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We investigate the structure of solutions of conservation laws with discontinuous flux under quite general assumption on the flux. We show that any entropy solution admits traces on the discontinuity set of the coefficients and we use this to prove the validity of a generalized Kato inequality for any pair of solutions. Applications to uniqueness of solutions are then given.

Introduction

Aim of this paper is to study the structure of solutions of conservation laws with discontinuous flux of the form [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF] div z A(z, u) = 0, in order to establish a general framework for studying uniqueness of solutions of the Cauchy problem associated to the evolutionary equation 1

(2) u t + div x F (t, x, u) = 0, in (0, +∞) × R N .

Here A (respectively F ) is discontinuous in its first variable z (respectively (t, x)). More precisely we will assume that A(z,

•) ∈ C 1 (R, R n ), A(•, v) ∈ SBV (R n , R n )
where SBV is the space of special function of bounded variation, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Chapter 4], and that A satisfies some mild structural assumptions listed in Section 2.

In recent years, the study of conservation laws with discontinuous flux has attracted the attention of many authors since they naturally arise in many models, see [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous flux-functions[END_REF][START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Andreianov | Entropy conditions for scalar conservation laws with discontinuous flux revisited[END_REF][START_REF] Audusse | Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies[END_REF][START_REF] Coclite | Conservation laws with time dependent discontinuous coefficients[END_REF][START_REF] Diehl | A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients[END_REF][START_REF] Garavello | Conservation laws with discontinuous flux[END_REF][START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF][START_REF] Mitrovic | New entropy conditions for scalar conservation laws with discontinuous flux[END_REF][START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF] and the references therein.

Even in the case the flux F is smooth it is well known that the Cauchy problem associated to [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] it is not well posed and some additional entropy conditions have to be imposed in order to recover uniqueness of the solution, see [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]. In the case of a discontinuous flux, these conditions are still not sufficient to select a unique solution to [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] and further dissipation conditions, involving the traces of the solutions on the set of discontinuities of the flux, must be imposed in order to ensure uniqueness.

The problem of existence and uniqueness for solutions of (2) has been mainly studied in the case of one space variable and of fluxes with just one point discontinuity (but the analysis can be easily extended to the case of finitely many discontinuity points). Assuming that the discontinuity is located at x = 0 and imposing the validity of Kruzhkov entropy inequalities separately on (-∞, 0) and (0, +∞), one can show that every pair u, v of bounded solutions satisfies [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF] |u(T, x)v(T, x)| dx ≤ |u(0, x)v(0, x)| dx

+ T 0 W (u ± (t, 0), v ± (t, 0)) dt ,
where W is a quantity that depends only on the traces u ± , v ± of u and v at x = 0. The L 1 -contractivity of the semigroup associated with ( 2) is then obtained if W (u ± , v ± ) ≤ 0 for every pair of solutions. Several conditions have been proposed in literature in order to have that W ≤ 0, and different conditions lead to different physically relevant semigroups of solutions, see [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Garavello | Conservation laws with discontinuous flux[END_REF].

In [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] Andreianov, Karlsen and Risebro have proposed a general framework in order to study uniqueness for [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] in the model case of one space variable and for fluxes with finitely many discontinuity points. The validity of the inequality W ≤ 0 is axiomatized in the notion of L 1 -dissipative germ and given a germ G they show uniqueness of G-entropy solutions, see Definition 3.8 in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] and Definition 2.8 below.

Loosely speaking, at a point of discontinuity of the flux F , a germ G is a set of pairs (u -, u + ) satisfying the Rankine-Hugoniot condition, such that

W (u ± , v ± ) ≤ 0 ∀(u -, u + ), (v -, v + ) ∈ G
and, in the model case of flux with one single discontinuity at x = 0, a G-entropy solution is a solution of (2) satisfying Kruzkov's conditions outside the origin and whose traces at 0 belong to G. A similar analysis has been performed, always in the model case of one dimensional fluxes with one discontinuity point, independently by Garavello, Natalini, Piccoli and Terracina in [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF] in terms of the notion of dissipative Riemannian solvers. Let us also mention that this analysis can be extended to the multidimensional case by assuming that the set of discontinuity of the flux is a regular submanifold, see [START_REF] Andreianov | Entropy conditions for scalar conservation laws with discontinuous flux revisited[END_REF], or by assuming a priori BV regularity of the solution, see [START_REF] Crasta | Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux[END_REF].

The main purpose of this paper is to provide a general framework to extend this analysis to solutions of (2) under quite general assumptions on the flux. In order to do this we introduce a rather weak notion of entropy solution, see Definition 2.3 below, and under a suitable genuine nonlinearity assumption on the flux we show that these solutions admits traces on the discontinuity set of the coefficients, see Theorem 1.1 below. Once the existence of traces has been established we prove that any pair of weak entropy solutions of (1) satisfies a generalized Kato inequality with a reminder term concentrated on the discontinuity set of the flux, see Theorem 1.2 below. It is then classical to show that this Kato type inequality leads to a quasi contractivity inequality for solutions of (2) of the form [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]. Once this inequality has been established, the analysis in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF] in terms of germs and of G-entropy solutions can be straightforwardly extended to [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF], see Theorem 2.9 below. As a byproduct of our results we can also obtain existence and uniqueness of solutions of (2) assuming Sobolev dependence of the flux F with respect to (t, x), see Theorem 2.11 below.

Let us now describe in a more detailed way our main results. First of all, the structural assumptions on A and the results in [START_REF] Ambrosio | A nonautonomous chain rule in W 1,p and BV[END_REF] guarantee the existence of a H n-1 -rectifiable set N (defined in [START_REF] Crasta | Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux[END_REF] below) that represents a universal jump set of A(•, v), independent of v.

We say that a distributional solution u ∈ L ∞ (R n ) of (1) a weak entropy solution (WES) of (1), if there exists a non-negative Radon measure µ such that µ(R n \ N ) = 0 and, for every

k ∈ R, (4) div z sign(u -k)[A(z, u) -A(z, k)] + sign(u -k) div a z A(z, k) ≤ µ,
see Definition 2.3 below. Here div a z A(•, k) denotes, for every k ∈ R, the absolutely continuous part of the measure div z A(•, k).

As we shall see in a moment, the notion of weak entropy solution is strong enough to guarantee that such solutions possess a reasonable structure. On the other hand, it is weak enough to include essentially all solutions of (1) obtained by approximation schemes. In particular, under our assumptions on the flux, the solutions constructed by Panov in [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF] are weak entropy solutions.

Assuming the genuine nonlinearity of the flux, and adapting to our setting the techniques developed by De Lellis, Otto and Westdickenberg in [START_REF] De Lellis | Structure of entropy solutions for multi-dimensional scalar conservation laws[END_REF] (see also [START_REF] Yu | Existence of strong traces for quasi-solutions of multidimensional conservation laws[END_REF][START_REF] Vasseur | Strong traces for solutions of multidimensional scalar conservation laws[END_REF]), our first result ensures the existence of traces on N for weak entropy solutions. Loosely speaking, we have the following result, see Theorem 2.5 below for the precise statement.

Theorem 1.1 (Existence of traces). If u is a bounded weak entropy solution of (1), then u admits traces u ± on N (in a generalized sense, see Definition 2.4).

