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We establish a general structure theorem for the singular part of Afree Radon measures, where A is a linear PDE operator. By applying the theorem to suitably chosen differential operators A , we obtain a simple proof of Alberti's rank-one theorem and, for the first time, its extensions to functions of bounded deformation (BD). We also prove a structure theorem for the singular part of a finite family of normal currents. The latter result implies that the Rademacher theorem on the differentiability of Lipschitz functions can hold only for absolutely continuous measures and that every top-dimensional Ambrosio-Kirchheim metric current in R d is a Federer-Fleming flat chain.

Introduction

Consider a finite Radon measure µ on an open set Ω ⊂ R d with values in R m that is A -free for a k'th-order linear constant-coefficient PDE operator A (k ∈ N), i.e.

A µ := |α|≤k A α ∂ α µ = 0 in D ′ (Ω; R n ). (1.1)
Here, A α ∈ R n×m and ∂ α = ∂ α 1 1 . . . ∂ α d d for each multi-index α = (α 1 , . . . , α d ) ∈ (N ∪ {0}) d . A central question about (1.1) asks what can be said about the singular part µ s of solutions µ = gL d + µ s (µ s ⊥ L d ). Besides Alberti's celebrated rank-one theorem [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF] for A = curl, not much is known at present.

In this respect we recall that the wave cone

Λ A := |ξ|=1 ker A k (ξ) ⊂ R m with A k (ξ) := (2πi) k |α|=k A α ξ α ,
where

ξ α = ξ α 1 1 • • • ξ α d d
, plays a crucial role in the compensated compactness theory for sequences of A -free maps [START_REF] Diperna | Compensated compactness and general systems of conservation laws[END_REF][START_REF] Murat | Compacité par compensation[END_REF][START_REF]Compacité par compensation. II[END_REF][START_REF]Directional oscillations, concentrations, and compensated compactness via microlocal compactness forms[END_REF][START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF][START_REF]The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations[END_REF]. Indeed, Λ A contains the values that an oscillating or concentrating sequence of functions is expected to attain. The corresponding characteristic ξ's determine the allowed directions of oscillations and concentrations.

Since the singular part µ s of a measure contains "condensed" oscillations and concentrations, it is natural to conjecture that for a measure µ solving (1.1), the polar dµ d|µ| , i.e. the Radon-Nikodým derivative of µ with respect to its total variation measure |µ|, must lie in the wave cone at almost all singular points. For A = curl this was conjectured by Ambrosio & De Giorgi in [START_REF] Ambrosio | Un nuovo tipo di funzionale del calcolo delle variazioni[END_REF] and proved by Alberti in [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF]. Our main result asserts the truth of this conjecture in full generality: Theorem 1.1. Let Ω ⊂ R d be an open set, let A be a k'th-order linear constantcoefficient differential operator as above, and let µ ∈ M(Ω; R m ) be an A -free Radon measure on Ω with values in R m . Then, dµ d|µ| (x) ∈ Λ A for |µ| s -a.e. x ∈ Ω.

Remark 1.2. Note that (perhaps surprisingly) we do not need to require A to satisfy Murat's constant-rank condition [START_REF]Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant[END_REF].

Remark 1.3. Let us point out that Theorem 1.1 is also valid in the situation A µ = σ for some σ ∈ M(Ω; R n ). (1.2) This can be reduced to the setting of Theorem 1.1 by defining μ = (µ, σ) ∈ M(R d ; R m+n ) and à (with an additional 0'th-order term) such that (1.2) is equivalent to à μ = 0. It is easy to check that, if k ≥ 1, Λ Ã = Λ A × R n and that for |µ|-almost every point dµ d|µ| is proportional to dµ d|μ| . Remark 1.4. Using essentially the same proof, Theorem 1.1 can be further extended to the setting of variable-coefficient linear differential operators A = α A α (x)∂ α with the coefficients satisfying suitable regularity assumptions. In this setting, the conclusion reads dµ d|µ| (x) ∈ Λ A (x) := |ξ|=1 ker A k x (ξ) for |µ| s -a.e. x,

where A k x (ξ) := |α|=k (2πi) k A α (x)ξ α .
Similar statements can be obtained if µ solves some pseudo-differential equations.

By applying Theorem 1.1 to suitably chosen differential operators, we easily obtain several remarkable consequences, which are outlined below. In particular, we provide a simple proof of Alberti's rank-one theorem and, for the first time, its extensions to functions of bounded deformation (BD). We also prove a structure theorem for the singular part of a finite family of normal currents in the spirit of the rank-one theorem. By relying on the results of Alberti & Marchese [START_REF] Alberti | On the differentiability of Lipschitz functions with respect to measures in the Euclidean space[END_REF] and of Schioppa [START_REF] Schioppa | Metric currents and Alberti representations[END_REF], the latter result immediately implies that the Rademacher theorem can hold only for absolutely continuous measures and that every top-dimensional Ambrosio-Kirchheim metric current in R d is a Federer-Fleming flat chain (a part of the so-called "flat chain conjecture", see [START_REF] Ambrosio | Currents in metric spaces[END_REF]Section 11]).

1.1. Rank-one property of BV-derivatives. As already mentioned above, in [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF] Alberti solved a conjecture of Ambrosio & De Giorgi [START_REF] Ambrosio | Un nuovo tipo di funzionale del calcolo delle variazioni[END_REF] by showing the rank-one property for the singular part of the gradients of BV-functions (also see [START_REF] Alberti | Structure of null sets in the plane and applications[END_REF][START_REF] Lellis | A note on Alberti's rank-one theorem, Transport equations and multi-D hyperbolic conservation laws[END_REF]). Besides its theoretical interest, the rank-one theorem has many applications in the theory of functions of bounded variation, we just mention the following: lowersemicontinuity and relaxation [START_REF] Ambrosio | On the relaxation in BV(Ω; R m ) of quasi-convex integrals[END_REF][START_REF] Fonseca | Relaxation of quasiconvex functionals in BV(Ω, R p ) for integrands f (x, u, ∇u)[END_REF][START_REF]Relaxation of signed integral functionals in BV[END_REF], integral representation theorems [START_REF] Bouchitté | A global method for relaxation[END_REF], Young measure theory [START_REF] Kirchheim | On rank-one convex functions that are homogeneous of degree one[END_REF][START_REF] Kristensen | Characterization of generalized gradient Young measures generated by sequences in W 1,1 and BV[END_REF][START_REF]A local proof for the characterization of Young measures generated by sequences in BV[END_REF], approximation theory [START_REF]Piecewise affine approximations for functions of bounded variation[END_REF], and the study of continuity equations with BV-vector fields [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF] (in the latter case the use of the rank-one theorems can however be avoided, see [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF]Remark 3.7] and [START_REF]Transport Equation and Cauchy Problem for Non-Smooth Vector Fields, Calculus of Variations and Nonlinear Partial Differential Equations[END_REF]). We refer to [START_REF] Ambrosio | Functions of Bounded Variation and Free-Discontinuity Problems[END_REF]Chapter 5] for further history. 

