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ISOMETRY-INVARIANT GEODESICS

AND THE FUNDAMENTAL GROUP, II

LEONARDO MACARINI AND MARCO MAZZUCCHELLI

Abstract. We show that on a closed Riemannian manifold with fundamental

group isomorphic to Z, other than the circle, every isometry that is homotopic

to the identity possesses infinitely many invariant geodesics. This completes a
recent result in [Maz15] of the second author.
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1. Introduction

In this paper, we complete the study began in [Maz15] of isometry-invariant
geodesics on closed Riemannian manifolds with infinite abelian fundamental group.
Isometry-invariant geodesics play the role of closed geodesics in a Riemannian set-
ting with symmetry. Given an isometry I of a closed connected Riemannian man-
ifold (M, g), a geodesic γ : R # M is called I-invariant if I(γ(t)) = γ(t + τ) for
some positive τ > 0 and for all t ∈ R. Intuitively, these curves should be the closed
geodesics of the possibly singular quotient M/I.
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The study of isometry-invariant geodesics was initiated by Grove [Gro73,Gro74]
in the 1970s. The problem admits a variational description, which generalizes the
one of closed geodesics: isometry-invariant geodesics are the critical points of an
energy function defined on a space of invariant paths. If the considered isometry is
homotopic to the identity, this space of invariant paths is homotopy equivalent to the
free loop space. This may induce someone to naively conjecture that all multiplicity
results for closed geodesics remain true for isometry-invariant geodesics, provided
the isometry is homotopic to the identity. A quite sophisticated argument due to
Grove and Tanaka [GT76,GT78,Gro85] shows that this is the case for Gromoll and
Meyer’s theorem: every closed Riemannian manifold with non-monogenic rational
cohomology admits infinitely many isometry-invariant geodesics. This result is
proved by cleverly exploiting the richness of the homology of the free loop space.
However, there are multiplicity results, such as the existence of infinitely many
closed geodesics on Riemannian 2-spheres [Ban93,Fra92,Hin93], whose proofs need
arguments that go beyond the abundance of the homology of the free loop space.
These results may fail for isometry-invariant geodesics: for instance, a non-trivial
rotation on a round 2-sphere has only one invariant geodesic.

A famous theorem of Bangert and Hingston implies that closed Riemannian
manifolds with infinite abelian fundamental group always possess infinitely many
closed geodesics. As in the case of the 2-sphere, the proof of this result combines
general minimax techniques from Morse theory with the investigation of homotopy
groups of the free loop space and more ad-hoc arguments. In a previous paper
of the second author [Maz15], Bangert and Hingston’s theorem was extended to
the isometry-invariant setting under the extra assumption that the infinite abelian
fundamental group was not cyclic. The main result of this paper completes the
extension of the result.

Theorem 1.1. Let (M, g) be a closed connected Riemannian manifold different from
the circle and with fundamental group isomorphic to Z. Every isometry of (M, g)
that is homotopic to the identity possesses infinitely many invariant geodesics.

The proof of this result is not a mere generalization of Bangert and Hingston’s
one, but requires crucial new ingredients. Actually, Theorem 1.1 will be a corollary
of a more general result, Theorem 5.1. This latter statement asserts the existence of
infinitely many isometry-invariant geodesics, provided the space of invariant curves
has infinitely many connected components with enough non-trivial homotopy in a
fixed positive degree. The proof will be based on the technical Lemma 4.1 asserting
that, for any positive degree d, a sufficiently iterated periodic invariant geodesic is
not a d-dimensional mountain pass. We believe that this lemma has independent
interest, and for instance a version of it for the Lagrangian free-period action func-
tional (see [Abb13]) might find application to the multiplicity problem for periodic
orbits of Tonelli Lagrangian systems with prescribed energy.

1.1. Organization of the paper. In Section 2, we recall the variational setting of
the energy function for isometry-invariant geodesics, and we quote the results of
Grove and Tanaka that describe the Morse theoretic properties of iterated peri-
odic isometry-invariant geodesics. In Section 3 we introduce a finite dimensional
reduction of the space of invariant curves by means of Morse’s broken geodesics ap-
proximations, and we focus on the properties of this reduction that will be needed
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later on. Section 4, which is the core of the paper, is devoted to the proof of the
above mentioned main technical lemma. Finally, in Section 5, we prove the main
result of the paper, Theorem 5.1, and carry over the proof of Theorem 1.1 as a
corollary of it.

1.2. Acknowledgements. This project began during a research stay of the authors
at IMPA (Rio de Janeiro, Brazil). The authors thank the Brazilian-French Network
in Mathematics, as well as Henrique Bursztyn, for providing financial support, and
IMPA for its stimulating working environment. The second author also acknowl-
edges support by the ANR projects WKBHJ (ANR-12-BS01-0020) and COSPIN
(ANR-13-JS01-0008-01).

2. Preliminaries

2.1. The space of isometry-invariant curves. Let I be an isometry of a closed con-
nected Riemannian manifold (M, g). We consider the following space of curves on
which I acts as a translation of time τ > 0

Λτ (M ; I) :=
{
ζ ∈W 1,2

loc (R;M)
∣∣ I(ζ(t)) = ζ(t+ τ) ∀t ∈ R

}
.

We denote by Eτ : Λτ (M ; I)→ R the energy function

Eτ (ζ) =
1

τ

∫ τ

0

gζ(t)(ζ̇(t), ζ̇(t)) dt,

whose critical points are precisely those smooth geodesics of (M, g) that are con-
tained in Λτ (M ; I), that is, the I-invariant geodesics of (M, g) with a suitable
parametrization. It is well known that, with the usual W 1,2 Riemannian metric on
path spaces, Λτ (M ; I) is a complete Hilbert-Riemannian manifold, and Eτ satisfies
the Palais-Smale condition. We refer the reader to [Gro73] for the background on
this functional setting. Since any reparametrization with constant speed of a geo-
desic is still a geodesic, the particular value τ is not conceptually relevant here. We
will often set τ = 1 and, in such case, omit τ from the notation.

The real line R acts on Λ(M ; I) by translation, i.e. t · ζ = ζ(t + ·) for all t ∈ R
and ζ ∈ Λ(M ; I). The energy function E is invariant by this action, and there-
fore its critical points come in orbits. An open I-invariant geodesic corresponds
to a unique critical orbit of E, whereas a p-periodic I-invariant geodesic γ with
positive energy corresponds to a countable sequence of embedded critical circles
{orb(γmp+1) | m ∈ N}, where γmp+1(t) = γ((mp+1)t). Notice that there may also
be uninteresting critical points of E: the fixed points of I, which come in totally
geodesic submanifolds of (M, g). As critical points of E, these stationary curves
have zero critical value and, by compactness, are contained in finitely many con-
nected components of Λ(M ; I). In this paper, as usual, we will only be interested in
I-invariant geodesics with positive energy, and we will consider two critical orbits
orb(γ1) and orb(γ2) of the energy E as distinct I-invariant geodesics if and only if
γ1(R) 6= γ2(R), that is, if and only if they define different immersed submanifolds
of (M, g).