The existence of generalized traces of weak entropy solutions allows us to prove the validity of the following Generalized Kato Inequality, see Theorem 2.6 below for the precise statement.

Theorem 1.2 (Generalized Kato Inequality). Let u and v be weak entropy solutions. Then

(5) div z sign(u -v)[A(z, u) -A(z, v)] ≤ W (u ± , v ± ) H n-1 N ,
where

W (u ± , v ± ) = sign(u + -v + )[A + (z, u + ) -A + (z, v + )] -(sign(u --v -)[A -(z, u -) -A -(z, v -)] • ν N , (6) 
where ν N is the measure-theoretic normal to the H n-1 rectifiable set N , and A ± (z, v) are the traces at z of the SBV function z → A(z, v).

In order to prove the above theorem, we combine Kruzkov's doubling of variables technique (see [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]) with Ambrosio's lemma on incremental quotients of BV functions (see [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]), to show that the left-hand side of ( 5) is a measure whose positive part is concentrated on N . Once this result has been established, the representation formula ( 6) is an easy consequence of the existence of traces.

Our main application concerns the study of uniqueness conditions for the Cauchy problem associated to the multidimensional evolutionary equation [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]. In this case, a bounded distributional solution u ∈ L ∞ ((0, +∞) × R N ) of ( 2) is a weak entropy solution to (2) if, for every k ∈ R,

(7) ∂ t |u -k| + div x sign(u -k)[F (t, x, u) -F (t, x, k)] + sign(u -k) div a x F (t, x, k) ≤ µ,
where µ is, as before, a non-negative measure concentrated on N . The Generalized Kato Inequality (5) implies the quasi-contractivity of the L 1 norm of the difference of solutions in the following sense:

if u, v ∈ C 0 ([0, +∞); L 1 (R N )) ∩ L ∞ ((0, +∞) × R N )
are weak entropy solutions of (2), then for every T > 0 and every R > 0

BR |u(T, x) -v(T, x)| dx ≤ BR+V T |u(0, x) -v(0, x)| dx + N ∩([0,T ]×BR+V T ) W (u ± , v ± ) dH N , (8) 
where B r := {x ∈ R N : |x| < r} and V := A ∞ . As a consequence, if one prescribes an entropy condition stronger than (4) and implying the inequality W ≤ 0, then the Generalized Kato Inequality would give the standard contractivity inequality

(9) BR |u(T, x) -v(T, x)| dx ≤ BR+V T |u(0, x) -v(0, x)| dx
and hence the uniqueness of solutions to the Cauchy problems associated to [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF], see Definition 2.7 and Theorem 2.9 below.

Let us also stress that existence of solutions satisfying these additional entropy conditions is not trivial and currently not known in the general setting here considered. Existence results are available assuming additional conditions on the structure of the flux field, see Remark 2.10 for a more detailed discussion.

In case F (•, u) ∈ W 1,1 and satisfies the assumptions listed in Section 2, it is straightforward to check that N = ∅, so that (5) implies contractivity of the semigroup associated to [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]. In particular, also using the results of Panov [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF], we can generalize to this situation the classical Kruzkov results concerning existence and uniqueness of solutions of (2), see Theorem 2.11 and Remark 2.10 below.

Let us conclude this Introduction by presenting the structure of the paper. In Section 2 below we state our main assumption on the flux A, we recall some of its consequence and we provide the precise statements of our main results. In Section 3 we prove Theorem 2.5, in Section 4 we prove Theorem 2.6 and eventually in Section 5 we provide the proofs of Theorems 2.9 and 2.11.
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Assumptions on the vector field and main results

In this section we state our main structural hypotheses on the vector field (assumptions (H1)-(H5) below) and prove some consequences of these assumptions.

Structural assumptions on the vector field

. Let A ∈ L ∞ (R n × R; R n ) be such that: (H1) There exists a set C A with L n (C A ) = 0 such that A(z, •) ∈ C 1 (R, R n ) for every z ∈ R n \C A and A(•, v) ∈ SBV (R n , R n ) for every v ∈ R n . (H2) There exists a constant M such that |∂ v A(z, v)| ≤ M ∀ z ∈ R n \ C A , v ∈ R.
(H3) There exists a modulus of continuity ω such that

|∂ v A(z, u) -∂ v A(z, w)| ≤ ω(|u -w|) ∀ z ∈ R n \ C A , u , w ∈ R.
(H4) There exists a function g ∈ L 1 (R n ) such that

|∇ z A(z, u) -∇ z A(z, w)| ≤ g(z)|u -w| ∀ z ∈ R n \ C A , u , w ∈ R,
where ∇ z A(z, v) denotes the approximate gradient of the map z → A(z, v).

(H5) The measure [START_REF] Coclite | Conservation laws with time dependent discontinuous coefficients[END_REF] 

σ := u∈R |D z A(•, u)| satisfies σ(R n ) < ∞. Here D z A(•, u) is the distributional gradient of the map z → A(z, u) (which is a measure since A(•, u) ∈ BV
) and denotes the least upper bound in the space of non-negative Borel measures, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Definition 1.68].

Assumptions (H1)-(H5) imply that A satisfies the hypotheses of [START_REF] Ambrosio | A nonautonomous chain rule in W 1,p and BV[END_REF]. Let us summarize some consequence of this fact. First of all from the definition of σ we deduce that

v∈R |∇A(•, v)|L n ≤ σ a L n v∈R |D s A(•, v)| ≤ σ s ,
where ∇A(•, v) and D s A(•, v) are the approximate differential of A(•, v) and the singular part of the measure DA(•, v) respectively, and σ a L n and σ s are the the absolutely continuous and singular parts of σ. Moreover if we define ( 11)

N := z ∈ R n : lim inf r→0 σ(B r (z)) r n-1 > 0 ,
then N is a H n-1 rectifiable set2 , see Section 3 in [START_REF] Ambrosio | A nonautonomous chain rule in W 1,p and BV[END_REF]. Furthermore for H n-1 -a.e. point in R n \ N and every v ∈ R there exists the limit

Ã(z, v) := lim r→0 - Br (z) A(y, v)dy ,
and for H n-1 almost every z ∈ N and every v ∈ R there exists the traces of A on N defined as:

(12) A ± (z, v) := lim r→0 - B ± r (z) A(y, v)dy,
where we denoted

B ± r (z) = {w ∈ B r (z) : ± w -z, ν(z) ≥ 0}. In addition the functions v → Ã(z, v), A ± (z, v) are C 1 with derivatives given by ∂ v A(z, v) = ∂ v A(z, v) and ∂ v A ± (z, v) = (∂ v A(z, v)) ± respectively, see [4, Proposition 3.2].
Hence, if we denote by a the vector field [START_REF] De Lellis | Structure of entropy solutions for multi-dimensional scalar conservation laws[END_REF] a(z, v)

:= ∂ v A(z, v),
then a admits a precise representative for H n-1 -almost every z ∈ R n \ N as well as one sided traces on N that agree with ∂ v A (respectively with ∂ v A ± ).

In the sequel we shall assume the following genuine nonlinearity hypothesis:

(GNL) L 1 ({v : a ± (z, v) • ξ = 0}) = 0
for every ξ ∈ S n-1 and for H n-1 a.e. z ∈ N .