(x) ∈ R ℓ \ {0}, b(x) ∈ R d \ {0} such that dD s u d|D s u| (x) = a(x) ⊗ b(x).
Alberti's rank-one theorem easily follows by choosing A = curl in Theorem 1.1. Let us also mention that Massaccesi & Vittone have recently given a short and elegant proof of the rank-one property based on the theory of sets of finite perimeter [START_REF] Massaccesi | An elementary proof of the rank one theorem for BV functions[END_REF].

As already observed by Alberti in [1, Theorem 4.13], Theorem 1.5 implies the validity of a similar property for higher-order derivatives. A direct proof of this fact can also be obtained as a corollary of our Theorem 1.1: Theorem 1.6 (Rank-one theorem for higher-order derivatives).

Let Ω ⊂ R d be an open set and let u ∈ L 1 (Ω; R ℓ ) with D r u ∈ M(Ω; SLin r (R d ; R ℓ )) for some r ∈ N, where SLin r (R d ; R ℓ ) contains all symmetric r-linear maps from R d to R ℓ . Then, for |(D r u) s |-almost every x ∈ Ω, there exist a(x) ∈ R ℓ \ {0}, b(x) ∈ R d \ {0} such that d(D r u) s d|(D r u) s | (x) = a(x) ⊗ b(x) ⊗ • • • ⊗ b(x) r times .
1.2. Polar density theorem for BD-functions. The proofs in [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF] and in [START_REF] Massaccesi | An elementary proof of the rank one theorem for BV functions[END_REF] of Alberti's rank-one theorem strongly rely on the structure of functions of bounded variation and on their link with the theory of sets of finite perimeter. In particular, so far it has remained open whether a similar statement is valid for the larger class of functions of bounded deformation, i.e. those functions u ∈ L 1 (Ω; R d ) whose symmetric part of the (distributional) derivative is a measure,

Eu := Du + (Du) T 2 ∈ M(Ω; R d×d sym ).
We collect all these functions into the set BD(Ω); see [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Temam | Mathematical Problems in Plasticity[END_REF][START_REF] Temam | Functions of bounded deformation[END_REF] for a detailed account of the theory of this space. The extension of Alberti's rank-one theorem to the space of functions of bounded deformation follows from our main Theorem 1.1 with the appropriate choice of the differential operator A : This theorem has consequences for the structure theory of BD-functions and lower semicontinuity theory (in the lower semicontinuity theory our structure theorem can, however, be avoided at the price of some mild restrictions on the functional, see [START_REF] Rindler | Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures[END_REF] for BD and [START_REF]Lower semicontinuity and Young measures in BV without Alberti's Rank-One Theorem[END_REF] for an analogous result in BV); some of these consequences will be explored in future work.

Further, in [START_REF] Conti | Dislocation Microstructures and the Effective Behavior of Single Crystals[END_REF][START_REF] Fuchs | Variational methods for problems from plasticity theory and for generalized Newtonian fluids[END_REF][START_REF] Temam | Mathematical Problems in Plasticity[END_REF] it is motivated why the space

U(Ω) := u ∈ BD(Ω) : div u ∈ L 2 (Ω)
is the appropriate space for elasto-plasticity theory in the geometrically linear setting. For this space we immediately get the following structure result: 1.3. Normal currents, the Rademacher theorem, and metric currents. Our next application of Theorem 1.1 deals with finite families of (Euclidean) normal currents, by which we obtain some consequences concerning differentiability of Lipschitz functions and the theory of metric currents. We assume the reader to be familiar with the theory of currents and with basic multilinear algebra. We refer to [17, Chapters 1 & 4] and Section 3 below for the relevant notations and definitions.

To motivate our next result, recall that any (d -1)-dimensional normal current T ∈ N d-1 (R d ) without boundary (∂T = 0) can be identified via Hodge duality with the derivative of a function u ∈ BV loc (R d ; R), that is, T = ⋆Du. Using this identification and the fact that dim Λ d-1 (V ) = 1 if and only if dim(V ) = d -1, Theorem 1.5 can be rephrased as follows.

Corollary 1.9.

Let T 1 = T 1 T 1 , . . . , T r = T r T r ∈ N d-1 (R d ) be (d-1)-dimensional boundaryless normal currents, i.e. ∂T i = 0 for i = 1, . . . , r. Let further µ ∈ M + (R d ) be a positive Radon measure such that µ ≪ T i for i = 1, . . . , r.
Then, for µ s -a.e. x ∈ R d there exists a (d -1)-dimensional subspace

V x ⊂ R d such that T 1 (x), . . . , T r (x) ∈ Λ d-1 (V x ).
As another simple application of Theorem 1.1 we can generalize the above statement to finite families of normal currents (not necessarily of the same dimension). Then, for µ s -a.e. x ∈ Ω there exists a 1-covector

Theorem 1.10. Let Ω ⊂ R d be an open set and let T 1 = T 1 T 1 ∈ N k 1 (Ω), . . . , T r = T r T r ∈ N kr (Ω)
ω x ∈ Λ 1 (R d ) \ {0} such that T 1 (x) ω x = . . . = T r (x) ω x = 0.
Equivalently, for µ s -a.e. x ∈ Ω, T 1 (x) ∈ Λ k 1 (ker ω x ), . . . , T r (x) ∈ Λ kr (ker ω x ).

