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INFINITELY MANY PERIODIC ORBITS OF EXACT MAGNETIC FLOWS
ON SURFACES FOR ALMOST EVERY SUBCRITICAL ENERGY LEVEL

A. ABBONDANDOLO, L. MACARINI, M. MAZZUCCHELLI, AND G. P. PATERNAIN

Abstract. We consider an exact magnetic flow on the tangent bundle of a closed surface.
We prove that for almost every energy level κ below the Mañé critical value of the universal
cover there are infinitely many periodic orbits with energy κ.
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Introduction

In this paper we study the existence of periodic orbits of prescribed energy of an exact
magnetic flow on the tangent bundle of a closed surface.

Let M be a closed surface. An exact magnetic flow on TM is induced by the choice
of a Riemannian metric g and of a smooth 1-form θ on M . Let Y : TM → TM be the
endomorphism uniquely defined by dθ = g(Y (·), ·). A curve γ : R → M is said to be a
magnetic geodesic if it solves the ODE

(1) ∇tγ̇ = Y (γ̇),
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where ∇t denotes the Levi-Civita covariant derivative. The flow on TM of this second
order ODE is called an exact magnetic flow. The exactness refers to the fact that the
2-form dθ is exact. When dθ is replaced by a non-exact 2-form one talks about a non-exact
magnetic flow. These flows are models for the motion of a particle in a magnetic field with
Lorentz force Y and were put into the context of modern dynamical systems by Arnold
in [Arn61].

Unlike the general non-exact case, exact magnetic flows admit a Lagrangian formulation:
The equation (1) is the Euler-Lagrange equation of the Lagrangian

L : TM → R, L(x, v) =
1

2
|v|2x − θx(v), ∀(x, v) ∈ TM,(2)

where |·|x denotes the norm on TxM which is induced by gx. The energy which is associated
to this autonomous Lagrangian is the function

E : TM → R, E(x, v) =
1

2
|v|2x, ∀(x, v) ∈ TM.

Therefore, the energy levels of this system are the same ones of the geodesic flow of g.
However, the dynamics on these levels is quite different and changes with the value of the
energy, because of the non-homogeneity of the Lagrangian. Roughly speaking, the magnetic
flow on E−1(κ) behaves as a geodesic flow for high values of κ, where the dominant term
in the Lagrangian is given by the metric g, and quite differently for low values of κ, for
which the magnetic form dθ becomes dominant.

A critical value of the energy which marks a change in the dynamics and is relevant in
this paper is the number

cu := − inf

{
1

T

∫ T

0

L(γ, γ̇) dt
∣∣∣ γ : R→M, T -periodic contractible smooth curve

}
,

which is called Mañé critical value of the universal cover. The specification “of the uni-
versal cover” refers to the fact that the infimum is taken over all contractible curves: By
considering curves whose lift to other covering spaces of M is closed, one finds other Mañé
critical values, which play different roles in the dynamical and geometric properties of the
energy levels (see [Mañ97, CIPP98]). The value cu is the smallest of all Mañé critical values
and, if dθ 6= 0, is strictly positive.

For an energy level E−1(κ) with κ > cu one can prove the same lower bounds for the
number of periodic orbits which hold for closed Finsler geodesics. Indeed, if κ is larger than
c0, i.e. the Mañé critical value associated to the abelian cover of M , the flow on E−1(κ)
is conjugated – up to a time reparametrization – to a Finsler geodesic flow. If κ ∈ (cu, c0]
this is not anymore true, but periodic orbits on E−1(κ) can be found as critical points
of a functional which behaves essentially as the Finsler geodesic energy functional (see
[Con06] and [Abb13]). In particular, when M = S2 one has at least two periodic orbits on
E−1(κ) for every κ > cu, as proven for Finsler geodesic flows by Bangert and Long [BL10].
Examples due to Katok [Kat73] show that in this case the number of periodic orbits on
E−1(κ) can be exactly two.
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In this paper we deal with the more mysterious range of energies (0, cu). When κ is in
this interval, E−1(κ) has always at least one periodic orbit. This result essentially goes
back to the work of Taimanov [Tai92a, Tai92b, Tai92c], but was put into the context of
Mañé critical values and reproved using ideas from geometric measure theory by Contreras,
Macarini and Paternain [CMP04]. This result is the best one known so far concerning
existence for all energy levels in the range (0, cu). For almost every κ in (0, cu) the existence
of at least three periodic orbits is known: The second periodic orbit was found by Contreras
[Con06] (on manifolds of arbitrary dimension and for any Tonelli Lagrangian) and the third
one by three of the authors of this paper in [AMP15]. In the latter paper the existence
of infinitely many periodic orbits on E−1(κ) is also proved, under the assumption that κ
belongs to a suitable full-measure subset of (0, cu) and that all the periodic orbits on E−1(κ)
are transversally non-degenerate. The aim of this paper is to remove all non-degeneracy
assumptions and to prove the following:

Theorem. Let (M, g) be a closed Riemannian surface and let θ be a smooth 1-form. For
almost every κ in (0, cu), the exact magnetic flow induced by g and θ has infinitely many
periodic orbits on the energy hypersurface E−1(κ).

The proof of this theorem is variational and is based on the study of the free-period
Lagrangian action functional

Sκ(γ) :=

∫ T

0

(
L(γ, γ̇) + κ

)
dt

on the space of periodic curves γ : R → M of arbitrary period T . In order to give a
differentiable structure to the space of periodic curves with arbitrary period one identifies
the T -periodic curve γ with the pair (x, T ), where x(s) := γ(sT ) is 1-periodic. In this way
one obtains the functional

Sκ : H1(T,M)× (0,+∞)→ R, Sκ(x, T ) = T

∫
T

(
L(x, ẋ/T ) + κ

)
ds,

on the Hilbert manifoldM := H1(T,M)×(0,+∞), where T := R/Z andH1(T,M) denotes
the space of 1-periodic curves on M of Sobolev class H1. This functional is smooth and its
critical points are exactly the periodic orbits of energy κ. The main difficulties in working
with this functional are that for κ < cu it is unbounded from below on every connected
component of M and fails to satisfy the Palais-Smale condition.

Up to lifting our Lagrangian system to the orientation double cover of M , we can assume
that M is orientable. As it is shown in [AMP15], the periodic orbit ακ which was found
by Taimanov is a local minimizer of Sκ with Sκ(ακ) < 0. The iterates αnκ of ακ are also
local minimizers and their Sκ-action goes to −∞ for n → ∞. Using the fact that Sκ is
unbounded from below on every connected component of M, one would like to find other
periodic orbits as mountain pass critical points associated to paths inM starting at some
given iterate αnκ and ending at some curve with lower Sκ-action. The main difficulty is the
already mentioned lack of the Palais-Smale condition. However, thanks to the monotonicity
of the function κ 7→ Sκ, one can overcome this difficulty by an argument due to Struwe
[Str90], which allows to find converging Palais-Smale sequences for almost every value of
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κ. This strategy was successfully implemented in [AMP15] and for a sufficiently high value
of n produces a mountain pass periodic orbit which is different from the one found by
Contreras in [Con06]. When it is transversally non-degenerate, the n-th mountain pass
periodic orbit can be shown to have positive mean Morse index. By this fact, in the non-
degenerate case one can exclude that the infinitely many mountain pass critical points
are the iterates of finitely many periodic orbits and gets the above mentioned result from
[AMP15].

If we drop the non-degeneracy assumption, mountain pass critical points might have
mean Morse index zero and the above argument fails. In this paper we show that never-
theless the infinitely many mountain pass critical points cannot be the iterates of finitely
many periodic orbits. The reason is the following result, which we prove for manifolds M
of arbitrary dimension and for more general Lagrangians, since it might be of independent
interest: A sufficiently high iterate of a periodic orbit cannot be a mountain pass critical
point of the free-period action functional. See Theorem 2.6 below for the precise statement.
Its proof uses the fact that periodic orbits with mean Morse index zero have Morse index
zero: This is known to be true for the fixed period action functional, and in Section 1 below
we prove it for the free-period action functional. The proof of Theorem 2.6 is contained in
Section 2: It is based on a careful analysis of the local behavior of Sκ near its critical set
and on a homotopy argument due to Bangert [Ban80].

There is a last technical difficulty which is dealt with in Section 3: In order to overcome
the lack of the Palais-Smale condition one needs to introduce a family of minimax functions
which depend monotonically on the energy κ on some interval I ⊂ (0, cu). Moreover, the
interval I should remain the same also when considering the n-th minimax function. Since
Taimanov’s local minimizers ακ might not depend continuously on κ, the obvious minimax
class consisting of all paths joining αnκ to some curve with negative action might not produce
a minimax value which is monotone with κ. This difficulty is overcome by considering
classes of paths starting at an arbitrary point in the closure of all local minimizers of Sκ
within a certain open subset ofM, and proving that in this case the required monotonicity
holds on some interval which is independent of n.

