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SYNTOMIC COHOMOLOGY AND p-ADIC MOTIVIC COHOMOLOGY

VERONIKA ERTL AND WIES LAWA NIZIO L

Abstract. We prove a mixed characteristic analog of the Beilinson-Lichtenbaum Conjecture for p-adic

motivic cohomology. It gives a description, in the stable range, of p-adic motivic cohomology (defined

using algebraic cycles) in terms of differential forms. This generalizes a result of Geisser [10] from small

Tate twists to all twists and uses as a critical new ingredient the comparison theorem between syntomic

complexes and p-adic nearby cycles proved recently in [8].
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1. Introduction

For a smooth variety over a field of characteristic zero, the Beilinson-Lichtenbaum Conjecture states
that, in a certain stable range, the p-adic motivic cohomology is equal to the étale cohomology:

Hi
M(X,Z/pn(r))

∼
→ Hi

ét(X,Z/pn(r)), i ≤ r.

Here motivic cohomology is defined as the hypercohomology of the Bloch’s cycle complex Z/pn(r)M. This
conjecture follows [31] from the Bloch-Kato Conjecture that was proved by Voevodsky and Rost [35].

For a smooth variety over a field of positive characteristic p, the analog of the Beilinson-Lichtenbaum
Conjecture states that, in the same stable range, the p-adic motivic cohomology is equal to the logarithmic
de Rham-Witt cohomology:

Hi
M(X,Z/pn(r))

∼
→ Hi−r

ét (X,WnΩr
X,log).

It was proved by Geisser-Levine [11].
The purpose of this note is to prove a mixed characteristic analog of the Beilinson-Lichtenbaum

Conjecture for p-adic motivic cohomology. Let X be a semistable scheme over OK – a complete discrete
valuation ring with fraction field K of characteristic 0 and with perfect residue field k of characteristic p.
We fix a uniformizer $ of K. Let F be the fraction field of the ring of Witt vectors W (k). We assume
that the special fiber X0 of X is smooth and treat X as a log-scheme. We show that, in the same stable
range as above, the p-adic motivic cohomology of Xtr – the open set where the log-structure is trivial –
is equal to the (logarithmic) syntomic-étale cohomology of X. This relates algebraic cycles to differential
forms.
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2 VERONIKA ERTL AND WIES LAWA NIZIO L

Corollary 1.1. We have the following natural isomorphism1

Hi
M(Xtr,Qp(r))

∼
→ Hi

ét(X, E(r))Q, i ≤ r,

where E(∙) denotes the syntomic-étale cohomology complex. If X is proper, this yields the following natural
isomorphism

Hi
M(Xtr,Qp(r))

∼
→ Hi

ét(X,S(r))Q, i ≤ r,

where S(∙) denotes the syntomic cohomology complex.

The rational syntomic cohomology H∗
ét(X,S(r))Q above is that defined in [9] as filtered Frobenius

eigenspace of crystalline cohomology2. We show in the appendix that it is isomorphic to the logarithmic
version of the convergent syntomic cohomology defined in [25] as well as to the rigid syntomic cohomology
defined in [2, 13].

The above corollary is a simple consequence of the following theorem which is the main result of this
paper.

Theorem 1.2. Let r ≥ 0. Let j′∗ : Xtr → X be the natural open immersion. Then there are natural
cycle class maps between complexes of sheaves on the Nisnevich site of X and X0, respectively,

clsyn
r : Rj′∗Z/pn(r)M → E

′
n(r)Nis, clsyn

r : i∗Rj′∗Z/pn(r)M → S
′
n(r)Nis,

where i : X0 ↪→ X is the special fiber of X. They are compatible with the étale cycle class maps and are
pN -quasi-isomorphisms, i.e., the kernels and cokernels of the maps induced on the cohomology sheaves
are annihilated by pN for a constant N = N(e, p, r), which depends on the absolute ramification index e
of K, r, but not on X or n3.

The syntomic-étale cohomology E ′n(r) was defined by Fontaine-Messing [9] by gluing syntomic cohomol-
ogy S ′n(r) on X0 with étale cohomology on the generic fiber via the relative fundamental exact sequence
of p-adic Hodge Theory. It is a complex of sheaves on the étale site of X. We extend this definition
to logarithmic schemes (where one replaces syntomic cohomology by logarithmic syntomic cohomology).
The Nisnevich version that appears in the above theorem is defined by projecting to the Nisnevich site
and truncating at r:

E ′n(r)Nis := τ≤rRε∗E
′
n(r), S ′n(r)Nis := τ≤rRε∗S

′
n(r),

where ε : Xét → XNis is the natural projection.
The syntomic part of the above theorem (hence of the above corollary as well), for twists r ≤ p − 2

(where no constants are needed) was proved by Geisser4 [10, Theorem 1.3]. The key ingredient in his
proof is the exact sequence of Kurihara [20] that links syntomic cohomology with p-adic nearby cycles
coupled with the Beilinson-Lichtenbaum Conjecture over fields of characteristic zero and p. Our proof
of Theorem 1.2 proceeds in a similar manner using as the main new ingredient the relation between
syntomic complexes and p-adic nearby cycles proved recently in [8].

We will now describe it briefly in the case when there is no horizontal log-structure. First, we show
that we have the pNr-distinguished triangle (on the étale site of X0), for a universal constant N ,

(1.1) E ′n(r)X → E
′
n(r)X× →WnΩr−1

X0,log[−r],

where WnΩr−1
X0,log[−r] denotes the logarithmic de Rham-Witt sheaf and X× denotes the scheme X with

added log-structure coming from the special fiber. The syntomic-étale cohomology E ′n(r)X× comes
equipped with a period map

αr : E ′n(r)X× → Rj∗Z/pn(r)′XK
,

1For a smooth scheme Y , we set H∗
M(Y,Qp(r)) := H∗ holimn RΓ(YZar,Z/pn(r)M ) ⊗ Q.

2It differs from the one defined in [22] by the absence of log-structure associated to the special fiber.
3If K has enough roots of unity then N = N ′r for a universal constant N ′ (not depending on p, X, K, n or r). See

Section (2.1.1) of [8] for what it means for a field to contain enough roots of unity. The field F contains enough roots of

unity and for any K, the field K(ζpn ), for n ≥ c(K) + 3, where c(K) is the conductor of K, contains enough roots of unity.
4Geisser’s result was conditional on the Bloch-Kato Conjecture which at the time of the publication of his paper was

not a theorem yet.
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where j∗ : XK ↪→ X and Z/pn(r)′ = (paa!)−1Z/pn(r) for r = (p − 1)a + b, a, b ∈ Z, 0 ≤ b < p − 1 .
Projecting it to the Nisnevich site and truncating at r we obtain the Nisnevich syntomic-étale period
map

αr : E ′n(r)X×,Nis → τ≤rRε∗Rj∗Z/pn(r)′XK
.

The computations of p-adic nearby cycles via syntomic cohomology from [8] imply that this is a pN -
quasi-isomorphism, for a constant N as in the theorem. Hence, from (1.1), we obtain the pN -distinguished
triangle

(1.2) E ′n(r)X,Nis
αr−−→τ≤rRj∗τ≤rRε∗Z/pn(r)′XK

→ i∗WnΩr−1
X0,log[−r].

Next, we note that the localization sequence in motivic cohomology yields the following distinguished
triangle (on the Nisnevich site of X)

Z/pn(r)M → j∗Z/pn(r)M → i∗Z/pn(r − 1)M[−1].

By the Beilinson-Lichtenbaum Conjecture and the computations of Geisser-Levine [11] of motivic coho-
mology in characteristic p, we have the cycle class map quasi-isomorphisms

Z/pn(r)M
∼
→ τ≤rRε∗Z/pn(r)XK , Z/pn(r)M

∼
→WnΩr

X0,log[−r].

The above triangle becomes

(1.3) Z/pn(r)M → j∗τ≤rRε∗Z/pn(r)XK
→ i∗WnΩr−1

X0,log[−r]

Since j∗Z/pn(r)M
∼
→ Rj∗Z/pn(r)M, τ≤rZ/pn(r)M

∼
→ Z/pn(r)M, the cycle class map of Theorem 1.2 can

now be obtained by comparing sequences (1.2) and (1.3).

Acknowledgments. We would like to thank Grzegorz Banaszak, Pierre Colmez, and Bruno Kahn for
many discussions related to the content of this paper.

1.0.1. Notation and Conventions. We assume all the schemes to be locally noetherian. We work in the
category of fine log-schemes.

Definition 1.3. Let N ∈ N. For a morphism f : M → M ′ of Zp-modules, we say that f is pN -
injective (resp. pN -surjective) if its kernel (resp. its cockernel) is annihilated by pN and we say that
f is pN -isomorphism if it is pN -injective and pN -surjective. We define in the same way the notion of
pN -distinguished triangle or pN -acyclic complex (a complex whose cohomology groups are annihilated
by pN ) as well as the notion of pN -quasi-isomorphism (map in the derived category that induces a
pN -isomorphism on cohomology).

We will use a shorthand for certain homotopy limits. Namely, if f : C → C ′ is a map in the dg derived
category of abelian groups, we set

[ C
f // C ′ ] := holim(C → C ′ ← 0).