Remark 1.11. Let us note in passing the following curious consequence of the above result: It is well known that, apart from the trivial cases k ∈ {1, d -1, d}, the orienting vector T of a k-dimensional normal current T need not be simple, i.e. of the form

T (x) = v 1 (x) ∧ . . . ∧ v k (x), v i (x) ∈ R d . However, if dim V = (d -1), then every w ∈ Λ d-2 (V ) is necessarily simple. Thus, we have that for T ∈ N loc d-2 (R d
) the simplicity of T holds T s -almost everywhere. Note that the current

T = (e 1 ∧ e 2 + e 3 ∧ e 4 ) H 4 {x 5 = 0} ∈ N loc 2 (R 5 ), shows that this statement is false for k-dimensional currents with 1 < k < (d -2).
A particularly relevant instance of Theorem 1.10 is obtained when r = d and k 1 = . . . = k d = 1. In view of the subsequent applications, let us state it in a slightly different (but equivalent) formulation:

Corollary 1.12. Let T 1 = T 1 T 1 , . . . , T d = T d T d ∈ N 1 (R d
) be one-dimensional normal currents such that there exists a positive Radon measure µ ∈ M + (R d ) with the following properties:

(i) µ ≪ T i for i = 1, . . . , d, (ii) for µ-almost every x, span{ T 1 (x), . . . , T d (x)} = R d . Then, µ ≪ L d .
This answers the question about a higher-dimensional analogue of [2, Proposition 8.6]. By the trivial identification of one-dimensional normal currents with vector-valued measures, Corollary 1.12 can be stated in the following equivalent formulation, which in a sense is dual to Theorem 1.5. It can be also directly inferred from Theorem 1.1.

Corollary 1.13. Let µ ∈ M(Ω; R d×d ) be a matrix-valued measure such that

div µ ∈ M(Ω; R d ).
Then,

rank dµ d|µ| (x) ≤ d -1 for |µ| s -a.e. x ∈ Ω.
It has been noted in several places that the validity of the rank-one theorem for maps u ∈ BV(R 2 ; R 2 ) has some direct implications concerning differentiability of Lipschitz functions and the structure of top-dimensional metric currents in the plane [2-4, 34, 35, 40]. Relying on [START_REF] Alberti | On the differentiability of Lipschitz functions with respect to measures in the Euclidean space[END_REF][START_REF] Schioppa | Metric currents and Alberti representations[END_REF], we use Corollary 1.12 to extend these results to every dimension. In particular, Theorem 1.15 below provides a positive answer to the case k = d of the "flat chain conjecture" stated in [START_REF] Ambrosio | Currents in metric spaces[END_REF]Section 11], see [START_REF] Schioppa | Metric currents and Alberti representations[END_REF]Theorem 1.6] for the case k = 1.

Theorem 1.14. Let µ ∈ M + (R d ) be a positive Radon measure such that every Lipschitz map f : R d → R is differentiable µ-almost everywhere. Then, µ ≪ L d . Theorem 1.15. Let T ∈ M met d (R d
) be an Ambrosio-Kirchheim metric current of dimension d, see [START_REF] Ambrosio | Currents in metric spaces[END_REF]. Then, T ≪ L d . In particular, the space of d-dimensional metric currents in R d coincides with the space of Federer-Fleming d-dimensional flat chains,

M met d (R d ) = F d (R d ).
Let us mention that the last two theorems will also follow by a stronger result announced by Csörnyei and Jones in [START_REF] Jones | Product formulas for measures and applications to analysis and geometry, talk given at the conference[END_REF], namely that for every Lebesgue null set E ⊂ R d there exists a Lipschitz map f : R d → R d which is nowhere differentiable in E, see the discussion in the introduction of [START_REF] Alberti | On the differentiability of Lipschitz functions with respect to measures in the Euclidean space[END_REF] for a detailed account of these type of results. 1.4. Sketch of the proof. We conclude this introduction with an outline of the main ideas behind the proof of Theorem 1.1. Let us assume for simplicity that A is a first-order homogeneous operator, A = ℓ A ℓ ∂ ℓ . Assume by contradiction that there is a set E of positive |µ| s -measure such that the polar vector dµ d|µ| (x) is not in the wave cone Λ A for every x ∈ E. One can then find a point x 0 ∈ E and a sequence r j ↓ 0 such that w*-lim

j→∞ (T x 0 ,r j ) ♯ µ |µ|(B r j (x 0 )) = w*-lim j→∞ (T x 0 ,r j ) ♯ µ s |µ| s (B r j (x 0 )) = P 0 ν,
where T x,r : R d → R d is the dilation map T x,r (y) = (y -x)/r, T x,r ♯ denotes the push-forward operator (that is, for any measure σ and Borel set B, [(T x,r ) ♯ σ](B) := σ(x + rB)), ν ∈ Tan(x 0 , |µ|) = Tan(x 0 , |µ| s ) is a non-zero tangent measure in the sense of Preiss [START_REF] Preiss | Geometry of measures in R n : distribution, rectifiability, and densities[END_REF], and

P 0 := dµ d|µ| (x 0 ) / ∈ Λ A .
Moreover, one easily checks that

d ℓ=1 A ℓ P 0 ∂ ℓ ν = 0 in D ′ (Ω; R n ).
By taking the Fourier transform of the above equation, we get

A(ξ)P 0 ν(ξ) = 0, ξ ∈ R d .
Having assumed that P 0 / ∈ Λ A , this implies supp ν = {0} and thus ν ≪ L d . The latter fact, however, is not by itself a contradiction to ν ∈ Tan(x 0 , |µ| s ). Indeed, Preiss [START_REF] Preiss | Geometry of measures in R n : distribution, rectifiability, and densities[END_REF] provided an example of a purely singular measure that has only multiples of Lebesgue measure as tangents (we also refer to [START_REF] Neil | A measure with a large set of tangent measures[END_REF] for a measure that has every measure as a tangent at almost every point).