We conclude this introduction by drawing a parallel between the main result of this paper
and the waist theorem due to Bangert, which states that if a Riemannian metric on S2 has
a “waist”, that is, a closed geodesic which is a local minimizer of the length functional,
then it has infinitely many closed geodesics [Ban80, Theorem 4]. This statement has been
incorporated by the later proved fact that every Riemannian metric on S2 has infinitely
many closed geodesics (see [Fra92, Ban93, Hin93]), but its proof remains interesting and
is clearly related to our main result. In our theorem the existence of the “waist” does not
have to be postulated, since it follows from the fact that the energy is below the Mañé
critical value and that we are dealing with a surface. Moreover, the topology of the surface
does not play any role: In general we do not have any information on the homotopy class
of Taimanov’s local minimizer αk, but the free-period action functional is unbounded from
below on every free homotopy class, so mountain pass critical values can always be defined.
Our Theorem 2.6, which states that high iterates of periodic orbits cannot be mountain
passes, is related to Theorem 2 in [Ban80], which states essentially the same thing for closed
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geodesics on surfaces, although the two proofs are quite different. Actually, Theorem 2.6
(or its variant for fixed period problems), could be used to show that the waist theorem
holds also for Finsler metrics on S2 (see Remark 2.8 below for more details). Finally,
unlike the geodesic case, here we have to deal with the lack of the Palais-Smale condition,
an issue which is ultimately responsible for the fact that the we can establish the existence
of infinitely many periodic orbits only for almost every energy level.

Acknowledgments. We are grateful to Marie-Claude Arnaud and Ludovic Rifford for a discussion about
Franks’ Lemma, and to Marie-Claude Arnaud and Jairo Bochi for suggesting the argument in the proof of
Proposition A.1. A. A. is partially supported by the DFG-Grant AB 360/2-1. L. M. is partially supported
by CNPq, Brazil. M. M. is partially supported by the ANR projects WKBHJ (ANR-12-BLAN-WKBHJ)
and COSPIN (ANR-13-JS01-0008-01).

1. The free-period action functional

1.1. Definitions and basic properties. The results of sections 1 and 2 hold for a closed
manifold M of arbitrary dimension d and for a general Lagrangian L : TM → R of the
form

L(x, v) =
1

2
|v|2x − θx(v)− V (x),

where | · |· denotes the norm which is induced by a Riemannian metric g on M , θ is a
smooth 1-form on M , and V is a smooth real-valued function on M . The flow on TM
which is determined by the corresponding Euler-Lagrange equations preserves the energy
function E : TM → R,

E(x, v) = ∂vL(x, v)[v]− L(x, v) =
1

2
|v|2x + V (x).

The space of closed curves on M of Sobolev class H1 and arbitrary period is identified with
the Hilbert manifold

M := H1(T,M)× (0,+∞),

where T := R/Z and the pair (x, T ) ∈ H1(T,M)× (0,+∞) corresponds to the T -periodic
curve γ(t) = x(t/T ). We denote the elements of M indifferently as (x, T ) or as γ. The
free-period action functional

S :M→ R, S(γ) = S(x, T ) :=

∫ T

0

L(γ(t), γ̇(t)) dt = T

∫
T
L(x(s), ẋ(s)/T ) ds,

is smooth on M and its critical points are precisely the periodic orbits γ with energy
E(γ, γ̇) = 0. See [Con06] and [Abb13] for general facts about this functional.

The functional S is invariant with respect to the continuous action of T by time trans-
lations, which we denote by

T×M→M, (τ, (x, T )) 7→ τ · (x, T ) := (x(·+ τ), T ).

In particular, the critical set crit(S) of the free-period action functional consists of critical
orbits T ·γ. We shall be interested in non-constant periodic orbits γ = (x, T ): In this case,
T · γ is a smooth embedded circle in M (multiply covered by the action of T, if T is not
the prime period of γ).
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We endow M with the product metric between the standard Riemannian metric of
H1(T,M) and the standard metric of (0,+∞) ⊂ R, where the former metric is given by

〈u, v〉H1 :=

∫
T

(
gx(∇su,∇sv) + gx(u, v)

)
ds, ∀u, v ∈ TxH1(T,M), x ∈ H1(T,M).

This metric induces a distance on M and a norm ‖ · ‖ on elements of TM and T ∗M.
We shall repeatedly use the fact that, when M is compact, the functional S satisfies the

Palais-Smale condition on subsets of M consisting of pairs (x, T ) for which T is bounded
and bounded away from 0: Every sequence γh = (xh, Th) in M such that

0 < inf
h
Th ≤ sup

h
Th < +∞,

and

sup
h
|S(γh)| < +∞, ‖dS(γh)‖ → 0,

has a converging subsequence. See [Con06, Proposition 3.12] or [Abb13, Lemma 5.3]. In
particular, ‖dS‖ is bounded away from zero on bounded closed subsets ofM on which the
second component T is bounded away from zero and which contain no critical points.

1.2. The Morse index and the iteration map. We denote by ind(γ) = ind(x, T ) the Morse
index of the critical point γ = (x, T ) of S. The Morse index of x with respect to the
fixed-period action S|H1(T,M)×{T} is denoted by indT (x). Clearly

0 ≤ ind(x, T )− indT (x) ≤ 1.

The precise relationship between these two indices in the special case of transversally non-
degenerate critical points (as defined below) is discussed in [AMP15, Proposition 2.1].

Let H : T ∗M → R be the smooth Hamiltonian that is dual to L, i.e.

H(x, p) = p(L−1(x, p))− L(L−1(x, p)),

where L : TM → T ∗M is the Legendre transform, that is, the diffeomorphism given by
L(x, v) = (x, ∂vL(x, v)). We denote by XH the Hamiltonian vector field on the cotangent
bundle T ∗M given by ω(XH , ·) = −dH, where ω = dp ∧ dq is the canonical symplectic
structure of T ∗M . The Legendre transform conjugates the Euler-Lagrange flow of L on
any energy hypersurface E−1(κ) with the Hamiltonian flow φtH of the vector field XH on
the corresponding hypersurface H−1(κ).

Assume that the critical point (x, T ) corresponds to a non-constant periodic orbit γ(t) =
x(t/T ). We set z := L(γ(0), γ̇(0)), and notice that the differential of the Hamiltonian flow
dφTH(z) preserves the coisotropic vector subspace Tz(H

−1(0)) and satisfies dφTH(z)XH(z) =
XH(z). Let e1, f1, ..., ed, fd be a symplectic basis of TzT

∗M such that f1 = XH(z) and

span{f1, e2, f2, ..., ed, fd} = Tz(H
−1(0)).
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In this symplectic basis, we can write dφTH(z) as an element of Sp(2d) of the form

dφTH(z) =


1 0 0 · · · 0
∗ 1 ∗ · · · ∗
∗ 0
...

... P
∗ 0

 ,

where P ∈ Sp(2d − 2) is the linearized Poincaré map of φTH at z, and the entries marked
by ∗ contain some real numbers. Notice that the spectra of dφTH(z) and P are related by

σ(dφTH(z)) = {1} ∪ σ(P ).(3)

The vector (ẋ, 0) belongs to the kernel of d2S(x, T ), and there is an isomorphism

(4)
ker d2S(x, T )

span{(ẋ, 0)}
∼= ker(I − P ),

see [AMP15, Proposition A.3]. The dimension of the subspace ker(I − P ) is by definition
the transverse nullity null(x, T ). When null(x, T ) = 0 the orbit γ is said to be transversally
non-degenerate.

The multiplicative semigroup N = {1, 2, . . . , } acts smoothly on M by iteration

N×M→M, (n, (x, T )) = (n, γ) 7→ γn = ψn(x, T ) := (xn, nT ),

where xn(s) := x(ns). The free-period action functional S is equivariant with respect to
this action on M and to the multiplicative action of N on R, i.e.

S(γn) = nS(γ), ∀(n, γ) ∈ N×M.

Notice that the iteration map ψn :M ↪→M is a smooth embedding and maps the critical
set of S into itself. The mean index of the critical point γ = (x, T ) is the non-negative real
number

ind(γ) = ind(x, T ) := lim
n→∞

ind(γn)

n
= lim

n→∞

indnT (xn)

n
.

It is well known that ind(x, T ) vanishes if and only if the fixed-period Morse index indnT (xn)
vanishes for every n ∈ N. The following result says that the same fact is true for the free-
period Morse index.

Proposition 1.1. The mean index ind(γ) vanishes if and only if ind(γn) = 0 for every
n ∈ N.

Proof. If ind(γn) = 0 for every n, the mean index ind(γ) obviously vanishes. In order to
prove the converse, we shall show that if ind(γ) > 0 then ind(γ) > 0 as well. Since the
mean index is homogeneous, i.e. ind(γn) = n ind(γ), our proposition will readily follow.

Assume that ind(γ) > 0. The transversally non-degenerate case null(γ) = 0 was already
treated in [AMP15, Theorem 2.2]. Therefore we are left to deal with the case null(γ) > 0.
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Let V ⊂ C∞(M,R) be the vector subspace of those smooth functions U : M → R whose
1-jet vanishes identically along γ, i.e. U(γ(t)) = 0 and dU(γ(t)) = 0 for all t ∈ R. For
U ∈ V , we introduce the Lagrangian

(x, v) 7→ L(x, v)− U(x),

and we denote by EU : TM → R and SU : M → R the corresponding energy function
and free-period action functional. A straightforward computation shows that γ is still a
solution of the Euler-Lagrange equations of L−U with energy EU(γ, γ̇) = 0. In particular
γ = (x, T ) is still a critical point of the free-period action functional SU . The Hamiltonian
dual to L − U is precisely H + U , and we denote by PU ∈ Sp(2d − 2) the corresponding
linearized Poincaré map at z = L(γ(0), γ̇(0)). The so-called Hamiltonian Franks’ Lemma
(see [RR12, Th. 1.2 and Sect. 3]) implies that, for all open neighborhoods U ⊂ V of the
origin in the C2 topology, the image of the map U → Sp(2d−2) given by U 7→ PU contains
an open neighborhood of P .