And we set







C1

��

f // C2

��
C3

g // C4








:= [[C1
f
→ C2]→ [C3

g
→ C4]],

for a commutative diagram (the one inside the large bracket) in the dg derived category of abelian groups.
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2. Syntomic cohomology

Let OK be a complete discrete valuation ring with fraction field K of characteristic 0 and with perfect
residue field k of characteristic p. Let $ be a uniformizer of OK ; we will keep it fixed throughout the
paper5. Let W (k) be the ring of Witt vectors of k with fraction field F (i.e, W (k) = OF ); let e be the
ramification index of K over F . Let σ = ϕ be the absolute Frobenius on W (k). For a OK -scheme X,
let X0 denote the special fiber of X and let Xn denote the reduction modulo pn of X. We will denote
by OK , OK

×, and OK
0 the scheme Spec(OK) with the trivial, canonical (i.e., associated to the closed

point), and (N→ OK , 1 7→ 0) log-structure respectively.
In this section we will briefly review the definitions of syntomic and syntomic-étale cohomologies and

their basic properties. We refer the reader for details to [33, 2].

2.1. Syntomic cohomology. For a log-scheme X we denote by Xsyn the small syntomic site of X. It
is built from log-syntomic morphisms f : Y → Z in the sense of Kato [18, 2.5] (see also [7, 6.1]), i.e.,
the morphism f is integral, the underlying morphism of schemes is flat and locally of finite presentation,

and, étale locally on Y , there is a factorization Y
i

↪→ W
h
→ Z where h is log-smooth and i is an exact

closed immersion that is transversally regular over Z.
For a log-scheme X log-syntomic over Spec(W (k)), define

Ocr
n (X) = H0

cr(Xn,OXn), J [r]
n (X) = H0

cr(Xn,J [r]
Xn

),

whereOXn
is the structure sheaf of the absolute crystalline site (i.e., over Wn(k)), JXn

= Ker(OXn/Wn(k) →

OXn
), and J [r]

Xn
is its r’th divided power of JXn

. Set J [r]
Xn

= OXn
if r ≤ 0. We know [9, II.1.3] that the

presheaves J [r]
n are sheaves on Xn,syn, flat over Z/pn, and that J [r]

n+1 ⊗ Z/pn ' J [r]
n . There is a natural,

compatible with Frobenius, and functorial isomorphism

H∗(Xsyn,J [r]
n ) ' H∗

cr(Xn,J [r]
Xn

).

It is easy to see that ϕ(J [r]
n ) ⊂ prOcr

n for 0 ≤ r ≤ p− 1. This fails in general and we modify J [r]
n :

J<r>
n := {x ∈ J [r]

n+s | ϕ(x) ∈ prOcr
n+s}/pn,

for some s ≥ r. This definition is independent of s. We check that J<r>
n is flat over Z/pn and J<r>

n+1 ⊗
Z/pn ' J <r>

n . This allows us to define the divided Frobenius ϕr = ”ϕ/pr” : J<r>
n → Ocr

n .
Set

Sn(r) := Cone(J<r>
n

1−ϕr−→ Ocr
n )[−1].

Since the following sequence is exact

0 −−−−→ Sn(r) −−−−→ J <r>
n

1−ϕr−−−−→ Ocr
n −−−−→ 0,

we actually have

Sn(r) := Ker(J<r>
n

1−ϕr−→ Ocr
n ).

In the same way we can define syntomic sheaves Sn(r) on Xm,syn for m ≥ n. Abusing notation, we
set Sn(r) = i∗Sn(r) for the natural map i : Xm,syn → Xsyn. Since i∗ is exact, H∗(Xm,syn,Sn(r)) =
H∗(Xsyn,Sn(r)). Because of that we will write Sn(r) for the syntomic sheaves on Xm,syn as well as on
Xsyn. We will also need the ”undivided” version of syntomic complexes of sheaves:

S ′n(r) := Cone(J [r]
n

pr−ϕ
−→ Ocr

n )[−1].

For r, i ≥ 0, we have the long exact sequences

→ Hi(Xét,Sn(r))→ Hi
cr(Xn, J<r>

Xn
)

1−ϕr−→ Hi
cr(Xn,OXn)→(2.1)

→ Hi(Xét,S
′
n(r))→ Hi

cr(Xn, J
[r]
Xn

)
pr−ϕ
−→ Hi

cr(Xn,OXn
)→

5This is necessary to fix an embedding of Spec(OK) into a smooth scheme over Zp.
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Proposition 2.1. ([8, Prop. 3.12]) For X a fine and saturated log-smooth log-scheme over OK and
0 ≤ r ≤ p− 2, the natural map of complexes of sheaves on the étale site of X0

τ≤rSn(r)→ Sn(r)

is a quasi-isomorphism. For X semistable over OK
6 and r ≥ 0, the natural map of complexes of sheaves

on the étale site of X0

τ≤rS
′
n(r)→ S ′n(r)

is a pNr-quasi-isomorphism for a universal constant N .

The natural map ω : S ′n(r) → Sn(r) induced by the maps pr : J [r]
n → J <r>

n and Id : Ocr
n → O

cr
n has

kernel and cokernel killed by pr. So does the map τ : Sn(r)→ S ′n(r) induced by the maps Id : J<r>
n →

J [r]
n and pr : Ocr

n → O
cr
n . We have τω = ωτ = pr.

If it does not cause confusion, we will write Sn(r), S ′n(r) also for Rε∗Sn(r), Rε∗S ′n(r), respectively,
where ε : Xn,syn → Xn,ét is the natural projection to the étale site (or sometimes to the Nisnevich site)

2.1.1. Syntomic cohomology and differential forms. Let X be a syntomic scheme over W (k). Recall the
differential definition [16] of syntomic cohomology. Assume first that we have an immersion ι : X ↪→ Z
over W (k) such that Z is a smooth W (k)-scheme endowed with a compatible system of liftings of the
Frobenius {Fn : Zn → Zn}. Let Dn = DXn

(Zn) be the PD-envelope of Xn in Zn (compatible with the
canonical PD-structure on pWn(k)) and JDn

the ideal of Xn in Dn. Set J<r>
Dn

:= {a ∈ J
[r]
Dn+s

|ϕ(a) ∈

prODn+s}/pn for some s ≥ r. For 0 ≤ r ≤ p − 1, J<r>
Dn

= J
[r]
Dn

. This definition is independent of s.
Consider the following complexes of sheaves on Xét.

Sn(r)X,Z : = Cone(J<r−•>
Dn

⊗ Ω•
Zn

1−ϕr−→ ODn
⊗ Ω•

Zn
)[−1],(2.2)

S′
n(r)X,Z : = Cone(J [r−•]

Dn
⊗ Ω•

Zn

pr−ϕ
−−−−→ODn ⊗ Ω•

Zn
)[−1],

where Ω•
Zn

:= Ω•
Zn/Wn(k) and ϕr is ”ϕ/pr” (see [33, 2.1] for details). The complexes Sn(r)X,Z , S′

n(r)X,Z

are, up to canonical quasi-isomorphisms, independent of the choice of ι and {Fn} (and we will omit the
subscript Z from the notation). Again, the natural maps ω : S′

n(r)X → Sn(r)X and τ : Sn(r)X → S′
n(r)X

have kernels and cokernels annihilated by pr.
In general, immersions as above exist étale locally, and we define Sn(r)X ∈ D+(Xét,Z/pn) by gluing

the local complexes. We define S′
n(r)X in a similar way.

Let now X be a log-syntomic scheme over W (k). Using log-crystalline cohomology, the above con-
struction of syntomic complexes goes through almost verbatim (see [33, 2.1] for details) to yield the
logarithmic analogs Sn(r) and S′

n(r) on Xét. In this paper we are often interested in log-schemes com-
ing from a regular syntomic scheme X over W (k) and a relative simple (i.e., with no self-intersections)
normal crossing divisor D on X. In such cases we will write Sn(r)X(D) and S′

n(r)X(D) for the syntomic
complexes and use the Zariski topology instead of the étale one.

2.1.2. Products. We need to discuss products. Assume that we are in the lifted situation (2.2). Then we
have a product structure

∪ : S′
n(r)X,Z ⊗ S′

n(r′)X,Z → S′
n(r + r′)X,Z , r, r′ ≥ 0,

defined by the following formulas

(x, y)⊗ (x′, y′) 7→ (xx′, (−1)aprxy′ + yϕ(x′))

(x, y) ∈ S′
n(r)a

X,Z = (J [r−a]
Dn

⊗ Ωa
Zn

)⊕ (ODn ⊗ Ωa−1
Zn

),

(x′, y′) ∈ S′
n(r′)b

X,Z = (J [r′−b]
Dn

⊗ Ωb
Zn

)⊕ (ODn ⊗ Ωb−1
Zn

).

6A scheme X over OK is called semistable if it is surjective on Spec OK , regular, and there is a distinguished divisor

”at infinity” D∞ which is a strict relative normal crossing divisor and which together with the special fiber forms a strict

normal crossing divisor.
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Globalizing, we obtain the product structure

∪ : S′
n(r)X ⊗

L S′
n(r′)X → S′

n(r + r′)X , r, r′ ≥ 0.

This product is clearly compatible with the crystalline product.
Similarly, we have the product structures

∪ : Sn(r)X,Z ⊗ Sn(r′)X,Z → Sn(r + r′)X,Z , r, r′ ≥ 0,

defined by the formulas

(x, y)⊗ (x′, y′) 7→ (xx′, (−1)axy′ + yϕr′(x′))

(x, y) ∈ Sn(r)a
X,Z = (J<r−a>

Dn
⊗ Ωa

Zn
)⊕ (ODn ⊗ Ωa−1

Zn
),

(x′, y′) ∈ Sn(r′)b
X,Z = (J<r′−b>

Dn
⊗ Ωb

Zn
)⊕ (ODn ⊗ Ωb−1

Zn
).