2.2. Periodic isometry-invariant geodesics. By a classical theorem of Grove [Gro74,
Thm. 2.4], the closure of the critical orbit of an open I-invariant geodesic contains
uncountably many other critical orbits of E. Therefore, for the study of multiplicity
results, we will always assume that all I-invariant geodesics are periodic curves.
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Consider the sequence of critical circles {orb(γmp+1) | m ∈ N} of the energy
function E associated to an I-invariant geodesic of minimal period p > 0. Notice
that p ≥ 1. Indeed, if p ∈ (0, 1), there exists τ ∈ (0, p] such that I(γ(t)) = γ(t+τ) for
all t ∈ R, but this is not possible since the critical circle of the curve γτ (t) := γ(τt)
does not belong to {orb(γmp+1) | m ∈ N}. In the following, we wish to summarize
the Morse-theoretic properties of the sequence {orb(γmp+1) | m ∈ N}. We denote
by ind(E, γ) and nul(E, γ) the Morse index and the nullity of E at γ. The following
lemma was proved by Grove and Tanaka [GT78, Lemma 2.8] under the assumption
that the isometry I has finite order, and extended to the general case by Tanaka
[Tan82, Lemma 1.8].

Lemma 2.1 (Grove-Tanaka). Either ind(E, γmp+1) = 0 for all non-negative integers
m, or ind(E, γmp+1)→∞ as m→∞. �

Notice that, from the point of view of Morse theory, the critical point γmp+1 of
E is equivalent to the critical point γ of Emp+1. Indeed, the diffeomorphism

ψmp+1 : Λmp+1(M ; I)
∼=−→Λ(M ; I), ψmp+1(ζ) = ζmp+1,

satisfies E ◦ ψmp+1 = (mp+ 1)2Emp+1, and in particular

ind(E, γmp+1) = ind(Emp+1, γ).

The following lemma follows from the arguments in [GT78, Sections 2-3] and [Tan82,
Sections 2-3]. We provide its proof for the reader’s convenience.

Lemma 2.2 (Grove-Tanaka). There exist finitely many Hilbert manifolds Ω1, ...,Ωn,
positive real numbers q1, ..., qn that are multiples of p, real numbers q′1, ..., q

′
n satis-

fying q′i ∈ [0, qi) for all i, and a partition M1 ∪ ... ∪Mn of the set N \ {1, 2, ..., n0},
for some n0 ∈ N, such that for all m ∈Mi the following properties hold:

(i) Ωi is a complete Hilbert submanifold of both Λqi(M ; id) and Λmp+1(M ; I),
and is invariant by the gradient flow of Emp+1;

(ii) Eqi |Ωi = Emp+1|Ωi ;
(iii) nul(Emp+1, γ) = nul(Emp+1|Ωi , γ);
(iv) mp+ 1 ≡ q′i mod qi.

Remark 2.1. Lemma 2.2 was stated in the previous paper of the second author
[Maz15, Lemma 2.3] with two unfortunate typos: the numbers q1, ..., qn were said
to be integers instead of real numbers, and the manifolds Ωi were said to be con-
tained in Λqi(M ; I) instead of Λqi(M ; id). Both typos were rather obvious from the
context, since the period p is not necessarily rational, and the lemma was employed
correctly in the paper.

Remark 2.2. If the isometry I is the identity, that is, if we are in the closed geodesics
setting, Lemma 2.2 reduces to a classical result due to Gromoll and Meyer [GM69]:
in this case we have p = 1, each qi is a positive integer dividing m − 1 for all the
numbers m ∈ Mi, the numbers q′i are all equal to zero, and the manifolds Ωi are
simply the free loop spaces Λqi(M ; id).

Proof of Lemma 2.2. We will treat the cases in which the period p is rational and
irrational separately. We begin with the rational case: p = a/b for some relatively
prime integers a, b ∈ N. We recall that the fixed point set of an isometry of
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a closed Riemannian manifold is a disjoint union of finitely many closed totally
geodesic submanifolds, see [Kob95, page 59]. Notice that, for all multiples s of the
numerator a and for all m ∈ N, the I-invariant geodesic γ belongs to the Hilbert
submanifold Λmp+1(fix(Is); I) ⊂ Λmp+1(M ; I). By [Tan82, Lemma 2.1], there is
such s ∈ N and some n0 ∈ N such that

nul(Emp+1, γ) = nul(Emp+1|Λmp+1(fix(Is);I), γ), ∀m ∈ N with m ≥ n0.

Let ∇Emp+1 denote the gradient of the energy function Emp+1 : Λmp+1(M ; I)→ R

with respect to its usual Riemannian metric. The argument in the proof of [GT78,
Proposition 3.5] implies that the gradient ∇Emp+1(ζ) is tangent to the submanifold
Λmp+1(fix(Is); I) for all ζ ∈ Λmp+1(fix(Is); I). The isometry I has order s on
fix(Is). Therefore, from now on, we can work inside the manifold fix(Is) and apply
the arguments in [GT78, Section 2], which are valid for isometries of finite order.
For any fixed m ∈ N, consider a positive rational number τ , and two positive
integers q, r ∈ N such that

• (mp+ 1)/τ ∈ N,
• q is a multiple of s,
• Ir(γ(t)) = γ(t+ τ),
• (mp+ 1)r/τ ≡ 1 mod q.

These conditions imply

γ ∈ Λτ (fix(Iq); Ir) ⊂ Λmp+1(M ; I) ∩ Λq(M ; id),

Emp+1|Λτ (fix(Iq);Ir) = Eq|Λτ (fix(Iq);Ir) = Eτ |Λτ (fix(Iq);Ir).

By [GT78, Lemma 2.9], there exist positive rational numbers τ1, ..., τn, q1, ..., qn,
positive integers r1, ..., rn, and a partition M1 ∪ ... ∪ Mn of the set of positive
integers N such that, for all i = 1, ..., n and m ∈ Mi, the four points above are
verified by τ := τi, q := qi, and r := ri, and we have

nul(Emp+1|Λmp+1(fix(Is);I), γ) = nul(Emp+1|Λτ (fix(Iq);Ir), γ), ∀m ∈Mi.

Another application of the argument in the proof of [GT78, Proposition 3.5] implies
that the gradient ∇Emp+1(ζ) is tangent to the submanifold Λτ (fix(Iq); Ir) for all
ζ ∈ Λτ (fix(Iq); Ir). If we set

Ωi := Λτi(fix(Iqi); Iri),

the arguments given so far prove points (i), (ii), and (iii) of the lemma. Notice that,
for each i = 1, ..., n, there are finitely many positive rational numbers q′′1 , ..., q

′′
u ∈

[0, qi) such that, for each m ∈Mi, mp+ 1 is congruent to an element of {q′′1 , ..., q′′u}
modulo qi. Therefore, point (iv) follows by taking a suitable subpartition of M1 ∪
... ∪Mn.