On the other hand, P 0 / ∈ Λ A implies that A(ξ)P 0 = 0, so one can hope for some sort of "elliptic regularization" that forces not only ν ≪ L d but also |µ| s ≪ L d in a neighborhood of x 0 . In fact, this is (almost) the case: Inspired by Allard's Strong Constancy Lemma in [START_REF] Allard | An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, Geometric Measure Theory and the Calculus of Variations[END_REF] and using some basic pseudo-differential calculus, we can show that in the above situation not only

ν j := (T x 0 ,r j ) ♯ µ s |µ| s (B r j (x 0 )) * ⇀ ν ≪ L d
but that, crucially, this convergence also holds in the total variation norm,

|ν j -ν|(B 1 ) → 0.
Since ν j ⊥ L d , this latter fact easily gives a contradiction to ν ≪ L d and concludes the proof of the theorem.
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Proof of the main theorem

µ = dµ d|µ| |µ| = µ a + µ s = gL d + dµ d|µ| |µ| s ,
where dµ d|µ| ∈ L(Ω, |µ|; R m ) is the polar of µ, i.e. the Radon-Nikodým derivative of µ with respect to µ's total variation measure |µ| ∈ M + (Ω), µ a ≪ L d is the absolutely continuous part of µ with density g ∈ L 1 (Ω), and µ s ⊥ L d is the singular part of µ. Note that here and in the following the terms "singular" and "absolutely continuous" are always understood with respect to the Lebesgue measure if not otherwise specified.

We will generically denote by A a k'th-order linear partial differential operator with constant coefficients that acts on smooth functions u ∈ C ∞ (R d ; R m ) as

A u := |α|≤k A α ∂ α u ∈ C ∞ (R d ; R n ), where α = (α 1 , . . . , α d ) ∈ (N ∪ {0}) d is a multi-index, ∂ α = ∂ α 1 1 . . . ∂ α d d , and A α ∈ R n×m are matrices. A vector-valued Radon measure µ ∈ M(Ω; R m ) is said to be A -free if A µ = 0 in D ′ (Ω; R n ).
Here,

D(Ω; R n ) = C ∞ c (Ω; R n ) is the set of R n -valued test functions in Ω with the usual topology and D ′ (Ω; R n ) is the set of R n -valued distributions on Ω.
Given A as above, its symbol A : R d → R n×m is defined as

A(ξ) := |α|≤k (2πi) |α| A α ξ α , ξ ∈ R d ,
where

ξ α := ξ α 1 1 . . . ξ α d d . Note that for u in the Schwartz class S(R d ; R m ), A u(ξ) = A(ξ) u(ξ),
where for v ∈ S(R d ; R m ) we denote by v its Fourier transform,

v(ξ) = F [v](ξ) := v(x)e -2πi x•ξ dx, ξ ∈ R d .
We also recall the definition of the wave cone associated to A [START_REF] Diperna | Compensated compactness and general systems of conservation laws[END_REF][START_REF]Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant[END_REF][START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF][START_REF]The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations[END_REF]:

Λ A := |ξ|=1 ker A k (ξ) ⊂ R m with A k (ξ) := (2πi) k |α|=k A α ξ α .
2.2. First-order operators. For the sake of illustration, we first treat the case when A is a first-order homogeneous constant-coefficient differential operator, namely

A µ = d ℓ=1 A ℓ ∂ ℓ µ = 0 in D ′ (Ω; R n ). (2.1)
Proof of Theorem 1.1 assuming (2.1). We have

Λ A = |ξ|=1 ker A(ξ), A(ξ) = A 1 (ξ) = 2πi d ℓ=1 A ℓ ξ ℓ . Let E := x ∈ Ω : dµ d|µ| (x) / ∈ Λ A ,
where the existence of dµ d|µ| (x) in the sense of the Besicovitch derivation theorem, see [START_REF] Ambrosio | Functions of Bounded Variation and Free-Discontinuity Problems[END_REF]Theorem 2.22], is part of the definition of E.

Assume by contradiction that |µ| s (E) > 0. We now choose a point x 0 ∈ E and a sequence r j ↓ 0 such that

(i) lim j→∞ |µ| a (B r j (x 0 )) |µ| s (B r j (x 0 )) = 0 and lim j→∞ - Br j (x 0 ) dµ d|µ| (x) - dµ d|µ| (x 0 ) d|µ| s (x) = 0;
(ii) there exists a positive Radon measure ν ∈ M + (R d ) with ν B 1/2 = 0 and such that

ν j := (T x 0 ,r j ) ♯ |µ| s |µ| s (B r j (x 0 )) * ⇀ ν;
(iii) for the polar vector it holds that

P 0 := dµ d|µ| (x 0 ) / ∈ Λ A
and there is a positive constant c > 0 such that |A(ξ

)P 0 | ≥ c|ξ| for ξ ∈ R d .
Indeed, (i) holds at |µ| s -almost every point by classical measure theory, (ii) follows by the fact that for |µ| s -almost every x ∈ Ω the space of tangent measures Tan(|µ| s , x) to |µ| s at x is non-trivial, see for instance [START_REF] Preiss | Geometry of measures in R n : distribution, rectifiability, and densities[END_REF]Theorem 2.5] or [36, Lemma A.1], and finally, (iii) follows from the assumption |µ| s (E) > 0. We now claim that (i)-(iii) above imply that

0 = ν B 1/2 ≪ L d , (2.2) 
lim j→∞ |ν j -ν|(B 1/2 ) = 0. (2.3)
Before proving (2.2) and (2.3), let us show how to use them to conclude the proof.

Recall that ν j ⊥ L d and take Borel sets

E j ⊂ B 1/2 with L d (E j ) = 0 = ν(E j ) and ν j (E j ) = ν j (B 1/2
). Then,

ν j (B 1/2 ) = ν j (E j ) ≤ |ν j -ν|(B 1/2 ) + ν(E j ) = |ν j -ν|(B 1/2 ) → 0,
thanks to (2.3). Hence, we infer ν(B 1/2 ) = 0, in contradiction to (2.2). Thus, |µ| s (E) = 0, concluding the proof of the theorem. We are thus left to prove (2.2) and (2.3). Let us assume that x 0 = 0 and set T r := T x 0 ,r . Clearly,

A T r ♯ µ = 0 in D ′ (B 1 ; R n ).
Therefore, with ν j defined as in (ii) above and c j := |µ| s (B r j ) -1 ,

A (P 0 ν j ) = A (P 0 ν j -c j T r j ♯ µ). (2.4) 
Let now {ϕ ε } ε>0 be a compactly supported, smooth, and positive approximation of the identity. By the lower semicontinuity of the total variation,

|ν j -ν|(B 1/2 ) ≤ lim inf ε→0 |ν j * ϕ ε -ν|(B 1/2 ).
Thus, for every j we can find ε j ≤ 1/j such that

|ν j -ν|(B 1/2 ) ≤ |ν j * ϕ ε j -ν|(B 1/2 ) + 1 j . (2.5) 
We now convolve (2.4) with ϕ ε j to get

