.9) and (3.23) for the ma-
trices Mk and Sm respectively are nonzero for all integer k and m, and
hence, the matrices are well-defined together with the infinite products
Rk = MkMk+1 . . . , Tm = SmSm+1 . . . .

Theorem 4.3 Let b, b + n /∈ Z. Equation (1.1) has a monodromy eigen-
function with eigenvalue e2πib, b ∈ C, if and only if

(b+ 1)(b+ n− 2)R1,11T0,11 + µ2R1,21T0,21 = 0. (4.4)

Proof Let f+(z) =
∑

k≥1 akz
k be a converging series satisfying (1.6) for

k ≥ 2. Recall that

a1 =
µ

b(b+ 1)

(
0 1

)
R1

(
1
0

)
.

Set

α =
1

b

(
0 1

)
R0

(
1
0

)
=

1

b

(
1 0

)
R1

(
1
0

)
.

The sequence α, a1, a2, . . . satisfies (1.6) for k ≥ 1, by Theorem 3.4. Recall
that

ĉ0 =
(
0 1

)
T0

(
1
0

)
, â0 = a0 =

ĉ0
2− n− b

Set

β = µ−1
(
1 0

)
T0

(
1
0

)
.

The sequence . . . , a−2, a−1, a0, β satisfies (1.6) for all k ≤ 0, by Theorem 3.6.
Substituting the above formulas for a1, α, a0, β to pasting equation (4.2)
yields (4.4). The theorem is proved. 2
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4.2 One-resonant case: only one of the numbers b, b + n is
integer

Note that in the case under consideration one has n /∈ Z.

Proposition 4.4 Let n /∈ Z. Then Heun equation (1.1) has a solution of
type E(z) = zbf(z) with b satisfying the assumption of the subsection and
the function f(z) being holomorphic on C∗, if and only if it has a solution
holomorphic on C∗, i.e., corresponding to b = 0. In this case the monodromy
eigenvalues are 1 and e−2πin 6= 1.

Proof Let the above solution E exist. Then it is a monodromy eigenfunc-
tion with the eigenvalue e2πib. The other eigenvalue equals e−2πi(b+n), by
Proposition 4.1. Exactly one eigenvalue equals one, by assumption. The
monodromy eigenfunction corresponding to unit eigenvalue is holomorphic
on C∗. Conversely, a solution holomorphic on C∗ is a solution E as above
with b = 0. The last statement of the proposition follows from the existence
of unit eigenvalue and Proposition 4.1. This proves proposition 4.4. 2

Corollary 4.5 Let n /∈ Z. A solution E as in Proposition 4.4 exists, if and
only if the recurrence relations (1.6) with b = 0:

(k(k + l) + λ)ak − µ(k + l)ak−1 + µ(k + 1)ak+1 = 0, l = n− 1 (4.5)

have a solution (ak)k∈Z such that the series
∑

k∈Z akz
k converges on C∗.

Proposition 4.6 Every semiinfinite sequence (ak)k≥−2 satisfying equations
(4.5) for k ≥ −1 (without convergence condition) satisfies the relation

(1− l + λ)a−1 − µ(l − 1)a−2 = 0. (4.6)

Proof Equation (4.6) coincides with (4.5) for k = −1. 2

Corollary 4.7 Let l /∈ Z. A solution (ak)k∈Z to (4.5) with the series∑
k akz

k converging on C∗ exists, if and only if the unique semiinfinite se-
quence (ak)k≤−1 solving (4.5) for k ≤ −2 with series

∑−1
k=−∞ akz

k converg-
ing on C∗ satisfies relation (4.6).

Proof Let

f(z) =

−1∑
k=−∞

akz
k (4.7)
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be a semiinfinite solution of recurrence relations (4.5) for k ≤ −2. Note
that for every k ≤ −1 its coefficient ak is uniquely determined as a linear
combination of the two previous ones ak−2 and ak−1, see (4.5) written for
k ≤ −2. The same holds in the opposite sense: for every k ≤ −3 the
coefficient ak is expressed as a linear combination of the coefficients ak+1 and
ak+2 by (4.5), since l /∈ Z. The two latter statements together imply that
a−2 and a−1 do not both vanish. Therefore, the above negative semiinfinite
series can be extended to positive k as a (may be just formal) two-sided
solution of (4.5) only in the case, when relation (4.6) holds. Let us show
that in this case it does extend to a true (not just formal) two-sided solution.

Note that a−1 6= 0, by relation (4.6) and since a−2, a−1 do not vanish
both and l 6= 1. Equation (4.5) with k = −1 has zero multiplier at a0 and
hence, holds for arbitrary a0. The same equation with k = 0 yields

λa0 − lµa−1 + µa1 = 0. (4.8)

This is a linear non-homogeneous equation on the pair (a0, a1). Hence,
its solutions form a line L1 ⊂ C2 that does not pass through the origin:
a−1 6= 0. The pairs (a0, a1) extendable to semiinfinite solutions in positive k
are all proportional (uniqueness of solution up to constant factor and since
for every k ≥ 0 the coefficient ak+1 is uniquely determined by ak and ak−1
via relations (4.5)). Hence, they form a line L0 through the origin. Let us
choose (a0, a1) to be the intersection of the above lines L0 and L1, provided
they are not parallel (the case of parallel lines is discussed below). Then the
pair (a0, a1) extends to a semiinfinite solution of relations (4.5) in positive k,
by construction. The complete Laurent series

∑+∞
k=−∞ akz

k thus constructed
is a solution to equations (4.5) and hence, to Heun equation (1.1).