Assume now that the period p is irrational. We follow the arguments in [Tan82,
Section 3]. For all m ∈ N and for all multiples q of the period p, the intersection

Λm,q := Λmp+1(M ; I) ∩ Λq(M ; id)

is a totally geodesic submanifold of Λmp+1(M ; I), and a standard computation
shows that the gradient ∇Emp+1(ζ) is tangent to Λm,q for all ζ ∈ Λm,q. Fix one
such ζ. For each ε > 0 there exists δ ∈ [0, ε] such that∫ δ

0

gζ(t)(ζ̇(t), ζ̇(t)) dt < ε.
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Since p is irrational, the quotient (mp+ 1)/q is irrational as well. Therefore, there
exist a, b ∈ N such that 0 ≤ a(mp+ 1)− bq ≤ δ. We infer that

a(mp+ 1)Emp+1(ζ)− bqEq(ζ) ∈ [0, ε],

and therefore

Emp+1(ζ) ≤ a(mp+ 1)

bq
Emp+1(ζ) ≤ Eq(ζ) +

ε

bq
,

Eq(ζ) ≤ a(mp+ 1)

bq
Emp+1(ζ) ≤

(
1 +

ε

bq

)
Emp+1(ζ).

Since ε > 0 can be taken arbitrarily small, we have proved that

Emp+1|Λm,q = Eq|Λm,q

By [Tan82, Lemma 3.2], we infer that there exist positive real numbers q1, ..., qn
that are multiples of p, and a partition M1 ∪ ... ∪Mn of the set N \ {1, 2, ..., n0},
for some n0 ∈ N, such that

nul(Emp+1, γ) = nul(Emp+1|Λm,qi , γ), ∀m ∈Mi.

Notice that Λm,qi = Λm
′,qi if m ≡ n mod qi/p. Therefore, up to replacing the

partitionM1∪...∪Mn with a subpartition, we can assume that Ωi := Λm,qi = Λm
′,qi

for all i = 1, ..., n and m,m′ ∈Mi. This proves points (i), (ii), and (iii) of the lemma
in the case where p is irrational. As before, point (iv) follows if we take a further
suitable subpartition of M1 ∪ ... ∪Mn. �

Let us equip Ωi with the complete Riemannian metric pulled back from the one
of the space Λmp+1(M ; I) via the inclusion, for an arbitrary m ∈Mi. The restricted
energy function Eqi |Ωi satisfies the Palais-Smale condition. Indeed, Eqi |Ωi =
Emp+1|Ωi and the gradient ∇Emp+1 is tangent to Ωi; this implies that all Palais-
Smale sequences for Eqi |Ωi are Palais-Smale sequences for Emp+1 as well, and
therefore are compact.

For a given m ∈ Mi, let h ∈ N be such that mp + 1 = hqi + q′i. Points (i) and
(iv) of Lemma 2.2 imply that, for all ζ ∈ Ωi, we have that

I(ζ(t)) = ζ(t+mp+ 1) = ζ(t+ q′i), ∀t ∈ R,

and∫ mp+1

0

gζ(t)(ζ̇(t), ζ̇(t)) dt = h

∫ qi

0

gζ(t)(ζ̇(t), ζ̇(t)) dt+

∫ q′i

0

gζ(t)(ζ̇(t), ζ̇(t)) dt.

If q′i > 0, this can be rephrased by saying that Ωi is contained in Λq
′
i(M ; I) and

(mp+ 1)Emp+1|Ωi = hqiE
qi |Ωi + q′iE

q′i |Ωi ,

which, together with Lemma 2.2(ii), implies that

Emp+1|Ωi = Eqi |Ωi = Eq
′
i |Ωi , ∀m ∈Mi.
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3. Broken geodesics

3.1. A space of broken geodesics. In Section 4, we will make use of the well-known
property that closed sublevel sets of the energy function are homotopy equivalent to
a compact manifold with boundary. This compact manifold is a subset of Morse’s
space of broken geodesics, which we now recall. We refer the reader to [Maz12,
chap. 4] and to the references therein for more background details.

Consider a vector τ = (τ0, τ1, ..., τk) ∈ Rk+1 such that 0 = τ0 < τ1 < ... < τk. We
denote by Υ′ ⊂ C([0, τk];M) the subspace of all continuous curves ζ : [0, τk] → M
such that ζ(0) = ζ(τk) and, for all i = 0, ..., k − 1, ζ|[τi,τi+1] is a geodesic of length
less than the injectivity radius of (M, g). The space Υ′ is diffeomorphic to an
open neighborhood of the diagonal in the k-fold product M × ...×M via the map
ζ 7→ (ζ(τ1), ζ(τ2), ..., ζ(τk)). As such, it inherits the Riemannian metric g ⊕ ...⊕ g.
A curve s 7→ ζs is a geodesic of (Υ′, g⊕ ...⊕ g) if and only if, for all i = 0, ..., k− 1,
the curve s 7→ ζs(τi) is a geodesic of (M, g).

For some k′ ∈ {0, ..., k − 1}, we introduce the subspace Υ ⊂ Υ′ of all ζ’s such
that I(ζ(0)) = ζ(τk′). It is easy to see that Υ is an embedded smooth submanifold
of Υ′. Indeed, if k′ 6= 0, we have that Υ = F−1(graph(I)), where F : Υ′ →M ×M
is the smooth submersion given by F (ζ) = (ζ(0), ζ(τk′)). If k′ = 0, we have that
Υ = G−1(fix(I)), where G : Υ′ → M is the smooth submersion given by G(ζ) =
ζ(0), and fix(I) if the fixed point set of I, which is a disjoint union of finitely many
closed totally geodesic submanifolds of M , see [Kob95, page 59]. In both cases, Υ
itself is a possibly disconnected, complete, and totally geodesic submanifold of Υ′.
We denote by distM : M ×M → [0,∞) the Riemannian distance on M , and we
define the function distΥ : Υ×Υ→ by

distΥ(ζ0, ζ1) := max
i=0,...,k−1

distM (ζ0(τi), ζ1(τi)).

This function is a distance on the connected components of Υ equivalent to the one
induced by the Riemannian metric g ⊕ ...⊕ g.

3.2. Two energy functions. On Υ we will need to consider two energy functions
F τk : Υ→ [0,∞) and F τk′ : Υ→ [0,∞). The first one is defined by

F τk(ζ) :=
1

τk

∫ τk

0

gζ(t)(ζ̇(t), ζ̇(t)) dt =
1

τk

k−1∑
i=0

distM (ζ(τi), ζ(τi+1))2

τi+1 − τi
.

If k′ 6= 0, that is, if τk′ > 0, the second one is defined analogously by

F τk′ (ζ) :=
1

τk′

∫ τk′

0

gζ(t)(ζ̇(t), ζ̇(t)) dt =
1

τk′

k′−1∑
i=0

distM (ζ(τi), ζ(τi+1))2

τi+1 − τi
.

If τk′ = 0, this second energy function will not be relevant, and we simply set it to
be F τk′ ≡ 0. Let us fix, once for all, an energy bound b > 0. Notice that

distM (ζ(τi), ζ(τi+1))2 ≤ (τi+i − τi)τkF τk(ζ).

Therefore, if we choose τ such that

max{τi+1 − τi | i = 0, ..., k − 1} < injrad(M, g)2/(9τkb), (3.1)

we have

distM (ζ(τi), ζ(τi+1)) < injrad(M, g)/3, ∀ζ ∈ {F τk ≤ b}, i = 0, ..., k − 1.
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This implies that the sublevel set {F τk ≤ b} is compact. Actually, all sublevel
sets {F τk ≤ b′} are compact provided b′ < 9b. On the other hand, the sublevel
set {F τk′ ≤ b} is never compact, because the energy function F τk′ is independent
of ζ(τi) for all i > k′. Nevertheless, with the above choice of τ , the intersection
{F τk ≤ b} ∩ {F τk′ ≤ b} is compact.

