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ON THE STRUCTURE OF A -FREE MEASURES AND

APPLICATIONS

GUIDO DE PHILIPPIS AND FILIP RINDLER

Abstract. We establish a general structure theorem for the singular part of A -
free Radon measures, where A is a linear PDE operator. By applying the theorem
to suitably chosen differential operators A , we obtain a simple proof of Alberti’s
rank-one theorem and, for the first time, its extensions to functions of bounded
deformation (BD). We also prove a structure theorem for the singular part of a
finite family of normal currents. The latter result implies that the Rademacher
theorem on the differentiability of Lipschitz functions can hold only for absolutely
continuous measures and that every top-dimensional Ambrosio–Kirchheim metric
current in R

d is a Federer–Fleming flat chain.
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1. Introduction

Consider a finite Radon measure µ on an open set Ω ⊂ R
d with values in R

m that
is A -free for a k’th-order linear constant-coefficient PDE operator A (k ∈ N), i.e.

A µ :=
∑

|α|≤k

Aα∂
αµ = 0 in D′(Ω;Rn). (1.1)

Here, Aα ∈ R
n×m and ∂α = ∂α1

1 . . . ∂αd
d for each multi-index α = (α1, . . . , αd) ∈

(N∪{0})d. A central question about (1.1) asks what can be said about the singular
part µs of solutions µ = gL d+µs (µs ⊥ L d). Besides Alberti’s celebrated rank-one
theorem [1] for A = curl, not much is known at present.

In this respect we recall that the wave cone

ΛA :=
⋃

|ξ|=1

kerAk(ξ) ⊂ R
m with A

k(ξ) := (2πi)k
∑

|α|=k

Aαξ
α,

where ξα = ξα1

1 · · · ξαd
d , plays a crucial role in the compensated compactness theory

for sequences of A -free maps [16, 29, 30, 38, 42, 43]. Indeed, ΛA contains the values
that an oscillating or concentrating sequence of functions is expected to attain. The
corresponding characteristic ξ’s determine the allowed directions of oscillations and
concentrations.

Since the singular part µs of a measure contains “condensed” oscillations and
concentrations, it is natural to conjecture that for a measure µ solving (1.1), the

polar dµ
d|µ| , i.e. the Radon–Nikodým derivative of µ with respect to its total variation

measure |µ|, must lie in the wave cone at almost all singular points. For A = curl
this was conjectured by Ambrosio & De Giorgi in [10] and proved by Alberti in [1].
Our main result asserts the truth of this conjecture in full generality:

Theorem 1.1. Let Ω ⊂ R
d be an open set, let A be a k’th-order linear constant-

coefficient differential operator as above, and let µ ∈ M(Ω;Rm) be an A -free Radon

http://arxiv.org/abs/1601.06543v2


2 G. DE PHILIPPIS AND F. RINDLER

measure on Ω with values in R
m. Then,

dµ

d|µ|
(x) ∈ ΛA for |µ|s-a.e. x ∈ Ω.

Remark 1.2. Note that (perhaps surprisingly) we do not need to require A to satisfy
Murat’s constant-rank condition [31].

Remark 1.3. Let us point out that Theorem 1.1 is also valid in the situation

A µ = σ for some σ ∈ M(Ω;Rn). (1.2)

This can be reduced to the setting of Theorem 1.1 by defining µ̃ = (µ, σ) ∈

M(Rd;Rm+n) and Ã (with an additional 0’th-order term) such that (1.2) is equiv-

alent to Ã µ̃ = 0. It is easy to check that, if k ≥ 1, Λ
Ã

= ΛA × R
n and that for

|µ|-almost every point dµ
d|µ| is proportional to

dµ
d|µ̃| .

Remark 1.4. Using essentially the same proof, Theorem 1.1 can be further extended
to the setting of variable-coefficient linear differential operators A =

∑
α Aα(x)∂

α

with the coefficients satisfying suitable regularity assumptions. In this setting, the
conclusion reads

dµ

d|µ|
(x) ∈ ΛA (x) :=

⋃

|ξ|=1

kerAk
x(ξ) for |µ|s-a.e. x,

where
A
k
x(ξ) :=

∑

|α|=k

(2πi)kAα(x)ξ
α.

Similar statements can be obtained if µ solves some pseudo-differential equations.

By applying Theorem 1.1 to suitably chosen differential operators, we easily ob-
tain several remarkable consequences, which are outlined below. In particular, we
provide a simple proof of Alberti’s rank-one theorem and, for the first time, its
extensions to functions of bounded deformation (BD). We also prove a structure
theorem for the singular part of a finite family of normal currents in the spirit of
the rank-one theorem. By relying on the results of Alberti & Marchese [4] and of
Schioppa [40], the latter result immediately implies that the Rademacher theorem
can hold only for absolutely continuous measures and that every top-dimensional
Ambrosio–Kirchheim metric current in R

d is a Federer–Fleming flat chain (a part
of the so-called “flat chain conjecture”, see [12, Section 11]).

1.1. Rank-one property of BV-derivatives. As already mentioned above, in [1]
Alberti solved a conjecture of Ambrosio & De Giorgi [10] by showing the rank-one
property for the singular part of the gradients of BV-functions (also see [2, 15]).
Besides its theoretical interest, the rank-one theorem has many applications in the
theory of functions of bounded variation, we just mention the following: lower-
semicontinuity and relaxation [9,18,26], integral representation theorems [13], Young
measure theory [24, 25, 39], approximation theory [27], and the study of continuity
equations with BV-vector fields [6] (in the latter case the use of the rank-one theo-
rems can however be avoided, see [6, Remark 3.7] and [7]). We refer to [11, Chapter 5]
for further history.

Theorem 1.5 (Alberti’s rank-one theorem). Let Ω ⊂ R
d be an open set and let

u ∈ BV(Ω;Rℓ). Then, for |Dsu|-almost every x ∈ Ω, there exist a(x) ∈ R
ℓ \ {0},

b(x) ∈ R
d \ {0} such that

dDsu

d|Dsu|
(x) = a(x)⊗ b(x).
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Alberti’s rank-one theorem easily follows by choosing A = curl in Theorem 1.1.
Let us also mention that Massaccesi & Vittone have recently given a short and
elegant proof of the rank-one property based on the theory of sets of finite perime-
ter [28].