Globalizing, we obtain the product structure

∪ : Sn(r)X ⊗
L Sn(r′)X → Sn(r + r′)X , r, r′ ≥ 0.

This product is also clearly compatible with the crystalline product.
The above product structures are compatible with the maps ω. On the other hand the maps τ are, in

general, not compatible with products.

2.1.3. Symbol maps. Let X be a regular syntomic scheme over W (k) with a divisor D with relative simple
normal crossings. Recall that there are symbol maps defined by Kato and Tsuji [33, 2.2]

(2.3) (Mgp
X,n)⊗r → Hr(S′

n(r)X(D)), (Mgp
X,n+1)

⊗r → Hr(Sn(r)X(D)), r ≥ 0,

where, for a log-scheme X, MX denotes its log-structure. For r = 1, we get the first Chern class maps
(recall that Mgp

X = j∗O∗
X\D, where j : X \D ↪→ X is the natural immersion)

csyn
1 : j∗O

∗
X\D[−1]→ i∗j∗O

∗
(X\D)n+1

[−1]→ Sn(1)X(D),

csyn
1 : j∗O

∗
X\D[−1]→ i∗j∗O

∗
(X\D)n

[−1]→ S′
n(1)X(D),

that are compatible, i.e., the following diagram commutes

j∗O∗
X\D[−1]

pcsyn
1

��

csyn
1 // S′

n(1)X(D)

ω
wwoooooooooooo

Sn(1)X(D)

In the lifted situation these classes are defined in the following way. Let Cn be the complex

(1 + JDn
→Mgp

Dn
) ' j∗O

∗
(X\D)n

[−1].

The Chern class maps

csyn
1 : j∗O

∗
(X\D)n

[−1]→ S′
n(1)X(D), csyn

1 : j∗O
∗
(X\D)n+1

[−1]→ Sn(1)X(D),

are defined by the morphisms of complexes

Cn → S′
n(1)X,Z , Cn+1 → Sn(1)X,Z

given by the formulas

1 + JDn → (S′
n(1)X,Z)0 = JDn ; a 7→ log a;

1 + JDn+1 → (Sn(1)X,Z)0 = JDn ; a 7→ log a mod pn;

and

Mgp
Dn
→ (S′

n(1)X,Z)1 = (ODn
⊗ Ω1

Zn
)⊕ODn

; b 7→ (d log b, log(bpϕDn
(b)−1));

Mgp
Dn+1

→ (Sn(1)X,Z)1 = (ODn ⊗ Ω1
Zn

)⊕ODn ; b 7→ (d log b mod pn, p−1 log(bpϕDn+1(b)
−1)).
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The symbol maps (2.3) for general r are obtained from r = 1 using the product structure on syntomic
cohomology.

2.2. Syntomic-étale cohomology. We will now recall the definition and basic properties of syntomic-
étale cohomology. The relationship between syntomic cohomology and syntomic-étale cohomology mirrors
the one between étale nearby cycles and étale cohomology. Let X be a log-scheme, log-syntomic over
Spec(W (k)). We will need the logarithmic version of the syntomic-étale site of Fontaine-Messing [9]. We
say that a morphism Z → Y of p-adic formal log-schemes over Spf(W (k)) is (small) log-syntomic if every
Zn → Yn is (small) log-syntomic. For a formal log-scheme Z the syntomic-étale site Zsé is defined by
taking as objects morphisms f : Y → Z that are small log-syntomic and have log-étale generic fiber. This

last condition means that, étale locally on Y , f has a factorization Y
i
→ X

g
→ Z with X affine, i an exact

closed immersion, and g log-smooth such that the map F⊗W (k)Γ(Y , I/I2)→ F⊗W (k)Γ(Y , i∗Ω1
X/Z) is an

isomorphism, where I is the ideal of OX defining Y . For a log-scheme Z, we also have the syntomic-étale
site Zsé. Here the objects are morphisms U → Z that are small log-syntomic with the generic fiber UK

log-étale over ZK .
Let X̂ be the p-adic completion of X. Let i : Xn,ét → Xét and j : Xtr,K,ét → Xét be the natural maps.

Here Xtr is the open set of X where the log-structure is trivial. We have the following commutative
diagram of maps of topoi

X̂sé
isé−−−−→ Xsé

jsé←−−−− XK,sé

ε̂



y ε



y εK



y

X̂ét
iét−−−−→ Xét

jét←−−−− XK,ét

Assume first that 0 ≤ r ≤ p − 2. Abusively, let Sn(r) denote also the direct image of Sn(r) under
the canonical morphism Xn,syn → X̂sé. By [9, III.5], for j′ : Xtr,K,ét → XK,sé, there is a canonical
homomorphism

αr : Sn(r)→ i∗séjsé ∗j
′
∗GZ/pn(r),

where G denotes the Godement resolution of a sheaf (or a complex of sheaves). Similarly, for any r ≥ 0,
we get a natural map

α̃r : Sn(r)→ i∗séjsé ∗j
′
∗GZ/pn(r)′,

where Z/pn(r)′ = (paa!)−1Z/pn(r) for r = (p− 1)a + b, a, b ∈ Z, 0 ≤ b < p− 1 [9, III.5]. Composing with
the map S ′n(r)→ Sn(r) we get a natural morphism

αr : S ′n(r)→ i∗séjsé ∗j
′
∗GZ/pn(r)′.

2.2.1. Syntomic complexes and p-adic nearby cycles. For log-schemes over O×
K , in a stable range, syntomic

cohomology tends to compute (via the period morphism) p-adic nearby cycles . We will briefly recall the
relevant theorems. For 0 ≤ r ≤ p− 2, there is a natural homomorphism on the étale site of Xn

αr : Sn(r)→ i∗Rj∗Z/pn(r).

To define it, we apply Rε̂∗ to the map Sn(r)→ i∗séRjsé ∗Rj′∗Z/pn(r) induced from the map αr described
above and get

Rε∗Sn(r) = Rε̂∗Sn(r)→ Rε̂∗i
∗
séRjsé ∗Rj′∗Z/pn(r) = i∗étRε∗Rjsé ∗Rj′∗Z/pn(r) = i∗Rj∗Z/pn(r).

The first equality follows from the fact that the morphism Xn,syn → X̂sé is exact [9, III.4.1]. The second
equality was proved in [19, 2.5], [32, 5.2.3]. One checks that αr is compatible with products.

Theorem 2.2. ([34, Theorem 5.1]) For i ≤ r ≤ p − 2 and for a fine and saturated log-scheme X
log-smooth over O×

K the period map

(2.4) αr : Sn(r)X
∼
→ τ≤ri

∗Rj∗Z/pn(r)Xtr .

is an isomorphism.



8 VERONIKA ERTL AND WIES LAWA NIZIO L

Similarly, for any r ≥ 0, we get a natural map

α̃r : Sn(r)→ i∗Rj∗Z/pn(r)′.

Composing with the map ω : S ′n(r)→ Sn(r) we get a natural, compatible with products, morphism

αr : S ′n(r)→ i∗Rj∗Z/pn(r)′.

Theorem 2.3. ([8, Theorem 1.1]) For 0 ≤ i ≤ r and for a semistable scheme X over OK , consider the
period map

(2.5) αr : Hi(S ′n(r)X)→ i∗Rij∗Z/pn(r)′Xtr
.

If K has enough roots of unity then the kernel and cokernel of this map are annihilated by pNr for a
universal constant N (not depending on p, X, K, n or r). In general, the kernel and cokernel of this map
are annihilated by pN for an integer N = N(e, p, r), which depends on e, r, but not on X or n.

2.2.2. Syntomic-étale cohomology. Recall [9, III.4.4], [32, 5.2.2] that the functor F 7→ (i∗séF , j∗séF , i∗séF →
i∗séjsé ∗j

∗
séF) from the category of sheaves on Xsé to the category of triples (G,H,G → i∗séjsé ∗H), where

G (resp. H) are sheaves on X̂sé (resp. XK,sé) is an equivalence of categories. It follows that we can glue
the complexes of sheaves Sn(r) and S ′n(r) and the complexes of sheaves j′∗GZ/pn(r) and j′∗GZ/pn(r)′ by
the maps αr and obtain complexes of sheaves En(r) and E ′n(r) on Xsé. We have the exact sequences

0→jsét!j
′
∗GZ/pn(r)→ En(r)→ i∗Sn(r)→ 0, 0 ≤ r ≤ p− 2;

0→jsét!j
′
∗GZ/pn(r)′ → E ′n(r)→ i∗S

′
n(r)→ 0, r ≥ 0.

Remark 2.4. The syntomic-étale complexes En(r) that we described here are the same (in the derived
category) as those defined by Fontaine-Messing in [9, 5] in the case when Xtr = X but differ from those
defined by Tsuji in [32, 5.2] in the general situation. More specifically, we have

ET
n (r) = H0(En(r)),

where we wrote ET
n (r) for the syntomic-étale sheaves of Tsuji.

If it does not cause confusion, we will denote by En(r) and E ′n(r) also the derived pushforwards of
En(r) and E ′n(r) to Xét. Notice that they are quasi-isomorphic to the complexes obtained by gluing the
complexes of sheaves Sn(r) and S ′n(r) and the complexes of sheaves j′∗GZ/pn(r)′ by the maps α̃r and αr.
Hence we have the distinguished triangles

(2.6) jét!Rj′∗Z/pn(r)′ → En(r)→ i∗Sn(r), jét!Rj′∗Z/pn(r)′ → E ′n(r)→ i∗S
′
n(r),

where j′ : Xtr,K → XK , as well as the natural maps

α̃r : En(r)→ Rj∗Z/pn(r)′, αr : En(r)′ → Rj∗Z/pn(r)′

compatible with the maps α̃r and αr. For a ≥ 0, we have the truncated version of the above - the
distinguished triangles

(2.7) jét!τ≤aRj′∗Z/pn(r)′ → τ≤aEn(r)→ i∗τ≤aSn(r), jét!τ≤aRj′∗Z/pn(r)′ → τ≤aE
′
n(r)→ i∗τ≤aS

′
n(r).