Case, when L0 and L1 are parallel. In this case (a0, a1) defines a
solution to (4.5) with positive k, if and only if λa0 + µa1 = 0. This solution
extends to negative k by putting ak = 0 for k < 0, since relation (5.11)
for k = −1 is equivalent to (4.6). Finally we obtain a converging Taylor
series satisfying (4.5) and hence, presenting a solution of Heun equation
(1.1) holomorphic on C. This implies that n ∈ Z. Indeed, if n /∈ Z, then
the corresponding Heun equation has no entire solution, or equivalently, the
corresponding recurrence relations (1.6) have no solution (ak) with ak = 0
for all k < 0. This follows from the fact that if n /∈ Z, then for every k
the coefficients at ak±1 in the corresponding relation (1.6) do not vanish:
hence, no two neighbor coefficients ak and ak+1 of a solution vanish simul-
taneously. The contradiction thus obtained shows that the case of parallel
lines is impossible, if n /∈ Z. Corollary 4.7 is proved. 2
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Theorem 4.8 Let n /∈ Z,

Sm =

(
1 + λ−n+2

(1−m)(n−m−2)
µ2(n−m−1)

(1−m)(n−m−2)(n−m−3)
1 0

)
for m ≥ 2,

Tm = SmSm+1 . . . .

Heun equation (1.1) has a solution holomorphic on C∗, if and only if

(2− n+ λ)(4− n)T2,11 − µ2(n− 2)T2,21 = 0 (4.9)

Proof Set
ĉm = Tm,21 = Tm+1,11, ĉ1 = T2,11,

âm =
ĉmµ

m

(2− n)m+1
= a−m, m ≥ 1.

The sequence (ak)k≤−1 satisfies recurrence relations (4.5) for k ≤ −2, as in
Subsection 3.3, and the series

∑
k≤−1 akz

−k converges on C: here we have
rewritten the formulas from Subsection 3.3 for b = 0. One has

a−2 =
µ2T2,21

(2− n)(3− n)(4− n)
, a−1 =

µT2,11
(2− n)(3− n)

,

by definition. Substituting the latter formulas and l = n− 1 to (4.6) yields
(4.9). This together with Corollary 4.7 proves the theorem. 2

4.3 Double resonant case: n, b ∈ Z

Recall that we study the existence of solution (4.1) of Heun equation (1.1).
In the case under consideration b ∈ Z, and without loss of generality we can
and will consider that b = 0. In this case a solution we are looking for is
holomorphic on C∗ and presented by a Laurent series E(z) =

∑
k∈Z akz

k

converging on C∗. Without loss of generality we will also consider that
l = n− 1 ≥ 0. One can achieve this by applying the transformation

3 : E(z) 7→ eµ(z+z
−1)E(−z−1),

which is an isomorphism of the solution space of equation (1.1) (written
in terms of the parameter l = n − 1) onto the solution space of the same
equation with l = n− 1 replaced by −l, see [8, section 4, formula (39)]:

LE = z2E′′ + ((−l + 1)z + µ(1− z2))E′ + (λ+ µ(l − 1)z)E = 0 (4.10)

It sends solutions of equation (1.1) holomorphic on C∗ onto solutions of
equation (4.10) holomorphic on C∗.
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Theorem 4.9 Let l ∈ Z, l ≥ 0. Equation (1.1) with n = l+1 has a solution
holomorphic on C∗, if and only if its monodromy is unipotent. This happens,
if and only if equation (1.1) satisfies one of the two following incompatible
statements:

1) either it has an entire solution, i.e., holomorphic on C;
2) or the corresponding equation (4.10) has a nontrivial polynomial so-

lution.

Theorem 4.9 will be proved below. The sets of parameter values for
which statements 1) or 2) hold were already described in [7, 8, 11]. Let us
recall this description. To do this, consider the following matrices Mk, Rk
and numbers ak, ξl:

Mk =

(
1 + λ

k(k+l)
µ2

k(k+l)

1 0

)
, Rk = MkMk+1 . . . for k ≥ 1,

ak =
µk

k!
Rk,21 for k ≥ 1, a0 = R1,11,

ξl = ξl(λ, µ) = λa0 + µa1 = λR1,11 + µ2R1,21. (4.11)

Theorem 4.10 A Heun equation (1.1) with l = n − 1 ∈ Z, l ≥ 0 has an
entire solution, if and only if ξl(λ, µ) = 0.

Theorem 4.10 is equivalent to Corollary 1.5. It was partly proved and conjec-
tured in [8, section 3, theorem 2] and proved completely in [11, subsection
3.1, theorem 3.5]. For completeness of presentation let us give its direct
proof without using results of loc. cit.
Proof of Theorem 4.10. The above matrices Mk and numbers ak coin-
cide with those from (3.9) and (3.18) respectively constructed for recurrence
relations (1.6) with b = 0, n = l + 1,

(k(k + l) + λ)ak − µ(k + l)ak−1 + µ(k + 1)ak+1 = 0; (4.12)

here k0+ = −1. (If l = 0, then k0+ = 0, but the corresponding sequence
ak from (3.18) remains the same, as in (4.11), up to constant factor.) This
together with Theorem 3.5 implies that the sequence (ak) satisfies (4.12)
for k ≥ 1 and the series E(z) =

∑+∞
k=0 akz

k converges on C. Therefore,
LE = const, and the latter constant is the left-hand side of the relation
(4.12) corresponding to k = 0: that is, λa0 + µa1 = ξl(λ, µ). This together
with the uniqueness of an entire function E for which LE = const (Theorem
1.3) implies the statement of Theorem 4.10. 2
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To describe equations (4.10) with polynomial solutions, consider the
three-diagonal matrix

H =



0 µ 0 0 0 0 . . . 0
µ(l − 1) 1− l 2µ 0 0 . . . 0

0 µ(l − 2) −2(l − 2) 3µ 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 0 2µ −2(l − 2) (l − 1)µ
0 . . . 0 0 0 µ 1− l

 :

(4.13)
Hij = 0 if |i− j| ≥ 2; Hjj = −j(l − j); Hj,j+1 = µj; Hj,j−1 = µ(l − j + 1).

Theorem 4.11 [7, section 3] A Heun equation (4.10) with l ∈ Z, l ≥ 0 has
a polynomial solution, if and only if the three-diagonal matrix H + λId has
zero determinant.