Remark 2.1. Let us point out that our hypotheses include (and actually are modeled on) the case

A(z, v) = A(w(z), v) where w ∈ SBV (R n ; R d ) ∩ L ∞ (R n ; R d ), A ∈ C 1 (R d × R, R n ) ∩ Lip(R d × R, R n ), and 
L 1 ({v : ∂ v A(w, v) • ξ = 0}) = 0 for every ξ ∈ S n-1 and for every w ∈ R d .
Remark 2.2. Since we are dealing with bounded solutions, all our assumptions can be localized in the v variable. Moreover, it is not difficult to modify the proofs in order to localize also in the z variable, see Remark 3.5 in [START_REF] Ambrosio | A nonautonomous chain rule in W 1,p and BV[END_REF].

2.2. Main results. We consider the following scalar conservation law

(14) div z A(z, u(z)) = 0 ,
where A : R n × R → R n satisfies the structural assumption (H1)-(H5) and (GNL).

Definition 2.3 (Weak entropy solutions). A function u ∈ L ∞ (R n
) is a weak entropy solution (WES shortened) of ( 14) if u is a distributional solution of ( 14) and for every k ∈ R it holds

(15) div z sign(u -k)[A(z, u) -A(z, k)] + sign(u -k) div a z A(z, k) ≤ µ, where µ is a non-negative Radon measure independent of k and such that µ(R n \ N ) = 0. Here div a z A(z, k) = tr∇A(z, k) is the absolutely continuous part of div z A(•, k). Definition 2.4 (Traces). Let u ∈ L ∞ (R n
) and let J ⊂ R n be an H n-1 -rectifiable set oriented by a normal vector field ν. We let the set of traces of u at z 0 ∈ J be

Γ u,J (z 0 ) := (c -, c + ) : ∃r k ↓ 0 : u z0,r k → c -1 H -+ c + 1 H + in L 1 loc , where u z0,r k (z) := u(z 0 + r k (z -z 0 )), H ± := {z ∈ R n : ± z -z 0 , ν ≥ 0} and 1 A denotes the characteristic function of a set A.
The very same definition can be given component-wise for a vector field

B ∈ L ∞ (R n , R n ). Moreover it is immediate to see from the definition that if u ∈ L ∞ (R n ) and f ∈ C 0 (R) then Γ f (u),J (z 0 ) = (f (c -), f (c + )) : (c -, c + ) ∈ Γ u,J (z 0 ) . Theorem 2.5 (Existence of generalized traces). If u is a WES, then for H n-1 almost every z 0 ∈ N Γ u,N (z 0 ) = ∅. Moreover if (c -, c + ) ∈ Γ u,N (z 0 ) satisfies c -= c + then the traces are unique: Γ u,N (z 0 ) = {(c -, c + )}. Otherwise there exist a, b ∈ R such that Γ u,N (z 0 ) = {(v, v) : v ∈ [a, b]}.
Finally, the Rankine-Hugoniot condition holds:

A -(z 0 , c -) • ν(z 0 ) = A + (z 0 , c + ) • ν(z 0 ) ∀ (c -, c + ) ∈ Γ u,N (z 0 ).
Theorem 2.6 (Generalized Kato Inequality). Let u and v be WES. Then there exists a Borel function w : N → R such that the following Kato inequality holds true:

(16) div z sign(u -v)[A(z, u) -A(z, v)] ≤ w H n-1 N .
Furthermore, for H n-1 almost every z ∈ N 1 := {z ∈ N : w(z) = 0}, the functions u and v admit unique traces at z and the following representation formula holds:

w = W (u ± , v ± ) = sign(u + -v + )[A + (z, u + ) -A + (z, v + )] -(sign(u --v -)[A -(z, u -) -A -(z, v -)] • ν. (17) 
The Generalized Kato Inequality yields a uniqueness result for the Cauchy problem for the evolutionary equation ( 18)

u t + div x A(t, x, u) = 0, in (0, +∞) × R N , u(0, x) = u 0 (x), x ∈ R N .
More precisely, if we prescribe an entropy condition stronger than [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] and implying the inequality w ≤ 0, then the Generalized Kato Inequality gives the uniqueness of solutions to [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]. To this end let us recall the definition of dissipative germ introduced in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF], see Definition 3.1 there.

Definition 2.7 (Germ). Given two functions f ± ∈ C 0 (R), a set G ⊂ R 2 is said to be a dissipative germ associated to f ± if the following two conditions hold true:

(i) Every (u -, u + ) ∈ G satisfies the Rankine-Hugoniot condition f + (u + ) = f -(u -).
(ii) For every two pairs (u -, u + ) , (v -, v + ) ∈ G we have

W f ± (u ± , v ± ) := sign(u + -v + )[f + (u + ) -f + (v + )] -(sign(u --v -)[f -(u -) -f -(v -)] ≤ 0.
Following [START_REF] Andreianov | On vanishing viscosity approximation of conservation laws with discontinuous flux[END_REF] we now define G-entropy solutions associated to germs, compare with Definition 3 there and Definiton 3.8 in [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF]. H5) and (GNL) above. Let N ⊂ R × R N be the rectifiable set defined in [START_REF] Crasta | Kinetic formulation and uniqueness for scalar conservation laws with discontinuous flux[END_REF]. Assume that for every z = (t,

Definition 2.8 (G-entropy solutions). Let F : R × R N × R → R N be such that A := (u, F ) satisfies (H1)-(
x) ∈ N such that A ± (z, u) exist it is given a dissipative germ G z associated to f ± (u) := A ± (z, u) • ν(z) and let us set G = {G z } z∈N . We say that a bounded function u ∈ C 0 ([0, +∞); L 1 (R N )) is a G-entropy solution of (18) if (i) u is a weak entropy solution of (18) according to Definition 2.3. (ii) For H N -almost every x ∈ N any (u -, u + ) ∈ Γ u,N (z) belongs to the germ G z .
A straightforward consequence of Theorem 2.6 is then the following: H5) and (GNL) above. Then for any choice of G there exists at most one G-entropy solution of (18).

Theorem 2.9 (Uniqueness of G-entropy solutions). Let F : R × R N × R → R N be such that A := (u, F ) satisfies (H1)-(
Remark 2.10. Under mild requirements on the flux, the existence of weak entropy solutions can be obtained by the results of Panov, see [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF]. On the other hand, the existence of G-entropy solutions, i.e. additionally satisfying condition (ii) in Definition 2.8, is far from trivial and known only in some special cases. Positive results in this direction are available either in one space dimension for a flux with a finite number of discontinuity points, see for instance [START_REF] Andreianov | A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux[END_REF][START_REF] Garavello | Conservation laws with discontinuous flux[END_REF] and the references therein, or in many space dimensions and for the particular case of the vanishing viscosity germ, assuming that the jump set of the F is a C 2 submanifold [START_REF] Andreianov | On vanishing viscosity approximation of conservation laws with discontinuous flux[END_REF], see also [START_REF] Andreianov | Entropy conditions for scalar conservation laws with discontinuous flux revisited[END_REF] where a more general situation is considered.