2.2.3. Syntomic-étale cohomology and étale cohomology of the generic fiber. For a log-scheme over O×
K ,

in a stable range, syntomic-étale cohomology tends to compute étale cohomology of the generic fiber.

Theorem 2.5. Let X be a log-scheme log-smooth over OK
×. Let j : Xtr ↪→ X be the natural open

immersion. Then

(1) we have a natural quasi-isomorphism

α̃r : τ≤rEn(r) ' τ≤rRj∗Z/pn(r), 0 ≤ r ≤ p− 2.
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(2) if X is semistable, there is a constant N as in Theorem 2.3 and a natural morphism

αr : E ′n(r)→ Rj∗Z/pn(r)′, r ≥ 0,

such that the induced map on cohomology sheaves in degree q ≤ r has kernel and cokernel anni-
hilated by pN .

Proof. Assume that 0 ≤ r ≤ p−2. Consider the following commutative diagram of distinguished triangles

jét!τ≤rRj′∗Z/pn(r) −−−−→ τ≤rEn(r) −−−−→ i∗Sn(r)

o



yId



yα̃r o



yαr

jét!τ≤rRj′∗Z/pn(r) −−−−→ τ≤rRj∗Z/pn(r) −−−−→ i∗i
∗τ≤rRj∗Z/pn(r)

The top triangle is distinguished because we have the distinguished triangle from (2.7) and the natural
map τ≤rSn(r)

∼
→ Sn(r) is a quasi-isomorphism. The map αr is a quasi-isomorphism by the main theorem

of [34]. The first part of the theorem follows.
For the second part consider the following commutative diagram of distinguished triangles

jét!τ≤rRj′∗Z/pn(r)′ −−−−→ τ≤rE ′n(r) −−−−→ i∗τ≤rS ′n(r)

o



yId



yαr



yαr

jét!τ≤rRj′∗Z/pn(r)′ −−−−→ τ≤rRj∗Z/pn(r)′ −−−−→ i∗i
∗τ≤rRj∗Z/pn(r)′

By [8, Theorem 1.1], the right period map αr on the level of cohomology has kernels and cokernels killed
by N for a constant N as in the theorem. Hence the same is true of the left map αr, as wanted. �

The above theorem implies that the logarithmic syntomic-étale cohomology is close to the logarithmic
syntomic-étale cohomology of the complement of the divisor at infinity.

Corollary 2.6. Let X be a semistable scheme over OK with a divisor at infinity D∞. We treat it is as
a log-scheme over O×

K . Let Y := X \D∞ and let j1 : Y ↪→ X.

(1) we have a natural quasi-isomorphism

α̃r : τ≤rEn(r)X
∼
→ τ≤rRj1∗En(r)Y , 0 ≤ r ≤ p− 2.

(2) there is a constant N as in Theorem 2.3 and a natural morphism

αr : E ′n(r)X → Rj1∗E
′
n(r)Y , r ≥ 0,

such that the induced map on cohomology sheaves in degree q ≤ r has kernel and cokernel anni-
hilated by pN .

Proof. Note that Xtr = YK and set j2 : YK ↪→ Y . We have j = j1j2. By Theorem 2.5, both terms in the
first claim are quasi-isomorphic to

τ≤rRj∗Z/pn(r)Xtr = τ≤rRj1∗τ≤rRj2∗Z/pn(r)YK
.

Hence they are quasi-isomorphic. The second claim of the corollary is proved in the same way. �

2.2.4. Nisnevich syntomic-étale cohomology. We will pass now to the Nisnevich topos of X. Denote by
ε : Xét → XNis the natural projection. For r ≥ 0, by applying Rε∗ to the étale period map above and
using that Rε∗i

∗ = i∗Rε∗
7 (c.f. [10, 2.2.b]), we obtain a natural map

α̃r : Rε∗Sn(r)→ i∗Rj∗Rε∗Z/pn(r)′.

Composing with the map ω : Rε∗S ′n(r) → Rε∗Sn(r) we get a natural, compatible with products, mor-
phism

αr : Rε∗S
′
n(r)→ i∗Rj∗Rε∗Z/pn(r)′.

Write, for simplicity, Sn(r) and S ′n(r) for the derived pushforwards of Sn(r) and S ′n(r) from Xét to XNis.
Same for En(r) and E ′n(r). Notice that they are quasi-isomorphic to the complexes obtained by gluing the

7This equality fails for the projection to Zariski topology and is the reason we use Nisnevich topology instead of Zariski.
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complexes of sheaves Sn(r) and S ′n(r) on X0,Nis and the complexes of sheaves ε∗j
′
∗GZ/pn(r)′ on XK,Nis

by the maps α̃r and αr. Hence we have the distinguished triangles

(2.8) jNis!Rj′∗Rε∗Z/pn(r)′ → En(r)→ i∗Sn(r), jNis!Rj′∗Rε∗Z/pn(r)′ → E ′n(r)→ i∗S
′
n(r),

as well as the natural maps

α̃r : En(r)→ Rj∗Rε∗Z/pn(r)′, αr : En(r)′ → Rj∗Rε∗Z/pn(r)′

compatible with the maps α̃r and αr. For a ≥ 0, we have the truncated version of the above - the
distinguished triangles
(2.9)
jNis!τ≤aRj′∗Rε∗Z/pn(r)′ → τ≤aEn(r)→ i∗τ≤aSn(r), jNis!τ≤aRj′∗Rε∗Z/pn(r)′ → τ≤aE

′
n(r)→ i∗τ≤aS

′
n(r).

Define the following complexes of sheaves on XNis

Sn(r)Nis := τ≤rSn(r), S ′n(r)Nis := τ≤rS
′
n(r);

En(r)Nis := τ≤rEn(r), E ′n(r)Nis := τ≤rE
′
n(r).

Example 2.7. For X = Spec(W (k)) we have

Hi(W (k),Sn(r)Nis) =






Z/pn i = r = 0,

Wn(k) i = 1, r ≥ 1,

0 otherwise.

Moreover, the morphism Hi(W (k), En(r)Nis)→ Hi(W (k),Sn(r)Nis) is an isomorphism.
To see the first claim, note that we have

Sn(0)ét : Wn(k)
1−ϕ
−−→Wn(k), Sn(r)ét : 0→Wn(k), r ≥ 1.

It follows that
Sn(0)Nis = Z/pn, Sn(r)ét := Wn(k)[−1], r ≥ 1.

For the second claim use the distinguished triangle (2.9) and the fact that Hi(W (k), jNis!τ≤aRj′∗Rε∗Z/pn(r)) =
0, i ≥ 0, because W (k) is henselian.

3. Syntomic cohomology and motivic cohomology

Let X be a smooth scheme over OK . Let Z(r)M denote the complex of motivic sheaves Z(r)M :=
X 7→ zr(X, 2r − ∗) in the étale topology of X. Let Z/pn(r)M := Z(r)M ⊗Z/pn. Recall how the complex
zr(X, ∗) is defined [3]. Denote by 4n the algebraic n-simplex Spec Z[t0, . . . , tn]/(

∑
ti − 1). Let zr(X, i)

be the free abelian group generated by closed integral subschemas of codimension r of X ×4i meeting
all faces properly. Then zr(X, ∗) is the chain complex thus defined with boundaries given by pullbacks
of cycles along face maps. This complex is covariant for proper morphisms (with a shift in weight and
degree) and contravariant for flat morphisms.

We know that in the Zariski topology Hj(XZar,Z/pn(i)M) = HjΓ(XZar,Z/pn(r)M) is the Bloch higher
Chow group [10, Theorem 3.2] and that this is also the case for the Nisnevich topology [10, Prop. 3.6].
Locally, in the étale topology, when p is invertible, the étale cycle class map defines a quasi-isomorphism
Z/pn(r)M ' Z/pn(r); when X is of characteristic p, then the logarithmic de Rham-Witt cycle class
map defines a quasi-isomorphism Z/pn(r)M ' WnΩr

X,log[−r] [11], where, for a log-scheme Y , WnΩ∗
Y,log

denotes the sheaf of logarithmic de Rham-Witt differential forms [21]. Moreover, if i : Z ↪→ X is a closed
subscheme of codimension c with open complement j : U ↪→ X then the exact sequence

0→ i∗Z(r − c)M,Z [−2c]→ Z(r)M,X → j∗Z(r)M,U

forms a distinguished triangle in the derived category of sheaves on X∗, ∗ denoting the Zariski or Nisnevich
topology. We define motivic cohomology as

H∗
M(X,Z/pn(r)) := H∗(XZar,Z/pn(r)M ) = H∗(XNis,Z/pn(r)M );

H∗
M,ét(X,Z/pn(r)) := H∗(Xét,Z/pn(r)M ).



SYNTOMIC COHOMOLOGY AND p-ADIC MOTIVIC COHOMOLOGY 11

For a smooth scheme Y over OK , we define its p-adic motivic cohomology as

H∗
M(Y,Qp(r)) := H∗(holimn RΓ(YZar,Z/pn(r)M)⊗Q) = H∗(holimn Γ(YZar,Z/pn(r)M)⊗Q).

We define its étale version H∗
M,ét(Y,Qp(r)) in an analogous way.