Proof of Theorem 4.9. Let equation (1.1) have a solution E(z) =∑
k∈Z akz

k holomorphic on C∗. Equivalently, its series converges on C∗
and the coefficients ak satisfy recurrence relations (4.12). For k = −l and
k = −1 respectively these relations take the form

λa−l + µ(1− l)a1−l = 0, (4.14)

(1− l + λ)a−1 − µ(l − 1)a−2 = 0. (4.15)

In particular, they do not contain aj , j /∈ {−l, . . . ,−1}. Therefore, given a
solution holomorphic on C∗ of Heun equation (1.1), its Laurent coefficients
ak with−l ≤ k ≤ −1 should form a vector (a−l, . . . , a−1) satisfying equations
(4.14), (4.15) and the l − 2 recurrence equations (4.12) for intermediate
k = −l+1, . . . ,−2. In other terms, the latter vector should be in the kernel of
the three-diagonal l×l- matrix H̃ of equations (4.12) with k = −1, . . . ,−l: its
line number −k consists of the coefficients of the k-th relation; the coefficient
at a−j stands at the column number j.

Proposition 4.12 Let H̃ be the latter matrix, and let Ht be the transposed
matrix (4.13). One has

H̃ = Q(Ht + λId)Q−1, Q =


0 0 0 . . . 1
0 . . . 0 −1 0
. . . 0 1 0 0
. . . . . . . . . . . . . . .

(−1)l−1 0 0 . . . 0

 .
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The proposition follows from definition.
Case 1). There exists a solution of Heun equation (1.1) holo-

morphic on C∗ with aj = 0 for all j ∈ {−l, . . . ,−1}, and l ≥ 1. Then
the series

∑
k≥0 akz

k is an entire solution, i.e., holomorphic on C: it sat-
isfies relations (4.12) for all k by assumption and (4.15). It is known that
in this case each solution of equation (1.1) is holomorphic on C∗ and its
Laurent series does not contain monomials zj , j ∈ {−l, . . . ,−1} [9, lemma
3, statement 6].

Case 2). There exists a solution of Heun equation holomor-
phic on C∗ with ak 6= 0 for some k ∈ {−l, . . . ,−1}. In this case the
three-diagonal matrix H̃ of relations (4.12) with k = −l, . . . ,−1 has zero
determinant, by the above arguments. Hence, the matrix H + λId, whose
transposed is conjugated to H̃ (Proposition 4.12), also has zero determi-
nant. Therefore, equation (4.10) has a polynomial solution (Theorem 4.11).
It is known that if (4.10) has a polynomial solution, then the corresponding
equation (1.1) does not have entire solution [11, theorem 3.10]. Therefore,
cases 1) and 2) are incompatible. Theorem 4.9 is proved. 2

5 Applications to phase-lock areas in the model of
Josephson effect

5.1 Phase-lock areas in Josephson effect: brief description of
results and plan of the section

Here we apply the above results to the family of nonlinear equations (1.16):

φ̇ =
dφ

dt
= − sinφ+B +A cosωt, A, ω > 0, B ≥ 0. (5.1)

We fix an arbitrary ω > 0 and consider family (5.1) depending on two
variable parameters (B,A). The variable change τ = ωt transforms (5.1) to
differential equation (1.17) on the two-torus T2 = S1 × S1 with coordinates
(φ, τ) ∈ R2/2πZ2. Its solutions are tangent to the vector field{

φ̇ = − sinφ
ω + l + 2µ cos τ

τ̇ = 1
, l =

B

ω
, µ =

A

2ω
(5.2)

on the torus. The rotation number of the equation (5.1) is, by definition, the
rotation number of the flow of the field (5.2), see [1, p. 104]. It is a function
ρ(B,A) of parameters. (Normalization convention: the rotation number of
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a usual circle rotation equals the rotation angle divided by 2π.) The B-axis
will be called the abscissa, and the A-axis will be called the ordinate.

Definition 5.1 (cf. [15, definition 1.1]) The r-th phase-lock area is the level
set {(B,A) | ρ(B,A) = r} ⊂ R2, provided it has a non-empty interior.

Remark 5.2 : phase-lock areas and Arnold tongues. The behavior
of phase-lock areas for small A demonstrates the Arnold tongues effect [1,
p. 110]. The phase-lock areas are called “Arnold tongues” in [15, definition
1.1].

Recall that the rotation number of system (5.1) has the physical meaning
of the mean voltage over a long time interval. The segments in which the
phase-lock areas intersect horizontal lines correspond to the Shapiro steps
on the voltage-current characteristic.

It has been shown earlier that
- the phase-lock areas exist only for integer values of the rotation number

(a “quantization effect” observed in [5] and later also proved in [17, 16]);
- the boundary of each phase-lock area {ρ = r} consists of two analytic

curves, which are the graphs of two functions B = gr,±(A) (see [6]; this fact
was later explained by A.V.Klimenko via symmetry, see [19]);

- the latter functions have Bessel asymptotics (observed and proved on
physical level in [22], see also [20, chaptrer 5], [2, section 11.1], [4]; proved
mathematically in [19]).

- each phase-lock area is an infinite chain of bounded domains going to
infinity in the vertical direction, each two subsequent domains are separated
by one point, the separation points lying outside the horizontal B-axis are
called the adjacency points (or briefly adjacencies), see Fig.1;

- for every r ∈ Z the r-th phase-lock area is symmetric to the −r-th one
with respect to the A-axis (symmetry of equation (5.1)).

In the present section we obtain functional equations satisfied by non-
integer level curves {ρ(B,A) = r} of the rotation number (Subsection 5.1)
and the boundaries of the phase-lock areas (Subsection 5.2) using relation
of equation (5.1) to Heun equation (1.1) (recalled below) and the results on
monodromy eigenvalues of Heun equations from the previous section. The
above-mentioned functional equations will be written in the complement to
the adjacencies and the algebraic set of the parameters corresponding to the
existence of a polynomial solution of equation (4.10). Afterwards we discuss
open problems and possible approaches to them using the same results on
Heun equations.
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Figure 1: Phase-lock areas and their adjacencies for ω = 2. The abscissa is
B, the ordinate is A. Figure taken from [8, p. 331].