As already observed by Alberti in [1, Theorem 4.13], Theorem 1.5 implies the
validity of a similar property for higher-order derivatives. A direct proof of this fact
can also be obtained as a corollary of our Theorem 1.1:

Theorem 1.6 (Rank-one theorem for higher-order derivatives). Let Ω ⊂ R
d be an

open set and let u ∈ L1(Ω;Rℓ) with Dru ∈ M(Ω; SLinr(Rd;Rℓ)) for some r ∈ N,
where SLinr(Rd;Rℓ) contains all symmetric r-linear maps from R

d to R
ℓ. Then, for

|(Dru)s|-almost every x ∈ Ω, there exist a(x) ∈ R
ℓ \ {0}, b(x) ∈ R

d \ {0} such that

d(Dru)s

d|(Dru)s|
(x) = a(x)⊗ b(x)⊗ · · · ⊗ b(x)︸ ︷︷ ︸

r times

.

1.2. Polar density theorem for BD-functions. The proofs in [1] and in [28] of
Alberti’s rank-one theorem strongly rely on the structure of functions of bounded
variation and on their link with the theory of sets of finite perimeter. In particular,
so far it has remained open whether a similar statement is valid for the larger
class of functions of bounded deformation, i.e. those functions u ∈ L1(Ω;Rd) whose
symmetric part of the (distributional) derivative is a measure,

Eu :=
Du+ (Du)T

2
∈ M(Ω;Rd×d

sym).

We collect all these functions into the set BD(Ω); see [8,44,45] for a detailed account
of the theory of this space.

The extension of Alberti’s rank-one theorem to the space of functions of bounded
deformation follows from our main Theorem 1.1 with the appropriate choice of the
differential operator A :

Theorem 1.7. Let Ω ⊂ R
d be an open set and let u ∈ BD(Ω). Then, for |Esu|-

almost every x ∈ Ω, there exist a(x), b(x) ∈ R
d \ {0} such that

dEsu

d|Esu|
(x) = a(x)⊙ b(x),

where we define the symmetrized tensor product as a ⊙ b := (a ⊗ b + b ⊗ a)/2 for
a, b ∈ R

d.

This theorem has consequences for the structure theory of BD-functions and lower
semicontinuity theory (in the lower semicontinuity theory our structure theorem can,
however, be avoided at the price of some mild restrictions on the functional, see [36]
for BD and [37] for an analogous result in BV); some of these consequences will be
explored in future work.

Further, in [14,20,44] it is motivated why the space

U(Ω) :=
{
u ∈ BD(Ω) : div u ∈ L2(Ω)

}

is the appropriate space for elasto-plasticity theory in the geometrically linear set-
ting. For this space we immediately get the following structure result:

Corollary 1.8. Let Ω ⊂ R
d be an open set and let u ∈ U(Ω). Then, for |Esu|-almost

every x ∈ Ω, there exist a(x), b(x) ∈ R
d \ {0} with

a(x) ⊥ b(x)
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such that
dEsu

d|Esu|
(x) = a(x)⊙ b(x).

1.3. Normal currents, the Rademacher theorem, and metric currents. Our
next application of Theorem 1.1 deals with finite families of (Euclidean) normal cur-
rents, by which we obtain some consequences concerning differentiability of Lipschitz
functions and the theory of metric currents. We assume the reader to be familiar
with the theory of currents and with basic multilinear algebra. We refer to [17, Chap-
ters 1 & 4] and Section 3 below for the relevant notations and definitions.

To motivate our next result, recall that any (d − 1)-dimensional normal current
T ∈ Nd−1(R

d) without boundary (∂T = 0) can be identified via Hodge duality
with the derivative of a function u ∈ BVloc(R

d;R), that is, T = ⋆Du. Using this
identification and the fact that dimΛd−1(V ) = 1 if and only if dim(V ) = d − 1,
Theorem 1.5 can be rephrased as follows.

Corollary 1.9. Let T1 = ~T1‖T1‖, . . . , Tr = ~Tr‖Tr‖ ∈ Nd−1(R
d) be (d−1)-dimensional

boundaryless normal currents, i.e. ∂Ti = 0 for i = 1, . . . , r. Let further µ ∈ M+(R
d)

be a positive Radon measure such that

µ ≪ ‖Ti‖ for i = 1, . . . , r.

Then, for µs-a.e. x ∈ R
d there exists a (d − 1)-dimensional subspace Vx ⊂ R

d such

that ~T1(x), . . . , ~Tr(x) ∈ Λd−1(Vx).

As another simple application of Theorem 1.1 we can generalize the above state-
ment to finite families of normal currents (not necessarily of the same dimension).

Theorem 1.10. Let Ω ⊂ R
d be an open set and let T1 = ~T1‖T1‖ ∈ Nk1(Ω), . . . , Tr =

~Tr‖Tr‖ ∈ Nkr(Ω) be normal currents, where k1, . . . , kr ∈ {1, . . . , d}, r ∈ N. Let
further µ ∈ M+(Ω) be a positive Radon measure such that

µ ≪ ‖Ti‖ for i = 1, . . . , r.

Then, for µs-a.e. x ∈ Ω there exists a 1-covector ωx ∈ Λ1(Rd) \ {0} such that

~T1(x) ωx = . . . = ~Tr(x) ωx = 0.

Equivalently, for µs-a.e. x ∈ Ω, ~T1(x) ∈ Λk1(kerωx), . . . , ~Tr(x) ∈ Λkr(kerωx).

Remark 1.11. Let us note in passing the following curious consequence of the above
result: It is well known that, apart from the trivial cases k ∈ {1, d − 1, d}, the

orienting vector ~T of a k-dimensional normal current T need not be simple, i.e. of

the form ~T (x) = v1(x) ∧ . . . ∧ vk(x), vi(x) ∈ R
d. However, if dimV = (d − 1), then

every w ∈ Λd−2(V ) is necessarily simple. Thus, we have that for T ∈ Nloc
d−2(R

d) the

simplicity of ~T holds ‖T‖s-almost everywhere. Note that the current

T = (e1 ∧ e2 + e3 ∧ e4)H
4 {x5 = 0} ∈ Nloc

2 (R5),

shows that this statement is false for k-dimensional currents with 1 < k < (d− 2).