3.3. Polydiscs of broken geodesics. We fix a radius R ∈ (0, injrad(M, g)/3) small
enough so that the Riemannian balls of M of radius less than or equal to R are
geodesically convex: any pair of points in one such ball are joined by a unique
shortest geodesic that is entirely contained in the ball (see e.g. [dC92, page 76]).
We will be dealing with polydisc neighborhoods of elements γ ∈ {F τk ≤ b} of the
form

W (γ, r) :=
{
ζ ∈ Υ

∣∣ distM (ζ(τi), γ(τi)) < r ∀i = 1, ..., k
}
,

where r ∈ (0, R]. This polydisc is simply the ball with radius r centered at γ for
the distance distΥ. Since the sublevel set {F τk ≤ b} is compact, the restriction of
the function F τk to it is uniformly continuous. Hence, we can require the upper
bound R for the radii to be small enough (depending on b) so that the closure of
each of the above polydiscs is compact in Υ.

A useful property of W (γ, r) is that every pair of points in it can be joined by
a unique shortest geodesic of (Υ, g ⊕ ... ⊕ g). More specifically, for each x, y ∈ M
with distM (x, y) < injrad(M, g), we denote by

γx,y : [0, 1]→M (3.2)

the unique shortest geodesic of (M, g) such that γ(0) = x and γ(1) = y. It is well
known that γx,y depends smoothly on (x, y), see e.g. [Maz12, Thm. 4.1.2]. For each
pair of elements ζ0, ζ1 ∈W (γ, r), the unique shortest geodesic s 7→ ζs joining them
is given by

ζs(τi) = γζ0(τi),ζ1(τi)(s), ∀i = 0, ..., k − 1.

Indeed, by the geodesic convexity of Riemannian balls of radius r, for all i ∈ Zk
and s ∈ [0, 1] we have distM (ζs(τi), γ(τi)) < r. Moreover

distM (ζs(τi), ζs(τi+1)) <distM (ζs(τi), γ(τi))

+ distM (γ(τi), γ(τi+1))

+ distM (γ(τi+1), ζs(τi+1))

<r + injrad(M, g)/3 + r

< injrad(M, g).

Therefore, the whole curve s 7→ ζs is well defined and lies inside W (γ, r). In other
words, W (γ, r) is geodesically convex.

3.4. Deformation to the space of broken geodesics. Now, let γ ∈ Λ(M ; I) be an I-
invariant geodesic that is periodic with minimal period p ≥ 1. Consider the objects
given by Grove and Tanaka’s Lemma 2.2: a period q := qi that is a multiple of p,
a set of integers M = Mi ⊂ N, a non-negative number q′ = q′i ∈ [0, q) such that
mp + 1 ≡ q′ mod q, and a Hilbert manifold Ω = Ωi ⊂ Λq(M ; id) ∩ Λmp+1(M ; I).
We will choose our energy bound b of the previous section larger than E(γ), and
the vector τ that enters the definition of Υ such that τk′ = q′ and τk = q.



ISOMETRY-INVARIANT GEODESICS AND THE FUNDAMENTAL GROUP, II 9

For all m ∈M, we will see the space Υ as a submanifold of the Hilbert manifold
Λmp+1(M ; I) via the embedding

ωm : Υ ↪→ Λmp+1(M ; I)

uniquely defined by

ωm(ζ)(hq + t) = ζ(t), ∀h ∈ N, t ∈ [0, q] with hq + t ∈ [0,mp+ 1].

The map ωm will play the role of the classical m-fold iteration map from the theory
of closed geodesics. The various energy functions are related by

Emp+1 ◦ ωm(ζ) = 1
mp+1

(⌊
mp+1
q

⌋
qF q(ζ) + q′F q

′
(ζ)
)

= F q(ζ) + q′

mp+1

(
F q
′
(ζ)− F q(ζ)

)
.

(3.3)

Now, we extend the time-intervals given by the vector τ in a suitable periodic
fashion. We define the bi-infinite sequence {νj | j ∈ Z} as follows. First, we set

νhk+i := hq + τi, ∀h ∈ N, i ∈ {0, ..., k} with hq + τi ∈ [0,mp+ 1].

This defines νj for all j ∈ {0, ..., j′}, where j′ = bmp+1
q ck + k′. Notice that νj′ =

mp+ 1. We complete the definition by setting

νhj′+j = h(mp+ 1) + νj , ∀h ∈ Z, j ∈ {0, ..., j′ − 1}.

The sequence {νj | j ∈ Z} is precisely the one such that, for all ζ ∈ Υ and i ∈ Z,
the restriction ωm(ζ)|[νi,νi+1] is a geodesic of length less than injrad(M, g).

If ζ ∈ Ω satisfies Emp+1(ζ) = Eq(ζ) ≤ b, then for all time values t0, t1 ∈ R such
that 0 ≤ t1 − t0 < injrad(M, g)2/(9qb), we have

distM (ζ(t1), ζ(t0)) ≤
∫ t1

t0

√
gζ(t)(ζ̇(t), ζ̇(t)) dt

≤
√

(t1 − t0)qb

< injrad(M, g)/3.

This, together with (3.1), allows us to define a continuous homotopy

rs : {Emp+1 ≤ b} ∩ Ω→ {Emp+1 ≤ b}, s ∈ [0, 1], (3.4)

by rs(ζ) := ζs, where ζs ∈ Λmp+1(M ; I) is the unique curve that coincides with ζ
everywhere, except on the intervals of the form [νi, (1 − s)νi + sνi+1] where it is
equal to the shortest geodesic joining its endpoints. Notice that this latter shortest
geodesic has length less than injrad(M, g)/3, and therefore is well defined. By
construction, this homotopy does not increase the energy. More precisely, for all
i ∈ Z we have

d

ds

∫ νi+1

νi

gζs(t)(ζ̇s(t), ζ̇s(t)) dt ≤ 0. (3.5)

The image of the time-1 map r1 lies inside ωm(Υ), i.e.

r1({Emp+1 ≤ b} ∩ Ω) ⊂ ωm(Υ). (3.6)

We recall that Emp+1|Ω = Eq|Ω, and if q′ > 0 we further have Emp+1|Ω = Eq
′ |Ω.

This, together with (3.5), implies that

max{F q
′
◦ r1(ζ), F q ◦ r1(ζ)} ≤ Emp+1(ζ), ∀ζ ∈ Ω. (3.7)
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4. The main lemma

4.1. Statement and outline of the proof. We say that an I-invariant geodesic γ ∈
crit(E) with minimal period p ≥ 1 is isolated when orb(γmp+1) is isolated in crit(E)
for all m ∈ M. The following lemma will be the crucial ingredient for our main
Theorem 5.1.

Lemma 4.1. Let γ ∈ crit(E) be an isolated I-invariant geodesic with minimal period
p ≥ 1, and fix a degree d ≥ 1. For all m ∈ N large enough and for all sufficiently
small neighborhoods V of orb(γmp+1) the following holds: given any compact do-
main K ⊂ Rd and any continuous map u : K → {E < E(γmp+1)} ∪ V such that
u(∂K) ∩ V = ∅, there exists a homotopy us : K → Λ(M ; I) such that u0 = u,
u1(K) ⊂ {E < E(γmp+1)}, and us ≡ u outside u−1(V ) for all s ∈ [0, 1].