5.2 Reduction to double confluent Heun equations. Entire
and polynomial solutions: special boundary points of
phase-lock areas

Set
Φ = eiφ, z = eiτ = eiωt.

The complexified equation (5.1) is equivalent to the Riccati equation

dΦ

dz
= z−2((lz + µ(z2 + 1))Φ− z

2iω
(Φ2 − 1)).
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Figure 2: Phase-lock areas and their adjacencies for ω = 1. The abscissa is
B, the ordinate is A.

The latter is the projectivization of the following linear equation in vector
function (u, v) with Φ = v

u , see [11, subsection 3.2]:{
v′ = 1

2iωzu

u′ = z−2(−(lz + µ(1 + z2))u+ z
2iωv)

(5.3)

This reduction to a system of linear equations was earlier obtained in slightly
different terms in [3, 13, 8, 17]. It is easy to check that a function v(z) is
the component of a solution of system (5.3), if and only if the function
E(z) = eµzv(z) satisfies equation (1.1) with n = l + 1 and

λ =

(
1

2ω

)2

− µ2. (5.4)
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Figure 3: Phase-lock areas and their adjacencies for ω = 0.7.

Theorem 5.3 (see [11, theorems 3.3, 3.5]). For every ω > 0, l ≥ 0 a point
(B,A) ∈ R2 with A ≥ 0, B = lω is an adjacency for family of equations
(5.1), if and only if l ∈ Z and the corresponding equation (1.1) with n = l+1
and µ, λ as in (5.2) and (5.4) has a nontrivial entire solution, i.e., if and
only if equation ξl(λ, µ) = 0 holds; ξl is the same, as in (4.11).

Remark 5.4 The statement of Theorem 5.3 holds, if and only if the mon-
odromy operator of Heun equation (1.1) with n = l + 1 is trivial. This
follows from [8, theorem 3] and [15, proposition 3.2].

In what follows we will use the next proposition.

Proposition 5.5 Let ω > 0, (B,A) ∈ R2, and let ρ = ρ(B,A) denote the
corresponding rotation number. If (B,A) does not lie in the interior of a
phase-lock area, then the monodromy operator of the corresponding Heun
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Figure 4: Phase-lock areas and their adjacencies for ω = 0.5.

equation (1.1) with n = l + 1, l = B
ω has eigenvalues eπi(ρ−l) and e−πi(ρ+l).

In particular, the latter pair of eigenvalues is the same for all other points
(B,A′) with the same B and ρ(B,A′) = ±ρ(B,A)(mod2).

Proof Let λ1, λ2 denote the eigenvalues of the above monodromy operator
of Heun equation. The point (B,A) does not lie in the interior of a phase-lock
area. If r = ρ(B,A) /∈ Z, then the monodromy of the corresponding Riccati
equation is an elliptic Möbius transformation conformally conjugated to the
rotation by angle 2πr. Therefore, it has two fixed points with multipliers
e±2πir. The latter multipliers are ratios of the eigenvalues λj , and without
loss of generality we consider that λ1

λ2
= e2πir. On the other hand, λ1λ2 =

e−2πil, by Proposition 4.1. This implies that the eigenvalues under question
are equal to ±eπi(r−l), ±e−πi(r+l). In the case, when r ∈ Z, the point (B,A)
lies in the boundary of a phase-lock area and the monodromy of the Riccati
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Figure 5: Phase-lock areas and their adjacencies for ω = 0.3.

equation is parabolic, The monodromy of the Heun equation has multiple
eigenvalue given by same (now coinciding) formulas. The correct sign should
be the same for all the points (B,A) in the complement of the parameter
plane to the union of the interiors of phase-lock areas, by path connectivity
of the latter complement and continuity. The sing is “+” at each adjacency,
since the corresponding monodromy is trivial (Remark 5.4). Hence, it is
“+” everywhere. This proves the proposition. 2

Theorem 5.6 Let ω > 0, (B,A) ∈ R2, B,A > 0, l = B
ω , µ = A

2ω , λ = 1
4ω2 −

µ2, ρ = ρ(B,A). The double confluent Heun equation (4.10) corresponding
to the latter λ, µ and l has a polynomial solution, if and only if l, ρ ∈ Z,
0 ≤ ρ ≡ l(mod2) and ρ ≤ l, and in addition, the point (B,A) lies in
the boundary of the phase-lock area number ρ and is not an adjacency. In
other terms, the points (B,A) ∈ R2

+ corresponding to equations (4.10) with
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polynomial solutions lie in boundaries of phase-lock areas and are exactly
their intersection points with the lines l = B

ω ≡ ρ(mod2), 0 ≤ ρ ≤ l, except
for the adjacencies, see Fig. 6.

B

A

L

L
    1

L
    2

L
      3

0 ω            2ω            3ω

    0

 
  

Figure 6: Approximate phase-lock areas for ω ' 0.27; the marked points
correspond to equations (4.10) with polynomial solutions.

Proof It is known that every point (B,A) ∈ R2
+ corresponding to equation

(4.10) with a polynomial solution lies in the boundary of the phase-lock area
number ρ, and one has l, ρ ∈ Z, l = B

ω ≡ ρ(mod2), 0 ≤ ρ ≤ l [7, corollary
6 and theorem 5]. In addition, (B,A) is not an adjacency [11, theorem
3.10]. Let us prove the converse: if (B,A) satisfy all the latter statements,
then the corresponding equation (4.10) has a polynomial solution. Indeed,
if (B,A) ∈ R2

+ lies in the boundary of the phase-lock area number ρ, l ∈ Z
and ρ ≡ l(mod2), then the monodromy of Heun equation (1.1) is unipotent,
by Proposition 5.5: the corresponding eigenvalues are equal to e−πi(ρ+l) = 1.
Let us now suppose that (B,A) is not an adjacency, or equivalently, equation
(1.1) does not have an entire solution. Then equation (4.10) has a polynomial
solution, by Theorem 4.9. Theorem 5.6 is proved. 2
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5.3 Equation on non-integer level sets of rotation number

For given ω > 0 and r > 0 set

Lr = {(B,A) ∈ R2 | ρ(B,A) = r}, L[r] = tv≡±r(mod2)Lv.