If F (•, u) is a Sobolev function one can easily obtain from the above analysis uniqueness of (weak) entropy solutions.

Theorem 2.11. Let F : R × R N × R → R N be such that A := (u, F ) satisfies (H1)-(H5) and (GNL) above and assume that

F (•, u) ∈ W 1,1 (R × R N , R N ) for every u ∈ R. Then any two (weak) entropy solutions u, v ∈ C 0 ([0, +∞); L 1 (R N )) ∩ L ∞ ((0, +∞) × R N ) of (2) satisfy R N |u(T, x) -v(T, x)| dx ≤ R N |u(0, x) -v(0, x)| dx .

Proof of Theorem 2.5

In this section we prove Theorem 2.5. We start with the following well known Lemma.

Lemma 3.1. Let B ∈ L ∞ (R n , R n ) and assume that µ = div B is a Radon measure. Then |µ| ≪ H n-1 . Furthermore if J is a rectifiable set and Γ B,J (z) = ∅ for H n-1 almost every z ∈ J then it holds div(B) J = (B + -B -) • ν H n-1 J
where (B -(z), B + (z)) ∈ Γ B,J (z). In particular for every two pairs in Γ B,J (z), their projections along ν(z) have the same difference.

Proof. The fact that |µ| ≪ H n-1 is proved for instance in [START_REF] Lellis | Notes on hyperbolic systems of conservation laws and transport equations[END_REF]Lemma 2.4]. To show the second part we decompose µ as

µ = µ J + µ (R n \ J ) =: µ 1 + µ 2 with µ 1 ⊥ µ 2 .
Since µ 1 is a Radon measure and H n-1 J is σ-finite we can apply the Radon-Nikodym Theorem to get that

µ 1 = div(B) J = hH n-1 J for some h ∈ L 1 (H n-1 J ). Let now z 0 be a point such that Γ B,J (z 0 ) = ∅, h(z 0 + rz)H n-1 J -z 0 r * ⇀ h(z 0 )H n-1 {z • ν(z 0 ) = 0} and lim r→0 |µ 2 |(B r (z 0 )) r n-1 = 0.
Note that H n-1 almost every point z satisfies the above properties. Indeed, the first one follows by our assumptions, while the second and the third ones follow, respectively, from [5, Theorem 2.83] and [5, Equation 2.41].

Let us choose r k ↓ 0 with

B r k → B -(z 0 )1 H -+ B + (z 0 )1 H + ,
where

H ± = {± z, ν(z 0 ) ≥ 0}. Let ϕ ∈ C 1 c (R n ) and define ϕ r k (z) = r 1-n k ϕ((z -z 0 )/r k ).
Integrating by parts we get [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] µ, ϕ

r k = 1 r n k B(z) • ∇ϕ z -z 0 r k dz = B r k (z) • ∇ϕ(z) dz. Moreover µ, ϕ r k = 1 r n-1 k µ 1 , ϕ • -z 0 r k + 1 r n-1 k µ 2 , ϕ • -z 0 r k = J -z 0 r k h(r k z + z 0 )ϕ(z)dH n-1 (z) + O |µ 2 |(B r k (z 0 )) r k n-1 .
Hence, passing to the limit as k goes to infinity in [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF], we get

h(z 0 ) {z•ν(z0)=0} ϕ(z) dH n-1 (z) = B -(z 0 ) • H - ∇ϕ(z) dz + B + (z 0 ) • H + ∇ϕ(z) dz .
Integrating by parts we obtain that h(z

0 ) = (B + (z 0 ) -B -(z 0 )) • ν(z 0 )
, and this concludes the proof.

Proof of Theorem 2.5. We divide the proof in several steps.

Step 1 (Definition of the measure for the kinetic equation). Let u be a WES, according to [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] for every k ∈ R the distribution (20)

η k := div z sign(u -k)[A(z, u) -A(z, k)] + sign(u -k) div a z A(z, k)
is a Radon measure. We now claim that for every K ⋐ R and for every R > 0

(21) sup k∈K |η k |(B R ) ≤ C(K, R).
To see this note that µ -

η k ≥ 0 for every k ∈ K. Therefore if φ ∈ C 1 c (B R ) and χ ∈ C 1 c (B R+1 ) satisfies χ ≥ 0, χ ≡ 1 in B R , we have µ -η k , ( φ ∞ ± φ)χ ≥ 0, hence, since χφ = φ, ± η k , φ ≤ -η k , χ φ ∞ + 2 µ, χ φ ∞ .
The above inequality implies the validity of ( 21), since, by the very definition of η k , one has

sup k∈K | η k , χ | ≤ C(K, R).
In particular the map

C ∞ c (R n × R) ∋ Φ → η, Φ := R n ×R Φ(z, k) dη k (z) dk defines a Radon measure η in R n ×R. Moreover if we define 3 ν := π # (|η|)
, where π : R n ×R → R n is the projection on the first factor, then ν ≪ H n-1 . Indeed by Lemma 3.

1 |η k | ≪ H n-1 so that if H n-1 (A) = 0 then ν(A) ≤ R |η k |(A)dk = 0.
Step 2 (Kinetic formulation). The function (k, z) → χ(k, u(z)) := sign(u(z)k) is a solution of the kinetic equation, see [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] (

) div z [χ(k, u)∂ v A(z, k)] -∂ k [χ(k, u) div a z A(z, k)] = -∂ k η in D ′ (R n+1 ), 22 
where η(k, A) := η k (A). Indeed, let us consider in equation ( 20) a test function of the form Φ(k, z)

:= ϕ(z)∂ k ψ(k).
Recalling the definition of the measure η and of χ(k, u), integrating in k we get

- ∇ϕ(z)∂ k ψ(k)χ(k, u)[A(z, u) -A(z, k)] dz dk + ϕ(z)∂ k ψ(k)χ(k, u) div a z A(z, k) dz dk = ϕ(z)∂ k ψ(k) dη(k, z), so that ∇ϕ(z)ψ(k)∂ k χ(k, u)[A(z, u) -A(z, k)] dz dk - ϕ(z)ψ(k)∂ k χ(k, u) div a z A(z, k) dz dk = -ϕ(z)ψ(k) d∂ k η(k, z). Since the function k → χ(k, u)[A(z, u) -A(z, k)] is Lipschitz, it is straightforward to check that ∂ k χ(k, u)[A(z, u) -A(z, k)] = -χ(k, u)∂ v A(z, k), hence (22) holds. 
Step 3 (Blow-up). Let η(k, z) = ν(z) ⊗ λ z (k) be the disintegration of the measure η with respect to ν, see [5, Sect. 2.5]. Since H n-1 N is σ-finite by the Radon-Nikodym Theorem we can write

(23) ν = h H n-1 N + ν (R n \ N ) with h ∈ L 1 (H n-1 N ).
Let us now fix a point z 0 ∈ N and for r > 0 let us consider the following rescalings in the variable z:

(24) u r (z) := u(z 0 + rz), A r (z, v) := A(z 0 + rz, v), η k,r (V ) := η k (z 0 + rV ) r n-1 , η r (U × V ) := η(U × (z 0 + rV )) r n-1 , U ⊂ R, V ⊂ R n Borel.
3 Recall that given a Borel measure η on a space X and a Borel map π : X → Y the measure π # η on Y is defined as π # η(U ) = η(π -1 (U )) for every Borel set U ⊂ Y .

