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THE MULTIPLICITY PROBLEM FOR PERIODIC ORBITS

OF MAGNETIC FLOWS ON THE 2-SPHERE

ALBERTO ABBONDANDOLO, LUCA ASSELLE, GABRIELE BENEDETTI,
MARCO MAZZUCCHELLI, AND ISKANDER A. TAIMANOV

To the memory of Abbas Bahri (1955–2016)

Abstract. We consider magnetic Tonelli Hamiltonian systems on the cotan-

gent bundle of the 2-sphere, where the magnetic form is not necessarily exact.
It is known that, on very low and on high energy levels, these systems may

have only finitely many periodic orbits. Our main result asserts that almost

all energy levels in a precisely characterized intermediate range (e0, e1) pos-
sess infinitely many periodic orbits. Such a range of energies is non-empty,

for instance, in the physically relevant case where the Tonelli Lagrangian is a

kinetic energy and the magnetic form is oscillating (in which case, e0 = 0 is
the minimal energy of the system).

1. Introduction

This paper is the last chapter of a work started in [AMP15] and further develo-
ped in [AMMP14, AB15a, AB15b, AM16] devoted to studying the multiplicity of
periodic orbits on generic low energy levels in magnetic Tonelli Lagrangian systems
on surfaces. Such a study was based on a generalization of Bangert’s waist Theorem
[Ban80, Theorem 4], classically formulated for geodesic flows on S2, to the mag-
netic Tonelli setting. Roughly speaking, a waist is a non-constant periodic geodesic
(resp. a periodic orbit in the Tonelli case) which minimizes the length (resp. the
action) among nearby curves. The original waist Theorem says that a Riemannian
2-sphere possesses infinitely many closed geodesics provided it possesses a waist.
Such a statement is a crucial ingredient for the proof that, indeed, every Riemann-
ian 2-sphere possesses infinitely many closed geodesics [Ban93, Fra92, Hin93].

Let us introduce the general setting in which we will work. If M is a closed
smooth manifold, a Tonelli Lagrangian L : TM → R is a smooth function whose
restriction to any fiber of TM is superlinear with positive definite Hessian, see e.g.
[Mat91, Fat08, Abb13]. A magnetic Tonelli system is a pair (L, σ), where L : TM →
R is a Tonelli Lagrangian and σ is a closed 2-form on M , which we refer to as the
magnetic form. If π : T∗M → M denotes the projection of the cotangent bundle,
the pair (L, σ) defines a flow on TM that is conjugated through the Legendre
transformation ∂vL to the Hamiltonian flow on (T∗M,dp ∧ dq + π∗σ) of the dual
Tonelli Hamiltonian H : T∗M → R, H(q, p) = max{pv − L(q, v) | v ∈ TqM}, see
e.g. [Arn61, Nov82, AM16]. A particularly relevant special case of this setting is the
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electromagnetic one, when the Lagrangian L is of the form L(q, v) = 1
2gq(v, v)−U(q)

for some Riemannian metric g and some smooth potential U : M → R. In this
situation, the system (L, σ) models the motion of a particle on M with kinetic and
potential energies described by L and under the further effect of a Lorentz force
described by σ. When the potential U vanishes, the dynamics of the system (L, σ)
is a so-called magnetic geodesic flow.

In this paper, we will focus on the case where M = S2. The energy function
E : TM → R, E(q, v) := ∂vL(q, v)v − L(q, v), is preserved along the motion.
Therefore it is natural to study the dynamics of a magnetic Tonelli flow on a
prescribed energy hypersurface E−1(e), and very different qualitative behaviors
appear for different values of the energy e, see [CFP10] and references therein. For
our purposes two energy values will bear special significance: e0(L) and e1(L, σ).
The former is the minimal energy e such that the corresponding energy hypersurface
E−1(e) ⊂ TS2 projects onto the whole S2. We postpone the precise definition of
e1(L, σ) to Section 2. For now, we just mention that e1(L, σ) ≥ e0(L), and when
σ is exact with primitive θ we have e1(L, dθ) = cu(L + θ), where cu(L + θ) is the
Mañé critical value of the universal cover of L + θ (see e.g. [CI99, Abb13] for the
definition of Mañé critical values).

The periodic orbits problem for magnetic geodesics was first studied by Novikov
[Nov81, Nov82] in the early 1980s. The classical least action principle for the pe-
riodic orbits with prescribed energy is not directly available in this setting, due
to the potential non-exactness of the magnetic 2-form. Novikov showed how to
recover the variational principle in the universal cover of the space of periodic
curves, and in his celebrated “throwing out cycles” method he proposed how to
exploit the corresponding deck transformation in order to detect action values of
periodic orbits (for the throwing out cycles method, see also [Tai83]). For mag-
netic geodesics on closed surfaces, waists were first studied by Taimanov in a se-
ries of papers [Tai91, Tai92a, Tai92b]. Taimanov’s result is that, given a kinetic
Lagrangian L(q, v) = 1

2gq(v, v) and an oscillating magnetic 2-form σ on a closed 2-
dimensional configuration space, there exists a waist αe at the energy level e, for all
e ∈ (0, e1(L, σ)) (see also [CMP04] for a different proof). When σ is exact, Abbon-
dandolo, Macarini, Mazzucchelli and Paternain [AMMP14] employed Taimanov’s
waist αe on any energy level e belonging to a full measure subset of (0, e1(L, σ))
in order to construct a sequence of minmax families giving an infinite number of
(geometrically distinct) periodic orbits with energy e. Short afterwards, Asselle
and Benedetti extended the result to non-exact σ on surfaces of genus at least one
[AB15a, AB15b]. The results in [Tai91, Tai92a, Tai92b, AMMP14, AB15a, AB15b]
have been further extended by Asselle and Mazzucchelli [AM16] to the general mag-
netic Tonelli setting. In this note we complete the picture by treating the last case
remained open for the multiplicity problem: the 2-sphere. Namely, we are going to
prove the following result.

