GEOMETRIC SYNTOMIC COHOMOLOGY AND VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE - ENS de Lyon - École normale supérieure de Lyon Access content directly
Journal Articles Journal of Algebraic Geometry Year : 2019

GEOMETRIC SYNTOMIC COHOMOLOGY AND VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE

Wieslawa Niziol
  • Function : Author
  • PersonId : 996766

Abstract

We show that geometric syntomic cohomology lifts canonically to the category of Banach-Colmez spaces and study its relation to extensions of modifications of vector bundles on the Fargues-Fontaine curve. We include some computations of geometric syntomic cohomology Spaces: they are finite rank Q p-vector spaces for ordinary varieties, but in the nonordinary case, these cohomology Spaces carry much more information, in particular they can have a non-trivial Crank. This dichotomy is reminiscent of the Hodge-Tate period map for p-divisible groups.
Fichier principal
Vignette du fichier
HT5.pdf (305.96 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ensl-01420353 , version 1 (20-12-2016)

Identifiers

  • HAL Id : ensl-01420353 , version 1

Cite

Wieslawa Niziol. GEOMETRIC SYNTOMIC COHOMOLOGY AND VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE. Journal of Algebraic Geometry, 2019, 28, pp.605-648. ⟨ensl-01420353⟩

Collections

ENS-LYON INSMI UDL
81 View
212 Download

Share

Gmail Facebook Twitter LinkedIn More