A particularly relevant instance of Theorem 1.10 is obtained when r = d and
k1 = . . . = kd = 1. In view of the subsequent applications, let us state it in a slightly
different (but equivalent) formulation:

Corollary 1.12. Let T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈ N1(R
d) be one-dimensional

normal currents such that there exists a positive Radon measure µ ∈ M+(R
d) with

the following properties:

(i) µ ≪ ‖Ti‖ for i = 1, . . . , d,
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(ii) for µ-almost every x, span{~T1(x), . . . , ~Td(x)} = R
d.

Then, µ ≪ L d.

This answers the question about a higher-dimensional analogue of [2, Propo-
sition 8.6]. By the trivial identification of one-dimensional normal currents with
vector-valued measures, Corollary 1.12 can be stated in the following equivalent for-
mulation, which in a sense is dual to Theorem 1.5. It can be also directly inferred
from Theorem 1.1.

Corollary 1.13. Let µ ∈ M(Ω;Rd×d) be a matrix-valued measure such that

divµ ∈ M(Ω;Rd).

Then,

rank

(
dµ

d|µ|
(x)

)
≤ d− 1 for |µ|s-a.e. x ∈ Ω.

It has been noted in several places that the validity of the rank-one theorem
for maps u ∈ BV(R2;R2) has some direct implications concerning differentiability
of Lipschitz functions and the structure of top-dimensional metric currents in the
plane [2–4, 34, 35, 40]. Relying on [4, 40], we use Corollary 1.12 to extend these
results to every dimension. In particular, Theorem 1.15 below provides a positive
answer to the case k = d of the “flat chain conjecture” stated in [12, Section 11],
see [40, Theorem 1.6] for the case k = 1.

Theorem 1.14. Let µ ∈ M+(R
d) be a positive Radon measure such that every

Lipschitz map f : Rd → R is differentiable µ-almost everywhere. Then, µ ≪ L d.

Theorem 1.15. Let T ∈ Mmet
d (Rd) be an Ambrosio–Kirchheim metric current of

dimension d, see [12]. Then, ‖T‖ ≪ L d. In particular, the space of d-dimensional
metric currents in R

d coincides with the space of Federer–Fleming d-dimensional
flat chains, Mmet

d (Rd) = Fd(R
d).

Let us mention that the last two theorems will also follow by a stronger result
announced by Csörnyei and Jones in [23], namely that for every Lebesgue null set
E ⊂ R

d there exists a Lipschitz map f : Rd → R
d which is nowhere differentiable in

E, see the discussion in the introduction of [4] for a detailed account of these type
of results.

1.4. Sketch of the proof. We conclude this introduction with an outline of the
main ideas behind the proof of Theorem 1.1. Let us assume for simplicity that A

is a first-order homogeneous operator, A =
∑

ℓAℓ∂ℓ. Assume by contradiction that

there is a set E of positive |µ|s-measure such that the polar vector dµ
d|µ|(x) is not

in the wave cone ΛA for every x ∈ E. One can then find a point x0 ∈ E and a
sequence rj ↓ 0 such that

w*-lim
j→∞

(T x0,rj )♯µ

|µ|(Brj (x0))
= w*-lim

j→∞

(T x0,rj)♯µ
s

|µ|s(Brj (x0))
= P0ν,

where T x,r : Rd → R
d is the dilation map T x,r(y) = (y − x)/r, T x,r

♯ denotes the

push-forward operator (that is, for any measure σ and Borel set B, [(T x,r)♯σ](B) :=
σ(x + rB)), ν ∈ Tan(x0, |µ|) = Tan(x0, |µ|

s) is a non-zero tangent measure in the
sense of Preiss [33], and

P0 :=
dµ

d|µ|
(x0) /∈ ΛA .



6 G. DE PHILIPPIS AND F. RINDLER

Moreover, one easily checks that

d∑

ℓ=1

AℓP0 ∂ℓν = 0 in D′(Ω;Rn).

By taking the Fourier transform of the above equation, we get

A(ξ)P0 ν̂(ξ) = 0, ξ ∈ R
d.

Having assumed that P0 /∈ ΛA , this implies supp ν̂ = {0} and thus ν ≪ L d. The
latter fact, however, is not by itself a contradiction to ν ∈ Tan(x0, |µ|

s). Indeed,
Preiss [33] provided an example of a purely singular measure that has only multiples
of Lebesgue measure as tangents (we also refer to [32] for a measure that has every
measure as a tangent at almost every point).

On the other hand, P0 /∈ ΛA implies that A(ξ)P0 6= 0, so one can hope for some
sort of “elliptic regularization” that forces not only ν ≪ L d but also |µ|s ≪ L d in
a neighborhood of x0. In fact, this is (almost) the case: Inspired by Allard’s Strong
Constancy Lemma in [5] and using some basic pseudo-differential calculus, we can
show that in the above situation not only

νj :=
(T x0,rj)♯µ

s

|µ|s(Brj (x0))

∗
⇀ ν ≪ L

d

but that, crucially, this convergence also holds in the total variation norm,

|νj − ν|(B1) → 0.

Since νj ⊥ L d, this latter fact easily gives a contradiction to ν ≪ L d and concludes
the proof of the theorem.

Acknowledgments. The authors would like to thank A. Massaccesi and D. Vittone
for useful discussions. G. D. P. is supported by the MIUR SIR-grant “Geometric
Variational Problems” (RBSI14RVEZ) and F. R. acknowledges the support from an
EPSRC Research Fellowship on “Singularities in Nonlinear PDEs” (EP/L018934/1).

2. Proof of the main theorem

2.1. Notation. We denote by M(Ω;Rm) the space of all finite Radon measures
on an open set Ω ⊂ R

d with values in R
m and by M+(Ω) the space of positive

Radon measures on Ω. We write µ = w*-limj→∞ µj or µj
∗
⇀ µ for the local weak*-

convergence of µj to µ, that is
∫
ϕdµj →

∫
ϕdµ for all ϕ ∈ C0

c(Ω), the set of
all continuous functions with compact support in Ω. The d-dimensional Lebesgue
measure is L d. Given a Borel set B ⊂ Ω and a measure µ ∈ M(Ω;Rm) (or
µ ∈ M+(Ω)), we denote by µ B the restriction of µ to B.