Theorem 1.1. Let L : TS2 → R be a Tonelli Lagrangian, and σ a 2-form on S2.
For almost every e ∈ (e0(L), e1(L, σ)), the Lagrangian system of (L, σ) possesses
infinitely many periodic orbits with energy e.

We wish to stress that the existence of infinitely many periodic orbits on all
energy values in (e0(L), e1(L, σ)) is still an open problem. In Theorem 1.1, as well as
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in [AMMP14, AB15a, AB15b], a negligible subset of energies must be excluded due
to a lack of compactness in the variational setting that is employed. However, energy
levels with only finitely many periodic orbits can be found above [Zil83, Ben16] as
well as below [AM16] the interval [e0(L), e1(L, σ)].

For closed surfaces M of genus at least one, any closed 2-form σ on M lifts to an
exact 2-form on the universal cover of M . This allows to define the Mañé critical
value of the universal cover cu(L, σ) for any Tonelli Lagrangian L : TM → R. We
set e∗1(L, σ) := min{e1(L, σ), cu(L, σ)} if M has positive genus, and e∗1(L, σ) :=
e1(L, σ) if M = S2. The combination of Theorem 1.1 together with the above
mentioned results in [AB15a, AB15b, AM16], yields the following statement about
the multiplicity of periodic orbits on general closed surfaces.

Theorem 1.2. Let M be a closed surface, L : TM → R a Tonelli Lagrangian, and
σ a 2-form on M . For almost every e ∈ (e0(L), e∗1(L, σ)), the Lagrangian system of
(L, σ) possesses infinitely many periodic orbits with energy e. �

Remark 1.3. The open interval (e0(L), e∗1(L, σ)) is not empty for instance if M is
orientable, σ is oscillating, and the Lagrangian has the form of a kinetic energy
L(q, v) = 1

2gq(v, v) for some Riemannian metric g (see [AB15b]); in such case,
e0(L) = 0 is the minimal energy of the system. We recall that a 2-form σ on an
orientable surface is oscillating when it satisfies σq− < 0 and σq+ > 0 for some
q−, q+ ∈M . On non-orientable surfaces, any non-zero 2-form lifts to an oscillating
2-form on the orientation double cover. �

This paper is dedicated to the memory of Abbas Bahri. Bahri was interested
in the problem of periodic orbits of magnetic geodesic flows. In a joint work with
Taimanov [BT98], he established the existence of periodic magnetic geodesics with
prescribed energy on closed configuration spaces of arbitrary dimension under the
assumption that the analog of the Ricci curvature for the Lagrangian system is
positive.

The paper is organized as follows. In Section 2 we recall the variational setting
for our periodic orbits problem: we provide the definition of the action 1-form ηe,
and of its global primitive Ae on the universal cover of the space of loops; at the end
we will review the definition of the energy values e0 and e1, and the notion of a waist
for magnetic Tonelli systems. In Section 3 we provide the proof of Theorem 1.1.

Acknowledgments. A.A. and L.A. are partially supported by the DFG grant AB
360/2-1 “Periodic orbits of conservative systems below the Mañé critical energy
value”. G.B. is partially supported by the DFG grant SFB 878. M.M. is partially
supported by the ANR grants WKBHJ (ANR-12-BS01-0020) and COSPIN (ANR-
13-JS01-0008-01). Part of this project was carried out while M.M. was visiting
the Sobolev Institute of Mathematics in Novosibirsk (Russia), under the Program
“Short-Term Visits to Russia by Foreign Scientists” of the Dynasty Foundation;
M.M. wishes to thank the Foundation and Alexey Glutsyuk for providing financial
support, and Iskander A. Taimanov for the kind hospitality.

2. The primitive of the free-period action form

2.1. The variational principle. Let L : TS2 → R be a Tonelli Lagrangian with as-
sociated energy function E(q, v) = ∂vL(q, v)v−L(q, v), and σ a 2-form on S2. Since
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we will be interested in the Euler-Lagrange dynamics on a given energy hypersurface
E−1(e), for some fixed e ∈ R, we can modify the Tonelli Lagrangian far from E−1(e)
and assume without loss of generality that each restriction L|TqM coincides with

a polynomial of degree 2 outside a compact set. Let M := W 1,2(T;S2) × (0,∞),
where T := R/Z is the 1-periodic circle. For each energy value e ∈ R, we consider
the free-period action 1-form ηe on M given by

ηe(γ, p)(ξ, q) = dSe(γ, p)(ξ, q) +

∫
T

σγ(t)(ξ(t), γ̇(t)) dt,

(γ, p) ∈M, (ξ, q) ∈ T(γ,p)M,

where Se :M→ R denotes the free-period action functional

Se(γ, p) = p

∫
T

L(γ(t), γ̇(t)/p) dt+ p e.

By the least action principle, ηe vanishes at some (γ, p) ∈ M if and only if the
p-periodic curve Γ(t) := γ(t/p) is an orbit of the magnetic Tonelli system of (L, σ),
see e.g. [AB16] and references therein.

The 1-form ηe is not exact if σ is not exact. In order to work with a primitive
of ηe, following Novikov [Nov81, Nov82], we will lift it to the universal cover ofM.
We see S2 as the unit sphere in R3, oriented in the usual way, and we fix the point
x0 = (−1, 0, 0) ∈ S2. We consider the universal cover

π : M̃ →M.

As usual, we realize M̃ as the space of homotopy classes relative to the endpoints
of continuous paths u : [0, 1] → M starting at u(0) = (x0, 1). Here, we see x0 as
the constant loop at x0. The projection map is given by π([u]) = u(1). We have
π∗ηe = dAe, where the functional

Ae : M̃ → R

is defined as follows. Given [u] ∈ M̃, we write u = (γ, p), where γ(s) ∈W 1,2(T;S2)
and p(s) ∈ (0,∞) for all s ∈ [0, 1]. We see γ as a map of the form γ : [0, 1]×T→ S2

by setting γ(s, t) := γ(s)(t). We then set

Ae([u]) := Se(u(1)) +

∫
[0,1]×T

γ∗σ.