We consider that r /∈ Z: then each Lv, v ≡ ±r(mod2) is an analytic curve,
the graph of an analytic function B = gv(A). Here we write down analytic
equations defining the set L[r] in the complement R2 \ Σ[r], where

Σ[r] = ∪±{(B,A) ∈ R2 | l =
B

ω
≡ ±r(mod2)}. (5.5)

For every (B,A) ∈ L[r] the corresponding Heun equation (1.1) has a mon-
odromy eigenfunction of the type

E(z) = zb
∑
k∈Z

akz
k, b =

r − l
2

, l =
B

ω
,

by Proposition 5.5. On has b, b + l /∈ Z, if (B,A) /∈ Σ[r]. Therefore, the
analytic subset L[r] \Σ[r] ⊂ (R2 \Σ[r]) is described by equation (4.4). Let us
write it down explicitly. The corresponding matrices Mk, Rk, Sm, Tm, see
(3.9) and (3.23) are

Mk =

(
1 + λ

(k+ r
2
)2− l2

4

µ2

(k+ r
2
)2− l2

4

1 0

)
, Rk = MkMk+1 . . . ,

Sm =

(
1 + λ−l+1

( r−l
2
−m+1)( r+l

2
−m−1)

µ2( r+l
2
−m)

( r−l
2
−m+1)( r+l

2
−m−1)( r+l

2
−m−2)

1 0

)
,

Tm = SmSm+1 . . . .

Theorem 5.7 Let ω > 0, r ∈ R. The set L[r] ∩ (R2 \Σ[r]) is defined by the

following equation in (B,A) ∈ R2\Σ[r], where B = lω, A = 2µ, λ+µ2 = 1
4ω2 :

(
r − l

2
+ 1)(

r + l

2
− 1)R1,11T0,11 + µ2R1,21T0,21 = 0. (5.6)

Proof A point (B,A) ∈ R2 \ Σ[r] is contained in L[r], if and only if
ρ = ρ(A,B) ≡ ±r(mod2). Or equivalently, some of the corresponding mon-
odromy eigenvalues eπi(±ρ−l) equals e2πib = eπi(r−l). The latter statement is
equivalent to (5.6), by Theorem 4.3. This proves Theorem 5.7. 2
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5.4 Description of boundaries of phase-lock areas

Proposition 5.8 A point in the parameter space of equation (5.1) lies in
the boundary of a phase-lock area, if and only if the monodromy of the cor-
responding Heun equation (1.1) is parabolic: has multiple eigenvalue.

Proof The point under question lyes in the boundary of a phase-lock area,
if and only if the flow mapping of the vector field (5.2) for the period 2π
(restricted to the coordinate φ-circle) is parabolic: has a fixed point with
unit derivative. The period mapping is the restriction to the unit circle
of the monodromy of the corresponding Riccati equation: the projectivized
monodromy. Parabolicity of the projectivization of a two-dimensional linear
operator is equivalent to its own parabolicity. The proposition is proved. 2

Proposition 5.9 Let a Heun equation (1.1) have a parabolic monodromy.
Then the monodromy either has Jordan cell type, or is the identity.

Proof The monodromy matrix is the product of the formal monodromy
matrix diag(e−2πin, 1) and a pair of unipotent matrices: the inverse to the
Stokes matrices at 0, cf. [15, formulas (2.15) and (3.2)]. Therefore, if the
monodromy of a Heun equation (1.1) is a multiplication by scalar number,
then the Stokes matrices are trivial, and the monodromy coincides with
the formal one. Hence, both monodromies are scalar and given by the
above diagonal matrix with unit eigenvalue. Thus, they are trivial. The
proposition is proved. 2

The condition saying that the monodromy has multiple eigenvalue is
equivalent to the statement that it has eigenvalue ±e−πil, by Proposition
4.1. This is equivalent to the statement that there exists a multivalued
solution zb

∑
k∈Z akz

k of Heun equation with b ∈ {− l
2 , −

l+1
2 }: a monodromy

eigenfunction with the above eigenvalue. Heun equations (1.1) satisfying the
latter statement will be described below by using the following proposition.
Afterwards we deduce immediately the description of boundaries of phase-
lock areas.

Proposition 5.10 Let a Heun equation (1.1) have a Jordan cell monodromy.
Then its eigenfunction is either invariant, or anti-invariant under the invo-
lution #:

(#E)(z) = 2ωz−l−1(E′(z−1)− µE(z−1)).

The proposition follows from the fact that the involution # sends mon-
odromy eigenfunctions to eigenfunctions (Proposition 4.2).
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Case 1: l /∈ 2Z, b = − l
2 : the monodromy eigenvalue equals

e−πil 6= 1. Then the monodromy operator of Heun equation (1.1) is a
Jordan cell, by Proposition 5.9. Consider the matrices

Mk =

(
1 + λ

k2− l2

4

µ2

k2− l2

4

1 0

)
, Rk = MkMk+1 . . . . (5.7)

Theorem 5.11 Let λ + µ2 = 1
4ω2 , ω, µ 6= 0, n = l + 1, l /∈ 2Z. The mon-

odromy operator of the corresponding Heun equation (1.1) has eigenvalue
e−πil, if and only if

R0,21 ± ωl(R0,21 −R0,11) = 0. (5.8)

with some choice of sign.