We list the following corollary of Theorem 2.5.

Corollary 3.1. Let X be a smooth variety over K. Then there exists a natural syntomic cycle class map

clsyn
i,r : Hi

M(X,Qp(r))→ Hi
syn(X,Qp(r)),

where the target group is the syntomic cohomology defined in [22]. This map is compatible with the étale
cycle class map, i.e., the following diagram commutes

Hi
M(X,Qp(r))

clsyn
i,r

��

cléti,r

((QQQQQQQQQQQQQ

Hi
syn(X,Qp(r))

αNN
i,r // Hi

ét(X,Qp(r)),

where αNN
i,r is the period map defined in [22]. Moreover, the cycle class map clsyn

i,r is an isomorphism for
i ≤ r.

Proof. Consider the following diagram

E ′n(r)Nis
αr // τ≤rRj∗τ≤rRε∗Z/pn(r)′

Rj∗Z/pn(r)′M

clétr o

OO

clsyn
r

hhR R R R R R R

The étale cycle class map clétr is a quasi-isomorphism by the Beilinson -Lichtenbaum Conjecture (a
corollary [31], [12] of the Bloch-Kato Conjecture proved by Voevodsky and Rost [35]) and by [11] that
give the quasi-isomorphism

Z/pn(r)M
∼
→ τ≤rRε∗Z/pn(r)

and by the quasi-isomorphisms j∗Z/pn(r)M
∼
→ Rj∗Z/pn(r)M and τ≤rRj∗Z/pn(r)M

∼
→ Rj∗Z/pn(r)M .

Since, by Theorem 2.5, the period map αr is a pN -quasi-isomorphism, we can define the syntomic cycle
class map clsyn

r to make the above diagram commute. It induces the syntomic class map into syntomic
cohomology

clsyn
r : Rj∗Z/pn(r)M

clsyn
r−−→E ′n(r)Nis → S

′
n(r)Nis → Rε∗S

′
n(r)ét

By construction it is compatible with the étale cycle class map (via the map αr).
Recall that the syntomic cohomology Hi

syn(X,Qp(r)) is defined by h-sheafifying the (rational) Fontaine-
Messing syntomic cohomology. Everything being natural, the above construction of cycle classes h-
sheafifies and gives the syntomic cycle class map

clsyn
i,r : Hi

M(X,Qp(r))→ Hi
syn(X,Qp(r)).

For compatibility with the étale cycle class, it suffices to check that αNN
i,r = αi,r but this was done in [29].

The last claim of the corollary follows from the fact that both αNN
i,r and cléti,r are isomorphisms for

i ≤ r by [22, Theorem A] and the Beilinson-Lichtenbaum Conjecture, respectively. �

3.1. Syntomic cohomology and logarithmic de Rham-Witt cohomology. We will show in this
section that adding logarithmic structure at the special fiber changes syntomic cohomology by logarithmic
de Rham-Witt cohomology.
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Theorem 3.2. Let X be a semistable scheme over OK with a smooth special fiber. For a universal
constant N , we have the following pNr-distinguished triangles of sheaves in the étale and Nisnevich
topology of X, respectively.

S ′n(r)X → S ′n(r)X× →WnΩr−1
X0,log[−r],

S ′n(r)X,Nis → S
′
n(r)X×,Nis →WnΩr−1

X0,log[−r].

Here we wrote X× for the scheme X with added log-structure coming from the special fiber.

Proof. After setting up the local coordinates, we do, as an example, computations in dimension zero,
where it becomes clear how to define the map to logarithmic de Rham-Witt differentials. Then we lift
this computations to higher dimensions and globalize.

(1) Choice of local coordinates. To construct the first distinguished triangle, we start with local
computations. Let d be a positive integer. Let R0

K := OK{X
±1
1 , . . . , X±1

d } be the p-adic completion of
OK [X±1

1 , . . . , X±1
d ]. Let R be the p-adic completion of an étale algebra over R0

K . Let R0
T be the (p, T )-

adic completion of W (k)[T,X±1
1 , . . . , X±1

d ]; take the map R0
T 7→ R0

K , T 7→ $, and take the (formally)
étale lifting RT of R to R0

T . Let SR be the p-adically complete PD-envelope of R in RT equipped with
the PD-filtration F rSR. We will write SK := SOK . We have SR = RT ⊗̂W (k){T}SK with filtration
F rSR := RT ⊗̂W (k){T}F

rSK . Let R0 := W (k){X±1
1 , . . . , X±1

d } and let RT,0 := RT /T .
We have the following diagram of maps (the right diagram is obtained by reducing the rings modulo

T )

(3.1) Spf SR

&&MMMMMMMMMM

Spf R

��

+ �

99sssssssss
� � // Spf RT

��
Spf R0

K

��

� � // Spf R0
T

��
Spf OK

� � // Spf OF {T}

Spec R0

��

� � // Spf RT,0

��
Spec R0

K,0

��

� � // Spf R0

��
Spec k � � // Spf OF

Equip R0 with Frobenius ϕR0 : X±1
i 7→ X±p

i . Equip R0
T with Frobenius ϕR0

T
compatible with ϕSK

(T 7→ T p) and with ϕR0 , and equip RT with a Frobenius ϕRT
compatible with ϕR0

T
. We will simply

write ϕ for Frobenius if the domain of action is understood.
Set ΩSR

:= SR ⊗RT
ΩRT

. For r ∈ N, we filter the de Rham complex Ω•
SR

by subcomplexes

F rΩ•
SR

:= F rSR → F r−1SR ⊗RT
ΩRT

→ F r−2SR ⊗RT
Ω2

RT
→ . . .

We define the syntomic complex of R as

(3.2) S(R, r) := Cone(F rΩ•
SR

pr−ϕ
−−→Ω•

SR
)[−1]

Set ΩS×
R

:= SR ⊗RT
ΩR×

T
, where R×

T is the ring RT with log-structure induced by T . We define the
log-syntomic complex of R as

(3.3) S(R×, r) := Cone(F rΩ•

S×
R

pr−ϕ
−−→Ω•

S×
R

)[−1].

For n ∈ N, we define the syntomic and log-syntomic complexes modulo pn as S(R, r)n := S(R, r)⊗Z

Z/pn, S(R×, r) := S(R×, r) ⊗Z Z/pn, respectively. In the case when R is the p-adic completion of an
étale algebra over OK [X±1

1 , ∙ ∙ ∙ , X±1
d ], we have

S′
n(r)R = S(R, r)n, S′

n(r)R× = S(R×, r)n;

holimn S′
n(r)R = S(R, r), holimn S′

n(r)R× = S(R×, r).
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We would like to separate the arithmetic and the geometric variables. Specifically, we remove the
differentials connected with the variable T by setting ΩS′

R
:= SR ⊗R0 ΩR0 . Since ΩW (k)[T ] = W (k)[T ]dT

we can dispose of this module of differentials by writing df as ∂fdT and we can rewrite the above syntomic
complex as the following homotopy limit

S(R, r) =










F rΩ•
S′

R

∂

��

pr−p•ϕ• // Ω•
S′

R

∂

��
F r−1Ω•

S′
R

pr−p•+1T p−1ϕ• // Ω•
S′

R










Here the map ϕ• : Ω•
S′

R
→ Ω•

S′
R

sends ω ∈ Ωk
S′

R
to (ϕ/pk)(ω). By adding logarithmic differentials dT/T

along the special fiber, we get the following log-syntomic complex

S(R×, r) =










F rΩ•
S′

R

T∂

��

pr−p•ϕ• // Ω•
S′

R

T∂

��
F r−1Ω•

S′
R

pr−p•+1ϕ• // Ω•
S′

R










(2) Dimension 0. For R = OK , we obtain the following proposition.

Proposition 3.3. Let n ≥ 1. We have the following p15-distinguished triangle of sheaves in the étale
topology of Spec k

S(OK , 1)n → S(O×
K , 1)n → Z/pn[−1].

For r 6= 1, the natural map S(OK , r)n → S(O×
K , r)n is a p15r-quasi-isomorphism.

Proof. We have the following two syntomic complexes.

S(OK , r) : F rSK
(∂,pr−ϕ)
−−−−→F r−1SK ⊕ SK

−(pr−pT p−1ϕ)+∂
−−−−−−→ SK

S(O×
K , r) : F rSK

(T∂,pr−ϕ)
−−−−→ F r−1SK ⊕ SK

−(pr−pϕ)+T∂
−−−−−−→ SK

The residue map: Ω1

log,S
[1]
K

→ OF induces the following sequence of complexes:

0→ S(O[1]
K , r)→ Slog(O

[1]
K , r)→

[
0→ OF

−(pr−pϕ)// OF

]
→ 0,

where R[1] is ”the ring of analytic functions over F with integral values on the disk vp(T ) ≥ 1/e”
defined in [8, Remark 2.2] and we define its syntomic complexes by analogous formulas to (3.2) and (3.3)
replacing SR by R[1]. We have the natural maps S(OK , r) → S(O[1]

K , r) and S(O×
K , r) → Slog(O

[1]
K , r)

that are p6r-quasi-isomorphisms [8, Prop. 3.3]. The above sequence is p-exact because F sS
[1]
K = Es

ps S
[1]
K ,

for E the minimal polynomial of $ over F , which implies that F sΩ1

log,S
[1]
K

/F sΩ1

S
[1]
K

∼= S
[1]
K /TS

[1]
K and

S
[1]
K /TS

[1]
K = OF ⊕M , where M is p-torsion.

Modulo pn, we have OF,n = Wn(k) and the exact sequence in the étale topology of Spec k

0→ Z/pn → OF,n
1−ϕ
−−→OF,n → 0.