Remark 2.1. Assume that U ( S2 is a proper open subset, so that σ|U is exact

with some primitive θ. Let U ⊂ M̃ be a connected component of the open set

of those [u] ∈ M̃ such that the periodic curve u(1) is contained in U . Up to an
additive constant, the restriction Ae|U is equal to S′e ◦ π|U , where S′e : M → R is
the free-period action functional associated with the Lagrangian L+ θ, i.e.

S′e(γ, p) = p

∫
T

L(γ(t), γ̇(t)/p) dt+

∫
γ

θ + p e. �

It is well known that the fundamental group of the free loop space W 1,2(T;S2) is
isomorphic to Z, and therefore so is the fundamental group of M. A generator [z]
of π1(M, (x0, 1)) can be defined as follows. For each s ∈ T, consider the affine plane
Σs ⊂ R3 orthogonal to the vector (0, cos(2πs),− sin(2πs)) and passing through x0.
We denote by ζ(s) ∈ W 1,2(T;S2) the closed curve with constant Euclidean speed
whose support is precisely the intersection Σs∩S2, its starting point is ζ(s)(0) = x0,
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s

x0 ζ(s)

Σs

Figure 1. The map ζ : T→W 1,2(T;S2).

and, for all s 6= 0, its orientation is such that the ordered pair ∂sζ(s)(t), ∂tζ(s)(t)
agrees with the orientation of S2, see Figure 1. We define z := (ζ, 1) : T → M.

The group of deck transformations of the universal cover M̃ is generated by

Z : M̃ → M̃, Z([u]) = [z ∗ u],

where z ∗u(s) = z(2s) for all s ∈ [0, 1/2], and z ∗u(s) = u(2s−1) for all s ∈ [1/2, 1].
The action Ae varies under such a transformation as

Ae ◦ Z([u]) = Ae([u]) +

∫
S2

σ. (2.1)

2.2. Iterated curves. For each v = (γ, p) ∈ M, we denote by vm = (γm,mp) ∈ M
its m-fold iterate, where γm(t) = γ(mt). The iteration map ψm : M → M,
ψm(v) = vm, is smooth. We lift this map to a smooth map of the universal cover,
so that the following diagram commutes

M̃
ψ̃m //

π

��

M̃

π

��
M

ψm //M

For instance, we can set ψ̃m([u]) := [um], where

um(s) =

{
(x0, 1 + 2s(m− 1)) if s ∈ [0, 1/2],

u(2s− 1)m if s ∈ [1/2, 1].

A remarkable property of the iteration map is given by the non-mountain pass The-
orem for high iterates, which was first established for electromagnetic Lagrangians
in [AMMP14, Theorem 2.6], and extended to general Tonelli Lagrangians in [AM16,
Lemma 4.3 and proof of Theorem 1.2]. As we explained in Remark 2.1, Ae coincides
locally with the free-period action functional of a suitable Tonelli Lagrangian, and
therefore the non-mountain pass Theorem for high iterates holds for Ae as well.

Theorem 2.2 (Non-mountain pass Theorem for high iterates). Let [v] be a critical
point of Ae such that, for all m ∈ N, the critical circle of [vm] is isolated in the set of
critical points of Ae. There exists m([v]) ∈ N such that, for all integers m > m([v]),
the following holds. There exists an (arbitrarily small) open neighborhood W of
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the critical circle of [vm] such that, if we set a := Ae([v
m]), the inclusion induces

an injective map between path-connected components

π0({Ae < a}) ↪→ π0({Ae < a} ∪W). �

2.3. The critical values of the energy. Let us single out two significant values of
the energy. The first one is e0(L) := maxE(·, 0), that is, the minimal energy e
such that the corresponding energy hypersurface E−1(e) projects onto the whole
S2. The second value e1(L, σ) ≥ e0(L), which depends also on the magnetic form
σ, is defined as the supremum of the energies e ≥ e0(L) verifying the following
condition: there exists a finite collection (γ1, p1), ..., (γn, pn) ∈ M such that the
γi’s are smooth pairwise disjoint loops, E(γi(·), γ̇i(·)/pi) ≡ e for all i = 1, ..., n, the
multicurve γ1 ∪ ... ∪ γn is the oriented boundary of a positively oriented compact
embedded surface Σ ⊆ S2, and we have

Se(γ1, p1) + ...+ Se(γn, pn) +

∫
Σ

σ < 0.

We recall that e1(L, σ) reduces to the classical Mañé critical value of L+ θ in case
σ is exact with primitive θ, see [AB15b].

The proof of Theorem 1.1 will build on the following existence result, which
was originally proved by Taimanov [Tai91, Tai92b] in the case of electromagnetic
Lagrangians (see also [CMP04] for an alternative proof), and further extended by
Asselle and Mazzucchelli [AM16, Theorem 6.1] to the general case of magnetic
Tonelli systems.

Theorem 2.3. For every energy value e ∈ (e0(L), e1(L, σ)), the Lagrangian system
of (L, σ) possesses a non-self-intersecting periodic orbit (γe, pe) with energy e such
that every element in π−1(γe, pe) is a local minimizer of the action functional Ae.

�

3. Proof of the Main Theorem

In this section we carry out the proof of Theorem 1.1. Since the case where the
magnetic 2-form σ is exact is covered by [AMMP14], we focus on the case where σ
is not exact, so that ∫

S2

σ 6= 0. (3.1)

3.1. Minimax procedures. For each energy value e ∈ (e0(L), e1(L, σ)), consider
the local minimizer (γe, pe) of Ae given by Theorem 2.3, and choose an arbitrary
ue ∈ π−1(γe, pe). We fix an arbitrary energy value

e∗ ∈ (e0(L), e1(L, σ))

such that, for all m ∈ N, the iterated critical point [ume∗ ] belongs to a critical
circle that is isolated in crit(Ae∗) (if there is no energy value e∗ with such a pro-
perty, there are infinitely many periodic orbits on every energy level in the range
(e0(L), e1(L, σ))). The critical points [ume∗ ] are still local minimizers of Ae∗ , as they
are iterates of a local minimizer, see [AMP15, Lemma 3.1] and Remark 2.1.