A (P 0 u j ) = A (V j ), (2.6) 
where we have set

u j := ν j * ϕ ε j , V j := P 0 ν j -c j T r j ♯ µ * ϕ ε j .
Note that u j , V j are smooth, u j ≥ 0, and

u j * ⇀ ν. (2.7)
Moreover, recalling that x 0 = 0 and c j = |µ| s (B r j ) -1 , by the definition of V j , ν j , P 0 and standard properties of convolutions, see [11, Theorem 2.2], for ε j ≤ 1/4 it holds that

B 3/4 |V j | dx ≤ P 0 T r j ♯ |µ| s -T r j ♯ µ (B 1 ) |µ| s (B r j ) ≤ P 0 |µ| s -µ s (B r j ) |µ| s (B r j ) + |µ| a (B r j ) |µ| s (B r j ) = - Br j dµ d|µ| (0) - dµ d|µ| (x) d|µ| s (x) + |µ| a (B r j ) |µ| s (B r j ) .
Hence, by (i) above,

lim j→∞ B 3/4 |V j | dx = 0. (2.8)
Take a cut-off function χ ∈ D(B 3/4 ) with 0 ≤ χ ≤ 1 and χ ≡ 1 on B 1/2 . Then, (2.6) implies that

A (P 0 χu j ) = χA (P 0 u j ) + A (P 0 χ)u j = A (χV j ) + R j , (2.9) 
where the remainder terms R j := A (P 0 χ)u jℓ A ℓ V j ∂ ℓ χ are smooth, compactly supported in B 1 , and satisfy

sup j B 1 |R j | dx ≤ C
for some constant C thanks to (2.7) and (2.8). Taking the Fourier transform of (2.9), we obtain [A(ξ)P 0 ] χu j (ξ) = A(ξ) χV j (ξ) + R j (ξ).

Now multiply by [A(ξ)P

0 ] * = [A(ξ)P 0 ]
T and add χu j (ξ) to both sides of the above equation to obtain

(1 + |A(ξ)P 0 | 2 ) χu j (ξ) = [A(ξ)P 0 ] * A(ξ) χV j (ξ) + χu j (ξ) + [A(ξ)P 0 ] * R j (ξ),
which can be rewritten as

χu j (ξ) = [A(ξ)P 0 ] * A(ξ) χV j (ξ) 1 + |A(ξ)P 0 | 2 + 1 + 4π 2 |ξ| 2 1 + |A(ξ)P 0 | 2 • χu j (ξ) 1 + 4π 2 |ξ| 2 + (1 + 4π 2 |ξ| 2 ) 1/2 [A(ξ)P 0 ] * 1 + |A(ξ)P 0 | 2 • R j (ξ) (1 + 4π 2 |ξ| 2 ) 1/2 .
Hence,

χu j = T 0 [χV j ] + T 1 [χu j ] + T 2 [R j ] =: f j + g j + h j (2.10) with T 0 [V ] := F -1 (1 + |A(ξ)P 0 | 2 ) -1 [A(ξ)P 0 ] * A(ξ) V (ξ) , T 1 [u] := F -1 m 1 (ξ)(1 + 4π 2 |ξ| 2 ) -1 u(ξ) , T 2 [R] := F -1 m 2 (ξ)(1 + 4π 2 |ξ| 2 ) -1/2 R(ξ) ,
where we have set

m 1 (ξ) = (1 + |A(ξ)P 0 | 2 ) -1 (1 + 4π 2 |ξ| 2 ), m 2 (ξ) = (1 + |A(ξ)P 0 | 2 ) -1 (1 + 4π 2 |ξ| 2 ) 1/2 [A(ξ)P 0 ] * .
By (iii) above, T 0 is an operator associated with an Hörmander-Mihlin multiplier (meaning that it has a smooth symbol m 0 (ξ) such that |∂ β m 0 (ξ)| ≤ K|ξ| -|β| for every multi-index |β| ≤ ⌊d/2⌋ + 1 and some K > 0). The L 1 -L 

λ L d {|f j | > λ} ≤ C χV j L 1 → 0.
(2.11)

Moreover, the operators T 1 and T 2 are compact from L 1 c (B 1 ) to L 1 loc (R d ), where L 1 c (B 1 ) is the set of L 1 -functions vanishing outside B 1 . Indeed, by Lemma 2.1 below, for every s > 0 the operator d,s) and by [21, Theorem 5.2.7] the symbols m 1 and m 2 are L p -multipliers. We conclude in particular that

(Id -∆) -s/2 w = F -1 (1 + 4π 2 |ξ| 2 ) -s/2 w(ξ) is compact from L 1 c (B 1 ) to L p (R d ) for 1 < p < p(
{g j + h j } j is precompact in L 1 loc (R d ). From (2.8) we further get f j , ϕ = T 0 [χV j ], ϕ = χV j , T * 0 [ϕ] → 0 for every ϕ ∈ D(R d ; R n ), (2.12)
where

T * 0 : S(R d ; R n ) → S(R d , R m
) is the adjoint of T 0 . Since χu j ≥ 0, (2.10) gives that f - j := max{0, -f j } ≤ |g j + h j |. As shown above, the family {g j +h j } j is precompact in L 1 loc (R d ) and thus the previous inequality implies the local equi-integrability of {f - j }. Together with (2.11), (2.12) and Lemma 2.2 below this yields f j → 0 in L 1 loc (R d ) and thus that the sequence

{χu j } is precompact in L 1 loc (R d ).
Since also χu j * ⇀ χν by (2.7), we deduce that χν ∈ L 1 (R d ), which implies (2.2), Moreover,

χu j → χν in L 1 (R d ),
which, taking into account (2.5), implies (2.3).

General operators.