Proof The corresponding eigenfunction E has the form

E(z) = z−
l
2 f(z), f(z) =

∑
k∈Z

akz
k is holomorphic on C∗. (5.9)

Equation (1.1) is equivalent to recurrence equations (1.6) with b = − l
2 :

(k2 − l2

4
+ λ)ak − µ(k +

l

2
)ak−1 + µ(k − l

2
+ 1)ak+1 = 0. (5.10)

The series f(z) should converge on C∗. The above matrices Mk and Rk
coincide with those constructed in (3.9), and they are well-defined for all
k ∈ Z. Therefore, the coefficients ak, k ≥ 0 are given by formulas (3.12) up
to common constant factor, by Theorem 1.9:

a0 = −2

l
R0,21, a−1 = µ−1R0,11. (5.11)

Now we will use the condition of (anti-) invariance #E = ±E (Proposi-
tion 5.10), which takes the form∑

k∈Z
akz

k− l
2 = ±2ω(

∑
k∈Z

(k − l

2
)akz

−k− l
2 − µ

∑
k∈Z

akz
− l

2
−k−1),

or equivalently,∑
akz

k = ±2ω(
∑

(k − l

2
)akz

−k − µ
∑

akz
−k−1). (5.12)
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The free (zero power) term of the latter equation is equivalent to the relation

(1± lω)a0 ± 2ωµa−1 = 0, (5.13)

which is in its turn equivalent to (5.8), by (5.11). Therefore, existence of
the above solution E implies (5.8).

Let us prove the converse: each equation (5.8) implies the existence of a
solution (5.9) of Heun equation. To do this, consider the action of the trans-
formation # on the formal series (5.9) (with f not necessarily converging).
It sends formal solutions of Heun equation (equivalently, formal solutions of
(5.10)) to formal solutions. (The proof of symmetry of Heun equation under
the transformation # uses only Leibniz differentiation rule and remains valid
for formal series.) The space of formal solutions is two-dimensional, and it
is identified with the space of its initial conditions (a−1, a0). The transfor-
mation # is its involution. Its eigenvalues are equal to ±1, and the cor-
responding eigenspaces are defined by initial conditions that satisfy (5.13).
Therefore, both eigenspaces are one-dimensional and are exactly character-
ized by equations (5.13), since both equations (5.13) are nontrivial. Thus, a
formal solution (ak)k∈Z of recurrence relations (5.10) is #-(anti)-invariant,
if and only if its coefficients a−1, a0 satisfy (5.13) with the corresponding
sign.

Fix the one-sided solution
∑

k≥−1 akz
k of recurrence relations (5.10) for

k ≥ 0. It satisfies (5.13), by (5.8). The sequence (ak)k≥−1 extends uniquely
to a two-sided formal solution (ak)k∈Z of (5.10) (a priori, not necessarily
presenting a converging series for k → −∞), since the coefficients at ak±1 in
(5.10) do not vanish. The latter formal solution should be #-(anti-)invariant,
by (5.13) and the previous statement. Hence,

ak = ±2ω((−k − l

2
)a−k − µa−(k+1))

by (5.12). The series
∑

k<0 akz
k converges on C∗: it is bounded from above

by converging series 2ω
∑

k≥0(k + |l| + µ + 1)|akzk|, by the latter formula.
This together with the above argument proves the theorem. 2

Case 2: l /∈ 2Z + 1 and b = − l+1
2 : the monodromy eigenvalue

equals −e−πil 6= 1. Then the monodromy of equation (1.1) is a Jordan cell,
as above. Consider the matrices

Mk =

(
1 + λ

(k− 1
2
)2− l2

4

µ2

(k− 1
2
)2− l2

4

1 0

)
, Rk = MkMk+1 . . . . (5.14)
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Theorem 5.12 Let λ + µ2 = 1
4ω2 , ω, µ 6= 0, n = l + 1, l /∈ 2Z + 1. The

monodromy operator of the corresponding Heun equation (1.1) has eigen-
value −e−πil, if and only if

R1,11 ± 2ωµ(R1,11 −R1,21) = 0 (5.15)

with some choice of sign.

Proof We are looking for a double-infinite solution

E(z) = z−
l+1
2 f(z), f(z) =

∑
k∈Z

akz
k (5.16)

of Heun equation (1.1) with f holomorphic on C∗. That is, with ak satisfying
recurrence relations (1.6) for b = − l+1

2 , which take the form

((k − 1

2
)2 − l2

4
+ λ)ak − µ(k +

l − 1

2
)ak−1 + µ(k − l − 1

2
)ak+1 = 0. (5.17)

The above matrices Mk and Rk coincide with those constructed in (3.9),
and they are well-defined for all k ∈ Z. Therefore, the coefficients ak, k ≥ 0
are given by formulas (3.12) up to common constant factor, by Theorem 1.9.
In particular,

a0 =
1

b
R0,21 =

1

b
R1,11 = − 2

l + 1
R1,11, a1 =

µ

b(b+ 1)
R1,21 =

4µ

l2 − 1
R1,21.

The condition of (anti-) invariance under the involution # of the solution
takes the form∑

akz
k− l+1

2 = ±2ω(
∑

(k − l + 1

2
)akz

−k− l−1
2 − µ

∑
akz
−k− l+1

2 ),

or equivalently,∑
akz

k = ±2ω(
∑

(k − l + 1

2
)akz

−k+1 − µ
∑

akz
−k).

The free term (zero power term) of the latter equation is

(1± 2ωµ)a0 ± ω(l − 1)a1 = 0, (5.18)

which is equivalent to (5.15). The rest of proof of Theorem 5.12 is analogous
to the proof of Theorem 5.11. 2
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Corollary 5.13 Let ω, µ > 0, λ + µ2 = 1
4ω2 , l ≥ 0, n = l + 1, B = lω,

A = 2µω. The point (B,A) lies in the boundary of a phase-lock area, if and
only if one of the following four incompatible statements holds:

1) (B,A) is an adjacency: ξl(λ, µ) = 0;
2) Heun equation (4.10) has a polynomial solution: det(H + λId) = 0,

where H is the l × l-matrix from (4.13);
3) l /∈ 2Z and equation (5.8) holds;
4) l /∈ 2Z + 1 and equation (5.15) holds.