Given any subset Y ⊂ M̃, for each m ∈ N we will write

Y m := ψ̃m(Y ) =
{

[ym]
∣∣ [y] ∈ Y

}
.
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The Palais-Smale condition holds locally for the free-period action functional of
Tonelli Lagrangians, see [Con06, Prop. 3.12] or [Abb13, Lemma 5.3]. This, together
with Remark 2.1, implies that the functionalAe∗ satisfies the Palais-Smale condition
locally as well. Therefore, a sufficiently small bounded open neighborhood W of
the critical circle of [ue∗ ] does not contain other critical circles of Ae∗ and satisfies

inf
∂W

Ae∗ > Ae∗([ue∗ ]),

Wm0 ∩ Zn1(Wm1) = ∅ whenever (m0, 0) 6= (m1, n1).

For any e ∈ (e0(L), e1(L, σ)), we denote by Me the closure of the set of local
minimizers of Ae|W . For all m0,m1 ∈ N and n0, n1 ∈ Z such that (m0, n0) 6=
(m1, n1), we denote by

Pe(m0, n0,m1, n1)

the family of continuous paths Θ : [0, 1] → M̃ such that Θ(0) ∈ Zn0(Mm0
e ) and

Θ(1) ∈ Zn1(Mm1
e ). We define the corresponding minmax value

ce(m0, n0,m1, n1) := inf
{

maxAe ◦Θ
∣∣ Θ ∈ Pe(m0, n0,m1, n1)

}
.

Lemma 3.1. There is an open neighborhood I ⊂ (e0(L), e1(L, σ)) of e∗ such that

(i) Me is a non-empty compact set for all e ∈ I,
(ii) for each e, e′ ∈ I, we have maxAe′ |Me′ < inf Ae|∂W ,
(iii) for each m0,m1 ∈ N and n0, n1 ∈ Z, the function e 7→ ce(m0, n0,m1, n1) is

well defined and monotone increasing in I.

Proof. The proof is entirely analogous to the arguments in [AMMP14, Lemmas 3.1–
3.3] and it will be omitted. �

3.2. The valley of short curves with low period. We equip our sphere S2 with an
arbitrary Riemannian metric g, and M with the Riemannian metric

〈(ξ, r), (η, s)〉 =

∫
T

(
g(ξ, η) + g(Dtξ,Dtη)

)
dt+ rs,

∀(ξ, r), (η, s) ∈ T(γ,p)M,

(3.2)

where Dt denotes the covariant derivative associated to g. The space M is not
complete with respect to the Riemannian metric (3.2), nor is its universal cover
equipped with the pulled-back Riemannian metric. Indeed, there are Cauchy se-
quences {(γn, pn) | n ∈ N} ⊂ M such that pn → 0. However, it turns out that this
does not pose any problem while applying arguments from non-linear analysis to
the functional Ae. Indeed, the functional Ae has a “valley” near the non-complete
ends ofM, as we will review now (see [Con06, Section 3] and [AB16, Section 3] for
analogous arguments in slightly different settings).

We write ‖γ̇‖L2 for the L2-norm of the derivative of any curve γ ∈ W 1,2(T;S2)
measured with respect to g, i.e.

‖γ̇‖2L2 =

∫
T

g(γ̇(t), γ̇(t)) dt.

We introduce the open subsets

Uτ :=
{

(γ, p) ∈M
∣∣ ‖γ̇‖2L2 < τ p, p < τ

}
, τ > 0. (3.3)
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If τ is small enough, Uτ is connected and evenly covered by π : M̃ →M. Namely,
there exists a connected component Vτ ⊂ π−1(Uτ ) such that π−1(Uτ ) can be written
as a disjoint union

π−1(Uτ ) =
⊔
n∈Z

Zn(Vτ ).

We choose such a connected component Vτ so that, for all [u] = [(γ, p)] ∈ Vτ with
γ(1) stationary curve at some point q ∈ S2, we have

Ae([u]) = p(1)
(
L(q, 0) + e

)
.

Lemma 3.2. For all τ > 0 sufficiently small, we have

inf Ae|Vτ = 0, inf Ae|∂Vτ > 0.

Moreover

lim
τ→0+

(
supAe|Vτ

)
= 0.

Proof. We cover the sphere with two open balls D1, D2 ⊂ S2, and choose a primitive
θi of σ on Di. Let τ > 0 be sufficiently small so that for any γ ∈W 1,2(T;S2) with
length less than τ there exists ι(γ) ∈ {1, 2} such that γ is entirely contained in
Dι(γ). The restriction of the functional Ae to Vτ takes the following form: for each
[u] ∈ Vτ with (γ, p) := π([u]), we have

Ae([u]) = p

∫
T

L(γ(t), γ̇(t)/p) dt+ p e+

∫
γ

θι(γ).

Since we are assuming that the restriction of the Tonelli Lagrangian L to any fiber
of TM is a polynomial of degree 2 outside a compact set, there exist constants
0 < h1 < h2 such that, for all (q, v) ∈ TM , we have

L(q, v) ≥ L(q, 0) + ∂vL(q, 0)v + h1 gq(v, v)

≥ −E(q, 0) + ∂vL(q, 0)v + h1 gq(v, v)

≥ −e0(L) + ∂vL(q, 0)v + h1 gq(v, v),

(3.4)

and

L(q, v) ≤ h2

(
gq(v, v) + 1

)
. (3.5)

We denote by λ the 1-form on S2 given by ∂vL(·, 0). The lower bound (3.4) implies
that, for all [u] ∈ Vτ with (γ, p) := π([u]), we have

Ae([u]) ≥ h1
‖γ̇‖2L2

p
+
(
e− e0(L)

)︸ ︷︷ ︸
>0

p−
∣∣∣∣∫
γ

(λ+ θι(γ))

∣∣∣∣
≥ h1

‖γ̇‖2L2

p
+
(
e− e0(L)

)
p− 1

4
‖dλ+ dθι(γ)︸ ︷︷ ︸

σ

‖L∞ ‖γ̇‖2L2

where the latter inequality follows from [Abb13, Lemma 7.1]. This readily implies
that Ae > 0 on Vτ provided

h1

τ
>

1

4
‖dλ+ σ‖L∞ .
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Assume now that [u] ∈ ∂Vτ . If p = τ , we have

Ae([u]) > (e− e0(L)) τ > 0.