Consider the splitting R2d−2 = V ⊕W , where V is the symplectic subspace invariant
by P whose complexification is the generalized eigenspace of the eigenvalue 1, and W
is its symplectic orthogonal (whose complexification is the direct sum of the generalized
eigenspaces of the remaining eigenvalues). Using this splitting, we can write P as a block-
diagonal matrix of the form

P =

(
A 0
0 B

)
,

where A = P |V and B = P |W . Notice that the spectra of A and B satisfy σ(A) = {1}
and σ(B) ∩ {1} = ∅. By Proposition A.1 in the Appendix, the matrix A belongs to the
closure of the set of symplectic matrices whose spectrum does not intersect the unit circle.
Thus, we can find an arbitrarily C2-small smooth potential U : M → R such that PU has
the form

PU =

(
A′ 0
0 B

)
,

and the spectrum σ(A′) does not intersect the unit circle. In particular

S1 ∩ σ(PU) = S1 ∩ σ(P ) \ {1}.(5)

We recall that the spectra of dφTH+U(z) and PU are related as in (3).
For all s ∈ [0, 1], we denote by Λs : S1 → N Bott’s function associated to the lineariza-

tion along γ = (x, T ) of the d-dimensional second order system which is induced by the
perturbed Lagrangian L − sU . We refer the reader to Bott’s original paper [Bot56], or
to [Lon02, ch. 9] and [Maz11, sect. 2.2], for the definition and main properties of Bott’s
functions. Here, we just recall that these functions compute in particular the fixed-period
Morse indices as indT (x) = Λ0(1), and the mean index as the average

ind(γ) =
1

2π

∫ 2π

0

Λ0(eiθ) dθ.
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Each Bott’s function Λs is lower semi-continuous and is actually locally constant outside the
intersection σ(dφTH+sU(z)) ∩ S1. Moreover, the function s 7→ Λs(e

iθ) is constant provided

eiθ 6∈
⋃

s∈[0,1]

σ(dφTH+sU(z)).

We choose α > 0 small enough such that the spectrum of dφTH(z) does not contain any
eigenvalue on the unit circle with argument in the interval (0, α], i.e.{

eiθ
∣∣ θ ∈ (0, α]

}
∩ σ(dφTH(z)) = ∅.

This implies that the function θ 7→ Λ0(eiθ) is constant on the interval (0, α]. By (5) and (3),
we also have {

eiθ
∣∣ θ ∈ (0, α]

}
∩ σ(dφTH+U(z)) = ∅.(6)

We denote by ind(SU , γ) the Morse index of the free-period action functional SU at γ. Since
our U can be chosen to be arbitrarily C2-small, we can assume that

eiα 6∈
⋃

s∈[0,1]

σ(dφTH+sU(z)).(7)

Moreover, by the lower semi-continuity of the Morse index, we can further assume that

ind(SU , γ) ≥ ind(γ) > 0.

Notice that γ is transversally non-degenerate for the free-period action functional SU .
Therefore, by [AMP15, Theorem 2.2], we infer Λ1(1) > 0. By (6), the function θ 7→ Λ1(eiθ)
is constant on the interval (0, α], and since Bott’s functions are lower semi-continuous, this
constant must be larger than or equal to Λ1(1). By (7) and the above mentioned continuity
property of homotopies of Bott’s functions, we have

Λs(e
iα) = Λ1(eiα) ≥ Λ1(1) > 0, ∀s ∈ [0, 1].

This implies that

ind(γ) =
1

2π

∫ 2π

0

Λ0(eiθ) dθ ≥ 1

2π

∫ α

0

Λ0(eiθ) dθ =
α

2π
Λ0(eiα) ≥ α

2π
Λ1(1) > 0. �

We conclude this section with the following lemma, which turns out to be useful when
dealing with degenerate critical points. The lemma was first proved by Gromoll and Meyer
[GM69b, Lemma 2] in the context of non-magnetic closed geodesics. We include its short
proof here for the reader’s convenience.

Lemma 1.2. Let γ = (x, T ) be a critical point of S which corresponds to a non-constant
periodic orbit. Then there is a partition N = N1 ∪ ... ∪ Nk, integers n1 ∈ N1, ..., nk ∈ Nk,
and ν1, ..., νk ∈ {0, ..., 2d− 2} with the following property: nj divides all the integers in Nj,
and null(γn) = νj for all n ∈ Nj.
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Proof. Since P is an automorphism, the geometric multiplicity of the eigenvalue 1 varies
under iteration according to

dim ker(P n − id) =
∑
λ∈ n
√

1

dimC kerC(P − λ id).(8)

Let σ(P ) be the set of eigenvalues of P , and, for all n ∈ N, we set

σn(P ) = {λ ∈ σ(P ) | λn = 1}.

We define an equivalence relation on N, by saying that m ∼ n when σm(P ) = σn(P ). We
denote by N1, ...,Nr the equivalence classes, and by nj the minimum of Nj. If

σnj(P ) = {exp(i2πp1/q1), ..., exp(i2πpn/qn)},

where ph and qh are relatively prime, the integers in Nj are common multiples of q1, ..., qn,
and nj is the least common multiple of q1, ..., qn. By (4) and (8) we have

null(γn) =
∑

λ∈σn(P )

dimC kerC(P − λ id),

which is the same integer for all n belonging to the same set Nj. �

2. High iterates of periodic orbits are not mountain passes

2.1. A tubular neighborhood lemma for critical orbits. In this subsection, we will denote
by ∇S the gradient vector field of the free-period action functional S with respect to the
following Riemannian metric on M

〈(u,R), (v, S)〉(x,T ) :=
RS

T
+ T

∫ 1

0

(
gx(u, v) +

1

T 2
gx(∇su,∇sv)

)
ds

=
RS

T
+

∫ T

0

(
gγ(ξ, η) + gγ(∇tξ,∇tη)

)
dt,

(9)

where ξ(t) = u(t/T ) and η(t) = v(t/T ). This metric is equivalent to the standard one
of M (see Section 1.1) on subsets consisting of pairs (x, T ) for which T is bounded and
bounded away from 0. In particular, in these subsets the free-period action functional S
satisfies the Palais-Smale condition with respect to the metric (9).

The advantage of this metric is that it makes the iteration map ψn conformal with
constant conformal factor n. Indeed, using the identity dψn(x, T )[(u,R)] = (un, nR), one
checks easily that

〈dψn(x, T )[(u,R)], dψn(x, T )[(v, S)]〉(xn,nT ) = n 〈(u,R), (v, S)〉(x,T ),

for every (u,R) and (v, S) in the tangent space of M at (x, T ). In particular, if the
superscript ∗ denotes the adjoint operation with respect to the metric (9), we have that

(10) dψn(x, T ) dψn(x, T )∗ = nΠ,
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where Π is the orthogonal projector onto the image of dψn(x, T ), that is, the tangent space
of the submanifold ψn(M) at (xn, nT ). Furthermore, it is easy to see that the orthogonal
space of T(xn,nT )ψ

n(M) is

(11)
(
T(xn,nT )ψ

n(M)
)⊥

=

{
(u,R) ∈ T(xn,nT )M

∣∣∣∣R = 0,
n−1∑
j=0

u
(
s+j
n

)
= 0 ∀s ∈ T

}
.

The above facts allow us to prove the following:

Lemma 2.1. If ∇ denotes the gradient with respect to the metric (9), then

(12) ∇S(γn) = dψn(γ)∇S(γ), ∀γ ∈M.

Proof. By applying the projector Π onto the tangent space of ψn(M) at γn = ψn(γ) and
its complementary projector I − Π, the identity (12) is equivalent to the two identities

Π∇S(γn) = dψn(γ)∇S(γ),(13)

(I − Π)∇S(γn) = 0.(14)

By differentiating the identity S(ψn(γ)) = nS(γ) we find the formula

dψn(γ)∗∇S(ψn(γ)) = n∇S(γ).

If we apply dψn(γ) to both sides and we use (10), we see that (13) holds. The identity
(14) says that the differential of S at γn vanishes on the orthogonal space of Tγnψ

n(M).
By the identity (11) an element of this orthogonal space has the form (u, 0), where

n−1∑
j=0

u
(
s+j
n

)
= 0, ∀s ∈ T.

By setting ξ(t) := u(t/(nT )) we have

(15)
n−1∑
j=0

ξ(t+ jT ) = 0, ∀t ∈ R.

Therefore,

dS(γn)[(u, 0)] =

∫ nT

0

(
∂xL(γ, γ̇)[ξ] + ∂vL(γ, γ̇)[∇tξ]

)
dt

vanishes, because the functions t 7→ ∂xL(γ(t), γ̇(t)) and t 7→ ∂vL(γ(t), γ̇(t)) are T -periodic
while ξ satisfies (15). �

The following tubular neighborhood lemma, which is reminiscent of some arguments
in [GM69b, Section 3], will be useful later on, in the proof of Theorem 2.6.

Lemma 2.2. Let γ be a critical point of the free-period action function S such that, for
some n ∈ N, we have ind(γ) = ind(γn) and null(γ) = null(γn). Then, for every sufficiently
small open neighborhood U of T · γ there is an open neighborhood V of the submanifold
ψn(U) and a smooth map

r : [0, 1]× V → V , (t, β) 7→ rt(β),
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such that:

(i) r0 = id;
(ii) rt|ψn(U) = id for every t ∈ [0, 1];

(iii) r1(V) = ψn(U);
(iv) d

dt
S(rt(β)) < 0 for all β ∈ V \ ψn(U).