The special case in which the compact domain K is 1-dimensional was estab-
lished in [Maz15, Lemma 2.5], and was inspired by an analogous result due to
Bangert [Ban80] (see also [AMMP14, Theorem 2.6] for a similar result in the con-
text of the Lagrangian free-period action functional). When K has dimension at
least 2, the situation becomes much more complicated, and we now give an outline
of the argument leading to the proof.

There are two cases to consider. The first, easy one, is when the mean index of
the geodesic γ is positive, that is to say, the Morse index ind(Emp+1, γ) tends to
infinity as m → ∞. In particular, if m is large, this index will be larger than the
dimension of K, and the assertion of the lemma follows from standard arguments
of non-linear analysis. This case will be treated in Lemma 4.5.

The second, difficult, case, is when the Morse index ind(Emp+1, γ) is zero for
all m ∈ N. Here, we need to employ Grove and Tanaka’s Lemma 2.2, which gives
us finitely many Hilbert manifolds Ω1, ...,Ωn such that, for all m ∈ N, the space
of I-invariant curves Λmp+1(M ; I) contains one of the Ωi’s, and the Morse theory
of the function Emp+1 : Λmp+1(M ; I) → R on a neighborhood V of the critical
circle orb(γ) is completely described by its restriction to the submanifold Ωi. The
existence of a given map u as in the lemma implies that γ is not a global minimum
of Emp+1 in its connected component of Ωi. By the broken geodesics approximation
of Section 3.4, any sublevel set of the energy on the space Ωi can be deformed to
a finite dimensional submanifold Υ of broken I-invariant geodesics. We introduce
a sufficiently fine triangulation Σ of the connected component of Υ containing the
original I-invariant geodesic γ. By a well-known technique due to Bangert and
Klingenberg, for m large enough, every simplex σ0 ∈ Σ can be deformed with a
homotopy σs inside the space Λmp+1(M ; I) such that the simplex σ1 is contained in
the sublevel set {Emp+1 < E(γ)}, and all faces of σ0 that were already contained
in this sublevel set are not moved by the homotopy. Now, we take m large enough
so that these homotopies are defined for all the simplexes in Σ. A map u as in the
lemma can be equivalently seen of the form u : K → {Emp+1 < E(γ)} ∪ V , where
V ⊂ Λmp+1(M ; I) is an open neighborhood of γ. We take a fine triangulation Σ′ of
the domain K. We show that it is possible to deform u inside a subset of u−1(V )
such that every simplex σ′ ∈ Σ′ therein is mapped by u to one of the simplexes of Σ,
while the remaining simplexes of Σ′ are mapped inside the sublevel set {Emp+1 <
E(γ)} as they were originally. Finally, Bangert and Klingenberg’s homotopies allow
to deform u|u−1(V ) to a map that takes values inside {Emp+1 < E(γ)}. The details
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of this argument will be carried over in the next four subsections, and will culminate
with the proof of Lemma 4.3, which is Lemma 4.1 in the case where γ has zero mean
index.

4.2. Small neighborhoods of the critical circle. Throughout Section 4, we will work
with an isolated I-invariant geodesic γ ∈ Λ(M ; I) with minimal period p ≥ 1 and
zero mean index, meaning that ind(Emp+1, γ) = 0 for all m ∈ N. The case of
positive mean index will be treated in Section 4.6. We set

c := Emp+1(γ) = E(γ) =

∫ 1

0

gγ(t)(γ̇(t), γ̇(t)) dt,

and we stress that this action is independent of the order of iteration m ∈ N. Let
Ω = Ωi be one of the Hilbert manifolds given by Grove and Tanaka’s Lemma 2.2,
q := qi the basic period given there, andM = Mi the subset of integers m such that
claims (i–iv) of the lemma hold. We equip Ω with the complete Riemannian metric
pulled back from the space Λmp+1(M ; I) via the inclusion, for an arbitrary m ∈M.
We denote by φt the anti-gradient flow of the energy Eq|Ω, which is precisely the
restriction to Ω of the anti-gradient flow of Emp+1.

Lemma 4.2. For every sufficiently small open neighborhood U ′ ⊂ Ω of orb(γ) the
following hold.

(i) For all ε′ > 0 there exists τ > 0 such that φt(U
′∩{Eq|Ω ≤ c− ε′})∩U ′ = ∅

for all t ≥ τ .
(ii) There exist ε > 0 and a smaller open neighborhood U of orb(γ) whose

closure is contained in U ′ such that φt(U) \ U ′ ⊂ {Eq|Ω < c − ε} for all
t ≥ 0.

Proof. We denote by U(ρ) ⊂ Ω the open tubular neighborhood of orb(γ) of radius ρ.
The energy Eq|Ω satisfies the Palais-Smale condition. Therefore, for all 0 < ρ1 < ρ2

such that the closure of U(ρ2) does not contain critical circles of Eq|Ω other than
orb(γ), we have

µ(ρ1, ρ2) := inf
{
‖∇Eq|Ω(ζ)‖

∣∣ ζ ∈ U(ρ2) \ U(ρ1)
}
> 0.

If ζ ∈ U(ρ1) and t > 0 are such that φt(ζ) 6∈ U(ρ2), the curve φ[0,t](ζ) must cross
the shell U(ρ2) \ U(ρ1) of Riemannian width ρ2 − ρ1. Therefore, if we denote by
t′ ∈ (0, t) the supremum of the times s such that φs(ζ) ∈ U(ρ1), we have

Eq(ζ)− Eq(φt(ζ)) ≥ Eq(φt′(ζ))− Eq(φt(ζ))

=

∫ t

t′

∥∥∇Eq|Ω(φs(ζ))
∥∥ · ∥∥ d

dsφs(ζ)
∥∥ds

≥ (ρ2 − ρ1)µ(ρ1, ρ2).

(4.1)

We fix once for all two such values 0 < ρ1 < ρ2, and we require ρ2 to be small
enough such that U(ρ2) does not intersect the sublevel set {Eq|Ω < c−ε′′}, for some
ε′′ > 0. The open neighborhood U ′ of the lemma must be small enough so that it is
contained in U(ρ1) and disjoint from the sublevel set {Eq|Ω ≤ c−(ρ2−ρ1)µ(ρ1, ρ2)}.
Given ε′ > 0, we set

ν := inf
{
‖∇Eq|Ω(ζ)‖

∣∣ ζ ∈ U(ρ2) ∩ {Eq|Ω ≤ c− ε′}
}
> 0,

τ := ε′′/ν2.
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Let us prove point (i) of the lemma: we claim that, for every ζ ∈ U ′∩{Eq|Ω ≤ c−ε′}
and t ≥ τ , we have that φt(ζ) 6∈ U ′. Indeed, the curve φ[0,t](ζ) cannot be entirely
contained in U(ρ2), since otherwise

Eq(φt(ζ)) = Eq(ζ)−
∫ t

0

∥∥∇Eq|Ω(φs(ζ))
∥∥2

ds

< c− τ ν2

= c− ε′′.