Recall the proof of Lemma 3.1: for H n-1 almost every z 0 in N we have

(25) h(z 0 + rz)H n-1 J -z 0 r * ⇀ h(z 0 )H n-1 {ν(z 0 ) • z = 0}.
We now claim that for H n-1 almost every such z 0 and for every k ∈ R (26)

A r (z, k) → A z0 (z, k) := A + (z 0 , k)1 H + (z) + A -(z 0 , k)1 H -(z), ∂ v A r (z, k) → ∂ v A z0 (z, k) := ∂ v A + (z 0 , k)1 H + (z) + ∂ v A -(z 0 , k)1 H -(z), div a z A r (z, k) → 0 , locally in L 1 (R n ), with H ± = {z : ±z • ν(z 0 ) > 0}.
Indeed the first two equations follow directly from the hypotheses on A, see [4, Proposition 3.2], while the last limit in ( 26) is a consequence of the fact that sup k | div a A(z, k)| ≤ σ a (z) and that

lim r→0 1 r n-1 Br (z0)
|σ a (z)| dz = 0 , for H n-1 almost every point in N , see [5, Equation 2.41]. We now prove that, up to H n-1negligible subset of z 0 ∈ N it holds:

(27) η r * ⇀ h(z 0 ) λ z0 (k) ⊗ H n-1 ∂H + .
To this end observe that by [5, Equation 2.41], for

H n-1 almost every z 0 ∈ N , lim r→0 |ν (R n \ N )|(B r (z 0 )) r n-1 = 0.
Now it is easy to see that, up to negligible sets, Step 4 (Limiting equation and existence of traces). Let us take a point z 0 such that (26) and ( 27) hold true. According to Lemma 3.2 below, the sequence (u r ) r is relatively compact in L 1 loc (R n ). Let us now compute the equation satisfied by any cluster point u ∞ of (u r ) r . To this end, note that u r solves

(28) z ∈ N : 0 < lim sup r→0 |ν N |(B r (z)) r n-1 < ∞ = {z ∈ N : h(z) > 0}. Since H n-1 (N ∩ {h > 0}) ≪ ν N , H n-1 almost every z 0 ∈ N ∩ {h > 0}
div z sign(u r -k)∂ v [A r (z, u r ) -A r (z, k)] + sign(u r -k) div a z A r (z, k) = η k,r
. Let (r j ) be a sequence converging to 0 such that u rj → u ∞ in L 1 (B 1 ). Passing to the limit in the kinetic equation satisfied by the function (k, z) → χ(k, u rj (z)),

div z χ(k, u rj )∂ v A rj (z, k) -∂ k χ(k, u rj ) div a z A rj (z, k) = -∂ k η rj in D ′ (R n+1
) , and taking into account ( 26) and ( 27), we obtain

(29) div z χ(k, u ∞ )∂ v A z0 (z, k) = -∂ k h(z 0 ) λ z0 (k) H n-1 ∂H ± in D ′ (R n+1 ).
In particular, due to the special form (26) of A z0 , in the half-space H + (resp. H -), equation ( 29) is a transport equation of the form

(30) a + (k) • ∇ z χ(k, u ∞ ) = 0 (resp. a -(k) • ∇ z χ(k, u ∞ ) = 0), where a ± (k) := ∂ v A ± (z 0 , k).
Since, by (GLN), these vector fields are genuinely nonlinear, we conclude that u ∞ must be constant on H + and on H -, i.e. there exist u -, u + ∈ R such that (31)

u ∞ = u + 1 H + + u -1 H - compare [13, Proposition 7(b)]. Indeed let z ∈ H + be a Lebesgue point of u ∞ and -u ∞ -1 < k < u ∞ (z) such that L n ({u ∞ = k}) = 0.
Fix τ > 0 and convolve with a nonnegative smooth kernel δ ε supported in B ε : for ε < ε(τ, z) sufficiently small

δ ε * χ( k, u ∞ )(z) ≥ 1 -τ.
Thanks to (GLN) we can choose n values k 1 , . . . , k n (depending on τ , ε and k) with |k n -k| sufficiently small and such that k

< k 1 < • • • < k n , {a + (k i )} are linearly independent and
(32)

δ ε * χ(k n , u ∞ )(z) ≥ 1 -2τ.
For every z the function k → χ(k, u ∞ (z)) is decreasing, and so it remains when we convolve it with δ ε : in particular 30), which holds also for δ ε χ(k, u ∞ ), implies that δ ε * χ(k i , u ∞ ) is constant along lines parallel to a + (k i ). Since the {a + (k i )} are linearly independent, starting from (32) and exploiting (33) we obtain

(33) δ ε * χ( k, u ∞ )(z) ≥ δ ε * χ(k 1 , u ∞ )(z) ≥ • • • ≥ δ ε * χ(k n , u ∞ )(z) ∀z ∈ H + ε := {z • ν(z 0 ) > ε}. Equation (
ρ ε * χ( k, u ∞ ) ≥ 1 -2τ in H + ε . Letting τ ↓ 0 we get χ( k, u ∞ ) ≥ 1 in H + .
Since k can be taken arbitrarily close to u ∞ (z), u ∞ is constantly equal to u ∞ (z). A completely analogous argument holds for H -. In particular Γ u,N (z 0 ) = ∅.

Step 5 (Characterization of traces). By (29) and the special form (31) of u ∞ , we deduce that (34)

χ(k, u + ) a + (k) • ν(z 0 ) -χ(k, u -) a -(k) • ν(z 0 ) = -∂ k h(z 0 ) λ y (k) in D ′ (R).
Let us now show as the above equality uniquely determines u ± whenever u + = u -, in particular they do not depend on the choice of the subsequence (r j ). To this end, let (u ρj ) be another converging subsequence of (u r ): by Step 4 we have

u ρj → v ∞ := v + 1 H + + v -1 H - in L 1 (B 1 ),
so that the pair (v -, v + ) also satisfies (34). Subtracting the equation satisfied by the pair (u -, u + ) we get for almost every k ∈ R,

[χ(k, u + ) -χ(k, v + )] a + (k) • ν(z 0 ) = [χ(k, u -) -χ(k, v -)] a -(k) • ν(z 0 ) that is sign(u + -v + )1 (u + ,v + ) (k) a + (k) • ν(z 0 ) = sign(u --v -)1 (u -,v -) (k) a -(k) • ν(z 0 ).
Since, again by the assumption (GNL) of genuine nonlinearity, the functions

k → a ± (k) • ν(z 0 )
cannot vanish on any interval, the two intervals I(u -, u + ) and I(v -, v + ) must coincide 4 . If u -= u + , the condition I(u -, u + ) = I(v -, v + ) can be satisfied either in the case v -= u -, v + = u + or in the case v -= u + , v + = u -. On the other hand, this second possibility is excluded by the fact that the map r → u(y + rz) is continuous from (0, 1] to L 1 (B 1 ). Indeed, since

u rj → u ∞ = u + 1 H + + u -1 H -, 4 Here, I(a, b) denotes the interval [a, b] if a ≤ b or the interval [b, a] if b < a. u ρj → v ∞ = u -1 H + + u + 1 H -,
we have

B1 |u rj -u ∞ | → 0, B1 |u ρj -u ∞ | → B1 |v ∞ -u ∞ | =: m = 0.
By the continuity of the map

(0, 1] ∋ r → B1 u r ,
and the relative compactness of the family (u r ) r , we can find a third sequence (u sj ) such that

u sj → w ∞ := w + 1 H + + w -1 H -, B1 |w ∞ -u ∞ | = m 2 ≤ B1 |w ∞ -v ∞ |, (35) 
But then we must have I(w -, w + ) = I(u -, u + ) = I(v -, v + ), so that either w -= u -and w + = u + , or w -= u + and w + = u -, and in each case we get a contradiction with (35).