Proof. Let U be an open neighborhood of the critical orbit T · γ (which may consist of
an embedded circle or just the critical point alone if γ is a stationary curve). The image
of this neighborhood under the iteration map ψn has a normal bundle N(ψn(U)). By
our assumptions on the Morse index and nullity, and since 0 is an isolated point in the
spectrum of d2S(γn), there exists a constant δ > 0 such that

d2S(γn)[ξ, ξ] ≥ δ〈ξ, ξ〉γn , ∀ξ ∈ Nγn(ψn(U)).

Since the free-period action functional S is smooth, up to shrinking the neighborhood U
and choosing a smaller constant δ > 0, we can assume that

d2S(β)[η, η] ≥ δ〈η, η〉β, ∀β ∈ ψn(U), η ∈ Nβ(ψn(U)).(16)

We now consider a sufficiently small neighborhood of the 0-section and apply to it the
exponential map of the metric (9). We obtain a tubular neighborhood V of ψn(U) with
associated deformation retraction rt : V → V given by

rt ◦ expβ(η) = expβ((1− t)η), ∀β ∈ ψn(U), η ∈ Nβ(ψn(U)),

which satisfies (i), (ii) and (iii). Notice that, given β ∈ ψn(U), the tangent space to the
fiber of r1 at β is Tβ(r−1

1 (β)) = Nβ(ψn(U)). By (12), the restriction of the free-period
action functional S to each fiber r−1

1 (β) has a critical point at β. Moreover, by (16), such
a restriction has a positive definite Hessian. In particular it is a convex function near its
local minimum β, and up to shrinking the tubular neighborhood V we have d

dt
S(rt(β)) < 0

for all β ∈ V \ ψn(U). Therefore, also (iv) holds. �

2.2. Resolution of degenerate critical circles. Let T · γ be an isolated critical circle of the
free-period action functional S, and set

ι := ind(γ),

ν := null(γ) + 1 = dim ker d2S(γ).

We denote by Z → T · γ the vector bundle whose fiber over any t · γ is equal to the
intersection of the normal bundle of the critical circle T · γ ⊂ M with the kernel of the
Hessian of S, i.e.

Zt·γ = Nt·γ(T · γ) ∩ ker d2S(t · γ).

The rank of Z is finite, and it is actually equal to the nullity ν − 1. We denote by Q the
orthogonal complement of the subbundle Z ⊂ N(T · γ) with respect to the Riemannian
metric ofM (see Section 1.1). By the very definition of Q, and since 0 is an isolated point
in the spectrum of d2S(t · γ), there exists a constant δ > 0 such that

‖d2S(t · γ)[ξ, ·]‖ ≥ δ‖ξ‖, ∀t ∈ T, ξ ∈ Qt·γ,(17)
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where the norm on the left-hand side of the above inequality is the dual of the Riemannian
one on M, and Qt·γ ⊂ Q is the fiber above t · γ. Since the orthogonal group of the
infinite-dimensional separable Hilbert space E is connected, the vector bundle Q is trivial.
Therefore we can make the identification

N(T · γ) ∼= Z × E.
We will denote the coordinates in Z × E as (t, z, y), where (t, z) ∈ Z and y ∈ E.

Let UR ⊂ Z denote the open neighborhood of radius R of the 0-section, and BR ⊂ E
be the open balls of radius R centered at the origin. For a sufficiently small R > 0, the
exponential map of the normal bundle identifies UR×BR with a neighborhood of T ·γ that
does not contain other critical points of S. Thus, from now on we can see the free-period
action functional as being of the form

S : UR × BR → R,
with crit(S) = {0-section} × {0}. We equip UR with the Riemannian metric pulled-back
from the one ofM by means of the exponential map and equip UR×BR with the product
Riemannian metric induced by the one on UR and the flat Hilbert metric on E. The
standard Riemannian metric on M is uniformly equivalent on UR × BR to the product
one. Therefore, since S satisfies the Palais-Smale condition inside UR×BR with respect to
the Riemannian metric of M, it does it with respect to the product metric as well.

We shall show that we can resolve the degeneracy of the isolated critical circle with
a small perturbation of the function supported on any neighborhood of the circle. The
following result is a version of Marino and Prodi’s perturbation lemma from [MP75], the
difference being that we start from an isolated critical circle rather than an isolated critical
point.

Lemma 2.3. For any neighborhood U of the critical circle {0-section} × {0} there exists a
smooth function S′ : UR×BR → R that satisfies the Palais-Smale condition, possesses only
finitely many critical points, all of which are non-degenerate with Morse index larger than
or equal to the original one ι, and such that the difference S′ − S is supported in U and
arbitrarily C2-small.

Proof. Up to choosing a sufficiently small constant δ1 > 0, the inequality (17) can be
rephrased in our coordinates as

‖∂2
yyS(t, 0, 0)[v, ·]‖ ≥ δ1‖v‖, ∀t ∈ T, v ∈ E.

By the implicit function theorem, there exist r1, r2 ∈ (0, R/2) and a smooth map

ψ : U r1 → Br2
such that, for all (t, z, y) ∈ U r1 × Br2 , we have ∂yS(t, z, y) = 0 if and only if y = ψ(t, z).
We define

Ψ : U r1 × Br2 → UR × BR
by Ψ(t, z, y) = (t, z, ψ(t, z) + y). Notice that Ψ is a diffeomorphism onto a neighborhood
of the critical circle {0-section} × {0}. From now on we will employ the new coordinates
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defined by Ψ, and therefore we will simply write S : U r1 × Br2 → R for the composition
S◦Ψ. If we consider U r1×Br2 as a trivial bundle over U r1 by means of the projection onto
the first factor, the function S has non-degenerate fiberwise critical points everywhere on
the 0-section. Namely, up to reducing δ1 > 0 and r1 > 0, we have

∂yS(t, z, 0) = 0, ‖∂2
yyS(t, z, 0)[v, ·]‖ ≥ δ1‖v‖, ∀(t, z) ∈ U r1 , v ∈ E.(18)

In particular, for all r ∈ (0,min{r1, r2}) sufficiently small, there exists δ2 > 0 such that

‖∂yS(t, z, y)‖ ≥ δ2, ∀(t, z, y) ∈ U r ×
(
Br \ Br/2

)
.

We denote by F : U r → R the smooth function F (t, y) = S(t, y, 0). Since the critical circle
{0-section} × {0} is the only critical point of S : UR × BR → R, the 0-section is precisely
the critical point set of F . In particular, there exists δ3 > 0 such that

‖∇F (t, z)‖ ≥ δ3, ∀(t, z) ∈ Ur \ Ur/2.

We recall that U r is a compact manifold of dimension ν with smooth boundary. By the
density of the Morse functions into the space of smooth functions on finite-dimensional
manifolds (see e.g. [Mil63, Corollary 6.8]), for any ε > 0 we can find a Morse function
Fε : U r → R that is ε-close to F in the C2-topology. Notice that, if ε < δ3, the function
Fε has finitely many non-degenerate critical points, all of which are contained in Ur/2. Let
χ : Ur → [0, 1] be a compactly supported smooth function that is identically equal to 1 on
Ur/2, and let ρ : Br → [0, 1] be a compactly supported smooth function that is identically
equal to 1 on Br/2. We define the function S′ of the lemma by

S′(t, z, y) = S(t, z, y) + χ(t, z)ρ(y)(Fε(t, z)− F (t, z)).

Let us verify that, for ε > 0 sufficiently small, S′ satisfies the desired properties. First of
all, S′ tends to S in the C2-topology as ε → 0, and is equal to S outside Ur × Br. Since
S : UR × BR → R satisfies the Palais-Smale condition, there exists δ4 > 0 such that

‖∇S(t, z, y)‖ ≥ δ4, ∀(t, z, y) ∈ (Ur × Br) \ (Ur/2 × Br/2).

In the region (Ur × Br) \ (Ur/2 × Br/2) we have

‖∇S′‖ = ‖∇S + (Fε − F )(ρ∇χ+ χ∇ρ) + χρ (∇Fε −∇F )‖
≥ ‖∇S‖ − |Fε − F |(‖∇χ‖+ ‖∇ρ‖)− ‖∇Fε −∇F‖
≥ δ4 − ε(‖∇χ‖+ ‖∇ρ‖)− ε
≥ δ4/2

provided

ε ≤ δ4

2(1 + max ‖∇χ‖+ max ‖∇ρ‖)
.

In particular, S′ has no critical points and satisfies the Palais-Smale condition in this
region. In the region U r/2 × Br/2, the function (t, z, y) 7→ χ(t, z)ρ(y) is identically equal
to 1, and therefore ∂yS′ = ∂yS. This, together with (18), shows that all the critical points
of S′ are contained in U r/2 × {0}. All such critical points are non-degenerate with Morse
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index larger than or equal to ι, since they are non-degenerate for the restricted function
S′|Ur/2×{0} = Fε and since, by the inequality in (18), they are fiberwise non-degenerate and
thus have fiberwise Morse index equal to ι. In particular, S′ has finitely many critical
points in U r/2 ×Br/2. Finally, suppose that {(tn, zn, yn)} is a Palais-Smale sequence for S′
contained in U r/2 × Br/2. This implies ∂yS′(tn, zn, yn) = ∂yS(tn, zn, yn) → 0, and by (18)

we have that yn → 0. Since the sequence {(xn, zn)} varies inside the compact set U r/2, the
Palais-Smale sequence admits a converging subsequence. This proves that S′ satisfies the
Palais-Smale condition inside U r/2 × Br/2. �

2.3. Properties of sublevel sets near critical circles. Now, we trivialize the normal bundle
N(T·γ) (once again, we recall that this is possible since the orthogonal group of the infinite-
dimensional separable Hilbert space E is connected). Thus, we make the identification
N(T · γ) ∼= T × E, and for a sufficiently small R > 0, we employ the exponential map in
order to identify T×BR ⊂ T×E with a neighborhood of T ·γ which does not contain other
critical points of S. The restriction of the free-period action functional to this neighborhood
will be a smooth function of the form S : T×BR → R. We equip T×BR with the product
Riemannian metric induced by the Euclidean metric on T and the flat Hilbert metric on E.
Since this metric is uniformly equivalent to the standard one of M, the free-period action
functional S still satisfies the Palais-Smale condition with respect to it. We denote by
∇S the gradient of the free-period action functional S with respect to the product metric,
and by φs the associated negative gradient flow. We also set c to be the critical value
S(T×{0}). The following lemma, which is essentially due to Gromoll and Meyer [GM69a,
Sect. 2], provides neighborhoods of the critical circle with good properties.