The Lebesgue–Radon–Nikodým decomposition of a Radon measure µ ∈ M(Ω;Rm)
is given as

µ =
dµ

d|µ|
|µ| = µa + µs = gL d +

dµ

d|µ|
|µ|s,

where dµ
d|µ| ∈ L(Ω, |µ|;Rm) is the polar of µ, i.e. the Radon–Nikodým derivative of µ

with respect to µ’s total variation measure |µ| ∈ M+(Ω), µ
a ≪ L d is the absolutely

continuous part of µ with density g ∈ L1(Ω), and µs ⊥ L d is the singular part
of µ. Note that here and in the following the terms “singular” and “absolutely
continuous” are always understood with respect to the Lebesgue measure if not
otherwise specified.
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We will generically denote by A a k’th-order linear partial differential operator
with constant coefficients that acts on smooth functions u ∈ C∞(Rd;Rm) as

A u :=
∑

|α|≤k

Aα∂
αu ∈ C∞(Rd;Rn),

where α = (α1, . . . , αd) ∈ (N ∪ {0})d is a multi-index, ∂α = ∂α1

1 . . . ∂αd
d , and Aα ∈

R
n×m are matrices. A vector-valued Radon measure µ ∈ M(Ω;Rm) is said to be

A -free if

A µ = 0 in D′(Ω;Rn).

Here, D(Ω;Rn) = C∞
c (Ω;Rn) is the set of Rn-valued test functions in Ω with the

usual topology and D′(Ω;Rn) is the set of Rn-valued distributions on Ω.
Given A as above, its symbol A : Rd → R

n×m is defined as

A(ξ) :=
∑

|α|≤k

(2πi)|α| Aαξ
α, ξ ∈ R

d,

where ξα := ξα1

1 . . . ξαd
d . Note that for u in the Schwartz class S(Rd;Rm),

Â u(ξ) = A(ξ)û(ξ),

where for v ∈ S(Rd;Rm) we denote by v̂ its Fourier transform,

v̂(ξ) = F [v](ξ) :=

∫
v(x)e−2πi x·ξ dx, ξ ∈ R

d.

We also recall the definition of the wave cone associated to A [16, 31,42,43]:

ΛA :=
⋃

|ξ|=1

kerAk(ξ) ⊂ R
m with A

k(ξ) := (2πi)k
∑

|α|=k

Aαξ
α.

2.2. First-order operators. For the sake of illustration, we first treat the case
when A is a first-order homogeneous constant-coefficient differential operator, namely

A µ =

d∑

ℓ=1

Aℓ∂ℓµ = 0 in D′(Ω;Rn). (2.1)

Proof of Theorem 1.1 assuming (2.1). We have

ΛA =
⋃

|ξ|=1

kerA(ξ), A(ξ) = A
1(ξ) = 2πi

d∑

ℓ=1

Aℓξℓ.

Let

E :=

{
x ∈ Ω :

dµ

d|µ|
(x) /∈ ΛA

}
,

where the existence of dµ
d|µ|(x) in the sense of the Besicovitch derivation theorem,

see [11, Theorem 2.22], is part of the definition of E.
Assume by contradiction that |µ|s(E) > 0. We now choose a point x0 ∈ E and a

sequence rj ↓ 0 such that

(i) lim
j→∞

|µ|a(Brj (x0))

|µ|s(Brj(x0))
= 0 and lim

j→∞
−

∫

Brj (x0)

∣∣∣∣
dµ

d|µ|
(x)−

dµ

d|µ|
(x0)

∣∣∣∣ d|µ|s(x) = 0;

(ii) there exists a positive Radon measure ν ∈ M+(R
d) with ν B1/2 6= 0 and

such that

νj :=
(T x0,rj)♯|µ|

s

|µ|s(Brj (x0))

∗
⇀ ν;
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(iii) for the polar vector it holds that

P0 :=
dµ

d|µ|
(x0) /∈ ΛA

and there is a positive constant c > 0 such that |A(ξ)P0| ≥ c|ξ| for ξ ∈ R
d.

Indeed, (i) holds at |µ|s-almost every point by classical measure theory, (ii) follows by
the fact that for |µ|s-almost every x ∈ Ω the space of tangent measures Tan(|µ|s, x)
to |µ|s at x is non-trivial, see for instance [33, Theorem 2.5] or [36, Lemma A.1],
and finally, (iii) follows from the assumption |µ|s(E) > 0.

We now claim that (i)–(iii) above imply that

0 6= ν B1/2 ≪ Ld, (2.2)

lim
j→∞

|νj − ν|(B1/2) = 0. (2.3)

Before proving (2.2) and (2.3), let us show how to use them to conclude the proof.
Recall that νj ⊥ Ld and take Borel sets Ej ⊂ B1/2 with L d(Ej) = 0 = ν(Ej) and
νj(Ej) = νj(B1/2). Then,

νj(B1/2) = νj(Ej) ≤ |νj − ν|(B1/2) + ν(Ej) = |νj − ν|(B1/2) → 0,

thanks to (2.3). Hence, we infer ν(B1/2) = 0, in contradiction to (2.2). Thus,
|µ|s(E) = 0, concluding the proof of the theorem.

We are thus left to prove (2.2) and (2.3). Let us assume that x0 = 0 and set
T r := T x0,r. Clearly,

A
(
T r
♯ µ

)
= 0 in D′(B1;R

n).

Therefore, with νj defined as in (ii) above and cj := |µ|s(Brj )
−1,

A (P0νj) = A (P0νj − cjT
rj
♯ µ). (2.4)

Let now {ϕε}ε>0 be a compactly supported, smooth, and positive approximation of
the identity. By the lower semicontinuity of the total variation,

|νj − ν|(B1/2) ≤ lim inf
ε→0

|νj ∗ ϕε − ν|(B1/2).

Thus, for every j we can find εj ≤ 1/j such that

|νj − ν|(B1/2) ≤ |νj ∗ ϕεj − ν|(B1/2) +
1

j
. (2.5)

We now convolve (2.4) with ϕεj to get

A (P0uj) = A (Vj), (2.6)

where we have set

uj := νj ∗ ϕεj , Vj :=
[
P0νj − cjT

rj
♯ µ

]
∗ ϕεj .