In conclusion, if u -= u + then all subsequences of (u r ) must converge to the same function u ∞ , hence the traces are uniquely determined.

In the case u -= u + , reasoning as above we can always conclude that w -= w + for every (w -, w + ) ∈ Γ u,N . Moreover exploiting again the continuity of the map r → B1 u r we get that Γ u,N is a compact connected set. Finally the Rankine-Hugoniot condition follows from Lemma 3.1, thus concluding the proof.

The following Lemma has been used in the proof of Theorem 2.5. Lemma 3.2 (Strong pre-compactness of blow-ups). The family (u r ) defined in (24) is precompact in L 1 (B 1 ).

Proof of Lemma 3.2. For every r > 0, the function u r is a solution to

div z A r (z, u r (z)) = 0, hence div z A z0 (z, u r (z)) = -div z A r (z, u r (z)) -A z0 (u r (z)) .
We claim that the family of functions

q r (z) := A r (z, u r (z)) -A z0 (z, u r (z))
is pre-compact in L 2 (B 1 ), so that (div z A z0 (z, u r (z))) r is pre-compact in the negative Sobolev space W -1,2 (B 1 ). If this condition is satisfied, then by [START_REF] Yu | Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux[END_REF]Thm. 6] we can conclude that (u r ) is pre-compact in the strong L 1 (B 1 ) topology.

Let us consider the functions

f r,z (v) := |A r (z, v) -A z0 (z, v)|, r > 0, z ∈ B 1 , v ∈ R. By (26) (36) lim r↓0 f r,z (v) = 0 for every z ∈ B 1 \ D 0 and ∀v ∈ R, where D 0 ⊂ B 1 is a set of Lebesgue measure 0. Moreover |f r,z (v) -f r,z (v ′ )| ≤ |A r (z, v) -A r (z, v ′ )| + |A z0 (z, v) -A z0 (z, v ′ )| ≤ 2 ∂ v A ∞ |v -v ′ |,
hence (f r,z ) r is an equi-Lipschitz family of functions converging pointwise to 0 for every z ∈

B 1 \ D 0 . Let L = u ∞ and let (v k ) ⊂ [-L, L] be a countable dense set in [-L, L].
Using a diagonal argument, we can construct a sequence (r j ) converging to 0 such that

lim j→+∞ f rj,z (v k ) = 0 ∀z ∈ B 1 \ D, ∀k ∈ N,
where D ⊇ D 0 is a set of Lebesgue measure 0.

Using the classical argument in the proof of the Ascoli-Arzelà compactness theorem, we have that, for every z ∈ B 1 \ D, the sequence (f rj ,z ) j converges uniformly to 0 in [-L, L]. In other words,

g j (z) := sup |v|≤L |A rj (z, v) -A z0 (z, v)| → 0. ∀z ∈ B 1 \ D.
Since the functions g j are equi-bounded, they converge to 0 in L 2 (B 1 ). Moreover,

|q rj (z)| 2 := |A r (z, u rj (z)) -A z0 (z, u rj (z))| 2 ≤ g j (z) 2 ,
so that the sequence (q rj ) j converges to 0 in L 2 (B 1 ) and the claim is proved.

Proof of Theorem 2.6

In this section we prove Theorem 2.6. To this end we will need two technical lemmas: the first one is a slight generalization of classical arguments used in [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]. The second one allows to study the limiting behavior of the incremental quotient of A in spirit of [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]Thm. 2.4] and [15, Lemma II.1] and it is crucial in the proof of Theorem 2.6. For the sake of exposition we postpone the proofs of both lemmas at the end of the section. Lemma 4.1. Let f : R n × R → R m satisfy the following assumptions:

• z → sup v |f (z, v)| ∈ L 1 loc (R n ); • |f (z, v) -f (z, v ′ )| ≤ g(z)ω(|v -v ′ |) for some g ∈ L 1
loc and some modulus of continuity ω.

Then for every u, v ∈ L ∞ loc (R n ) |f (z + τ, u(z)) -f (z, u(z))| → 0 sign(u(z + τ ) -v(z))[f (z + τ, u(z + τ )) -f (z, v(z))] → sign(u(z) -v(z))[f (z, u(z)) -f (z, v(z))]
in L 1 loc as τ → 0. Lemma 4.2 (Uniform differential quotients). Let A satisfy (H1)-(H5) and let w ∈ R n . Then there exists a measurable set D = D w ⊂ R n , with L n (D) = 0, such that the difference quotients for A can be canonically written as

A(z + εw, v) -A(z, v) ε = A 1 ε (z, v) + A 2 ε (z, v)
where A 1 ε and A 2 ε satisfy the following properties:

(i) lim ε↓0 A 1 ε (z, v) = ∇ z A(z, v) • w, ∀v ∈ R and z ∈ R n \ D;
(ii) The family of functions h ε : R n → R defined by

h ε (z) := |w| sup v∈R A 1 ε (z, v) is equi-integrable; (iii) For every compact set K ⊂ R n we have K sup v∈R A 2 ε (z, v) dz ≤ σ s (K ε|w| )|w|,
where K τ := K + B τ (0).

Proof Theorem 2.6. We divide the proof into several steps:

Step 1: Doubling of variables. We follow the classical technique of Kruzhkov [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF]. Let u(z) and v(z ′ ) be WES: let us set k = v(z ′ ) in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] for u and k = u(z) in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] for v. Let us also choose a test function Φ(z, z ′ ) = ϕ(z + z ′ )δ ε (zz ′ ) where ϕ ∈ C 1 c (R n ) is nonnegative and δ ε is the usual smooth approximation of the identity in 0:

δ ε (ζ) = ε n ψ ζ/ε ψ ∈ C 1 c (B 1 ), ψ = 1, ψ(z) = ψ(-z).
Multiplying both equations by Φ, integrating in z and z ′ and subtracting the corresponding inequalities we obtain

δ ε (z -z ′ )∇ϕ(z + z ′ ) + ϕ(z + z ′ )∇δ ε (z -z ′ ) sign u(z) -v(z ′ ) A(z, u(z)) -A(z, v(z ′ )) -sign u(z) -v(z ′ ) div a z A(z, v(z ′ ))ϕ(z + z ′ )δ ε (z -z ′ ) + δ ε (z -z ′ )∇ϕ(z + z ′ ) -ϕ(z + z ′ )∇δ ε (z -z ′ ) sign v(z ′ ) -u(z) A(z ′ , v(z ′ )) -A(z ′ , u(z)) -sign v(z ′ ) -u(z) div a z ′ A(z ′ , u(z))ϕ(z + z ′ )δ ε (z -z ′ )dzdz ′ ≥ -2 δ ε (z -z ′ )ϕ(z + z ′ )dz ′ dµ(z).
This can be written as (37)