Lemma 2.4. The isolated critical circle T × {0} has a fundamental system of connected
open neighborhoods U with the following property: There exists ε = ε(U) > 0 such that
U ⊂ {S > c− ε} and, if y ∈ U and φs(y) 6∈ U for some s > 0, then S(φs(y)) ≤ c− ε.

Proof. We slightly modify Chang’s treatment [Cha93, page 49] in order to deal with our
isolated critical circle T×{0}. We can assume without loss of generality that c = S(t, 0) = 0
for all t ∈ T. We consider an auxiliary function G : T× BR → R given by

G(t, z) = 1
2
|z|2 + hS(t, z),

where h > 0 is a constant that we will determine shortly. The open set U of the statement
will be of the form

U = {−ε < S < ε} ∩ {G < g},
for suitable constants ε, g > 0. Let us now proceed to determine all the constants. Since S
satisfies the Palais-Smale condition inside T × BR, for all δ2 > 0, we can find (arbitrarily
small) r ∈ (0, R) and δ1 ∈ (0, δ2) such that

δ2 ≥ |∇S(t, z)|, ∀(t, z) ∈ T× Br,
δ1 ≤ |∇S(t, z)|, ∀(t, z) ∈ T× (Br \ Br/2).
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On the region T× (Br \ Br/2) we have

〈∇S,∇G〉 = h|∇S|2 + 〈∇S, z〉 ≥ hδ2
1 − rδ2.

We fix the constant h > rδ2/δ
2
1, so that

〈∇S(t, z),∇G(t, z)〉 > 0, ∀(t, z) ∈ T× (Br \ Br/2).(19)

In order to conclude the proof, it is enough to find values of ε and g such that:

(i) U ⊂ T× Br,
(ii) (T× Br/2) ∩ {−ε < S < ε} ⊂ U .

Let us show that (i) and (ii) imply the Lemma. Property (i) allows us to control the size of
U . Property (ii) implies that U is a neighborhood of T× {0} contained in the super-level
set {S > −ε}. If U is not connected, we disregard all its connected components other than
the one containing T× {0}. Consider a point y ∈ U whose forward negative gradient flow
orbit is not entirely contained in U , and set

s0 := min{s > 0 | φs(y) 6∈ U}.
The point φs0(y) must be contained in the boundary of the open set U , and we have
S(φs0(y)) < S(y) < ε. By the definition of U , if S(φs0(y)) 6= −ε we must have G(φs0(y)) = g,
and by properties (i–ii) we must have φs0(y) ∈ T × (Br \ Br/2). By equation (19), for all
s ∈ (0, s0) sufficiently close to s0, we have G(φs(y)) > g. This implies that φs(y) 6∈ U and
contradicts the definition of s0. Therefore we must have S(φs0(y)) = −ε, which readily
implies the Lemma.

Now, conditions (i) and (ii) can be rewritten as

(i) if |S(t, z)| < ε and G(t, z) < g, then |z| < r;
(ii) if |z| < r/2 and |S(t, z)| < ε, then G(t, z) < g.

Condition (i) is satisfied provided 2g + 2hε < r2, while condition (ii) is satisfied provided
r2/8 + hε < g. In order to satisfy them simultaneously, we can choose ε = 3r2/32h and
g = 5r2/16. �

In order to state the next result, we go back to the general global setting in which the
free-period action functional has the form S :M→ R.

Lemma 2.5. Let T · γ be an isolated critical circle of the free-period action functional S
with critical value c := S(γ). This circle admits a fundamental system of connected open
neighborhoods U such that U ∩{S < c} has finitely many connected components. Moreover,
if ind(γ) ≥ 2, for every such neighborhood the intersection U ∩ {S < c} is non-empty and
connected.

Proof. The fundamental system of connected open neighborhoods will be the one given by
Lemma 2.4. Let U be any open set in this fundamental system, and let ε = ε(U) > 0 be the
associated constant given by Lemma 2.4. Let V be another neighborhood of the critical
circle T · γ whose closure in contained in U ∩ {S > c − ε

2
}. By Lemma 2.3, we can find

a function S′ such that S′|V > c− ε
2
, S′ = S outside V , and V contains only finitely many

critical points of S′, all of which are non-degenerate and with Morse index larger than or
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equal to ind(γ). Since U ∩ {S ≤ c − ε
2
} is the exit set of U for the negative gradient flow

of S′ in forward time, we have the Morse inequality

rankH1(U ,U ∩ {S ≤ c− ε
2
}) ≤ #crit1(S′|V) <∞,(20)

where crit1(S′|V) denotes the set of critical points of S′|V with Morse index 1. Let r be
the number of path-connected components of the subspace U ∩ {S ≤ c − ε

2
}. The Morse

inequality (20), together with the homology long exact sequence

... −→ H1(U ,U ∩ {S ≤ c− ε
2
};Z) −→ H0(U ∩ {S ≤ c− ε

2
};Z) −→ H0(U ;Z) −→ ...

implies

r = rankH0(U ∩ {S ≤ c− ε
2
};Z) ≤ #crit1(S′|V) + 1 <∞.(21)

Now, we denote by θt the flow of the renormalized gradient −∇S/|∇S|2, which is a well
defined smooth vector field on U ∩ {S < c}. Notice that, if θs(β) is well-defined for all
s ∈ [0, t], we have S(β) − S(θt(β)) = t. Let τ : U ∩ {S < c} → [0,∞) be the continuous
function given by τ(β) = max{0,S(β)− c+ ε/2}. By the properties of U , we have

θτ(β)(β) ∈ U ∩ {S ≤ c− ε
2
}, ∀β ∈ U ∩ {S < c}.

This shows that U ∩ {S ≤ c − ε
2
} is a deformation retract of U ∩ {S < c}, and therefore

this latter open set has r path-connected components.
As for the “moreover” part of the lemma, assume that ind(γ) ≥ 2. In particular γ is not

a local minimum, and therefore r ≥ 1. But since all the critical points of the function S′|V
have Morse index larger than or equal to ind(γ), the inequality (21) implies that r ≤ 1,
and we conclude that r = 1. �

2.4. Iterated mountain passes. After these preliminaries, we can finally prove the main
result of this section, which shows that critical circles of the free-period action functional
cannot be of mountain pass type if iterated sufficiently many times.

Theorem 2.6. Let T ·γ be a critical circle of the free-period action functional S with critical
value c = S(γ). Assume that all the iterates of γ belong to isolated critical circles of S.
Then, for all integers n large enough there exists an open neighborhood W of T ·γn with the
following property: If any two points γ0, γ1 ∈ {S < nc} are contained in the same connected
component of {S < nc}∪W, they are actually contained in the same connected component
of {S < nc}.

Proof. Assume first that the mean Morse index ind(γ) is positive. In this case, for n large
enough the Morse index ind(γn) is larger than one. By Lemma 2.5, the critical circle
T · γn has an open neighborhood W whose intersection with the sublevel set {S < nc} is
connected, and our theorem readily follows.

Now, assume that the mean Morse index ind(γ) is zero. By Proposition 1.1, this is
equivalent to the fact that the Morse index of γn is zero for all n ∈ N. Lemma 1.2 further
implies that there exists a partition N = N1 ∪ ... ∪ Nk, integers n1 ∈ N1, ..., nk ∈ Nk, and
ν1, ..., νk ∈ {0, ..., 2d− 2} with the following property: The integers in Ni are all multiples
of ni, and for all n ∈ Ni the critical point γn has nullity νi.
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Let us choose, once and for all, i ∈ {1, ..., k} and consider integers n belonging to
Ni. Since T · γni is an isolated critical circle of S, by Lemma 2.5 it has a connected open
neighborhood U such that the open subset U− := U∩{S < nic} has finitely many connected
components U−1 , ...,U−r . For each α ∈ {1, ..., r} we fix an arbitrary point γα ∈ U−α , and for
each pair of distinct α, β ∈ {1, ..., r} we fix a continuous path Θαβ : [−1, 1] → U joining
γα and γβ. By Bangert’s technique of “pulling one loop at a time” (see [Ban80, pages 86–
87] or [Abb13, page 421]), for all sufficiently large multiples n of ni, each iterated path
ψn/ni ◦Θαβ is homotopic with fixed endpoints to a path entirely contained in the sublevel
set {S < nc}. In other words, ψn/ni(U−) is contained in a path-connected component of
{S < nc} provided n ∈ Ni is larger than some number ni.