Hence, by the energy estimate in (4.1), we have

Eq(φt(ζ)) ≤ Eq(ζ)− (ρ2 − ρ1)µ(ρ1, ρ2) < c− (ρ2 − ρ1)µ(ρ1, ρ2),

which proves our claim.
Now, we choose a radius r2 > 0 small enough so that U(r2) ⊂ U ′, and we set

ε := µ(r2/2, r2)r2/4. We also choose a radius r1 ∈ (0, r2/2) small enough so that

U := U(r1) ⊂ {Eq|Ω < c+ ε}.

Let ζ ∈ U be a point such that φt(ζ) 6∈ U ′ for some t > 0. In particular, Eq(ζ) < c+ε
and the estimate (4.1) implies

Eq(ζ)− Eq(φt(ζ)) ≥ µ(r2/2, r2) r2/2 = 2ε.

This proves point (ii). �

4.3. Reference simplexes. In this section, we will also need to consider the real
number q′ = q′i ∈ [0, q) given by Lemma 2.2. We fix, once for all, an energy bound
b > c = Eq(γ) and a vector τ = (τ0, ..., τk) ∈ Rk+1 such that 0 = τ0 < τ1 <
... < τk = q, τk′ = q′ for some k′ ∈ {0, ..., k − 1}, and the inequality (3.1) is
satisfied. With the notation of Section 3, we consider the space of broken geodesics
Υ associated to τ , and the energy functions F q and F q

′
. We will also consider the

polydiscs defined in Section 3.3, whose radii are smaller than or equal to R.
We fix an arbitrarily small ε > 0. Since the sublevel set {F q ≤ b} is compact,

the functions F q and F q
′

are uniformly equicontinuous on this set. Namely, there
exists δ ∈ (0, R] such that

max
{
F q(ζ0)− F q(ζ1), F q

′
(ζ0)− F q

′
(ζ1)

}
< ε,

∀ζ0, ζ1 ∈ {F q ≤ b} with distΥ(ζ0, ζ1) < δ.
(4.2)

We denote by Υ′′ the union of those connected components of Υ intersecting the
sublevel set {F q < c}. We can find a finite subset Σ0 = {σ1, ..., σh} ⊂ {F q ≤ b}∩Υ′′

that is δ/5-dense in the sublevel set, that is,

{F q ≤ b} ∩Υ′′ ⊂
⋃
σ∈Σ0

W (σ, δ/5). (4.3)

Notice that, since δ < R, the union of the polydiscs W (σ, δ/5) is relatively compact
in Υ. For each pair of (not necessarily distinct) σi, σj ∈ Σ0 such that distΥ(σi, σj) <
δ, we denote by σij : [0, 1] → Υ the 1-simplex given by the minimal geodesic of Υ
joining σi and σj . We denote by Σ1 the finite collection of all these 1-simplexes. We
now inductively define the finite collections Σd for increasing values of d, starting
for d = 2. Given (not necessarily pairwise distinct) σi0 , ..., σid ∈ Σ0 such that
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distΥ(σij , σil) < δ for all j, l = 0, ..., d, we define σi0...id : ∆d → Υ to be the
d-simplex whose j-th face is the (d− 1)-simplex

σi0...îj ...id ∈ Σd−1,

and whose interior is defined as follows: we see the standard d-simplex

∆d =
{
x ∈ [0, 1]d

∣∣ ∑
i xi ≤ 1

}
as a union of affine curves of slope (1, ..., 1) ∈ Rd, so that each x ∈ ∆d belongs
to the curve joining the points α(x), ω(x) ∈ ∂∆d, and the maps α : ∆d → ∂∆d

and ω : ∆d → ∂∆d are continuous; we define the restriction of σi0...id to the curve
passing through x ∈ ∆d as the geodesic of Υ joining σi0...id(α(x)) and σi0...id(ω(x)).
Notice that, by the geodesic convexity of polydiscs of radius less than or equal to
R, every d-simplex σi0...id ∈ Σd is entirely contained in the polydisc of radius δ
centered at any of its 0-faces.

4.4. Bangert’s homotopies. For all m ∈M, the space of broken geodesics Υ can be
seen as a submanifold of Λmp+1(M ; I) via the embedding ωm : Υ ↪→ Λmp+1(M ; I)
defined in Section 3.4. In this section, we will further need to assume that our I-
invariant geodesic γ is not a global minimum of the energy Eq|Ω inside its connected
component of Ω. Since the homotopy rs of equation (3.4) decreases the energy
and, in particular, its time-1 map satisfies (3.7), the element r1(γ) is not a global

minimum of F q, nor of F q
′

if q′ > 0, in its connected component of Υ. By modifying
an argument due to Bangert and Klingenberg [BK83, Thm. 2] we will show that,
if m is large, the images of the simplexes constructed in the previous section under
the map ωm can be pushed, in a suitable way, below the critical level c.

The main ingredient for such statement is Bangert’s well known technique of
“pulling one loop at the time”. Given any continuous map θ0 : ∆j → Λq(M ; id) ⊂
Λmq(M ; id), we can deform it with a homotopy θs : ∆j → Λmq(M ; id), s ∈ [0, 1],
such that

• θs|∂∆j = θ0|∂∆j ,

• θs(x)(0) = θ0(ys(x))(0) for a suitable continuous homotopy ys : ∆j → ∆j

such that y0 = id,

• Emq ◦ θ1 ≤ max{Eq(θ0(x)) |x ∈ ∂∆j} + const/m, where const ≥ 0 is a
quantity depending only on θ0 (in particular, independent of m).

The proof of this fact is outlined with our notation and for j = 1 in [Maz14,
Sect. 3.2], see in particular Figure 1 therein. The case j > 1 is not harder: it
suffices to see the j-simplex as a smooth family of 1-simplexes, and apply to each
of them the construction. In the following, we will refer to homotopies of this kind
as to Bangert’s homotopies.

Lemma 4.3. For every sufficiently large integer m ∈ M we can associate to each
j-simplex σ ∈ Σ0 ∪ ... ∪ Σd a homotopy

hσ : [0, 1]×∆j → Λmp+1(M ; I) (4.4)

with the following properties:

(i) hσ(0, ·) = ωm ◦ σ,

(ii) if σ is contained in {F q < c}, then hσ(s, ·) = ωm ◦ σ for all s ∈ [0, 1],
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(iii) hσ(s, Fl(·)) = hσ◦Fl(s, ·) for all l = 0, ..., j, where Fl : ∆j−1 → ∂∆j is the
affine map onto the l-th face of ∆j ,

(iv) hσ(1, ·) is mapped in {Emp+1 < c}.

Proof. The proof is essentially the same as the one of [Maz14, Lemma 3.3]. Since
there are some technical differences in the setting and in the statement, we provide
the complete argument for the reader’s convenience.