We now treat the general situation, namely the case of a measure µ ∈ M(Ω; R n ) satisfying

A µ = |α|≤k A α ∂ α µ = 0 in D ′ (Ω; R n ). (2.13) 
Proof of Theorem 1.1. As before, let us set

E := x ∈ Ω : dµ d|µ| (x) / ∈ Λ A
and assume that |µ| s (E) > 0. Arguing as in the proof for first-order operators, we may find a point x 0 ∈ E satisfying (i), (ii) above and also (iii') for the polar vector it holds that

P 0 := dµ d|µ| (x 0 ) / ∈ Λ A
and there is a positive constant c > 0 such that |A k (ξ)P 0 ≥ c|ξ| k for ξ ∈ R d . We will show that (i), (ii) and (iii') together imply (2.2) and (2.3), and thus yield the desired contradiction.

Assuming that x 0 = 0, we note that (2.13) and a simple scaling argument give

A k T r ♯ µ + k-1 h=0 A h r k-h T r ♯ µ = 0,
where A h := |α|=h A α ∂ α is the h-homogeneous part of the operator A . Hence, with ν j defined as in (ii) and

c j = |µ| s (B r j ) -1 , |α|=k A α ∂ α (P 0 ν j ) = |α|=k A α ∂ α P 0 ν j -c j T r j ♯ µ - k-1 h=1 A h r k-h j c j T r j ♯ µ .

Mollification and localization now yield

|α|=k A α ∂ α (P 0 χu j ) = |α|=k A α ∂ α (χV j ) + R j . (2.14) 
Here, as before,

u j := ν j * ϕ ε j , V j = [P 0 ν j -c j T r j ♯ µ] * ϕ ε j , where χ ∈ D(B 3/4 ) with 0 ≤ χ ≤ 1, χ ≡ 1 on B 1/2 ,
and ϕ ε j is a sequence of mollifier such that (2.5) is satisfied. In particular, by (i), χV j L 1 → 0. Moreover, the remainder term R j can be written as a finite sum of smooth-coefficient partial differential operators of order at most k-1 applied to smooth functions with bounded L 1 -norm and compact support:

R j = k-1 h=0 |α|=h b α (x)∂ α z α j ,
where b α (x) ∈ D(B 3/4 ), the functions z α j are smooth and compactly supported, and

sup j z α j L 1 ≤ C for some constant C. Namely, R j = R 1 j + R 2 j + R 2 j where R 1 j = |α|=k β+γ=α |γ|≥1 c βγ ∂ γ χ ∂ β (A α P 0 χu j ), R 2 j = |α|=k β+γ=α |γ|≥1 c βγ ∂ γ χ ∂ β (A α χV j ), R 3 j = |α|≤k-1 |α|=h χ ∂ α χA α (r k-h j c j T r j ♯ µ) * ϕ ε j
with c βγ ∈ R, and χ ∈ D(B 1 ) is identically equal to 1 on the support of χ. By taking the Fourier transform of (2.14) and performing the same computations as in the first part, but now multiplying with [A k (ξ)P 0 ] * instead of [A(ξ)P 0 ] * , we obtain

χu j = S 0 [χV j ] + S 1 [χu j ] + R j , (2.15 
) where S 0 and S 1 are given by

S 0 [V ] = F -1 [A k (ξ)P 0 ] * A k (ξ) V (ξ) 1 + |A k (ξ)P 0 | 2 , S 1 [u] = F -1 (1 + 4π 2 |ξ| 2 ) k 1 + |A k (ξ)P 0 | 2 • u(ξ) (1 + 4π 2 |ξ| 2 ) k .
Applying the Hörmander-Mihlin multiplier theorem and arguing as for first-order operators, we deduce that

sup λ≥0 λ L d {|S 0 [χV j ]| > λ} ≤ C χV j L 1 (B 1 ) → 0 and S 0 [χV j ] * ⇀ 0.
Moreover, the family {S 1 [χu j ]} is precompact in L 1 loc (R d ). To conclude the proof it is enough to show that { R j } is precompact in L 1 loc (R d ), since then the application of Lemma 2.2 as in the first part will imply the validity of (2.2) and (2.3). The generic term of R j can be written as

f α j = Q • (Id -∆) -k 2 • P α • (Id -∆) |α|-k 2 [z α j ] where 0 ≤ |α| ≤ (k -1), sup j z α j L 1 ≤ C, Q[z] = F -1 (1 + |A k (ξ)P 0 | 2 ) -1 (1 + 4π 2 |ξ| 2 ) k/2 A k (ξ) z(ξ) ,
and P α is the k'th-order pseudo-differential operator given by

P α [z](x) = b α (x) (2πi) |α| ξ α (1 + 4π 2 |ξ| 2 ) |α|-k 2 z(ξ) e 2πix•ξ dξ, x ∈ R d .
The composition (Id-∆) -k/2 2.4. Auxiliary results. Finally, we prove the two simple technical lemmas that have been used in the proofs above. The first is an L 1 -compactness result in the spirit of the Sobolev embedding theorems. Since we have not been able to find a reference we provide its simple proof. 

(s, d) = b 1,ε + b 2,ε with b 1,ε ∈ C 1 c (R d ) and b 2,ε L 1 < ε,
see [START_REF]Modern Fourier Analysis[END_REF]Proposition 6.1.6]. Thus,

(Id -∆) -s/2 u = b 1,ε * u + b 2,ε * u := T 1,ε [u] + T 2,ε [u]. Because b 1,ε ∈ C 1 c (R d ), T 1,ε is compact from L 1 c (B 1 ) to L 1 (R d ). Moreover, (Id -∆) -s/2 -T 1,ε L 1 →L 1 ≤ T 2,ε L 1 →L 1 ≤ ε,
so that (Id -∆) -s/2 is the limit in the uniform topology of compact operators and thus compact as well. The conclusion of the lemma now follows by Hölder's inequality.

The second lemma is an easy consequence of the Vitali convergence theorem: (c) the sequence of negative parts {f - j } is equi-integrable, lim

L d (E)→0 sup j∈N B 1 f - j dx = 0. Then, f j → 0 in L 1 loc (B 1 ). Proof. Let ϕ ∈ D(B 1 ), 0 ≤ ϕ ≤ 1. It is enough to show that lim j→∞ ϕ|f j | dx = 0.
(2.16)

We write

ϕ|f j | dx = ϕf j dx + 2 ϕf - j dx ≤ ϕf j dx + 2 f - j dx.
The first term on the right-hand side goes to 0 as j → ∞ by assumption (a). Thanks to the Vitali convergence theorem, assumptions (b) and (c) further give that also the third term vanishes in the limit. Hence, (2.16) follows.