Let us consider an integer n ∈ Ni larger than the constant ni. By Lemma 2.2, if we choose
a sufficiently small neighborhood U ′ ⊂ U of the critical circle T ·ψni(γ), its image ψn/ni(U ′)
has a tubular neighborhood V with an associated deformation retraction rt : V → V such
that r0 = id, r1(V) = ψn/ni(U ′), and d

dt
S ◦ rt ≤ 0. We set W to be an open neighborhood

of T · γn that is small enough so that its closure is contained in V . Consider two points
γ0, γ1 ∈ {S < nc} as in the statement, and a continuous path Γ : [0, 1] → {S < nc} ∪ W
joining them. We denote by s0 and s1 respectively the infimum and the supremum of
all s ∈ [0, 1] such that Γ(s) ∈ W . The points Γ(s0) and Γ(s1) lie in the intersection
V ∩ {S < nc}. Since the deformation retraction rt does not increase the free-period action
functional S, the points Γ(s0) and r1(Γ(s0)) are contained in the same connected component
of the sublevel set {S < nc}. Moreover, r1(Γ(s0)) is contained in ψn/ni(U−). Analogously,
Γ(s1) and r1(Γ(s1)) are contained in the same connected component of {S < nc}, and
r1(Γ(s1)) lies in ψn/ni(U−). Since, as we proved in the previous paragraph of the proof,
ψn/ni(U−) is contained in a connected component of {S < nc}, we conclude that γ0 and γ1

belong to the same connected component of {S < nc}. �

Theorem 2.6 should be compared to [Ban80, Theorem 2], which gives a similar statement
for isolated closed Riemannian geodesics on surfaces and is proved using geometric argu-
ments. A rather immediate corollary is the following generalization of the waist theorem
of Bangert.

Corollary 2.7. Assume that M is an orientable surface, that the free-period action func-
tional S satisfies the Palais-Smale condition, and that it admits a local minimum γ with
action S(γ) 6= 0 whose critical circle T · γ is not the whole set of global minima of S in its
connected component. Then, there are infinitely many periodic orbits with energy 0.

The proof of this corollary is a minor variation of the argument in Section 3.3, and
we leave its details to the reader. Notice that, if the Mañé critical value of the universal
cover cu is negative, the free-period action functional S satisfies the Palais-Smale condition
(see [Abb13, Lemmata 5.1 and 5.4]). Moreover, in this situation, any contractible local
minimum of S has positive action, and it is never a global minimum. In particular, the
existence of one such minimum is enough to infer the existence of infinitely many other
periodic orbits on the energy hypersurface.
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Remark 2.8. We expect Corollary 2.7 to hold for more general Lagrangians L, such as the
square of a Finsler norm. In the latter case, the functional S is not twice differentiable, but
our proof makes a minimal use of higher regularity and it should be possible to adapt it to
this situation. As already mentioned in the introduction, this would permit to generalize
the waist theorem of Bangert to Finsler metrics on S2. We also expect Corollary 2.7 to
hold for some non-exact magnetic flows, for instance in case M is a surface of higher genus,
for which a suitable free-time action functional is still available.

3. The minimax argument

3.1. The sequence of minimax functions. Throughout Section 3 we will assume our closed
surface M to be orientable. This is not a restrictive assumption for us: If M is non-
orientable, we can replace it by its orientation double cover and work there. In fact, the
existence of infinitely many periodic orbits for the orientation double cover of M clearly
implies the same result for M .

We take the energy κ into account, by considering the one-parameter family of function-
als Sκ :M→ R given by

Sκ(x, T ) := T

∫
T

(
L(x(s), ẋ(s)/T ) + κ

)
ds.

Critical points of Sκ are in one-to-one correspondence with periodic orbits of energy κ:
More precisely, a critical point (x, T ) is associated to the T -periodic orbit γ(t) = x(t/T )
which has energy E(γ, γ̇) = κ. Notice that T is not necessarily the minimal period of γ.

In the remaining part of the paper we endowM = H1(T,M)×(0,+∞) with the standard
product metric as in Section 1.1 and with the induced distance.

For every κ ∈ (0, c0) the functional Sκ has a local minimizer ακ with

Sκ(ακ) < 0.

The proof of this fact is contained in [AMP15, Lemma 3.2] and builds on previous results
by Taimanov [Tai92a, Tai92b, Tai92c] and Contreras, Macarini and Paternain [CMP04].
Since M is an orientable surface, every iteration αnκ of ακ remains a local minimizer of Sκ,
see [AMP15, Lemma 4.1]. Moreover, if the local minimizer ακ is strict, meaning that

Sκ(γ) > Sκ(ακ), ∀γ ∈ U \
(
T · ακ

)
,

for some neighborhood U of the critical circle T · ακ, so are all the iterates αnκ.
Fix some κ∗ in the interval (0, cu) such that ακ∗ is a strict local minimizer of Sκ∗ . Since

κ∗ is strictly smaller than cu, the infimum of Sκ∗ over all contractible closed curves is −∞,
and hence we can find an element µ ∈M in the same free homotopy class of ακ∗ such that

Sκ∗(µ) < Sκ∗(ακ∗).

Choose a bounded open neighborhood U of T ·ακ∗ whose closure intersects the critical set
of Sκ∗ only in T · ακ∗ , such that

inf
∂U

Sκ∗ > Sκ∗(ακ∗),
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and such that T is bounded away from zero for (x, T ) ∈ U . The existence of such a
neighborhood is an easy consequence of the fact that Sκ∗ satisfies the Palais-Smale condition
on bounded subsets on which T is bounded away from zero, see [AMP15, Lemma 5.3]. We
denote by Mκ the closure of the set of local minimizers of Sκ which belong to U . Such a
set consists of critical points of Sκ, but in general may contain critical points which are not
local minimizers. If Mκ is a a finite union of critical circles, then all its elements are strict
local minimizers.

Lemma 3.1. There exists a closed interval J = J(κ∗) ⊂ (0, cu) whose interior part contains
κ∗ and which has the following properties:

(i) For every κ ∈ J the set Mκ is a non-empty compact set.
(ii) For every κ ∈ J there holds

Sκ(µ) < min
Mκ

Sκ.

(iii) For every κ ∈ J there holds

sup
κ′∈J

max
Mκ′

Sκ < min
{

inf
∂U

Sκ, 0
}
.

Proof. This lemma is an easy consequence of the fact that on bounded subsets of M the
family of functionals Sκ converges to Sκ∗ in the C1 norm for κ→ κ∗, because

Sκ(x, T )− Sκ∗(x, T ) = (κ− κ∗)T,

and of the fact that Sκ satisfies the Palais-Smale condition on U . Indeed, fix numbers
A0, A1, A2, A3 and A4 such that

Sκ∗(µ) < A0 < A1 < Sκ∗(ακ∗) < A2 < A3 < A4 < A5 := min
{

inf
∂U

Sκ∗ , 0
}
.

Let U ′ ⊂ U be a neighborhood of T ·ακ∗ such that Sκ∗(U ′) ⊂ (A1, A2). Since the closure of
the bounded set U \U ′ does not contain critical points of Sκ∗ , by the Palais-Smale condition
there exists a positive number δ such that

‖dSκ∗‖ ≥ δ on U \ U ′.

By the C1 convergence of Sκ|U to Sκ∗ |U , we can find a neighborhood J0 ⊂ (0, cu) of κ∗ such
that

‖dSκ‖ ≥ δ/2 on U \ U ′, ∀κ ∈ J0.

In particular, the critical set of Sκ|U is contained in U ′ for every κ ∈ J0, and so is its subset
Mκ. Since Sκ∗(µ) < A0, Sκ∗(U ′) ⊂ (A1, A2) and Sκ∗(∂U) ⊂ [A5,+∞), we can find a closed
interval J ⊂ J0 which is a neighborhood of κ∗ such that

(22) Sκ(µ) < A0, Sκ(U ′) ⊂ (A0, A3), Sκ(∂U) ⊂ (A4,+∞), ∀κ ∈ J.

The interval J satisfies the required properties. Indeed, by (22) the infimum of Sκ on U is
strictly smaller than its infimum on ∂U and hence, by the Palais-Smale condition, Sκ|U has
a global minimizer. Therefore, Mκ is not empty and, again by the Palais-Smale condition,
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compact. So (i) holds. Since Mκ is contained in U ′, the minimum of Sκ on Mκ is greater
than A0, which is greater than Sκ(µ), by (22), proving (ii). Finally, (22) implies that

sup
κ′∈J

max
Mκ′

Sκ ≤ sup
U ′

Sκ ≤ A3 < A4 ≤ min
{

inf
∂U

Sκ, 0
}
, ∀κ ∈ J,

which proves (iii). �

Property (iii) of the above lemma is used in the following:

Lemma 3.2. Let κ0 < κ1 be in J . For every α ∈ Mκ1 there exists a continuous path
w : [0, 1]→ U such that w(0) ∈Mκ0, w(1) = α and Sκ0 ◦ w ≤ Sκ0(α).