Note that uj , Vj are smooth, uj ≥ 0, and

uj
∗
⇀ ν. (2.7)

Moreover, recalling that x0 = 0 and cj = |µ|s(Brj )
−1, by the definition of Vj, νj, P0

and standard properties of convolutions, see [11, Theorem 2.2], for εj ≤ 1/4 it holds



ON THE STRUCTURE OF A -FREE MEASURES 9

that
∫

B3/4

|Vj | dx ≤

∣∣P0 T
rj
♯ |µ|s − T

rj
♯ µ

∣∣(B1)

|µ|s(Brj )

≤

∣∣P0 |µ|
s − µs

∣∣(Brj)

|µ|s(Brj )
+

|µ|a(Brj )

|µ|s(Brj )

= −

∫

Brj

∣∣∣∣
dµ

d|µ|
(0)−

dµ

d|µ|
(x)

∣∣∣∣d|µ|s(x) +
|µ|a(Brj )

|µ|s(Brj )
.

Hence, by (i) above,

lim
j→∞

∫

B3/4

|Vj | dx = 0. (2.8)

Take a cut-off function χ ∈ D(B3/4) with 0 ≤ χ ≤ 1 and χ ≡ 1 on B1/2. Then,
(2.6) implies that

A (P0χuj) = χA (P0uj) + A (P0χ)uj = A (χVj) +Rj , (2.9)

where the remainder terms Rj := A (P0χ)uj −
∑

ℓAℓVj∂ℓχ are smooth, compactly
supported in B1, and satisfy

sup
j

∫

B1

|Rj | dx ≤ C

for some constant C thanks to (2.7) and (2.8). Taking the Fourier transform of
(2.9), we obtain

[A(ξ)P0] χ̂uj(ξ) = A(ξ)χ̂Vj(ξ) + R̂j(ξ).

Now multiply by [A(ξ)P0]
∗ = [A(ξ)P0]T and add χ̂uj(ξ) to both sides of the above

equation to obtain

(1 + |A(ξ)P0|
2) χ̂uj(ξ) = [A(ξ)P0]

∗
A(ξ) χ̂Vj(ξ) + χ̂uj(ξ) + [A(ξ)P0]

∗R̂j(ξ),

which can be rewritten as

χ̂uj(ξ) =
[A(ξ)P0]

∗
A(ξ) χ̂Vj(ξ)

1 + |A(ξ)P0|2
+

1 + 4π2|ξ|2

1 + |A(ξ)P0|2
·

χ̂uj(ξ)

1 + 4π2|ξ|2

+
(1 + 4π2|ξ|2)1/2[A(ξ)P0]

∗

1 + |A(ξ)P0|2
·

R̂j(ξ)

(1 + 4π2|ξ|2)1/2
.

Hence,

χuj = T0[χVj] + T1[χuj ] + T2[Rj ] =: fj + gj + hj (2.10)

with

T0[V ] := F
−1

[
(1 + |A(ξ)P0|

2)−1[A(ξ)P0]
∗
A(ξ)V̂ (ξ)

]
,

T1[u] := F
−1

[
m1(ξ)(1 + 4π2|ξ|2)−1û(ξ)

]
,

T2[R] := F
−1

[
m2(ξ)(1 + 4π2|ξ|2)−1/2R̂(ξ)

]
,

where we have set

m1(ξ) = (1 + |A(ξ)P0|
2)−1(1 + 4π2|ξ|2),

m2(ξ) = (1 + |A(ξ)P0|
2)−1(1 + 4π2|ξ|2)1/2[A(ξ)P0]

∗.

By (iii) above, T0 is an operator associated with an Hörmander–Mihlin multiplier

(meaning that it has a smooth symbolm0(ξ) such that |∂βm0(ξ)| ≤ K|ξ|−|β| for every
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multi-index |β| ≤ ⌊d/2⌋+1 and some K > 0). The L1–L1,∞ estimates [21, Theorem
5.2.7] in conjunction with (2.8) give

sup
λ≥0

λL
d
(
{|fj | > λ}

)
≤ C‖χVj‖L1 → 0. (2.11)

Moreover, the operators T1 and T2 are compact from L1
c(B1) to L1

loc(R
d), where

L1
c(B1) is the set of L1-functions vanishing outside B1. Indeed, by Lemma 2.1

below, for every s > 0 the operator

(Id−∆)−s/2w = F
−1

[
(1 + 4π2|ξ|2)−s/2ŵ(ξ)

]

is compact from L1
c(B1) to Lp(Rd) for 1 < p < p(d, s) and by [21, Theorem 5.2.7]

the symbols m1 and m2 are Lp-multipliers. We conclude in particular that

{gj + hj}j is precompact in L1
loc(R

d).

From (2.8) we further get
〈
fj, ϕ

〉
=

〈
T0[χVj ], ϕ

〉
=

〈
χVj , T

∗
0 [ϕ]

〉
→ 0 for every ϕ ∈ D(Rd;Rn), (2.12)

where T ∗
0 : S(Rd;Rn) 7→ S(Rd,Rm) is the adjoint of T0. Since χuj ≥ 0, (2.10) gives

that

f−
j := max{0,−fj} ≤ |gj + hj |.

As shown above, the family {gj+hj}j is precompact in L1
loc(R

d) and thus the previous

inequality implies the local equi-integrability of {f−
j }. Together with (2.11), (2.12)

and Lemma 2.2 below this yields fj → 0 in L1
loc(R

d) and thus that the sequence

{χuj} is precompact in L1
loc(R

d). Since also χuj
∗
⇀ χν by (2.7), we deduce that

χν ∈ L1(Rd), which implies (2.2), Moreover,

χuj → χν in L1(Rd),

which, taking into account (2.5), implies (2.3). �

2.3. General operators. We now treat the general situation, namely the case of
a measure µ ∈ M(Ω;Rn) satisfying

A µ =
∑

|α|≤k

Aα∂
αµ = 0 in D′(Ω;Rn). (2.13)

Proof of Theorem 1.1. As before, let us set

E :=

{
x ∈ Ω :

dµ

d|µ|
(x) /∈ ΛA

}

and assume that |µ|s(E) > 0. Arguing as in the proof for first-order operators, we
may find a point x0 ∈ E satisfying (i), (ii) above and also

(iii’) for the polar vector it holds that

P0 :=
dµ

d|µ|
(x0) /∈ ΛA

and there is a positive constant c > 0 such that |Ak(ξ)P0

∣∣ ≥ c|ξ|k for ξ ∈ Rd.