If p < τ , then ‖γ̇‖2L2 = p τ , and therefore

Ae([u]) ≥ h1τ −
1

4
‖dλ+ σ‖L∞ τ2 > 0.

Overall, this proves that inf Ae|∂Vτ > 0.
Inequality (3.5) implies that, for all [u] ∈ Vτ with (γ, p) := π([u]), we have

Ae([u]) ≤ h2
‖γ̇‖2L2

p
+ h2 p+ e p+

∫
γ

θι(γ)

≤ h2
‖γ̇‖2L2

p
+ h2 p+ e p+

1

4
‖σ‖L∞ ‖γ̇‖2L2

≤ h2 τ + h2 τ + e τ +
1

4
‖σ‖L∞ τ2,

where, as before, the second inequality follows from [Abb13, Lemma 7.1]. This
readily implies that supAe|Vτ → 0 as τ → 0+, which, together with the fact that
Ae > 0 on Vτ , also implies that inf Ae|Vτ = 0. �

3.3. Essential families. Let us fix an energy value e ∈ I. We say that a union of
critical circles

E ⊂ critAe ∩ {Ae = ce(m0, n0,m1, n1)}

is an essential family for Pe(m0, n0,m1, n1) when for every neighborhood U of E
there exists a path Θ ∈ Pe(m0, n0,m1, n1) whose image Θ([0, 1]) is contained in
the union U ∪ {Ae < ce(m0, n0,m1, n1)}.

We denote by Idiscr the subset of those e ∈ (e0(L), e1(L, σ)) such that the
set of critical points crit(Ae) is a union of isolated critical circles (that is, the
periodic orbits with energy e are isolated). Notice that every energy level e ∈
(e0(L), e1(L, σ)) \ Idiscr contains infinitely many periodic orbits. The existence of
essential families can be guaranteed on generic energy levels in Idiscr. The precise
statement is the following.

Lemma 3.3. There is a subset I ′ ⊆ I of full Lebesgue measure such that, for all
e ∈ I ′ ∩ Idiscr, m0,m1 ∈ N, and n0, n1 ∈ Z with (m0, n0) 6= (m1, n1), the space of
paths Pe(m0, n0,m1, n1) admits an essential family.

Proof. The proof goes along the lines of the one of [AMMP14, Lemma 3.5], but
the fact that we are working on the universal cover of M with the functional Ae
requires some variations of the original argument, and therefore we provide full
details for the reader’s convenience.

For all m0,m1 ∈ N and n0, n1 ∈ Z such that (m0, n0) 6= (m1, n1), we denote by
I(m0, n0,m1, n1) the subset of those e′ ∈ I such that the function

e 7→ ce(m0, n0,m1, n1) (3.6)

is differentiable at e′. By Lemma 3.1(iii), the function (3.6) is monotone increasing
in e, and therefore I(m0, n0,m1, n1) is a full measure subset of I. We define the
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subset I ′ of the statement as

I ′ :=
⋂

(m0,n0)6=(m1,n1)

I(m0, n0,m1, n1).

Being a countable intersection of full Lebesgue measure subsets of I, the subset
I ′ ⊂ I has full Lebesgue measure as well.

Now, we fix e ∈ I ′ ∩ Idiscr and two distinct (m0, n0), (m1, n1) ∈ N × Z. In
order to simplify the notation, we will just write ce and Pe for ce(m0, n0,m1, n1)
and Pe(m0, n0,m1, n1) respectively. We choose an arbitrary strictly decreasing
sequence {eα | α ∈ N} ⊂ I such that eα → e as α → ∞, and we set εα := eα − e.
By definition of I ′, there exists k0 = k0(e) > 0 such that

|ceα − ce| ≤ k0εα, ∀α ∈ N.

For all [u] = [(γ, p)] ∈ M̃ such that Ae([u]) ≥ ce − εα and Aeα([u]) ≤ ceα + εα, the
period p(1) of the curve u(1) ∈M can be bounded as

p(1) =
Aeα([u])−Ae([u])

εα
≤ ceα + εα − ce + εα

εα
≤ k0 + 2 =: k1,

while the action Ae([u]) can be bounded as

Ae([u]) ≤ Aeα([u]) ≤ ceα + εα ≤ ce + (k0 + 1)εα ≤ ce + k1εα.

We introduce the subspaces

Xr :=
{

[u] = [(γ, p)] ∈ M̃
∣∣∣ p(1) ≤ r

}
, r > 0.

By the definition of the minmax value ceα and by the estimates that we have just
provided, for each α ∈ N there exists a path Θα ∈ Peα such that

Θα([0, 1]) ⊂ {Ae ≤ ce − εα} ∪
(
Xk1 ∩ {Ae ≤ ce + k1εα}

)
.

We recall that, by the definition of the spaces of paths Peα , we have that

Θα(i) ∈ Zni(Mmi
eα ) ⊂ Zni(Wmi), i = 0, 1.