Proof. The element α corresponds to a periodic orbit of energy κ1 and in particular is not
a critical point of Sκ0 . Set a := Sκ0(α). Being a regular point of the hypersurface S−1

κ0
(a),

α can be connected to a point β ∈ U ∩ {Sκ0 < a} by a continuous path which is contained
in the sublevel set {Sκ0 ≤ a}. By Lemma 3.1 (iii),

a = Sκ0(α) < inf
∂U

Sκ0 ,

and hence the connected component of {Sκ0 ≤ a} which contains α is contained in U .
Since Sκ0 satisfies the Palais-Smale condition on U , the above fact ensures the existence
of a global minimizer γ of the restriction of Sκ0 to the connected component of {Sκ0 < a}
which contains β. Such a γ belongs to Mκ0 and can be connected to β by a continuous
path in {Sκ0 < a}. We conclude that there exists a continuous path w : [0, 1]→ {Sκ0 ≤ a}
such that w(0) = γ ∈Mκ0 and w(1) = α. �

For every n ∈ N and every κ ∈ J we define the set of continuous paths

Pn(κ) :=
{
u ∈ C0([0, 1],M) | u(0) ∈ ψn(Mκ), u(1) = µn

}
,

which join the n-th iterate of some element in Mκ with the n-th iterate of µ. Correspond-
ingly, we define the minimax value

cn(κ) := inf
u∈Pn(κ)

max
σ∈[0,1]

Sκ(u(σ)).

By Lemma 3.1 (ii) there holds

(23) cn(κ) ≥ min
ψn(Mκ)

Sκ = nmin
Mκ

Sκ > nSκ(µ).

Lemma 3.3. For every n ∈ N the function cn is monotonically increasing on J .

Proof. Let κ0 < κ1 be numbers in J . Let u ∈ Pn(κ1). Then u(0) is the n-th iterate of an
element of Mκ1 and by Lemma 3.2 we can join u(0) to the n-th iterate of some element of
Mκ0 by a path in {Sκ0 ≤ Sκ0(u(0))}. By concatenation we obtain a path v : [0, 1] → M
such that v(0) ∈ ψn(Mκ0), v([0, 1/2]) ⊂ {Sκ0 ≤ Sκ0(u(0))}, and v|[1/2,1] = u(2(· − 1/2)).
Then v belongs to Pn(κ0) and, since Sκ0 ≤ Sκ1 , we have

max
[0,1]

Sκ0 ◦ v ≤ max
[0,1]

Sκ0 ◦ u ≤ max
[0,1]

Sκ1 ◦ u.
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Therefore,

cn(κ0) ≤ max
[0,1]

Sκ0 ◦ v ≤ max
[0,1]

Sκ1 ◦ u,

and by taking the infimum over all u ∈ Pn(κ1) we conclude that cn(κ0) ≤ cn(κ1). �

The next lemma is a simple generalization of [AMP15, Lemma 6.2], where we replace
the elements µ0, µ1 ∈M by compact subsets K0, K1 ⊂M. Its proof is based on Bangert’s
argument from [Ban80].

Lemma 3.4. Let K0 and K1 be compact sets in the same connected component of M and
set

Rn :=
{
u ∈ C0([0, 1],M) | u(0) ∈ ψn(K0), u(1) ∈ ψn(K1)

}
.

For some fixed κ we set

an := inf
u∈Rn

max
σ∈[0,1]

Sκ(u(σ)).

Then there exists a number A such that

an ≤ n max
K0∪K1

Sκ + A ∀n ∈ N.

If we apply the above lemma to κ̂ = max J , K0 = Mκ̂, K1 = {µ} and use the fact
that Sκ̂(µ) is negative and, by Lemma 3.1 (iii), maxMκ̂

Sκ̂ is also negative, we obtain in
particular that cn(κ̂)→ −∞ for n→∞. Since cn is monotonically increasing, we conclude
that

(24) lim
n→∞

cn = −∞ uniformly on J.

3.2. The monotonicity argument. Let cn : J → R be the sequence of minimax functions
which is defined in the previous section. By (24) there exists a natural number n0 such
that all the cn’s are negative for n ≥ n0. The proof of the next lemma is based on Struwe’s
monotonicity argument from [Str90] and is similar to the proof of [AMP15, Lemma 7.1].
The fact that we are dealing with a peculiar minimax class requires some extra care, and
therefore we include a full proof.

Lemma 3.5. Let n ≥ n0. Let κ̄ be an interior point of J at which cn is differentiable and
such that the set Mκ̄ is a finite union of critical circles. Then for every neighborhood V of
the set

crit(Sκ̄) ∩ S−1
κ̄ (cn(κ̄))

there exists an element u of Pn(κ̄) such that Sκ̄(u(0)) < cn(κ̄) and

u([0, 1]) ⊂ {Sκ̄ < cn(κ̄)} ∪ V .

In particular, cn(κ̄) is a critical value of Sκ̄.

Proof. The last assertion follows from the previous one by arguing by contradiction and
choosing V to be the empty set. Therefore, we must prove the existence of a path u which
satisfies the above requirements.
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Since cn is differentiable at the interior point κ̄ ∈ J , there exist a neighborhood I of κ̄
which is contained in J and a number C ≥ 0 such that

(25) |cn(κ)− cn(κ̄)| ≤ C|κ− κ̄|, ∀κ ∈ I.
Let (κh) ⊂ I be a strictly decreasing sequence which converges to κ̄, and consider the
infinitesimal sequence of positive numbers εh := κh − κ̄. Let uh be an element of Pn(κh)
such that

max
[0,1]

Sκh ◦ uh ≤ cn(κh) + εh.

Let γ = (x, T ) be an element in the image of uh. From (25) we deduce that

(26) Sκ̄(γ) ≤ Sκh(γ) ≤ cn(κh) + εh ≤ cn(κ̄) + (C + 1)εh.

If moreover γ ∈ uh([0, 1]) is such that Sκ̄(γ) > cn(κ̄)− εh, then a second application of (25)
gives us the bound

T =
Sκh(x, T )− Sκ̄(x, T )

κh − κ̄
≤ cn(κh) + εh − cn(κ̄) + εh

εh
≤ C + 2.

It follows that
uh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪ Ah,

where
Ah := {(x, T ) ∈M | T ≤ C + 2, Sκ̄(x, T ) ≤ cn(κ̄) + (C + 1)εh} .

By the estimate

Sκ̄(x, T ) =
1

2T

∫
T
|ẋ(s)|2x(s) ds−

∫
T
x∗(θ) + κ̄T ≥ 1

2T
‖ẋ‖2

L2 − ‖θ‖∞‖ẋ‖L2 ,

the set Ah is bounded in M, uniformly with respect to h ∈ N.
The point uh(0) belongs to ψn(Mκh) and by Lemma 3.2 it can be joined to some element

in ψn(Mκ̄) by a path which remains in ψn(U) and in

{Sκ̄ ≤ Sκ̄(uh(0))} ⊂ {Sκ̄ ≤ cn(κ̄) + (C + 1)εh},
where we have used again (26). By concatenating the latter path with uh, we obtain a
path vh : [0, 1]→M such that vh(0) ∈ ψn(Mκ̄), vh(1) = µn, and

vh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪ Ah ∪
(
ψn(U) ∩ {Sκ̄ ≤ cn(κ̄) + (C + 1)εh}

)
.

In particular, vh belongs to Pn(κ̄). From the uniform boundedness of Ah and the fact
that ψn(U) is also bounded, we deduce that there exists a bounded set B ⊂ M which is
independent of h ∈ N and such that

(27) vh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪
(
B ∩ {Sκ̄ ≤ cn(κ̄) + (C + 1)εh}

)
.

In particular, we have

(28) lim sup
h→∞

max
[0,1]

Sκ̄ ◦ vh ≤ cn(κ̄).

Since by assumption Mκ̄ is a finite union of critical circles, it consists of strict local min-
imizers for Sκ̄. By the already mentioned [AMP15, Lemma 4.1], also ψn(Mκ̄) consists of
strict local minimizers for Sκ̄. Since ψn(Mκ̄) consists of finitely many critical circles, up to
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the choice of a subsequence we may assume that vh(0) belongs to the same critical circle
T · α for every h ∈ N. In particular,

A0 := Sκ̄(vh(0)) = Sκ̄(α)

does not depend on h. Since T ·α minimizes Sκ̄ strictly, it has a neighborhoodW on which
Sκ̄ ≥ A0 and such that

inf
∂W

Sκ̄ > A0.

See the already mentioned [AMP15, Lemma 5.3]. Since

Sκ̄(vh(1)) = Sκ̄(µn) < Sκ̄(vh(0))

because of Lemma 3.1 (ii), every path vh must meet the boundary of W and hence

inf
h∈N

max
[0,1]

Sκ̄ ◦ vh > A0.

Together with (28), the above strict inequality implies that

cn(κ̄) > A0.

Using also the fact that cn(κ̄) is negative (because n ≥ n0), we can find numbers A1 and
A2 such that

A0 < A1 < cn(κ̄) < A2 < 0.

Let ∇Sκ̄ be the gradient vector field of Sκ̄ with respect to the standard product Rie-
mannian metric onM = H1(T,M)×(0,+∞). By multiplying −∇Sκ̄ by a suitable smooth
non-negative function we can construct a smooth bounded tangent vector field X on M
which vanishes on

{Sκ̄ ≤ A0} ∪ {Sκ̄ ≥ 0},
satisfies dSκ̄(X) ≤ 0 on M, and

(29) dSκ̄(X) ≤ −min{‖dSκ̄‖2, 1} on {A1 ≤ Sκ̄ ≤ A2}.
The flow φ of X is well-defined onM× [0,+∞), because X is bounded and the only source
of non-completeness is T going to zero, but this may happen only for negative-gradient
flow lines for which Sκ̄ tends to zero (see [Abb13, Lemmata 3.2 and 3.3]), and we have
made X vanish on {Sκ̄ ≥ 0}. Furthermore, since X is bounded φ maps bounded sets into
bounded sets.