We define the embedding

ψ : Υ ↪→ Λq(M ; id)

in the obvious way: for all ζ ∈ Υ, the image ψ(ζ) is the unique q-periodic curve
whose restriction to the interval [0, q] is precisely equal to ζ. Notice that, by the
definition of Υ, we have that

ψ(ζ)(mp+ 1) = ψ(ζ)(q′) = I(ψ(ζ)(0)),

and indeed ψ(ζ)|[0,mp+1] = ωm(ζ)|[0,mp+1].
Let us construct the homotopies of the lemma, beginning with the 0-simplexes

σ ∈ Σ0. Since F q(r1(γ)) = Eq(γ) = c and r1(γ) is not a global minimum of F q

in its connected component of Υ, there exists a continuous path s 7→ σs ∈ Υ such
that σ0 = σ and F q(σ1) < c. If F q(σ) < c and F q

′
(σ) < c we choose this path to

be the stationary one σs ≡ σ. We define a map

h′σ : [0, 1]×∆0 = [0, 1]→ Λq(M ; id)

by

h′σ(s) =

{
ψ(σ(d+1)s), if s ∈ [0, 1/(d+ 1)],
ψ(σ1) if s ∈ [1/(d+ 1), 1].

Notice that
Eq(h′σ(s)) = F q(σ1) < c, ∀s ∈

[
1
d+1 , 1

]
.

We also set m0 := 1.
We proceed to construct homotopies for the higher dimensional simplexes itera-

tively in the degree j, from j = 1 upward. We consider a large enough integer mj

that is divisible by mj−1, so that Λmj−1q(M ; id) ⊂ Λmjq(M ; id). The precise value
of mj will be fixed in a moment. Consider σ ∈ Σj . We construct the maps

h′σ : [0, 1]×∆j → Λmjq(M ; id)

yσ : [0, 1]×∆j → ∆j

as follows. We set h′σ(0, ·) := ψ ◦ σ and yσ(0, ·) := id. For all l = 0, ..., j and
s ∈ [0, 1], we set h′σ(s, Fl(·)) := h′σ◦Fl(s, ·) and yσ(s, Fl(·)) := yσ◦Fl(s, ·), where the
maps h′σ◦Fl and yσ◦Fl were defined in the previous step of the iterative procedure.

Up to now, we have defined the maps h′σ and yσ on ({0}×∆j)∪ ([0, 1]×∂∆j). The
previous step of this iterative procedure was carried out in such a way that

h′σ(s, ·)|∂∆j = h′σ( j
d+1 , ·)|∂∆j , ∀s ∈

[
j
d+1 , 1

]
,

and

max
{
Emj−1q(h′σ( j

d+1 , x)) |x ∈ ∂∆j
}
< c. (4.5)

We choose a retraction

πj : [0, j]×∆j → ({0} ×∆j) ∪ ([0, j]× ∂∆j),
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and we set

h′σ(s, x) := h′σ(s, πj(x)), yσ(s, x) := yσ(s, πj(x)),

∀[0, j]×∆j .

Finally, we define the homotopies s 7→ h′σ(s, ·) and s 7→ yσ(s, ·), for s ∈
[

j
d+1 ,

j+1
d+1

]
,

by means of a Bangert homotopy associated to the j-simplex

h′σ( j
d+1 , ·) : ∆j → Λmj−1q,

and we extend them constantly for s ∈
[
j+1
d+1 , 1

]
. Summing up, we have constructed

the maps h′σ and yσ such that

(i’) h′σ(0, ·) = ψ ◦ σ,

(ii’) h′σ(s, Fl(·)) = h′σ◦Fl(s, ·) for all l = 0, ..., j,

(iii’) h′σ(s, ·) = h′σ( j+1
d+1 , ·) for all s ∈

[
j+1
d+1 , 1

]
,

(iv’) Emjq(h′σ( j+1
d+1 , ·)) ≤ max{Emj−1q(h′σ( j

d+1 , x)) |x ∈ ∂∆j}+ const
mj/mj−1

, where

const ≥ 0 is a quantity depending only on σ,

(v’) h′σ(s, x)(0) = σ(yσ(s, x))(0).

We choose mj large enough so that, by (iii’), (iv’), and (4.5), we have

Emjq(h′σ(s, ·)) < c, ∀s ∈
[
j+1
d+1 , 1

]
. (4.6)

If σ is mapped inside the sublevel set {F q < c}, then we define the above maps
simply by h′σ(s, x) := σ(x) and yσ(s, x) := x, and notice that conditions (i’–v’) are
still verified.

Now, consider an integer m ∈ M, that we will require to be large enough in a
moment. We set m′ :=

⌊
mp+1
mdq

⌋
and q′′ := mp+ 1−m′mdq ∈ [0,mdq), so that

mp+ 1 = m′mdq + q′′.

Notice that, by Lemma 2.2(iv),

q′′ ≡ q′ mod q.

For all σ ∈ Σ0 ∪ ... ∪ Σd, we define the homotopy hσ of the lemma by

hσ(s, x)(t) :=

{
h′σ(s, x)(t), if t ∈ [0,m′mdq] ,
ψ ◦ σ(yσ(s, x))(t−m′mdq) if t ∈ [m′mdq,mp+ 1] .

Notice that

hσ(s, x)(mp+ 1) = ψ ◦ σ(yσ(s, x))(q′′)

= σ(yσ(s, x))(q′)

= I(σ(yσ(s, x))(0))

= I(h′σ(s, x)(0))

= I(hσ(s, x)(0)).
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Therefore, hσ is a well defined map of the form (4.4). Properties (i–iii) readily
follow from its construction. As for property (iv), we have

Emp+1(hσ(1, x)) =
1

mp+ 1

(
m′mdqE

mdq(h′σ(1, x))

+ bq′′/qcqF q(σ(yσ(1, x)))

+ q′F q
′
(σ(yσ(1, x)))

)
= Emdq(h′σ(1, x)) +

c′

mp+ 1
,

where

c′ := bq′′/qcqF q(σ(yσ(1, x))) + q′F q
′
(σ(yσ(1, x)))− q′′Emdq(h′σ(1, x))

<mdqmax{F q ◦ σ}+ q′max{F q
′
◦ σ}.

Notice that the quantity c′ is uniformly bounded independently of m ∈ M. Since
Emdq(h′σ(s, x)) < c, if m ∈M is large enough we have Emp+1(hσ(1, x)) < c, which
proves property (iv). �

4.5. The case of zero mean index. For every integer m ∈ M, Lemma 2.2(iii) im-
plies that nul(Eq|Ω, γ) = nul(Emp+1, γ), and, by our assumption, ind(Eq|Ω, γ) =
ind(Emp+1, γ) = 0. Let U ′ ⊂ Ω be a small enough open neighborhood of orb(γ)
such that Lemma 4.2 applies to it, and, for some h > 0 and for all ζ ∈ U ′ and
vector fields ξ ∈ TζΛ

mp+1(M ; I) orthogonal to Ω, we have

HessEmp+1(ζ)[ξ, ξ] ≥ h‖ξ‖2ζ . (4.7)

Here, the norm on the right hand side is the one induced by the Riemannian metric
on the Hilbert manifold Λmp+1(M ; I). Lemma 4.2 gives us a quantity ε > 0 and
a smaller open set U of orb(γ) whose closure is contained in U ′ satisfying the
properties stated there. Within the proof of Lemma 4.4, we will also need to fix
δ > 0 small enough so that (4.2) holds, and we will consider the δ/5-dense reference
simplexes built in Section 4.3.