Proof If one of the above statements holds, then (B,A) lies in the boundary
of a phase-lock area, by Proposition 5.8 and Theorems 4.9, 5.11, 5.12. Con-
versely, let (B,A) lie in the boundary of a phase-lock area. The monodromy
of the corresponding Heun equation (1.1) is parabolic, by Proposition 5.8. It
is unipotent, if and only if some of the two incompatible statements 1) or 2)
holds, by Theorems 4.9 and 5.3. Otherwise, the monodromy has Jordan cell
type with eigenvalue ±e−πil 6= 1. Therefore, one of the statements 3) or 4)
holds, by Theorems 5.11 and 5.12. Statements 3) and 4) are incompatible:
they correspond to Heun equation (1.1) with monodromy having multiple
eigenvalue e−πil or −e−πil respectively. This proves the corollary. 2

Proposition 5.14 Let l ∈ Z. For given ω, µ > 0 and n = l + 1 the corre-
sponding Heun equation (1.1) has a monodromy eigenfunction with eigen-
value −1, if and only if the corresponding point (B,A) ∈ R2 lies in the
boundary of a phase-lock area with a rotation number ρ ≡ l + 1(mod2).

Proof For l ∈ Z the monodromy has unit determinant (Proposition 4.1).
Therefore, if it has eigenvalue −1, then its other eigenvalue is also −1.
Hence, the point (B,A) lies in the boundary of the phase-lock area number
ρ = ρ(B,A) (Proposition 5.8). Thus, eπi(±ρ−l) = −1 for both signs, by
Proposition 5.5. The latter equality holds if and only if ρ ≡ l + 1(mod2).
Conversely, if a point (B,A) with l = B

ω ∈ Z lies in the boundary of a phase-
lock area, and ρ(B,A) satisfied the above equality, then the monodromy
eigenvalues are equal to −1, by Proposition 4.1. The proposition is proved.

2

5.5 Conjectures on geometry of phase-lock areas

Here we state conjectures that are motivated by numerical simulations and
theoretical results of [7, 8, 11, 15]. In what follows for every r ∈ Z we denote

Lr = the phase-lock area number r.
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The next five conjectures are due to the first author (V.M.Buchstaber) and
S.I.Tertychnyi.

Conjecture 5.15 Each phase-lock area Lr is a garland of infinitely many
connected components separated by adjacencies Ar,1,Ar,2 . . . lying in the
line {B = rω} and ordered by their A-coordinates.

Remark 5.16 It was shown in [15, theorems 1.2, 3.17] that for every r ∈ Z
the abscissa of each adjacency in Lr equals lω, l ∈ Z, l ≡ r(mod2); 0 ≤ l ≤ r
if r ≥ 0; r ≤ l ≤ 0 if r ≤ 0.

Conjecture 5.17 For every k ≥ 2 the k-th component in Lr contains the
interval (Ar,k−1, Ar,k).

Conjecture 5.18 For every given k ∈ N all the adjacencies Ar,k, r =
1, 2, . . . , lie on the same line, see Fig. 1–5; its azimuth depends on k.

Conjecture 5.19 The first component of the zero phase-lock area lies in
the square with vertices (0,±1), (±1, 0).

For l ∈ N let Pl ∈ {B = lω} be the point with maximal A−coordinate
that corresponds to Heun equation (1.19) with polynomial solution.

Conjecture 5.20 All Pl lie on the same line, see Fig. 7.

Conjecture 5.21 As ω → 0, for every r the set Lr+ := Lr ∩ {A ≥ Ar,1}
accumulates to the A-axis.

In what follows we will discuss in detail the next two conjectures that
are closely related to Conjectures 5.15 and 5.17.

Conjecture 5.22 For r ∈ N the phase-lock area with rotation number r+1
does not intersect the line

Λr = {B = ωr} ⊂ R2.

Conjecture 5.23 For r ∈ N the phase-lock area with rotation number r
does not intersect the line Λr−2.

45



-1 -0.5 0 0.5 1 1.5
dimensionless dc bias

0

1

2

3

4

d
i
m
e
n
s
i
o
n
l
e
s
s
 
s
i
n
e
 
a
m
p
l
i
t
u
d
e

period=20.944 omega=0.3

Figure 7: Phase-lock areas for ω = 0.3; the marked points correspond to
Heun equations (1.19) with polynomial solutions. They are described by
Theorem 5.6.

Remark 5.24 Conjecture 5.22 implies Conjecture 5.23. Indeed, the points
(B,A) with A > 0 large enough of the phase-lock area Lr, r ∈ Z lie close to
Λr, i.e., they are separated from the line Λr−2 by Λr−1. This follows from
the fact that its boundary consists of graphs of two functions B = g±r(A)
and g±r(A) → rω, as A → +∞ (follows from results of [19]). Each one of
Conjectures 5.22, 5.23 together with [15, theorems 1.2, 3.17] (see Remark
5.16) imply Conjecture 5.15.

A possible strategy for Conjecture 5.22. If the boundary of the
phase-lock area with rotation number r + 1 intersects the line Λr, then the
intersection points correspond to parabolic monodromy operator of Jordan
cell type with both eigenvalues equal to -1 (Proposition 5.14). That is, some
of equations (5.8) or (5.15) should hold at each intersection point.

Conjecture 5.25 Let l ∈ N, and let the parameter µ satisfy some of equa-
tions (5.8) if l /∈ 2Z, or (5.15) if l ∈ 2Z. Then the double-valued eigenfunc-
tion E from Proposition 5.14 gives a periodic solution of the corresponding
Riccati equation having rotation number between 0 and l.

Conjecture 5.25 would imply Conjecture 5.22.
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A possible strategy for Conjecture 5.23. We know that for ω ≥ 1
the statements of Conjecture 5.22 and hence Conjecture 5.23 hold (Chap-
lygin Theorem argument, see [6, lemma 4] and [15, proposition 3.4]). The
adjacencies of a phase-lock area with rotation number ρ cannot lie on lines Λl
with l 6≡ ρ(mod2), see [15, theorem 3.17]; this also follows from Proposition
5.14. Suppose that for a certain “critical” value ω = ω0 < 1 the boundary
of the phase-lock area number l+ 2 > 0 moves from the right to the left, as
ω decreases to ω0, and touches the line Λl at some point (B,A), as ω = ω0.
Then there are two possibilities for the corresponding Heun equation:

- the associated Heun equation (4.10) (equation (1.1) with l replaced by
−l) has a polynomial solution. But this case is forbidden by Buchstaber–
Tertychnyi result [7, theorem 4], which states that then the corresponding
rotation number cannot be greater than l.