For r = 0, the map OF,n
pr−pϕ
−−→OF,n is an isomorphism since 1 − pϕ is invertible. For r > 1, the map

OF,n
pr−1−ϕ
−−→ OF,n is an isomorphism as well since both ϕ and pr−1ϕ−1 − 1 are invertible. This proves our

proposition. �

(3) Local computations in higher dimensions. The computations in the above example generalize to
any ring R.

Lemma 3.4. There is a p12r-distinguished triangle in the étale topology of Spec R0

S(R, r)n → S(R×, r)n →WnΩr−1
R0,log[−r]



14 VERONIKA ERTL AND WIES LAWA NIZIO L

Proof. First we pass from SR to R[1] (via a p6r-quasi-isomorphism). Then we compute as in the proof of
Proposition 3.3 and obtain the following p-distinguished triangle

S(R[1], r)→ Slog(R
[1], r)→

[
Ω•

RT,0

pr−p•+1ϕ•−−−−−−→Ω•
RT,0

]
[−1].

We note that the complex Ω•
RT,0

computes the crystalline cohomology of R0 over W (k).
Set S := RT,0. We claim that there exists a p4r-quasi-isomorphism on the étale site of Spec R0

[
Ω•

S,n
pr−p•+1ϕ•−−−−−−→Ω•

S,n

]
'WnΩr−1

R0,log[−r + 1].

Indeed, for r = 0, the complex
[
Ω•

S,n

1−p•+1ϕ•−−−−−−→Ω•
S,n

]
is acyclic because the map 1 − p•+1 is invertible.

Assume thus that r ≥ 1 and take s = r − 1. Set

HK(S, s)n :=
[
Ω•

S,n
ps−p•ϕ•−−−−−−→Ω•

S,n

]
.

This complex is p2-quasi-isomorphic to the complex
[
Ω•

S,n

pr−p•+1ϕ•−−−−−−→Ω•
S,n

]
. Using the global Frobenius

lift on S we get the following commutative diagram

Ω•
S,n

Φ(ϕ)

��

ps−p•ϕ• // Ω•
S,n

Φ(ϕ)

��
WnΩ•

R0

ps−p•F// WnΩ•
R0

/dV n−1Ω•−1
R0

We note here that the de Rham-Witt Frobenius F : Wn+1Ω•
R0
→ WnΩ•

R0
and that F : Filn Wn+1Ω•

R0
=

V nΩ•
R0

+ dV nΩ•−1

R0
→ dV n−1Ω•−1

R0
. Hence F factorizes as in the above diagram. Moreover, since

pdV n−1Ω∗
R0

= 0, we get the induced map pF : WnΩ•
R0
→WnΩ•

R0
.

The first vertical arrow in the above diagram is a quasi-isomorphism. The second one is a p-quasi-
isomorphism since pdV n−1Ω∗

R0
= 0. Hence the complex HK(S, s)n is p2-quasi-isomorphic to the complex

[WnΩ•
R0

ps−p•F
−−−−→WnΩ•

R0
/dV n−1Ω•−1

R0
]. We list the following properties of the latter complex.

(1) For t > s, the map WnΩt
R0

1−pt−sF
−−−−→WnΩt

R0
is an isomorphism (since 1 − pt−sF is invertible).

(2) For t < s, the map
WnΩt

R0

ps−t−F
−−→WnΩt

R0
/dV n−1Ωt−1

R0

is a p-isomorphism. Indeed, for p-surjectivity, it suffices to note that (ps−t−F)(V α) = ps−tV α−
pα, for α ∈ WnΩt

R0
/dV n−1Ωt−1

R0
, t ≤ s − 1. For p-injectivity, we note that if (ps−t − F)(α) = 0

for α ∈ WnΩt
R0

then V (ps−t − F)(α) = ps−tV α − pα = 0. Hence ps−t−1V α = α which implies
that pn(s−t−1)V nα = α. Hence α = 0.

(3) The map
ZWnΩs−1

R0

p−F
−−→ZWnΩs−1

R0
/dV n−1Ωs−2

R0

is an p3-isomorphism. For p-injectivity we use the point above. For p3-surjectivity, we note that,
for α ∈ ZWnΩs−1

R0
such that dα = 0 we have

pα = −(p− F)β, β = V α + V 2α + V 3α ∙ ∙ ∙ ∈ V Wn−1Ω
s−1
R0

,

and p(1− F)dβ = 0. By [4, Lemma 4.3], this implies that pdβ = 0.
(4) There is an exact sequence

0→WnΩs
R0,log →WnΩs

R0

1−F
−−→WnΩs

R0
/dV n−1Ωs−1

R0
→ 0

in the étale topology of Spec R0 [6, Lemma 1.2], [21, Prop. 2.13]. In the Nisnevich topology it is
still exact on the left and in the middle.

The above implies that there is a natural map

WnΩs
R0,log[−s]→ [WnΩ•

R0

ps−p•F
−−−−→WnΩ•

R0
/dV n−1Ω•−1

R0
]

and that it is a p4s-quasi-isomorphism in the étale topology of Spec R0, as wanted. �
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(4) Globalization. The above local computations can be globalized in the following way. We note that
we have actually proved above that we have the following p4s-quasi-isomorphisms of sheaves on the étale
site of X0

8

WnΩs
X0,log[−s]→ [WnΩ•

X0

ps−p•F
−−→WnΩ•

X0
/dV nΩs−1

X0
]← [Acr,n

ps−ϕ
−−−−→Acr,n],

where Acr,n is the sheaf (U → X0) 7→ RΓcr(U/Wn(k)). The second quasi-isomorphism is [14, Sec. II.1].
It suffices thus to construct a map

S ′n(r)X× → [Acr,n
pr−pϕ
−−−−→Acr,n][−1]

and to show that the triangle

S ′n(r)X → S
′
n(r)X× → [Acr,n

pr−pϕ
−−−−→Acr,n][−1]

is p6r-distinguished.
For that, consider the following two diagrams of compatible coordinate systems (localize on X if

necessary to get X = Spec A).

Spec DT,n

''OOOOOOOOOOO

Spec An

��

* 


88ppppppppppp
� � // Spec BT,n

��
SpecOK,n

��

� � // SpecOF,n[T ]

ssggggggggggggggggggggg

SpecOF,n

Spec Dn

&&MMMMMMMMMM

Spec A0

��

+ �

88qqqqqqqqqq
� � // Spec Bn

��
Spec k

��

� � // SpecOF,n

hhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhh

SpecOF,n

Here BT,n is smooth over OF,n[T ] and the hooked arrows are closed embeddings. We equip both rings
with the log-structure associated to T . The right diagram is obtained by ”reducing modulo T” the left
diagram. It follows that the residue map ΩB×

T,n
→ OBn induces a map Ω•

D×
T,n

→ Ω•−1

Dn
(we note that the

Frobenius ϕ on the domain is compatible with pϕ on the target) and the sequence

(3.4) Ω•
DT,n

→ Ω•

D×
T,n

→ Ω•−1

Dn

is exact. These constructions glue in the usual way and we obtain a map J [r]

X×
n
→ Acr,n[−1] and a sequence

of complexes of sheaves on the étale site of X0

(3.5) J [r]
Xn
→ J [r]

X×
n
→ Acr,n[−1],

where we wrote J [r]
X∗

n
for the sheaf (U → Xn) 7→ RΓcr(U,J [r]

X∗
n
). Hence a sequence

(3.6) S ′n(r)X → S
′
n(r)X× → [Acr,n

pr−pϕ
−−→Acr,n][−1]

It is a p6r-distinguished triangle: this can be checked locally where we can pass to the more convenient
coordinate system from (3.1) and use the computations we have done in the proof of Proposition 3.3.
This concludes the construction of the first distinguished triangle of our theorem.

For the second triangle in the theorem, take the first triangle and push it down to the Nisnevich
site. Since τ≤0Rε∗WnΩr−1

X0,log ' WnΩr−1
X0,log [15], it suffices to check that the map Hr(S ′n(r)X×,Nis) →

8The notation is slightly abusive here but we hope that this will not lead to confusion.
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WnΩr−1
X0,log is pNr-surjective, for a universal constant N . For that, Zariski localize and consider the

following commutative diagram

Spf RTs

		

ww

Spec R0

��

� � / Spf RT,0

��

+ �

i

9ssssssssss

Spec k � � / Spf OF

Here the map s was chosen to commute with Frobenius and so that si = Id. We can use it to construct
a section of the residue map

Slog(R
[1], r)→

[
Ω•

RT,0

pr−p•+1ϕ•−−−−−−→Ω•
RT,0

]
[−1].

It follows that the map Hi(Slog(R[1], r)n) → Hi−1(
[
Ω•

RT,0

pr−p•+1ϕ•−−−−−−→Ω•
RT,0

]
n
) is surjective. Since, by

the above computations, the Nisnevich sheaves Hr−1(Acr,n
pr−1−ϕ
−−→ Acr,n) and WnΩr−1

X0,log are pNr-quasi-
isomorphic, for a universal constant N , we are done. �

Corollary 3.5. Let X be a semistable scheme over OK with a smooth special fiber. For a constant
N = N(p, e, r), we have the following natural pN -quasi-isomorphism (∗ denotes the étale or the Nisnevich
topology of X)

S ′n(r)X,∗ ⊕WnΩr−1
X0,log[−r]→ S ′n(r)X×,∗

Proof. It suffices to argue in the étale topology. Recall that in the proof of Theorem 3.2 we have obtained
a p6r-distinguished triangle

S ′n(r)X → S
′
n(r)X×

resT−−→[Acr,n
pr−pϕ
−−→Acr,n][−1]

and a p4r quasi-isomorphism

(3.7) WnΩr−1
X0,log[−r + 1] ' [Acr,n

pr−pϕ
−−→Acr,n].