We will show that (i), (ii) and (iii’) together imply (2.2) and (2.3), and thus yield
the desired contradiction.

Assuming that x0 = 0, we note that (2.13) and a simple scaling argument give

A
k
(
T r
♯ µ

)
+

k−1∑

h=0

A
h
(
rk−hT r

♯ µ
)
= 0,
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where A h :=
∑

|α|=hAα∂
α is the h-homogeneous part of the operator A . Hence,

with νj defined as in (ii) and cj = |µ|s(Brj )
−1,

∑

|α|=k

Aα∂
α(P0νj) =

∑

|α|=k

Aα∂
α
(
P0νj − cjT

rj
♯ µ

)
−

k−1∑

h=1

A
h
(
rk−h
j cjT

rj
♯ µ

)
.

Mollification and localization now yield
∑

|α|=k

Aα∂
α(P0χuj) =

∑

|α|=k

Aα∂
α(χVj) +Rj. (2.14)

Here, as before,

uj := νj ∗ ϕεj , Vj = [P0νj − cjT
rj
♯ µ] ∗ ϕεj ,

where χ ∈ D(B3/4) with 0 ≤ χ ≤ 1, χ ≡ 1 on B1/2, and ϕεj is a sequence of
mollifier such that (2.5) is satisfied. In particular, by (i), ‖χVj‖L1 → 0. Moreover,
the remainder term Rj can be written as a finite sum of smooth-coefficient partial
differential operators of order at most k−1 applied to smooth functions with bounded
L1-norm and compact support:

Rj =
k−1∑

h=0

∑

|α|=h

bα(x)∂
αzαj ,

where bα(x) ∈ D(B3/4), the functions zαj are smooth and compactly supported, and

supj ‖z
α
j ‖L1 ≤ C for some constant C. Namely, Rj = R1

j +R2
j +R2

j where

R1
j =

∑

|α|=k

∑

β+γ=α
|γ|≥1

cβγ∂
γχ∂β(AαP0χ̃uj),

R2
j =

∑

|α|=k

∑

β+γ=α
|γ|≥1

cβγ∂
γχ∂β(Aαχ̃Vj),

R3
j =

∑

|α|≤k−1

∑

|α|=h

χ∂α
(
χ̃Aα(r

k−h
j cjT

rj
♯ µ) ∗ ϕεj

)

with cβγ ∈ R, and χ̃ ∈ D(B1) is identically equal to 1 on the support of χ.
By taking the Fourier transform of (2.14) and performing the same computations

as in the first part, but now multiplying with [Ak(ξ)P0]
∗ instead of [A(ξ)P0]

∗, we
obtain

χuj = S0[χVj] + S1[χuj ] + R̃j , (2.15)

where S0 and S1 are given by

S0[V ] = F
−1

[
[Ak(ξ)P0]

∗
A
k(ξ) V̂ (ξ)

1 + |Ak(ξ)P0|2

]
,

S1[u] = F
−1

[
(1 + 4π2|ξ|2)k

1 + |Ak(ξ)P0|2
·

û(ξ)

(1 + 4π2|ξ|2)k

]
.

Applying the Hörmander–Mihlin multiplier theorem and arguing as for first-order
operators, we deduce that

sup
λ≥0

λL
d
(
{|S0[χVj ]| > λ}

)
≤ C‖χVj‖L1(B1) → 0 and S0[χVj]

∗
⇀ 0.

Moreover, the family {S1[χuj ]} is precompact in L1
loc(R

d). To conclude the proof it

is enough to show that {R̃j} is precompact in L1
loc(R

d), since then the application of
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Lemma 2.2 as in the first part will imply the validity of (2.2) and (2.3). The generic

term of R̃j can be written as

fα
j = Q ◦ (Id−∆)−

k
2 ◦ Pα ◦ (Id−∆)

|α|−k
2 [zαj ]

where 0 ≤ |α| ≤ (k − 1), supj ‖z
α
j ‖L1 ≤ C,

Q[z] = F
−1

[
(1 + |Ak(ξ)P0|

2)−1(1 + 4π2|ξ|2)k/2 Ak(ξ)ẑ(ξ)
]
,

and Pα is the k’th-order pseudo-differential operator given by

Pα[z](x) =

∫
bα(x)

(2πi)|α|ξα

(1 + 4π2|ξ|2)
|α|−k

2

ẑ(ξ) e2πix·ξ dξ, x ∈ R
d.

The composition (Id−∆)−k/2◦Pα is a pseudo-differential operator of order 0, see [41,
Theorem 2, Chapter VI], and thus bounded from Lp(Rd) to itself, see [41, Proposition
4, Chapter VI]. By (iii’) and the Hörmander–Mihlin multiplier theorem, also Q is a
bounded operator from Lp(Rd) to itself. Since |α| ≤ k−1, Lemma 2.1 below implies

that (Id −∆)(|α|−k)/2 is compact from L1
c(B1) to Lp(Rd) for 1 < p < p(d, |α| − k).

We conclude that {fα
j } is precompact in L1

loc(R
d). The validity of (2.2) and (2.3)

now follows from (2.15) by arguing as before. �

2.4. Auxiliary results. Finally, we prove the two simple technical lemmas that
have been used in the proofs above. The first is an L1-compactness result in the
spirit of the Sobolev embedding theorems. Since we have not been able to find a
reference we provide its simple proof.

Lemma 2.1. For u ∈ S(Rd) and s > 0 define

(Id−∆)−s/2u := F
−1

[
(1 + 4π2|ξ|2)−s/2û(ξ)

]
.

Then, (Id −∆)−s/2 extends to a compact map from L1
c(B1) to Lp(Rd) for 1 ≤ p <

p(d, s), where

p(d, s) :=





d

d− s
if s < d,

∞ otherwise,

and L1
c(B1) ⊂ L1(Rd) is the set of L1-functions supported in B1.