Lemma 3.1(ii) readily implies that we can attach two suitable tails to the path Θα:
we can find two continuous paths

Φα :[0, 1]→ Zn0(Wm0) ∩ {Ae ≤ Ae(Θα(0))},
Ψα :[0, 1]→ Zn1(Wm1) ∩ {Ae ≤ Ae(Θα(1))},

such that Φα(0) ∈ Zn0(Mm0
e ), Φα(1) = Θα(0), Ψα(0) = Θα(1), and Ψα(1) ∈

Zn1(Mm1
e ); see [AMMP14, Lemma 3.2] for a proof of this elementary fact. Since

the open set W is bounded, there exists k2 > k1 large enough such that

Zn0(Wm0) ∪ Zn1(Wm1) ⊂ Xk2 .

We define the continuous path

Υα : [0, 1]→ {Ae ≤ ce − εα} ∪
(
Xk2 ∩ {Ae ≤ ce + k1εα}

)
,

Υα(s) :=


Φα(3s), s ∈ [0, 1/3],

Θα(3(s− 1/3)), s ∈ [1/3, 2/3],

Ψα(3(s− 2/3)), s ∈ [2/3, 1].

Notice that Υα ∈ Pe, and maxAe ◦Υα → ce as α→∞.
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We claim that crit(Ae) ∩ A−1
e (ce) ∩ Xk2+2 is an essential family for Pe. Let

U ⊂ M̃ be an arbitrary open set such that

U ∩ crit(Ae) = crit(Ae) ∩A−1
e (ce) ∩ Xk2+2.

Our goal for the remaining of the proof is to deform one of our paths Υα, away
from its endpoints, so that the modified path will have image inside {Ae < ce}∪U .
Notice that, since e ∈ Idiscr, if µ > 0 is small enough we have

U ∩ crit(Ae) = crit(Ae) ∩A−1
e [ce − µ, ce + µ] ∩ Xk2+2, (3.7)

and U contains at most finitely many critical circles of Ae. In particular, we can
find a smaller open neighborhood U ′ ⊂ U of U ∩ crit(Ae) and some ` > 0 such that
every smooth path Θ : [0, 1] → U with Θ(0) ∈ U ′ and Θ(1) ∈ ∂U has length at
least `. Here, the length is the one measured with respect to the pull-back of the

Riemannian metric (3.2) to the universal cover M̃.
Consider the open subsets Uτ ⊂ M introduced in (3.3), and the selected con-

nected components of their preimage Vτ ⊂ π−1(Uτ ). Since e ∈ Idiscr, the set Me is
the union of finitely many critical circles of Ae. In particular, there exists τ2 > 0
small enough such that

{Υα(0),Υα(1) | α ∈ N} ∩ π−1(Uτ2) = ∅.
If needed, we reduce τ2 > 0 so that the open subset Uτ2 is connected and evenly

covered by π : M̃ → M. By Lemma 3.2, there exist δ > 0 and 0 < τ1 < τ2 such
that, for all n ∈ N,

inf Ae|∂(Zn(Vτ2 )) − supAe|Zn(Vτ1 ) ≥ δ. (3.8)

Finally, we fix an index α ∈ N large enough so that

k1εα < min
{
µ, δ
}
. (3.9)

In the following, we will denote by ‖ · ‖ the Riemannian norm induced by the
Riemannian metric (3.2). With a slight abuse of notation, we will denote by ‖·‖ also

the Riemannian norm that is pulled-back to the universal cover M̃. Fix τ0 ∈ (0, τ1)

and introduce a vector field on M̃ of the form V := f ∇Ae, for some suitable

smooth function f : M̃ → [−1, 0], such that

(i) ‖V ([u])‖ ≤ 2 for all [u] ∈ M̃,
(ii) supp(V ) ⊂ A−1

e [ce − εα−1, ce + k1εα−1] \ π−1(Uτ0),

(iii) dAe([u])V ([u]) ≤ −min
{
‖∇Ae([u])‖2, 1

}
for all [u] ∈ M̃ \ π−1(Uτ1) such

that Ae([u]) ∈ [ce − εα, ce + k1εα].

We denote by φt : M̃ → M̃ the flow of V . This flow is complete. Indeed, since
the vector field V is uniformly bounded, the flow lines that may not be defined
for all positive time are those that enter all sets Xr, for r > 0 arbitrarily small.
Since V is non-negatively proportional to −∇Ae, its flow lines are non-negative
reparametrizations of those of −∇Ae. Finally, if a flow line of −∇Ae is not defined
for all positive times, then it must enter the set π−1(Uτ0) (see [AB16, Proposi-
tion 3.1(2)] for a proof of this fact), but this latter set is outside the support of V .
Actually, since ‖V ‖ ≤ 2, we have

φ1(Xk2) ⊂ Xk2+2.

The free-period action form ηe satisfies a generalized Palais-Smale condition on
subsets ofM where the period is bounded from above and bounded away from zero,
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see [AB16, Theorem 2.1(2)]. Moreover, for each sequence {(γn, pn) | n ∈ N} ⊂ M
such that pn → 0 and ‖ηe(γn, pn)‖ → 0 as n → ∞, we have ‖γ̇n‖2L2/pn → 0 as
n → ∞, see [AB16, Theorem 2.1(1)]. In particular, (γn, pn) belongs to Uτ0 for
n large enough. This, together with (3.7), implies that there exists a constant
ν ∈ (0, 1) such that

‖∇Ae([u])‖ ≥ ν, ∀[u] ∈ A−1
e [ce − µ, ce + µ] ∩ Xk2+2 \ (π−1(Uτ0) ∪ U ′). (3.10)

We fix an index β ≥ α large enough so that k1εβ < min
{
`ν, ν2

}
, which together

with (3.9) implies

k1εβ < min
{
µ, δ, `ν, ν2

}
. (3.11)

The composition φ1 ◦Υβ belongs to Pe. We claim that its image φ1 ◦Υβ([0, 1]) is
contained in {Ae < ce} ∪U , which sets our goal for the proof. First of all, since Ae
does not increase along the flow lines of φt, we have

Ae(φt ◦Υβ) ≤ Ae(Υβ) ≤ ce + k1εβ , ∀t ∈ [0, 1]. (3.12)

There are three possible cases to consider:

• If φt ◦Υβ(s) ∈ U ′ for some t ∈ [0, 1] and φ1 ◦Υβ(s) 6∈ U , Equations (3.10),
(3.11), and (3.12) imply that

Ae(φ1 ◦Υβ(s)) = Ae(φt ◦Υβ(s)) +

∫ 1

t

dAe(φr ◦Υβ(s))V (φr ◦Υβ(s)) dr

≤ ce + k1εβ − ν
∫ 1

t

‖V (φr ◦Υβ(s))‖ dr

≤ ce + k1εβ − `ν
< ce.