Applications

Theorems 1.5, 1.6 and 1.7 follow from Theorem 1.1 simply by applying it to the differential constraints that gradients, higher gradients, or symmetrized gradients, respectively, have to satisfy.

Proof of Theorem 1.5. Let µ = (µ k j ) ∈ M(Ω; R ℓ×d ) be the (distributional) gradient of a function u ∈ BV(Ω; R ℓ ), µ = Du. Then,

0 = ∂ i µ k j -∂ j µ k i i, j = 1, . . . , d; k = 1, . . . , ℓ. Setting A µ := ∂ j µ k i -∂ i µ k j i,j=1,...,d; k=1,...,ℓ , it is a simple algebraic exercise, carried out for instance in [19, Remark 3.5(iii)], to compute that Λ A = a ⊗ ξ ∈ R ℓ×d : a ∈ R ℓ , ξ ∈ R d \ {0} .
Corollary 1.5 then follows directly from Theorem 1.1.

Proof of Theorem 1.6. For the operator 

A µ := ∂ j µ k α 1 •••α h iα h+2 •••αr -∂ i µ k α 1 •••α h jα h+2 •••αr i,j,
Λ A = a ⊗ ξ ⊗ • • • ⊗ ξ ∈ SLin r (R d ; R ℓ ) : a ∈ R ℓ , ξ ∈ R d \ {0} ;
see [START_REF]A-quasiconvexity, lower semicontinuity, and Young measures[END_REF]Example 3.10(d)] for the details.

Proof of Theorem 1.7. Let µ = (µ k j ) ∈ M(Ω, R d×d sym ) be the (distributional) symmetrized gradient of u ∈ BD(Ω), µ = Eu. Then, by direct computation, see [19, Example 3.10(e)],

0 = A µ := d i=1 ∂ ik µ j i + ∂ ij µ k i -∂ jk µ i i -∂ ii µ k j j,k=1,...,d . 
These equations are often called the Saint-Venant compatibility conditions in applications. Hence, for Before proving Theorem 1.10, let us recall some simple facts concerning (Euclidean) currents and multi-linear algebra. We refer to [START_REF] Federer | Geometric measure theory[END_REF] for more details.

M ∈ R d×d sym , -(4π) -2 A(ξ)M = (M ξ) ⊗ ξ + ξ ⊗ (M ξ) -(trM ) ξ ⊗ ξ -|ξ| 2 M, which gives ker A 2 (ξ) = ker A(ξ) = a ⊗ ξ + ξ ⊗ a : a ∈ R d , ξ ∈ R d .
Given a finite dimensional vector space V we let Λ k (V ) be the set of k-vectors and Λ k (V ) ≃ (Λ k (V )) * be the set of k-covectors. If v ∈ Λ k (V ) and η ∈ Λ 1 (V ), then the interior product of η with v is the (k -1)-vector v η ∈ Λ k-1 (V ) defined by duality as v η, ω := v, η ∧ ω for every ω ∈ Λ k-1 (V ), see [START_REF] Federer | Geometric measure theory[END_REF]Section 1.5].

Following [17, 

Theorem 1 . 5 (

 15 Alberti's rank-one theorem). Let Ω ⊂ R d be an open set and let u ∈ BV(Ω; R ℓ ). Then, for |D s u|-almost every x ∈ Ω, there exist a

Theorem 1 . 7 .

 17 Let Ω ⊂ R d be an open set and let u ∈ BD(Ω). Then, for |E s u|almost every x ∈ Ω, there exist a(x), b(x) ∈ R d \ {0} such that dE s u d|E s u| (x) = a(x) ⊙ b(x), where we define the symmetrized tensor product as a ⊙ b := (a ⊗ b + b ⊗ a)/2 for a, b ∈ R d .

Corollary 1 . 8 .

 18 Let Ω ⊂ R d be an open set and let u ∈ U(Ω). Then, for |E s u|-almost every x ∈ Ω, there exist a(x), b(x) ∈ R d \ {0} with a(x) ⊥ b(x) such that dE s u d|E s u| (x) = a(x) ⊙ b(x).

  be normal currents, where k 1 , . . . , k r ∈ {1, . . . , d}, r ∈ N. Let further µ ∈ M + (Ω) be a positive Radon measure such that µ ≪ T i for i = 1, . . . , r.

2. 1 .

 1 Notation. We denote by M(Ω; R m ) the space of all finite Radon measures on an open set Ω ⊂ R d with values in R m and by M + (Ω) the space of positive Radon measures on Ω. We write µ = w*-lim j→∞ µ j or µ j * ⇀ µ for the local weak*convergence of µ j to µ, that is ϕ dµ j → ϕ dµ for all ϕ ∈ C 0 c (Ω), the set of all continuous functions with compact support in Ω. The d-dimensional Lebesgue measure is L d . Given a Borel set B ⊂ Ω and a measure µ ∈ M(Ω; R m ) (or µ ∈ M + (Ω)), we denote by µ B the restriction of µ to B.

Lemma 2 . 1 .

 21 For u ∈ S(R d ) and s > 0 define(Id -∆) -s/2 u := F -1 (1 + 4π 2 |ξ| 2 ) -s/2 u(ξ) .Then, (Id -∆) -s/2 extends to a compact map from L 1 c (B 1 ) to L p (R d ) for 1 ≤ p < p(d, s), wherep(d, s) c (B 1 ) ⊂ L 1 (R d ) is the set of L 1 -functions supported in B 1 .Proof. For u in the Schwartz class we can write(Id -∆) -s/2 u = b(s, d) * u where b(s, d) = F -1 [(1 + 4π|ξ| 2 ) -s/2 ]is the Bessel potential of order s, see [22, Section 6.1.2]. By classical estimates [22, Proposition 6.1.5], b(s, d) ∈ L p for 1 ≤ p < p(d, s) so that by Young's inequality for convolutions, (Id -∆) -s/2 u ∈ L p for 1 ≤ p < p(d, s) (actually also for p = p(d, s) if s = d). For every ε > 0 we can write b

Lemma 2 . 2 .

 22 Let {f j } ⊂ L 1 c (B 1 ) be a family of functions such that (a) f j * ⇀ 0 in D ′ (B 1 ); (b) The negative parts of f j tends to zero in measure in, i.e. lim j→∞ L d {f - j > λ} = 0 for every λ > 0;

Theorem 1 .