It suffices thus to construct a section of the residue map. For r = 0 there is nothing to prove so we will
assume that r > 0.

For that, consider the following commutative diagram

RΓcr(X1/Wn(k))

i∗

��

∧ dlog T

uukkkkkkkkkkkkkkk

RΓcr(X
×
1 /Wn(k))[1]

resT // RΓcr(X0/Wn(k)),

where i : X0 ↪→ X1 is the natural closed immersion. Since the map i∗ : RΓcr(X1/Wn(k))ϕ=pr−1
→

RΓcr(X0/Wn(k))ϕ=pr−1
is a pN(p,e) quasi-isomorphism [8, Remark 5.9], the maps in the above diagram

induce a pN(p,e)-map RΓcr(X0/Wn(k))ϕ=pr−1
→ S ′n(r)X× [1] that is a pN(p,e,r)-section of the residue map

on the scheme X0. It is natural on the étale site of X0 (it depends only on the uniformizer $) hence
gives a section on the level of sheaves that we wanted. �

Let, for ∗ denoting the étale or the Nisnevich topology,

RΓ(X∗,S(r))Q := holimn RΓ(X∗,Sn(r))⊗Q
∼
→ holimn RΓ(X∗,S

′
n(r))⊗Q,

RΓ(X∗, E(r))Q := holimn RΓ(X∗, En(r))⊗Q
∼
→ holimn RΓ(X∗, E

′
n(r))⊗Q,

RΓ(X∗,WΩr−1
X0,log)Q := holimn RΓ(X∗, i∗WnΩr−1

X0,log).

By (3.7), we have

RΓ(X∗,WΩr−1
X0,log)Q ' RΓcr(X0/F )ϕ=pr−1

Q [−r + 1],
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where, for a scheme Y over W (k), we set RΓcr(Y/F ) := RΓcr(Y/W (k))Q := holimn RΓcr(Y1/Wn(k))⊗Q.
The following corollary follows immediately from Corollary 3.5.

Corollary 3.6. Let X be a semistable scheme over OK with a smooth special fiber. We have the following
natural quasi-isomorphisms

RΓ(X∗,S(r))Q ⊕ RΓ(X∗,WΩr−1
X0,log)Q[−r]

∼
→ RΓ(X×

∗ ,S(r))Q.

Corollary 3.7. Let X be a semistable scheme over OK with a smooth special fiber. For a constant N as
in Theorem 2.3, we have the following pN -distinguished triangle of sheaves in the étale topology of X0

(3.8) S ′n(r)X → τ≤ri
∗Rj∗Z/pn(r)′ →WnΩr−1

X0,log[−r].

Moreover, for a constant N = N(p, e, r) we have the following pN -quasi-isomorphism

S ′n(r)X ⊕WnΩr−1
X0,log[−r]→ τ≤ri

∗Rj∗Z/pn(r)′.

Proof. This immediately follows from Theorem 3.2, Theorem 2.3, and Corollary 3.5. �

Remark 3.8. For r ≤ p − 2, the distinguished triangle (3.8) was constructed before by Kurihara. No
additional constants are needed in this case.

Theorem 3.9. ([20, 1]) Let X be a smooth scheme over OK . For r ≤ p − 2, we have the following
distinguished triangle of sheaves in the étale topology of X0

Sn(r)X → τ≤ri
∗Rj∗Z/pn(r)→WnΩr−1

X0,log[−r].

It is easy to see that the above theorem holds also for schemes X that are semistable over OK with a
smooth special fiber, i.e., that we have the following distinguished triangle

Sn(r)X → τ≤ri
∗Rj∗Z/pn(r)→WnΩr−1

X0,log[−r], r ≤ p− 2.

Indeed, it suffices to note that all the terms involved have Gysin sequences [34] and to use the above
theorem. In particular, in view of Theorem 2.2, we have the following distinguished triangle

Sn(r)X → Sn(r)X× →WnΩr−1
X0,log[−r], r ≤ p− 2,

a ”small twists” analog of the distinguished triangles from Theorem 3.2.

3.2. Syntomic cohomology and motivic cohomology. The main theorem of this section shows that,
in étale topology, syntomic-étale complexes on smooth schemes over OK approximate motivic complexes.

Theorem 3.10. Let X be a semistable scheme over OK with a smooth special fiber. Let j′ : Xtr ↪→ X
be the natural open immersion. Then

(1) there is a natural cycle class map

clsyn
r : Rj′∗Z/pn(r)M → En(r)Nis, 0 ≤ r ≤ p− 2.

It is a quasi-isomorphism.
(2) there is a natural cycle class map

clsyn
r : Rj′∗Z/pn(r)M → E

′
n(r)Nis, r ≥ 0.

It is a pN -quasi-isomorphism for a constant N as in Theorem 2.3.

We have analogous statements in the étale topology. These cycle class maps are compatible (via the
localization map and the period map) with the étale cycle class maps.
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Proof. We start with the Nisnevich topology. We will prove the second claim, the proof of the first one
being analogous. Consider the following commutative diagram

jNis!τ≤rRj′K,∗Rε∗Z/pn(r)′ //

o

��

E ′n(r)X,Nis
//

��

i∗S ′n(r)X,Nis

��
jNis!τ≤rRj′K,∗Rε∗Z/pn(r)′ // E ′n(r)X×,Nis

// i∗S ′n(r)X×,Nis

��
i∗WnΩr−1

X0,log[−r]

The two rows are distinguished triangles; the right column is a pNr-distinguished triangle, for a universal
constant N , by Theorem 3.2. It follows that we have the pNr-distinguished triangle

(3.9) E ′n(r)X,Nis → E
′
n(r)X×,Nis → i∗WnΩr−1

X0,log[−r].

Let Y = Xtr. By functoriality we get the following map of pNr-distinguished triangles

E ′n(r)X,Nis

��

// E ′n(r)X×,Nis

o

��

// i∗WnΩr−1
X0,log[−r]

o

��
Rj′∗E

′
n(r)Y,Nis

// Rj′∗E
′
n(r)Y ×,Nis

// Rj′∗i∗WnΩr−1
Y0,log[−r]

The right vertical arrow is a quasi-isomorphism since MX0 = j′∗O
∗
X0,tr. The middle vertical arrow is a

pNr-quasi-isomorphism by Corollary 2.6. Hence the left vertical arrow is a pNr-quasi-isomorphism and
we may assume that the horizontal divisor of X is trivial.

Consider the following diagram

(3.10) E ′n(r)X,Nis

��

// E ′n(r)X×,Nis

αro

��

// i∗WnΩr−1
X0,log[−r]

Cn(r) // τ≤rRj∗Rε∗Z/pn(r)′XK

κ // i∗WnΩr−1
X0,log[−r]

Here the map κ is induced from a map τ≤ri
∗Rj∗Z/pn(r) → WnΩr−1

X0,log[−r] of sheaves on the étale site
of X0 defined as the composition of the canonical map τ≤ri

∗Rj∗Z/pn(r) → i∗Rrj∗Z/pn(r)[−r] and the
symbol map i∗Rrj∗Z/pn(r) → WnΩr−1

X0,log. The latter is defined by observing that i∗Rrj∗Z/pn(r) is
locally generated by symbols {f1, . . . , fr} for fi ∈ i∗j∗O∗

XK
[5, Cor. 6.1.1]. By multilinearity, each

symbol can be written as a sum of symbols of the form {f1, . . . , fr} and {f1, . . . , fr−1, $} for fi ∈ i∗O∗
X .

Then κ sends the former to zero and the latter to dlog[f1]∧ ∙ ∙ ∙ ∧ dlog[fr−1] where f i is the reduction of
fi to O∗

X0
. We defined Cn(r) as the mapping fiber of the map κ.

We claim that the right square of the diagram pN -commutes for a constant as in the statement of
the theorem. Indeed, we note that we can pass to the étale site and there it suffices to show that the
following diagram of maps of sheaves pN -commutes

Hr(S ′n(r)X×)
β //

αr

��

WnΩr−1
X0,log

i∗Rrj∗Z/pn(r)′XK

κ
66nnnnnnnnnnnn

Since the map αr is a pN -isomorphism and the sheaf i∗Rrj∗Z/pn(r)XK
is generated locally by symbols

it suffices to check that the map β sends the symbol {f1, . . . , fr}, fi ∈ i∗O∗
X , to zero and the symbol
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{f1, . . . , fr−1, $}, fi ∈ i∗O∗
X , to dlog[f1] ∧ ∙ ∙ ∙ dlog[fr−1]. But this follows easily from the definition of

the symbol maps (2.3).
It follows that the left vertical map in the diagram 3.10 exists. It is unique because

Hom(E ′n(r)X,Nis,WnΩr−1
X0,log[−r − 1]) = 0

for degree reasons. It is clearly a quasi-isomorphism. All of the above has to be taken in the pN -sense.
It remains now to show that there exists a pNr-quasi-isomorphism Z/pn(r)M → Cn(r), for a universal

constant N . We proceed as in [10, p. 14]. Consider the following diagram of distinguished triangles (the
complex C′n(r) is defined by the bottom triangle and pNr-quasi-isomorphic to the complex Cn(r))

(3.11) Z/pn(r)M,X

��

// j∗Z/pn(r)M,XK
//

o

��

i∗Z/pn(r − 1)M,X0 [−1]

o
��

C′n(r) // τ≤rRj∗Rε∗Z/pn(r)XK

κ // i∗WnΩr−1
X0,log[−r]

The middle and the right vertical maps are induced by the étale and the logarithmic de Rham-Witt cycle
class map, respectively. They are quasi-isomorphisms by the Beilinson -Lichtenbaum Conjecture. The
right square commutes: pass to the étale site and there this fact was shown in [10, p. 14]. Hence the left
vertical map exists, is unique, and a quasi-isomorphism as well. This concludes the proof of our theorem.