We claim that if h is large enough, then

φ1(vh([0, 1])) ⊂ {Sκ̄ < cn(κ̄)} ∪ V .
This claim implies the thesis of this lemma: Indeed, the path φ1 ◦ vh belongs to Pn(κ̄),
because

Sκ̄(φ1 ◦ vh(0)) = A0 < cn(κ̄), Sκ̄(φ1 ◦ vh(1)) = Sκ̄(µn) < A0,

and φ fixes the points in {Sκ̄ ≤ A0}.
There remains to prove the above claim. By (27) and the properties of X,

(30) φ([0, 1]× vh([0, 1]) ⊂ {Sκ̄ ≤ cn(κ̄)− εh} ∪
(
B′ ∩ {Sκ̄ ≤ cn(κ̄) + (C + 1)εh}

)
,
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for some bounded subset B′ ofM. Since Sκ̄ satisfies the Palais-Smale condition on bounded
subsets ofM on which Sκ̄ is bounded away from zero (see [Abb13, Lemmata 5.1 and 5.3]),
the set

K := B′ ∩ crit(Sκ̄) ∩ S−1
κ̄ (cn(κ̄))

is compact. Since K consists of fixed points of the flow φ, it has a neighborhood V ′ ⊂ V
such that

(31) φ([0, 1]× V ′) ⊂ V .
Using again the fact that Sκ̄ satisfies the Palais-Smale condition on bounded subsets ofM
on which Sκ̄ is bounded away from zero, we can find ε > 0 and δ ∈ (0, 1] such that

(32) ‖dSκ̄‖ ≥ δ on
(
B′ \ V ′

)
∩ {cn(κ̄)− ε ≤ Sκ̄ ≤ cn(κ̄) + ε}.

Let σ ∈ [0, 1] be such that

(33) Sκ̄(φ1(vh(σ))) ≥ cn(κ̄) and φ1(vh(σ)) /∈ V .
By (31), φr(vh(σ)) cannot belong to V ′ for any r ∈ [0, 1]. Together with (30) we deduce
that

φ([0, 1]× {vh(σ)}) ⊂
(
B′ \ V ′

)
∩ {cn(κ̄) ≤ Sκ̄ ≤ cn(κ̄) + (C + 1)εh}.

When h is so large that (C + 1)εh ≤ ε, (32) implies that

‖dSκ̄(φr(uh(σ)))‖ ≥ δ, ∀r ∈ [0, 1],

and by (29) we find

cn(κ̄) ≤ Sκ̄(φ1(vh(σ)))

= Sκ̄(vh(σ)) +

∫ 1

0

d

dr
Sκ̄(φr(vh(σ))) dr

≤ cn(κ̄) + (C + 1)εh +

∫ 1

0

dSκ̄(φr(vh(σ)))[X(φr(vh(σ)))] dr

≤ cn(κ̄) + (C + 1)εh − δ2.

Since (εh) is infinitesimal, the above inequality implies that h is smaller than some h0.
When h is larger than h0, (33) cannot occur and hence

φ1(vh([0, 1])) ⊂ {Sκ̄ < cn(κ̄)} ∪ V ,
as claimed. �

3.3. The proof of the theorem. We can finally prove the theorem stated in the Introduc-
tion. Let κ ∈ (0, cu). If the local minimizer ακ is not strict, then T · ακ is the limit of a
sequence of critical circles of Sκ in M\ (T · ακ), which determine infinitely many distinct
periodic orbits of energy κ. Therefore, it is enough to prove the following statement:

Every κ∗ in (0, cu) such that the local minimizer ακ∗ is strict has a neighborhood J ⊂ (0, cu)
such that for almost every κ ∈ J the energy level E−1(κ) has infinitely many periodic orbits.

Fix κ∗ as above and let J = J(κ∗) ⊂ (0, cu) be the interval which is constructed in
Section 3.1. Let cn : J → R be the corresponding sequence of minimax functions and let
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n0 ∈ N be such that cn < 0 for every n ≥ n0. Since the countably many functions cn are
monotone, Lebesgue’s theorem implies that the set

J ′ := {κ ∈ Int(J) | cn is differentiable at κ for every n ≥ n0}

has full measure in J . We shall prove that for every κ ∈ J ′ the energy level E−1(κ) has
infinitely many periodic orbits.

Fix some κ ∈ J ′. If Mκ consists of infinitely many critical circles, then E−1(κ) has
clearly infinitely many periodic orbits. Therefore, we may assume that Mκ consists of
only finitely many critical circles, which thus consist of strict local minimizers. Assume by
contradiction that E−1(κ) has only finitely many periodic orbits. Then the critical set of
Sκ consists of finitely many critical circles

T · γ1, T · γ2, . . . ,T · γk
together with their iterates T · γnj , for 1 ≤ j ≤ k and n ∈ N. By Theorem 2.6 we can
find a natural number n1 such that the following is true: For every n ≥ n1 and for every
j ∈ {1, . . . , k} there exists a neighborhood Wj,n of T · γnj such that any two points in
{Sκ < Sκ(γnj )} which can be connected within

{Sκ < Sκ(γnj )} ∪Wj,n

can be also connected in {Sκ < Sκ(γnj )}. Moreover, the sets Wj,n can be chosen to be so
small that their closures are pairwise disjoint. Set

a := min
1≤j≤k

Sκ(γn1−1
j ).

By (24) we can find a natural number n ≥ n0 such that cn(κ) < a. By Lemma 3.5, cn(κ)
is a critical value of Sκ, and by our finiteness assumption,

crit(Sκ) ∩ S−1
κ (cn(κ)) = T · γm1

j1
∪ · · · ∪ T · γmhjh ,

for some non-empty subset {j1, . . . , jh} of {1, . . . , k} and some positive integers m1, . . . ,mh.
Since cn(κ) < a, all the mi’s are at least n1. We apply Lemma 3.5 with

V :=Wj1,m1 ∪ · · · ∪Wjh,mh

and we obtain a path u ∈ Pn(κ) with image in

{Sκ < cn(κ)} ∪ V ,

and such that Sκ(u(0)) < cn(κ). Since also Sκ(u(1)) = Sκ(µn) < cn(κ) by (23), and since
the sets Wji,mi , 1 ≤ i ≤ h, have pairwise disjoint closures, the path u is the concatenation
of finitely many paths v, each of which has end-points in {Sκ < cn(κ)} and is contained in
{Sκ < cn(κ)} ∪ Wji,mi for some i ∈ {1, . . . , h}. By the property of the sets Wji,mi stated
above, the end-points of each of the v’s can be joined by paths w in {Sκ < cn(κ)}. By
concatenating the w’s, we obtain a path in {Sκ < cn(κ)} which joins u(0) and u(1). Since
such a path belongs to Pn(κ), this contradicts the definition of cn(κ). This contradiction
proves that E−1(κ) has infinitely many periodic orbits.
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Appendix A. Hyperbolic perturbation of unipotent symplectic matrices

We recall that an element of GL(n,R) is called unipotent when its spectrum is equal to
{1}, while it is called hyperbolic when its spectrum does not intersect the unit circle of the
complex plane. The argument in the proof of the following statement was suggested to us by
Marie-Claude Arnaud and Jairo Bochi. Notice that the statement becomes straightforward
if n = 1, since Sp(2) = SL(2,R).

Proposition A.1. The unipotent elements of Sp(2n) belong to the closure of the space of
hyperbolic elements of Sp(2n).

Proof. Consider an arbitrary P ∈ Sp(2n) with spectrum σ(P ) = {1}. Let us prove that
there exists a Lagrangian vector subspace V ⊂ R2n invariant by P . In order to do this, let
V be a maximal isotropic subspace invariant by P , that is, an invariant isotropic subspace
that is not strictly contained in another isotropic invariant subspace. We claim that V is
Lagrangian. Indeed, arguing by contradiction, suppose that dimV < n. Let V ω be the
symplectic orthogonal of V and notice that P (V ω) = V ω. By our hypothesis, V is strictly
contained in V ω and therefore has a positive-dimensional complementary subspace V ′ in
V ω. Using the decomposition V ω = V ⊕ V ′ we can write

P |V ω =

(
P |V π1 ◦ P |V ′

0 π2 ◦ P |V ′

)
,

where π1 : V ω → V and π2 : V ω → V ′ are the projections. Since σ(P |V ω) = σ(P |V ) = {1}
and

det(P |V ω − λI) = det(P |V − λI) det(π2 ◦ P |V ′ − λI), ∀λ ∈ C,

we infer that σ(π2 ◦ P |V ′) = {1}. Consequently, there exists v ∈ V ′ such that Pv− v ∈ V .
But this implies that V ⊕ span{v} is isotropic and invariant, contradicting the maximality
of V .

Now, choose a symplectic basis {e1, . . . , en, f1, . . . , fn} such that V = span{e1, . . . , en}.
Using these coordinates we can write P as

P =

(
A B
0 C

)
,

where A = P |V . For all t ∈ R, we set

Pt :=

(
etI 0
0 e−tI

)
·
(
A B
0 C

)
=

(
etA etB
0 e−tC

)
,

Notice that Pt ∈ Sp(2n), being the product of two elements of Sp(2n). Clearly, Pt depends
smoothly on t, and P0 = P . Finally, since σ(A) = {1}, we have that et is an eigenvalue of
Pt with algebraic multiplicity n. This, together with the fact that Pt is symplectic, implies
that for all t 6= 0 the matrix Pt is hyperbolic with σ(Pt) = {et, e−t}. �
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