 1 1 now implies the conclusion. Proof of Corollary 1.8. The only fact to show in addition to the assertion of Corollary 1.7 is that a(x) • b(x) = 0. For Eu we have the Lebesgue-Radon-Nikodým decomposition Eu = Eu L d + E s u and thus div u = tr(Eu) L d + a(x) • b(x) |E s u| Since div u ∈ L 2 (Ω), we must have a(x) • b(x) = 0 for |E s u|-almost every x ∈ Ω.

  Section 4.1.7], we let D k (Ω) := D(Ω, Λ k (R d )) and D k (Ω) := D ′ (Ω, Λ k (R d ))be the sets of compactly supported k-differential forms with smooth coefficients and the set of k-dimensional currents, respectively. For T ∈ D k (Ω) the boundary ∂T ∈ D k-1 (Ω) is defined by duality with the exterior differential via ∂T, ω := T, dω , where ω ∈ D k-1 (Ω). One easily checks that∂T = -d i=1 ∂ i T dx i ,(3.1)see[17, p. 356]. Here, forT ∈ D k (Ω) and η ∈ C ∞ (Ω; Λ 1 (R d )), T η ∈ D k-1 (Ω) is defined as T η, ω := T, η ∧ ω , ω ∈ D k-1 (Ω) and ∂ i T ∈ D k (Ω) is defined by duality via ∂ i T, φ dx j 1 ∧ • • • ∧ dx j k = -T, ∂ i φ dx j 1 ∧ • • • ∧ dx j k . We endow Λ k (R d )with the mass norm, see [17, Section 1.8]. A k-current is said to have finite mass if it can be extended to a Λ k (R d )-valued (finite) Radon measure and we let T be the total variation of T and T := dT d T , see [17, Section 4.1.7]. In this context, the Radon-Nikodým theorem reads as T = T T . We denote by N k (Ω) the set of k-dimensional normal currents, i.e. those currents such that T and ∂T both have finite mass. Note that the boundary of a k-dimensional normal current T can be seen as a Λ k-1 (R d )-valued Radon measure, ∂T ∈ M(Ω; Λ k-1 (R d )). (ii) There are d normal one-dimensional currents T 1 = T 1 T 1 , . . . , T d = T d T d ∈ N 1 (R d ) such that µ ≪ T i for i = 1, . . . , d, and span T 1 (x), . . . , T d (x) = R d for µ-a.e. x ∈ R d . Proof. The implication (i) ⇒ (ii) is obtained by choosing (in a measurable way) for µ-a.e. x ∈ R d a basis {e 1 (x), . . . , e d (x)} of V (µ, x) and by applying to each e i the implication (i) ⇒ (ii) of [4, Corollary 6.5]. For the other implication, simply notice that, by the implication (ii) ⇒ (i) of [4, Corollary 6.5], T i (x) ∈ V (µ, x) for µ-a.e. x ∈ R d . Proof of Theorem 1.14. By [4, Theorem 1.1] the assumptions in the statement of the theorem are equivalent to V (µ, x) = R d for µ-a.e. x ∈ R d . This implies that µ ≪ L d by Lemma 3.1 and Corollary 1.12. Proof of Theorem 1.15. By [40, Theorem 1.3] the mass measure T associated with a d-dimensional metric current T ∈ M met d (R d ) admits d independent Alberti representations, which, by the very definition of decomposability bundle, see [4, Section 2.6], implies that V ( T , x) = R d for T -a.e. x ∈ R d . Theorem 1.15 hence follows from Theorem 1.14, see also the discussion after Theorem 1.3 in [40].

  1,∞ estimates [21, Theorem 5.2.7] in conjunction with (2.8) give

	sup
	λ≥0

  •P α is a pseudo-differential operator of order 0, see [41, Theorem 2, Chapter VI], and thus bounded from L p (R d ) to itself, see [41, Proposition 4, Chapter VI]. By (iii') and the Hörmander-Mihlin multiplier theorem, also Q is a bounded operator from L p(R d ) to itself. Since |α| ≤ k -1, Lemma 2.1 below implies that (Id -∆) (|α|-k)/2 is compact from L 1 c (B 1 ) to L p (R d ) for 1 < p < p(d, |α| -k). We conclude that {f α j } is precompact in L 1 loc (R d ).The validity of (2.2) and (2.3) now follows from (2.15) by arguing as before.

  α 1 ,...,αn=1,...,d; k=1,...,ℓ; h=1,...,r one can see that A µ = 0 if and only if µ is an r'th-order derivative, and furthermore compute that

Proof of Theorem 1.10. Let us set

and note that the assumption of Theorem 1.10 can be rewritten as

By applying Theorem 1.1 in conjunction with Remark 1.3 we deduce that for |T | salmost every x ∈ Ω there exists ξ x = 0 such that

Thanks to (3.1), one easily checks that for

where

Let µ ∈ M + (Ω) be as in the statement of the theorem and note that, since µ ≪ T i for every i = 1, . . . , r, the Radon-Nikodým derivatives d|T | d T i and dT i d|T | exist µ-almost everywhere. Then, Proof of Corollary 1.12. By Theorem 1.10, assumption (i) implies that for µ s -almost every x ∈ R d there exists a (d -1)-dimensional subspace V x such that

Assumption (ii) hence gives that µ s = 0, which is the desired conclusion.

Proof of Corollary 1.13. Let µ = (µ k j ) ∈ M(Ω; R d×d ) and let

Then, for M ∈ R d×d , A(ξ)M = (2πi)M ξ, so that

The conclusion follows from Theorem 1.1 and Remark 1.3.

We will now show how to obtain Theorems 1.14 and 1.15 from Corollary 1.12. In order to do so, we assume the reader to be familiar with the work of Alberti & Marchese [START_REF] Alberti | On the differentiability of Lipschitz functions with respect to measures in the Euclidean space[END_REF] concerning differentiability of Lipschitz functions, with the definition of metric currents given in [START_REF] Ambrosio | Currents in metric spaces[END_REF], as well as with the work of Schioppa in [START_REF] Schioppa | Metric currents and Alberti representations[END_REF]. We refer to these papers also for notations and definitions.

Let us start with the following lemma, which is essentially [4, Corollary 6.5].