I ε 1 -I ε 2 + I ε 3 ≥ -2 δ ε (z -z ′ )ϕ(z + z ′ )dz ′ dµ(z)
where

I ε 1 = ψ(w)∇ϕ(2z -εw) sign (u(z) -v(z -εw) × A(z, u(z)) + A(z -εw, u(z)) -A(z, v(z -εw)) -A(z -εw, v(z -εw)) dwdz, I ε 2 = ϕ(2z -εw) sign u(z) -v(z -εw)
× ∇ψ(w) A(zεw, u(z)) -A(z, u(z)) ε ψ(w) div a z A(zεw, u(z)) dwdz,

I ε 3 = ϕ(2z + εw) sign u(z + εw) -v(z) × ∇ψ(w) A(z, v(z)) -A(z + εw, v(z)) ε -ψ(w) div a z A(z + εw, v(z)) dwdz. Regarding I ε 1 , Lemma 4.1 implies that (38) I ε 1 → 2 ∇ϕ(2z) sign (u(z) -v(z) dz A(z, u(z)) -A(z, v(z)) .
We will now show that

(39) lim sup ε→0 |I ε 2 -I ε 3 | ≤ C ϕ ∞ |σ s |(spt ϕ).
This, together with (37) and (38), will then give that, in the sense of distributions,

(40) div z sign (u(z) -v(z) A(z, u(z)) -A(z, v(z)) ≤ 2µ + C|σ s | =: β where (µ + C|σ s |)(R n \ N ) = 0.
In turn the left hand side of (40) is a signed measure, which we denote by α, for which:

α ≤ α + = α + N = (α N ) + ≤ β. Since the map (u, v) → sign(u -v A(z, u) -A(z, v) ,
is Lipschitz and A(z 0 + εz, v) → A ± (z 0 , v) in L 1 loc for every v ∈ R, by arguing as in Lemma 4.1 the traces of the vector field

z → sign (u(z) -v(z) A(z, u(z)) -A(z, v(z))
exist for H n-1 almost every z ∈ N and are given by sign (u

± (z) -v ± (z) A ± (z, u ± (z)) -A ± (z, v ± (z)) .
A direct application of Lemma 3.1 yields the desired representation [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF].

To show uniqueness of the traces at points where w(z) = 0 we note that we only have to discuss the case when (say) v -(z) = v + (z) = v and u -(z) = u + (z), otherwise either the traces are unique by Theorem 2.5 or w = 0. The Rankine-Hugoniot condition gives (41)

w(z) = [sign(u + (z) -v) -sign(u -(z) -v)][A + (z, u + (z)) -A + (z, v)] • ν(z).
Moreover we know by Theorem 2.5 that if Γ v,N is not a singleton it contains pairs (v ′ , v ′ ) with v ′ ranging in a non trivial interval [a, b]. Being w uniquely determined and non zero we have that (41) holds for any such v ′ ∈ [a, b] and that v ′ ∈ I(u -, u + ). This implies that

[A + (z, v ′ ) -A + (z, v)] • ν(z) = 0 ∀ v, v ′ ∈ [a, b] ,
contradicting the genuine nonlinearity assumption (GLN).

In order to conclude the proof of the Theorem we only have to show the validity of (39). According to Lemma 4.2 above we can write

A(z -εw, u(z)) -A(z, u(z)) ε = A 1 ε,w (z) + A 2 ε,w (z) 
where

A 1 ε,w (z) L 1 loc -→ -∇A(z, u(z)) • w and dz|A 2 ε,w (z)|ϕ(z) ≤ |w| ϕ ∞ |σ s |((spt ϕ) ε|w| )
. Hence, by also using Lemma 4.1, we obtain that

I ε 2 = ϕ(2z -εw) sign u(z) -v(z -εw) × -∇ψ(w)∇A(z, u(z)) • w -ψ(w) div a z A(z, u(z)) dwdz + R ε 1 + R ε 2 , where lim sup ε→0 |R ε 1 | ≤ C(ψ) ϕ ∞ |σ s |(spt ϕ) and lim ε→0 |R ε 2 | = 0.
By applying the same decomposition to I ε 3 we obtain, after a change of variable, that lim sup

ε→0 |I ε 2 -I ε 3 | ≤ 2C(ψ) ϕ ∞ |σ s |(spt ϕ) + lim sup ε→0 ϕ(2z -εw) sign u(z) -v(z -εw) × ∇ψ(w) ∇A(z, u(z)) • w -∇A(z -εw, v(z -εw)) • w + ψ(w) div a z A(z, u(z)) -div a z A(z -εw, v(z -εw)) dwdz .
By Lemma 4.1 the latter integral converges to

ϕ(2z) sign u(z) -v(z) ∇ψ(w)∇A(z, u(z)) • w + ψ(w) div a z A(z, u(z)) dwdz - ϕ(2z) sign u(z) -v(z) ∇ψ(w)∇A(z, v(z)) • w + ψ(w) div a z A(z, v(z)) dwdz.
Integrating by parts with respect to the w variable, we get that both integrals are zero, thus concluding the proof of (39).

We conclude the Section by proving Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.1. Let Q ⊂ R be a countable dense set: by the continuity of translations in

L 1 |f (z + τ, u) -f (z, u)| → 0 in L 1 loc for every u ∈ Q. If now u ∈ L ∞ , there exists u k = N k i=1 u i k 1 A i k with u i k ∈ Q and such that u -u k ∞ → 0. Hence for every compact set K ⊂ R n K |f (z + τ, u(z)) -f (z, u(z))|dz ≤ ω( u -u k ∞ ) K (g(z) + g(z + τ ))dz + K |f (z + τ, u k (z)) -f (z, u k (z))|dz ≤ o k (1) + N k i=1 K∩A i k |f (z + τ, u i k ) -f (z, u i k )|dz
where o k (1) → 0 independently on τ as k → ∞. Passing to the limit first on τ and then on k proves the first claim. To prove the second claim note that thanks to what we have proved it is enough to show that

sign(u(z + τ ) -v(z))[f (z, u(z + τ )) -f (z, v(z))] → sign(u(z) -v(z))[f (z, u(z)) -f (z, v(z))] in L 1 loc as τ → 0. Since the map (u, v) → sign(u -v)[f (z, u) -f (z, v)]
has modulus of continuity 2ω independently on z this plainly follows by the continuity of translations in L 1 .