Proof. For u in the Schwartz class we can write

(Id−∆)−s/2u = b(s, d) ∗ u

where b(s, d) = F−1[(1 + 4π|ξ|2)−s/2] is the Bessel potential of order s, see [22,
Section 6.1.2]. By classical estimates [22, Proposition 6.1.5], b(s, d) ∈ Lp for 1 ≤

p < p(d, s) so that by Young’s inequality for convolutions, (Id −∆)−s/2u ∈ Lp for
1 ≤ p < p(d, s) (actually also for p = p(d, s) if s 6= d). For every ε > 0 we can write

b(s, d) = b1,ε + b2,ε with b1,ε ∈ C1
c(R

d) and ‖b2,ε‖L1 < ε,

see [22, Proposition 6.1.6]. Thus,

(Id−∆)−s/2u = b1,ε ∗ u+ b2,ε ∗ u := T1,ε[u] + T2,ε[u].

Because b1,ε ∈ C1
c(R

d), T1,ε is compact from L1
c(B1) to L1(Rd). Moreover,

‖(Id −∆)−s/2 − T1,ε‖L1→L1 ≤ ‖T2,ε‖L1→L1 ≤ ε,

so that (Id − ∆)−s/2 is the limit in the uniform topology of compact operators
and thus compact as well. The conclusion of the lemma now follows by Hölder’s
inequality. �
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The second lemma is an easy consequence of the Vitali convergence theorem:

Lemma 2.2. Let {fj} ⊂ L1
c(B1) be a family of functions such that

(a) fj
∗
⇀ 0 in D′(B1);

(b) The negative parts of fj tends to zero in measure in, i.e.

lim
j→∞

L
d
(
{f−

j > λ}
)
= 0 for every λ > 0;

(c) the sequence of negative parts {f−
j } is equi-integrable,

lim
L d(E)→0

sup
j∈N

∫

B1

f−
j dx = 0.

Then, fj → 0 in L1
loc(B1).

Proof. Let ϕ ∈ D(B1), 0 ≤ ϕ ≤ 1. It is enough to show that

lim
j→∞

∫
ϕ|fj | dx = 0. (2.16)

We write ∫
ϕ|fj | dx =

∫
ϕfj dx+ 2

∫
ϕf−

j dx ≤

∫
ϕfj dx+ 2

∫
f−
j dx.

The first term on the right-hand side goes to 0 as j → ∞ by assumption (a). Thanks
to the Vitali convergence theorem, assumptions (b) and (c) further give that also
the third term vanishes in the limit. Hence, (2.16) follows. �

3. Applications

Theorems 1.5, 1.6 and 1.7 follow from Theorem 1.1 simply by applying it to the
differential constraints that gradients, higher gradients, or symmetrized gradients,
respectively, have to satisfy.

Proof of Theorem 1.5. Let µ = (µk
j ) ∈ M(Ω;Rℓ×d) be the (distributional) gradient

of a function u ∈ BV(Ω;Rℓ), µ = Du. Then,

0 = ∂iµ
k
j − ∂jµ

k
i i, j = 1, . . . , d; k = 1, . . . , ℓ.

Setting

A µ :=
(
∂jµ

k
i − ∂iµ

k
j

)
i,j=1,...,d; k=1,...,ℓ

,

it is a simple algebraic exercise, carried out for instance in [19, Remark 3.5(iii)], to
compute that

ΛA =
{
a⊗ ξ ∈ R

ℓ×d : a ∈ R
ℓ, ξ ∈ R

d \ {0}
}
.

Corollary 1.5 then follows directly from Theorem 1.1. �

Proof of Theorem 1.6. For the operator

A µ :=
(
∂jµ

k
α1···αhiαh+2···αr

− ∂iµ
k
α1···αhjαh+2···αr

)
i,j,α1,...,αn=1,...,d; k=1,...,ℓ;h=1,...,r

one can see that A µ = 0 if and only if µ is an r’th-order derivative, and furthermore
compute that

ΛA =
{
a⊗ ξ ⊗ · · · ⊗ ξ ∈ SLinr(Rd;Rℓ) : a ∈ R

ℓ, ξ ∈ R
d \ {0}

}
;

see [19, Example 3.10(d)] for the details. �
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Proof of Theorem 1.7. Let µ = (µk
j ) ∈ M(Ω,Rd×d

sym) be the (distributional) sym-

metrized gradient of u ∈ BD(Ω), µ = Eu. Then, by direct computation, see [19, Ex-
ample 3.10(e)],

0 = A µ :=

( d∑

i=1

∂ikµ
j
i + ∂ijµ

k
i − ∂jkµ

i
i − ∂iiµ

k
j

)

j,k=1,...,d

.

These equations are often called the Saint-Venant compatibility conditions in appli-
cations. Hence, for M ∈ R

d×d
sym,

−(4π)−2
A(ξ)M = (Mξ)⊗ ξ + ξ ⊗ (Mξ)− (trM) ξ ⊗ ξ − |ξ|2M,

which gives

kerA2(ξ) = kerA(ξ) =
{
a⊗ ξ + ξ ⊗ a : a ∈ R

d, ξ ∈ R
d
}
.

Theorem 1.1 now implies the conclusion. �

Proof of Corollary 1.8. The only fact to show in addition to the assertion of Corol-
lary 1.7 is that a(x) · b(x) = 0. For Eu we have the Lebesgue–Radon–Nikodým
decomposition Eu = EuL d + Esu and thus

div u = tr(Eu)L
d + a(x) · b(x) |Esu|

Since div u ∈ L2(Ω), we must have a(x) · b(x) = 0 for |Esu|-almost every x ∈ Ω. �

Before proving Theorem 1.10, let us recall some simple facts concerning (Eu-
clidean) currents and multi-linear algebra. We refer to [17] for more details.

Given a finite dimensional vector space V we let Λk(V ) be the set of k-vectors
and Λk(V ) ≃ (Λk(V ))∗ be the set of k-covectors. If v ∈ Λk(V ) and η ∈ Λ1(V ), then
the interior product of η with v is the (k − 1)-vector v η ∈ Λk−1(V ) defined by
duality as 〈v η, ω〉 := 〈v, η ∧ ω〉 for every ω ∈ Λk−1(V ), see [17, Section 1.5].