• If φt◦Υβ(s) ∈ π−1(Uτ1) for some t ∈ [0, 1], then, since φt◦Υβ(s) 6∈ π−1(Uτ2),
Equations (3.8), (3.11), and (3.12) imply

Ae(φ1 ◦Υβ(s)) ≤ Ae(φt ◦Υβ(s)) ≤ ce + k1εβ − δ < ce.

• If φt ◦ Υβ(s) 6∈ U ′ ∪ π−1(Uτ1) for all t ∈ [0, 1], then property (iii) in the
definition of V above, together with Equations (3.10), (3.11), and (3.12),
implies

Ae(φ1 ◦Υβ(s)) = Ae(Υβ(s)) +

∫ 1

0

dAe(φr ◦Υβ(s))V (φr ◦Υβ(s)) dr

= ce + k1εβ −
∫ 1

0

‖dAe(φr ◦Υβ(s))‖2 dr

≤ ce + k1εβ − ν2

< ce.

Overall, we showed that, for an arbitrary s ∈ [0, 1], if φ1 ◦ Υβ(s) is not contained
in U , then it is contained in the sublevel set {Ae < ce}. �

Lemma 3.4. For each e ∈ I ′ ∩ Idiscr and [v] ∈ crit(Ae), there exists a constant
m([v]) ∈ N with the following property. Consider the critical circle C of a critical
point Zn([vm]), where n ∈ Z and m > m([v]). If E is an essential family containing
C, then E \ C is an essential family for the same space of paths as well.
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Proof. We set am,n := Ae(Z
n([vm])), where m ∈ N and n ∈ Z. By Theorem 2.2,

there exists m([v]) ∈ N such that, for all integers m > m([v]), the following state-
ment holds. There exists an (arbitrarily small) open neighborhood W of the cri-
tical circle of [vm] such that the inclusion induces an injective map between path-
connected components

π0

(
{Ae < am,0}

)
↪→ π0

(
{Ae < am,0} ∪W

)
.

For every n ∈ Z, we denote by Wn := Zn(W) the corresponding neighborhood of
the critical circle C of Zn([vm]). Clearly, the inclusion induces an injective map

π0

(
{Ae < am,n}

)
↪→ π0

(
{Ae < am,n} ∪Wn

)
. (3.13)

Now, assume that C belongs to an essential family E for Pe(m0, n0,m1, n1). In
particular am,n = ce(m0, n0,m1, n1).

We require the neighborhoodW to be small enough so that for all neighborhoods
W ′ of E\C sufficiently small, we haveWn∩W ′ = ∅. The existence of such a disjoint
W ′ is guaranteed by the fact that the set of critical points of Ae comes in isolated
critical circles. Since, by Lemma 3.3, Pe(m0, n0,m1, n1) admits an essential family,
there exists a continuous path Θ ∈ Pe(m0, n0,m1, n1) whose image is contained in
the union

Wn ∪W ′ ∪ {Ae < ce(m0, n0,m1, n1)}.

Notice that

max
{
Ae(Θ(0)), Ae(Θ(1))

}
< ce(m0, n0,m1, n1). (3.14)

Indeed, Θ(0) and Θ(1) belong to distinct critical circles that are isolated local
minimizers of Ae, and this latter functional satisfies the Palais-Smale condition
locally.

By (3.14) and since the map (3.13) is injective, there exists another path Θ′ ∈
Pe(m0, n0,m1, n1) whose image is contained in the union

W ′ ∪ {Ae < ce(m0, n0,m1, n1)}.

Therefore, E \ C is also an essential family for Pe(m0, n0,m1, n1). �

Now, let Ifinite be the (possibly empty) subset of those energy values e ∈ Idiscr

such that there are only finitely many (non-iterated) periodic orbits with energy e.
In order to prove Theorem 1.1, all we need to do is to prove that the intersection
I ′ ∩ Ifinite is empty. We will show this in Theorem 3.7, after exploring what would
happen on energy values in I ′ ∩ Ifinite.

Lemma 3.5. For each energy level e ∈ I ′ ∩ Ifinite and compact interval [a0, a1] ⊂ R,
there exists a finite union of critical circles E ⊂ crit(Ae) such that, for all m0,m1 ∈
N and n0, n1 ∈ Z with ce(m0, n0,m1, n1) ∈ [a0, a1], E contains an essential family
for Pe(m0, n0,m1, n1).

Proof. Let (γ1, p1), ..., (γr, pr) be the only non-iterated periodic orbits with energy
e, where r is some natural number, and choose [vi] ∈ π−1(γi, pi) for all i = 1, ..., r.
Consider the constants m([vi]) ∈ N given by Lemma 3.4, so that if we remove the
critical circle of any Zn([vmi ]) with n ∈ Z and m > mmax from an essential family
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contained in A−1
e (ce(m0, n0,m1, n1)), the result is still an essential family for the

same space of paths. We set

mmax := max
{
m([v1]), ...,m([vr])

}
∈ N

By Equations (2.1) and (3.1), we infer that there exists nmax ∈ N such that
Ae(Z

n([vmi ])) 6∈ [a0, a1] for all i ∈ {1, ..., r}, m ∈ N, and n ∈ Z with m ≤ mmax

and |n| > nmax. We claim that the statement of the lemma holds taking

E :=
{
Zn([vmi ])

∣∣∣ i ∈ {1, ..., r}, 1 ≤ m ≤ mmax, |n| ≤ nmax

}
.