Proof of Lemma 4.2. Up to dilating and rotating we can assume that w = e n . We will write

z = (z ′ , z n ) with z ′ ∈ R n-1 and z n ∈ R. Let Q = (v j ) ⊂ R be a countable dense set in R.
By slicing theory for BV functions, see [5, Chapter 3], for every j ∈ N there exists a set D j ⊂ R n with L n (D j ) = 0, such that, for every z ∈ R n \ D j , the function t → A(z ′ , z n + t, v j ) belongs to BV (R) and the absolutely continuous part of its derivative, denoted by ∂A ∂zn (z ′ , z n + t, v j ), coincides with ∇ z A(z ′ , z n + t, v j ) • e n . Hence for j ∈ N and z ∈ R n \ D j we define

A 1 ε (z ′ , z n , v j ) = 1 0 ∂A ∂z n (z ′ , z n + εt, v j ) dt = 1 0 ∇ z A(z ′ , z n + εt, v j ) • e n dt .
From [2, Thm. 2.4] there exists a measurable set

D ⊂ R n , with D ⊃ C A ∪ j D j and L n (D) = 0, such that (42) lim ε↓0 A 1 ε (z, v j ) = ∇ z A(z, v j ) • e n , ∀j ∈ N and z ∈ R n \ D.
Moreover, up to add to D a set of Lebesgue measure zero, we can assume that every z in R n \ D is a Lebesgue point for the function g appearing in (H4) and that

(43) G ε (z) := 1 0 g(z ′ , z n + εt) dt → g(z)
as ε ↓ 0.

Let us now fix z ∈ R n \ D and j, k ∈ N: by (H4) we have that

A 1 ε (z, v j ) -A 1 ε (z, v k ) ≤ 1 0 |∇ z A(z ′ , z n + εt, v j ) -∇ z A(z ′ , z n + εt, v k )| dt ≤ G ε (z) ω(|v j -v k |). (44) 
Let us now take v ∈ R and v j ∈ Q with v j → v. By (44) A 1 ε (z, v j ) j is a Cauchy sequence, hence it converges to a unique limit ℓ ε (z, v). Let us define for v ∈ R and z ∈ R n \ D A 1 ε (z, v) = ℓ ε (z, v) and

A 2 ε (z, v) = A(z + εw, v) -A(z, v) ε -A 1 ε (z, v
). We now verify the validity of (i)-(iii). First of all (44) implies (45)

A 1 ε (z, v) -A 1 ε (z, v ′ ) ≤ G ε (z) ω(|v -v ′ |) ∀v, v ′ ∈ R.
Moreover, according to [4, Lemma 3.4], we can add to D a set of measure zero outside which ∇A(z, v) is well defined and continuous in v. Hence for z ∈ R n \ D and v ∈ R, by ( 45) and (H4), we have Since (v j ) in dense in R, we conclude that (i) holds.

A 1 ε (z, v) -∇ z A(z, v) • e n ≤ A 1 ε (z, v) -A 1 ε (z, v j ) + A 1 ε (z, v j ) -∇ z A(z, v j ) • e n + |∇ z A(z,
Let us prove (ii). For almost every z ∈ R n we have By the Dunford-Pettis compactness criterion we conclude that the family (h ε ) is equi-integrable in L 1 (R n ), hence (ii) is proved.

h ε (z) = sup j∈N A 1 ε (z, v j ) ≤
To conclude (iii), for every j ∈ N we let ϕ j z ′ (z n ) := A(z ′ , z n , v j ) and we note that for almost every z n A(z + εe n , v j ) -A(z, v j ) 

ε = 1 ε Dϕ j z ′ ([z n , z n + ε]) = 1 0 ∇ z A(z + tεe n , v j ) • e n dt + 1 ε D s ϕ j z ′ ([z n , z n + ε]), hence A 2 ε (z, v j ) ≤ 1 ε |D s ϕ j z ′ |([z n , z n + ε]). If K is a compact subset of R n we get K A 2 ε (z, v j ) dz ≤ R n-
d|D s ϕ j z ′ |(t) R dz n 1 ε 1 [zn,zn+ε] (t) ≤ |D s A(•, v j )|(K ε ) ≤ σ s (K ε ). ( 46 
)
Let now v ∈ R. From (45), ( 46) and (H1) we get

K A 2 ε (z, v) dz ≤ K A 2 ε (z, v) -A 2 ε (z, v j ) dz + K A 2 ε (z, v j ) dz ≤ K
A(z + εw, v) -A(z, v) ε -A(z + εw, v j ) -A(z, v j ) ε dz

+ K A 1 ε (z, v) -A 1 ε (z, v j ) dz + K A 2 ε (z, v j ) dz ≤ 2 ε M L n (K ε ) |v -v j | + K G ε (z) dz ω(|v -v j |) + σ s (K ε ).
Exploiting the density of (v j ), we get (iii).

5. Proofs of Theorems 2.9 and 2.11

In this Section we briefly sketch the proofs of Theorems 2.9 and 2.11.

Proof of Theorem 2.9. By Theorem 2.6 we have that any two G-entropy solutions u, v satisfy the Generalized Kato Inequality [START_REF] Garavello | Conservation laws with discontinuous flux[END_REF]. By the usual test function argument, see [START_REF] Kružkov | First order quasilinear equations with several independent variables[END_REF] we then obtain that for every T > 0 and every R > 0 where w(t, x) is given by [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF]. Since u, v are G-entropy solutions w ≤ 0, from which uniqueness immediately follows.

Proof of Theorm 2.11. If F (•, u) belongs to W 1,1 it easily follows from the definition of supremum of measures that σ s = 0 which implies that H N (N ) = 0. Theorem 2.6 then gives that any two entropy solutions satisfy a true Kato inequality:

∂ t |u -v| + div x sign(uv)[F (t, x, u) -F (t, x, v)] ≤ 0, from which the validity of the L 1 contraction inequality is then straightforward.

  is a Lebesgue point for the measure valued map z → λ z with respect to ν. By combining this with (25) one can argue as in Lemma 3.1 to deduce (27) on {h > 0}, see for instance[START_REF] De Lellis | Structure of entropy solutions for multi-dimensional scalar conservation laws[END_REF] Proposition 9]. Finally by (28) we have that H n-1 almost every z 0 ∈ N satisfies (27), since this convergence trivially holds for H n-1 almost every z 0 ∈ {h = 0} ∩ N .

  v j ) • e n -∇ z A(z, v) • e n | ≤ G ε (z) ω(|vv j |) + A 1 ε (z, v j ) -∇ z A(z, v j ) • e n + g(z) ω(|vv j |) .Taking the limsup as ε ↓ 0 and taking into account (42) and (43) we get lim supε↓0 A 1 ε (z, v) -∇ z A(z, v) • e n ≤ 2g(z) ω(|vv j |).

1 0σ 1 0 1 0 R R n- 1 ψ

 1111 a (z ′ , z n + εt) dt.Since σ a ∈ L 1 (R n ) there exists a superlinear, convex, increasing function ψ : [0, +∞) → [0, +∞) such that R n ψ(σ a (z)) dz < +∞.Then, by Jensen's inequality,R n ψ(h ε (z)) dz ≤ R n-1 R ψ σ a (z ′ , z n + εt) dt dz n dz ′ ≤ (σ a (z ′ , z n + εt))dz ′ dz n dt = R nψ(σ a (z)) dz < +∞ .

BR

  |u(T, x)v(T, x)| dx ≤ BR+V T |u(0, x)v(0, x)| dx + N ∩([0,T ]×BR+V T ) w(t, x) dH N (t, x) ,

Recall that a set N ⊂ R n is said H n-1 -rectifiable (shortened: rectifiable) if there are countably many C 1 submanifolds M i of dimension n -1 such that H n-1 (N \ i M i ) = 0.