- the point (B,A) an adjacency: Heun equation (1.1) has a solution
holomorphic on C. This together with the above-mentioned known fact
that the boundaries of phase-lock areas are graphs of functions (Remark
5.24) implies that both boundary components of the phase-lock area with
rotation number l + 2 are tangent to the line Λl at the point (B,A).

Conjecture 5.26 For every ω > 0 for every adjacency (B0, A0) ∈ R2
+ of

any phase-lock area the branches of its boundary at (A,B) cannot be both
tangent to the vertical line B = B0.

Proposition 5.27 Conjecture 5.26 implies Conjecture 5.23, and hence, 5.15.

The proposition follows from the above argument and Remark 5.24.
A possible approach to Conjecture 5.26 could be studying equations (5.8)

and (5.15) defining the boundaries and to see what happens with them when
the “non-resonant” parameters approach the resonant ones. A first step is
done below.

5.6 Description of boundaries of phase-lock areas near adja-
cencies. Relation to Conjecture 5.23

Let us write down equation (5.8) on the boundaries in a neighborhood of a
line Λl0 , l0 ∈ 2Z. Let us recall the formulas for the corresponding matrices:

Mk = Mk(λ, µ, l) =

(
1 + λ

k2− l2

4

µ2

k2− l2

4

1 0

)
, Rk = MkMk+1 . . . .
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Equation (5.8) for the boundaries is

R0,21 ± ωl(R0,21 −R0,11) = 0.

Note that the matrices Mk are analytic in a neighborhood of the line l = l0
except for the matrix M l0

2

, which has pole of order one along the latter line.

One has
l20 − l2

4
M l0

2

=

((
λ µ2

0 0

)
+
l20 − l2

4

(
1 0
1 0

))
.

Set

R =
l20 − l2

4
R0, X = M0 . . .M l0

2
−1.

One has

R = X

((
λ µ2

0 0

)
+
l20 − l2

4

(
1 0
1 0

))
R l0

2
+1
,(

λ µ2

0 0

)
R l0

2
+1
|l=l0 =

(
ξl0(λ, µ) 0

0 0

)
,

by (4.11) and since the matricesM l0
2
+k

(λ, µ, l0), R l0
2
+k

(λ, µ, l0) coincide with

the matrices Mk, Rk preceding (4.11) with l = l0. Therefore,

R = ξl0(λ, µ)

(
X11 0
X21 0

)
+O(l − l0). (5.19)

Now equation (5.8) can be rewritten as

R21 ± ωl(R21 −R11) = 0. (5.20)

Taking into account asymptotics (5.19) one gets asymptotic form of equation
(5.20):

ξl0(λ, µ)(X21 ± ωl(X21 −X11)) +O(l − l0) = 0. (5.21)

Now let us consider the case, when l0 ∈ 2Z + 1, and let us write down
equation (5.15) in a neighborhood of the line Λl0 . The corresponding ma-
trices from (5.14) are

Mk =

(
1 + λ

(k− 1
2
)2− l2

4

µ2

(k− 1
2
)2− l2

4

1 0

)
, Rk = MkMk+1 . . . .

Set

R =
l20 − l2

4
R1, X = M1 . . .M l0+1

2
−1 : X = Id, if l0 = 1.

48



Analogously to the above calculations, we get asymptotic relation (5.19).
Together with (5.15), it implies

ξl0(λ, µ)(X11 ± 2ωl(X11 −X21)) +O(l − l0) = 0 (5.22)

Set

ζl(ω, µ) = ξl(λ, µ) = ξl(
1

4ω2
− µ2, µ).

Conjecture 5.28 ∂ζl
∂µ 6= 0 at zeros of the function ξl for every l ∈ Z, l ≥ 0.

Remark 5.29 The above matrices X are both non-degenerate for l = l0.
This implies that in formulas (5.21) and (5.22) the multiplier at ξl0 is non-
zero for at least one choice of sign.

Conjecture 5.28 together with the above remark would imply that for
every l ∈ Z at every adjacency in the line Λl at least one boundary compo-
nent of the corresponding phase-lock area (depending on the above-chosen
sign) is transversal to the line Λl.

Proposition 5.30 Conjecture 5.28 implies Conjectures 5.26 and 5.23.

Proof Conjecture 5.28 implies that no adjacency can be born from a tan-
gency of both boundary components with a line l = l0, l0 ∈ Z, by transver-
sality (the above statement). In other words, it implies Conjecture 5.26, and
hence, Conjecture 5.23, by Proposition 5.27. 2

Open Question 6. Study the degeneracy of equation (5.6) on non-
integer level curves of rotation number, as the latter number tends to an
integer value. The level curves should degenerate to boundaries of phase-lock
areas. How to retrieve equations (5.21) and (5.22) on the boundaries and
equation ξl(λ, µ) = 0 on the adjacencies from asymptotics of degenerating
equation (5.6)?

5.7 Asymptotic behavior of phase-lock areas for small ω

D.A.Filimonov, V.A.Kleptsyn, I.V.Schurov, V.M.Buchstaber and S.I.Tertychnyi
have done numerical simulations studying what happens to the phase-lock
areas, as ω → 0. They have observed that after appropriate rescaling of the
variables (B,A), the phase-lock areas tend to open sets (which we will call
the limit rescaled phase-lock areas) whose components partition the whole
plane somewhat similarly to a chess table turned by π

4 , see Fig. 5 for ω = 0.3.
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Open Question 7. Study what happens with the phase-lock areas, as
ω → 0. Study the separation curves and adjacencies of the limit rescaled
phase-lock areas. To do this, it would be helpful to study the asymptotics
of the functions ζl(ω, µ) in variable µ with fixed ω and their zeros, as ω → 0.
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