Following [17, Section 4.1.7], we let

Dk(Ω) := D(Ω,Λk(Rd)) and Dk(Ω) := D′(Ω,Λk(R
d))

be the sets of compactly supported k-differential forms with smooth coefficients and
the set of k-dimensional currents, respectively. For T ∈ Dk(Ω) the boundary ∂T ∈
Dk−1(Ω) is defined by duality with the exterior differential via 〈∂T, ω〉 := 〈T, dω〉,
where ω ∈ Dk−1(Ω). One easily checks that

∂T = −
d∑

i=1

∂iT dxi, (3.1)

see [17, p. 356]. Here, for T ∈ Dk(Ω) and η ∈ C∞(Ω;Λ1(Rd)), T η ∈ Dk−1(Ω)
is defined as 〈T η, ω〉 := 〈T, η ∧ ω〉, ω ∈ Dk−1(Ω) and ∂iT ∈ Dk(Ω) is defined by
duality via 〈∂iT, φ dxj1 ∧ · · · ∧ dxjk〉 = −〈T, ∂iφdxj1 ∧ · · · ∧ dxjk〉.

We endow Λk(R
d) with the mass norm, see [17, Section 1.8]. A k-current is said

to have finite mass if it can be extended to a Λk(R
d)-valued (finite) Radon measure

and we let ‖T‖ be the total variation of T and

~T :=
dT

d‖T‖
,

see [17, Section 4.1.7]. In this context, the Radon–Nikodým theorem reads as T =
~T‖T‖. We denote by Nk(Ω) the set of k-dimensional normal currents, i.e. those
currents such that T and ∂T both have finite mass. Note that the boundary of a
k-dimensional normal current T can be seen as a Λk−1(R

d)-valued Radon measure,
∂T ∈ M(Ω;Λk−1(R

d)).
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Proof of Theorem 1.10. Let us set

T := (T1, . . . , Tr) ∈ M(Ω;Λk1(R
d)× . . .× Λkr(R

d))

and note that the assumption of Theorem 1.10 can be rewritten as

A T := (∂T1, . . . , ∂Tr) ∈ M(Ω;Λk1−1(R
d)× . . .× Λkr−1(R

d)).

By applying Theorem 1.1 in conjunction with Remark 1.3 we deduce that for |T |s-
almost every x ∈ Ω there exists ξx 6= 0 such that

dT

d|T |
(x) ∈ kerA(ξx) . (3.2)

Thanks to (3.1), one easily checks that for v = (v1, . . . , vr) ∈ Λk1(R
d)× . . .×Λkr(R

d)
it holds that

A(ξ)v = −2πi
(
v1 ωξ, . . . , vr ωξ

)
∈ Λk1−1(R

d)× . . .× Λkr−1(R
d), (3.3)

where ωξ ∈ Λ1(Rd) is defined as ωξ(w) := w · ξ, w ∈ R
d.

Let µ ∈ M+(Ω) be as in the statement of the theorem and note that, since

µ ≪ ‖Ti‖ for every i = 1, . . . , r, the Radon-Nikodým derivatives d|T |
d‖Ti‖

and dTi
d|T |

exist µ-almost everywhere. Then,

~Ti =
d|T |

d‖Ti‖

dTi

d|T |
. (3.4)

Since clearly µs ≪ |T |s, the first part of the conclusion with ωx = ωξx follows from
(3.2), (3.3) and (3.4). It is now a simple exercise in linear algebra to see that the
second part of the statement is equivalent to the first one. �

Proof of Corollary 1.12. By Theorem 1.10, assumption (i) implies that for µs-almost
every x ∈ R

d there exists a (d− 1)-dimensional subspace Vx such that

~T1(x), . . . , ~Td(x) ∈ Vx.

Assumption (ii) hence gives that µs = 0, which is the desired conclusion. �

Proof of Corollary 1.13. Let µ = (µk
j ) ∈ M(Ω;Rd×d) and let

A µ := divµ =

( d∑

j=1

∂jµ
k
j

)

k=1,...,d

.

Then, for M ∈ R
d×d, A(ξ)M = (2πi)Mξ, so that

ΛA =
{
M ∈ R

d×d : rankM ≤ d− 1
}
.

The conclusion follows from Theorem 1.1 and Remark 1.3. �

We will now show how to obtain Theorems 1.14 and 1.15 from Corollary 1.12.
In order to do so, we assume the reader to be familiar with the work of Alberti &
Marchese [4] concerning differentiability of Lipschitz functions, with the definition
of metric currents given in [12], as well as with the work of Schioppa in [40]. We
refer to these papers also for notations and definitions.

Let us start with the following lemma, which is essentially [4, Corollary 6.5].

Lemma 3.1. Let µ ∈ M+(R
d) be a finite positive Radon measure. Then the fol-

lowing are equivalent:

(i) The decomposability bundle of µ (see [4, Section 2.6]) is of full dimension,
V (µ, x) = R

d for µ-a.e. x ∈ R
d.
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(ii) There are d normal one-dimensional currents T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈
N1(R

d) such that µ ≪ ‖Ti‖ for i = 1, . . . , d, and

span
{
~T1(x), . . . , ~Td(x)

}
= R

d for µ-a.e. x ∈ R
d.

Proof. The implication (i) ⇒ (ii) is obtained by choosing (in a measurable way) for
µ-a.e. x ∈ R

d a basis {e1(x), . . . , ed(x)} of V (µ, x) and by applying to each ei the
implication (i) ⇒ (ii) of [4, Corollary 6.5]. For the other implication, simply notice

that, by the implication (ii) ⇒ (i) of [4, Corollary 6.5], ~Ti(x) ∈ V (µ, x) for µ-a.e.
x ∈ R

d. �

Proof of Theorem 1.14. By [4, Theorem 1.1] the assumptions in the statement of
the theorem are equivalent to V (µ, x) = R

d for µ-a.e. x ∈ R
d. This implies that

µ ≪ L d by Lemma 3.1 and Corollary 1.12. �

Proof of Theorem 1.15. By [40, Theorem 1.3] the mass measure ‖T‖ associated with
a d-dimensional metric current T ∈ Mmet

d (Rd) admits d independent Alberti repre-
sentations, which, by the very definition of decomposability bundle, see [4, Section
2.6], implies that V (‖T‖, x) = R

d for ‖T‖-a.e. x ∈ R
d. Theorem 1.15 hence follows

from Theorem 1.14, see also the discussion after Theorem 1.3 in [40]. �
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