Indeed, consider m0,m1 ∈ N and n0, n1 ∈ Z such that ce(m0, n0,m1, n1) ∈ [a0, a1].
Let E ′ be an essential family for Pe(m0, n0,m1, n1), whose existence is guaranteed
by Lemma 3.3. By Lemma 3.4, if we remove from E ′ all the critical circles of
periodic orbits of the form Zn([vmi ]) for m > mmax, the resulting set is still an
essential family for Pe(m0, n0,m1, n1). Therefore, E ′ ∩ E is an essential family for
Pe(m0, n0,m1, n1). �

Let m0 ∈ N and n0 ∈ Z. For all m1 ∈ N, and n1 ∈ Z we know that
ce(m0, n0,m1, n1) is bounded from below by minAe|Zn0 (M

m0
e ). Hence, the following

quantity is a well-defined real number:

ce(m0, n0) := inf

{
ce(m0, n0,m1, n1)

∣∣∣∣ m1 ∈ N, n1 ∈ Z
with (m1, n1) 6= (m0, n0)

}
.

Notice that the deck transformation Zk induces a homeomorphism between the
spaces of paths Pe(m0, n0,m1, n1) and Pe(m0, n0 + k,m1, n1 + k), and we have

ce(m0, n0 + k,m1, n1 + k) = ce(m0, n0,m1, n1) + k

∫
S2

σ, ∀k ∈ Z.

This readily implies

ce(m0, n0 + k) = ce(m0, n0) + k

∫
S2

σ, ∀k ∈ Z. (3.15)

The infimum in the definition of ce(m0, n0) is actually attained provided e ∈ I ′ ∩
Ifinite.

Lemma 3.6. If e ∈ I ′ ∩ Ifinite, for all (m0, n0) ∈ N×Z there exist (m1, n1) ∈ N×Z
such that (m0, n0) 6= (m1, n1) and ce(m0, n0) = ce(m0, n0,m1, n1).

Proof. Let us fix (m0, n0) ∈ N×Z, and set

a0 := minAe|Zn0 (M
m0
e ) ≤ ce(m0, n0,m0 + 1, n0) =: a1.

Notice that ce(m0, n0) ∈ [a0, a1]. By Lemma 3.5, there exists a finite union of
critical circles E ⊂ crit(Ae) such that, whenever ce(m0, n0,m1, n1) ∈ [a0, a1], E
contains an essential family for Pe(m0, n0,m1, n1). We introduce the finite set of
critical values

F :=
{
Ae([w])

∣∣ [w] ∈ E
}
.

The value ce(m0, n0) is the infimum of those ce(m0, n0,m1, n1) belonging to the
finite set F , and therefore it is a minimum. �
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3.4. The main multiplicity result. Theorem 1.1 is an immediate consequence of the
following more precise statement.

Theorem 3.7. The set I ′ ∩ Ifinite is empty. Namely, for all energy values e ∈ I ′,
there are infinitely many periodic orbits with energy e.

In the proof of Theorem 3.7, we will need the following abstract lemma estab-
lished in [AMMP14, Lemma 2.5] for the free-period action functional. Being a local
statement, such a lemma holds for the functional Ae as well (see Remark 2.1).

Lemma 3.8. Every isolated critical circle C ⊂ crit(Ae) ∩ A−1
e (c) has an arbitrarily

small open neighborhood U such that the intersection U∩{Ae < c} has only finitely
many connected components. �

Proof of Theorem 3.7. We assume by contradiction that there exists e ∈ I ′∩ Ifinite.
We set

a0 := 0 <

∣∣∣∣∫
S2

σ

∣∣∣∣ =: a1.

Lemma 3.5 provides a finite union of critical circles

E = C1 ∪ ... ∪ Cs ⊂ crit(Ae)

such that, whenever ce(m0, n0,m1, n1) ∈ [a0, a1], E contains an essential family for
Pe(m0, n0,m1, n1). By Equation (3.15) and Lemma 3.6, for each m ∈ N there exist
nm ∈ Z and (m′m, n

′
m) ∈ N×Z such that

a0 ≤ ce(m,nm) = ce(m,nm,m
′
m, n

′
m) < a1.

In particular, E contains an essential family for Pe(m,nm,m′m, n′m). For each
i = 1, ..., s, we consider an open neighborhood Ui of the critical circle Ci given
by Lemma 3.8. We define

F :=
⋃

i=1,...,s

{
V
∣∣∣ V is a connected component of Ui ∩ {Ae < Ae(Ci)}

}
.

Notice that F has finite cardinality according to Lemma 3.8. For each m ∈ N,
there exists Vm ∈ F with the following property: there exists a path Θm ∈
Pe(m,nm,m′m, n′m) and sm ∈ [0, 1] such that the restriction Θm|[0,sm] is contained
in the sublevel set {Ae < ce(m,nm,m

′
m, n

′
m)}, and Θm(sm) ∈ Vm. Since F is finite,

by the pigeonhole principle there exist distinct m1,m2 ∈ N such that Vm1 = Vm2 .
In particular, ce(m1, nm1

,m′m1
, n′m1

) = ce(m2, nm2
,m′m2

, n′m2
).

Consider the path Θ : [0, 1]→ M̃ obtained by concatenation of three paths: the
restricted path Θm1

|[0,sm1 ], some path connecting Θm1
(sm1

) with Θm2
(sm2

) within

Vm1 , and the restricted path Θm2 |[0,sm2 ] traversed in the opposite direction. By

construction, Θ ∈ Pe(m1, nm1 ,m2, nm2). However,

maxAe ◦Θ < ce(m1, nm1
,m′m1

, n′m1
) = ce(m1, nm1

) ≤ ce(m1, nm1
,m2, nm2

),

which contradicts the definition of ce(m1, nm1 ,m2, nm2). �
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Gebäude NA 4/33, D-44801 Bochum, Germany
E-mail address: alberto.abbondandolo@rub.de

Luca Asselle
Ruhr Universität Bochum, Fakultät für Mathematik
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