The continuum random tree is the scaling limit of unlabelled unrooted trees - ENS de Lyon - École normale supérieure de Lyon Access content directly
Preprints, Working Papers, ... Year :

The continuum random tree is the scaling limit of unlabelled unrooted trees

Benedikt Stufler

Abstract

We show that the uniform unlabelled unrooted tree with n vertices and vertex degrees in a fixed set converges in the Gromov–Hausdorff sense after a suitable rescaling to the Brownian continuum random tree. This confirms a conjecture by Aldous (1991). We also establish Benjamini–Schramm convergence of this model of random trees and provide a general approximation result, that allows for a transfer of a wide range of asymptotic properties of extremal and additive graph parameters from Pólya trees to unrooted trees.
Fichier principal
Vignette du fichier
frerev.pdf (494.73 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ensl-01461633 , version 1 (08-02-2017)

Identifiers

Cite

Benedikt Stufler. The continuum random tree is the scaling limit of unlabelled unrooted trees. 2017. ⟨ensl-01461633⟩

Collections

ENS-LYON INSMI UDL
62 View
52 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More