For the étale topology, the computations are analogous but the diagram (3.11) has to be replaced with
the following one

Z/pn(r)M,X

��

// τ≤rRj∗Z/pn(r)M,XK
//

o

��

τ≤r(i∗Ri!Z/pn(r)M,X [1])

o
��

C′n(r) // τ≤rRj∗Z/pn(r)XK

κ // i∗WnΩr−1
X0,log[−r]

The right vertical arrow is a quasi-isomorphism by [10, p. 14]. �

We list several, more or less immediate, corollaries of the above theorems (we set α := ét, Nis).

Corollary 3.11. Let X be a smooth scheme over OK . We have

(1) H∗
α(X, En(r)) ' H∗

M,α(X,Z/pn(r)), r ≤ p− 2;
(2) the kernel and the cokernel of the cycle class map

H∗
M,α(X,Z/pn(r))→ H∗

α(X, E ′n(r))

are annihilated by pN , where N denotes the constant from Theorem 2.3. Hence

H∗
α(X, E(r))Q ' H∗

M,α(X,Qp(r)).

In a more familiar language of syntomic cohomology, the above theorem and corollary can be stated
in the following way.

Corollary 3.12. Let X be a semistable scheme over OK with a smooth special fiber. Let j′ : Xtr ↪→ X
be the natural open immersion. Then, on the étale site of X0,

(1) there is a natural quasi-isomorphism [10]

Sn(r) ' i∗Rj′∗Z/pn(r)M, 0 ≤ r ≤ p− 2.

(2) there is a constant N as in Theorem 2.3 and a natural pN -quasi-isomorphism

S ′n(r) ' i∗Rj′∗Z/pn(r)′M, r ≥ 0,

Corollary 3.13. Let X be a proper semistable scheme over OK with a smooth special fiber. We have

(1) H∗
α(X,Sn(r)) ' H∗

M,α(Xtr,Z/pn(r)), r ≤ p− 2;
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(2) the kernel and the cokernel of the cycle class map

H∗
M,α(Xtr,Z/pn(r))→ H∗

α(X,S ′n(r))

are annihilated by pN , where N denotes the constant from Theorem 2.3. Hence

H∗
α(X,S(r))Q ' H∗

M,α(Xtr,Qp(r)).

Corollary 3.14. Let X be a proper semistable scheme over OK with a smooth special fiber. Then the
claims of Corollary 3.13 hold for XOK

(in place of X)9. Moreover, for i ≤ r, we have the following
commutative diagram

Hi
M(XOK ,tr,Qp(r))

j∗

∼
//

clsyn
i,ro

��

Hi
M(XK,tr,Qp(r))

cléti,ro

��
Hi(XOK

,S(r))Q
αi,r // Hi

ét(XK,tr,Qp(r))

.

Proof. The first claim follows from Corollary 3.13 by passing to limit over finite extensions of K in K.
The fact that the localization map j∗ is an isomorphism was proved in [24, Lemma 3.1]. �

Remark 3.15. For X proper the above diagram was studied in [24] (see [26] for a brief survey): it was
constructed first for the Chern classes from p-adic K-theory and then for motivic cohomology by studying
compatibility of Chern classes with operations on K-theory. This did not use the Fontaine-Messing period
map αi,r but instead a period map αi,r : Hi

ét(XK,tr,Qp(r)) → Hi(XOK
,S(r))Q was defined using the

above diagram. The fact that it is an isomorphism followed from the proof of the Crystalline Conjecture
and implied that so is the syntomic cycle class map clsyn

i,r .
For an open X as above, the situation is, at the moment, reversed. We defined log-syntomic p-adic

Chern classes [28] using the (universal) syntomic cycle class maps constructed in this paper.

Appendix A. Comparison of crystalline, convergent, and rigid syntomic cohomologies

We will compare crystalline, convergent, and rigid syntomic cohomologies for smooth schemes over OK

with normal crossing compactifications. Let X be a smooth scheme over OK . Recall Besser’s definition
of rigid syntomic cohomology [2]

RΓrig
syn(X, r) := [RΓrig(X0/F )⊕ F rRΓdR(XK)

f
−−→RΓrig(X0/F )⊕ RΓrig(X0/K)], r ≥ 0.

Here RΓrig(∙) denotes the rigid cohomology and f : (x, y) 7→ ((pr − ϕ)(x), sp(y) − x), where sp is the
Berthelot’s specialization map.

Proposition A.1. Let X be a proper semistable scheme over OK with a smooth special fiber. There is
a natural quasi-isomorphism

RΓrig
syn(Xtr, r) ' RΓsyn(X, r), r ≥ 0.

Proof. As usual we consider X as a log-scheme. We can write

RΓrig
syn(Xtr, r) ' [RΓrig(X0,tr/F )ϕ=pr

→ RΓrig(X0,tr)/F rRΓdR(XK,tr)]

Since we have
RΓsyn(X, r) ' [RΓcr(X/F )ϕ=pr

→ RΓdR(XK)/F r],

it suffices to construct a map
RΓcr(X/F )→ RΓrig(X0,tr/F )

that is compatible (in the dg category sense) with Frobenius and the specialization map from de Rham
cohomology. This is accomplished by the following commutative diagram.

9Syntomic cohomology of XO
K

is defined in the same way as the one of X.
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RΓcr(X1/F )

i∗vvmmmmmmmmmmmm
// RΓcr(X1/K) RΓdR(XK)

∼

''OOOOOOOOOOO
σcr

∼
oo

σconv

∼

vv

RΓcr(X0/F ) RΓconv(X1/F )

oi∗

��

//

α1,F

OO

RΓconv(X1/K)

oi∗

��

α1,K

OO

RΓdR(XK,tr)

sp

qq

RΓconv(X0/F )

α0

∼
hhQQQQQQQQQQQQ

o

��

// RΓconv(X0/K)

o

��
RΓrig(X0,tr/F ) // RΓrig(X0,tr/K)

Here RΓconv(∙) denotes the (logarithmic) convergent cohomology [23, 1, 30] that is used classically to
connect rigid cohomology with crystalline cohomology. The quasi-isomorphisms between the rigid and
the convergent cohomology at the bottom of the diagram are proved in [30, Cor. 2.4.13]. The maps i∗

are quasi-isomorphisms by invariance of convergent cohomology under nilpotent thickenings [1, 1.14.3].
The map α0 is a quasi-isomorphism by [30, Theorem 3.1.1]. The top map i∗ is a quasi-isomorphism on
ϕ-eigenspaces [8, Remark 5.9]; hence so is the map α1,F . The quasi-isomorphisms σcr, σconv are simply the
crystalline and the convergent [30, 2.3] Poincaré Lemmas, respectively. It follows that the specialization
map sp as well as the map α1,K are quasi-isomorphisms as well. �

Remark A.2. Recall that Besser’s definition of rigid syntomic cohomology is modeled on the definition
of convergent syntomic cohomology [25]. In its logarithmic form the latter is defined as the following
mapping fiber

RΓconv
syn (X, r) := [RΓconv(X0/F )ϕ=pr

→ RΓconv(X0/K)/F rRΓconv(X0/K)]

The proof of the above proposition shows that, for a proper and semistable scheme over OK with a
smooth special fiber, we have natural quasi-isomorphisms

(A.1) RΓrig
syn(Xtr, r) ' RΓconv

syn (X, r) ' RΓsyn(X, r), r ≥ 0.

In the proper case this was shown in [2, Prop. 9.8].

For a variety Y over K, let RΓNN
syn (Y, r) denote the syntomic cohomology defined in [22].

Corollary A.3. Let X be a proper semistable scheme over OK with a smooth special fiber. There is a
natural distinguished triangle

RΓrig
syn(Xtr, r)⊕ RΓ(WΩr−1

X0,log)Q[−r]
∼
→ RΓNN

syn (XK,tr, r).

Proof. Since we have a canonical quasi-isomorphism [22, Prop. 3.18]

RΓsyn(X×, r)Q
∼
→ RΓNN

syn (XK,tr, r),

this follows immediately from Proposition A.1 and Corollary 3.6. �
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Birkhäuser Boston, Boston, MA, 1990.

[30] A. Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology . J. Math. Sci. Univ.

Tokyo 9 (2002), no. 1, 1–163.

[31] A. Suslin, V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and

geometry of algebraic cycles (Banff, AB, 1998), 117-189, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ.,

Dordrecht, 2000.

[32] T. Tsuji, p-adic Hodge theory in the semi-stable reduction case, Proceedings of the International Congress of Mathe-

maticians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 207–216 (electronic).

[33] T. Tsuji, p-adic étale and crystalline cohomology in the semistable reduction case , Invent. Math. 137 (1999), no. 2,

233–411.

[34] T. Tsuji, On p-adic nearby cycles of log smooth families. Bull. Soc. Math. France 128 (2000), no. 4, 529–575.

[35] C. Weibel, The norm residue isomorphism theorem. Journal of Topology 2 (2) (2009), 346–372.

Universität Regensburg, Fakultät für Mathematik Universitätsstrasse 31, 93053 Regensburg, Germany
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