Let Um ⊂ Λmp+1(M ; I) be a small tubular neighborhood of U , which is diffeo-
morphic to an open neighborhood of the zero-section in the normal bundle of U .
Consider the associated radial deformation retraction

fs : Um → Um, (4.8)

which satisfies f0 = id and f1(Um) = U . Since, by Lemma 2.2(i), the gradient
of ∇Emp+1 is tangent to Ω along Ω, the restriction of the energy Emp+1 to a
fiber of f1 has a critical point at the intersection of the fiber with Ω. By the
convexity (4.7), this critical point is a strict minimum. In particular, if the tubular
neighborhood Um is sufficiently small, the deformation fs does not increase the
energy, i.e. d

dsE
mp+1 ◦ fs ≤ 0.

Lemma 4.4. Let γ ∈ crit(E) be an isolated I-invariant geodesic that is periodic with
minimal period p ≥ 1, having energy c := E(γ), and satisfying ind(Emp+1, γ) = 0
for all m ∈ N. Fix a degree d ≥ 1. For all m ∈ N large enough and for all sufficiently
small neighborhoods V ⊂ Λmp+1(M ; I) of orb(γ) the following holds: given any
compact domain K ⊂ Rd and any continuous map u : K → {Emp+1 < c} ∪ V such
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that u(∂K) ∩ V = ∅, there exists a homotopy us : K → Λmp+1(M ; I) such that
u0 = u, u1(K) ⊂ {Emp+1 < c}, and us ≡ u outside u−1(V ) for all s ∈ [0, 1].

Proof. Consider one of the infinite subsets M of the partition M1 ∪ ... ∪Mn given
by Lemma 2.2. We prove the lemma for any m ∈ M large enough so that the
homotopies of Lemma 4.3 exist.

The neighborhood V ⊂ Λmp+1(M ; I) of the critical circle orb(γ) must be small
enough so that it is contained into the neighborhood Um constructed above. Let
V ′′ b V ′ b V be slightly smaller neighborhoods of orb(γ) in Λmp+1(M ; I) such
that u(K) \ V ′′ ⊂ {Emp+1 < c}. Here, the symbol b means that the closure of the
former set in contained in the latter set. Fix ε′ > 0 small enough so that

u(K) \ V ′′ ⊂ {Emp+1 ≤ c− ε′}. (4.9)

We set A′′ := u−1(V ′′), A′ := u−1(V ′) and A := u−1(V ). Since u(∂K) ∩ V = ∅,
we have that

A′′ b A′ b A.

Moreover, (4.9) can be rewritten as u(K \ A′′) ⊂ {Emp+1 ≤ c− ε′}. We introduce
two bump functions: a smooth function χ′ : K → [0, 1] that is identically equal to
1 on A′ and has support inside A, and a smooth function χ′′ : K → [0, 1] that is
identically equal to 1 on A′′ and has support inside A′.

Consider the deformation retraction fs of equation (4.8). We replace our u of
the statement with x 7→ fχ′(x) ◦u(x), so that u(A′) ⊂ U ⊂ Ω. We denote by φs the

anti-gradient flow of Emp+1, and we recall that, by Lemma 2.2(i), Ω is invariant by
this flow. By (4.9) we have that

u(∂A′′) ⊂ {Emp+1|Ω < c− ε′}.
By Lemma 4.2, there exists τ > 0 large enough so that φτ (u(∂A′′)) ∩ U ′ = ∅ and

φτ (u(A′′)) \ U ′ ⊂ {Emp+1 < c− ε}.
We replace u with x 7→ φτχ′′(x) ◦ u(x).

Summing up, we have deformed u by means of a homotopy supported inside A
to a new map, which we still denote by u, satisfying

u(K \A′′) ⊂ {Emp+1 < c},
u(A′) ⊂ Ω,

u(∂A′′) ∩ U ′ = ∅,
u(A′′) \ U ′ ⊂ {Emp+1 < c− ε}. (4.10)

Now, we make a partition

A′′ = C ∪D
in two regions: the open shell C := A′′ \ u−1(U ′), and the compact subset D :=
A′′ \ C. Consider the homotopy rs of equation (3.4). We further replace u with
x 7→ rχ′′(x) ◦ u(x), so that, by (3.6), we have that u(A′′) ⊂ ωm(Υ). Since ωm is an
embedding, there exists a unique continuous map v : A′′ → Υ such that

u|A′′ = ωm ◦ v.
Equations (4.10) and (3.7) imply

v(C) ⊂ {F q < c− ε} ∩ {F q
′
< c− ε}. (4.11)
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Now, consider the simplexes in Σ1, ...,Σd constructed in Section 4.3. We intro-
duce a sufficiently fine triangulation of a compact neighborhood Σ′ ⊂ A′′ of D, so
that the image of every simplex under v is contained in a polydisc of Υ of diameter
δ/5 (see Section 3.3). Up to further reducing the size of all simplexes by applying
finitely many barycentric subdivisions to Σ′, we can assume that the subset Σ′′

given by all the simplexes intersecting D is contained in the interior of Σ′. We
denote by Σ′j , for j = 0, ..., d, the collection of j-dimensional faces of the simplexes
in Σ′. We choose a map ι0 : Σ′0 → Σ0 such that dist(v(σ), ι0(σ)) < δ/5 for all
σ ∈ Σ′0. The existence of such a map is guaranteed by equation (4.3). We define
maps ιj : Σ′j → Σj in a compatible way: given a j-simplex σ ∈ Σ′j whose ordered
set of 0-faces is σ0, ..., σj ∈ Σ′0, its image ιj(σ) is the (unique) simplex in Σj whose
ordered set of 0-faces is ι0(σ0), ..., ι0(σj) ∈ Σ0. Notice that such a ιj(σ) exists, since

distΥ(ι0(σh), ι0(σl)) ≤ distΥ(ι0(σh), v(σh))

+ distΥ(v(σh), v(σl))

+ distΥ(v(σl), ι0(σl))

< 1
5δ + 1

5δ + 1
5δ

= 3
5δ.

In particular, the 0-faces ι0(σ1), ..., ι0(σj) are contained in W (ι0(σ0), 3
5δ). Since this

polydisc is geodesically convex, the whole simplex ιj(σ) is contained inW (ι0(σ0), 3
5δ).

The C0-distance between the simplexes v ◦ σ and ιj(σ) can be estimated as

distΥ(v(σ(x)), ιj(σ)(x)) ≤distΥ(v(σ(x)), v(σ0))

+ distΥ(v(σ0), ι0(σ0))

+ distΥ(ι0(σ0), ιj(σ)(x))

< 1
5δ + 1

5δ + 3
5δ

= δ.

(4.12)

We define a homotopy hs : Σ′ → Υ simplex by simplex as follows. Consider
any d-simplex σ : ∆d → Σ′ belonging to Σ′d, and any point x ∈ ∆d. We set
s 7→ hs(σ(x)) to be the unique minimal geodesic of Υ joining h0(σ(x)) = v(σ(x))
and h1(σ(x)) = ιd(σ)(x). Let χ : A′′ → [0, 1] be a smooth bump function that is
identically 1 on Σ′′ and is supported inside Σ′. We define a homotopy vs : A′′ → Υ
by

vs(x) := hsχ(x)(x),

so that v0 = v, vs|Σ′′ = hs|Σ′′ , and vs is identically equal to v outside Σ′. Notice
that, by the very construction of it, the homotopy vs still satisfies the same estimate
as in (4.12), i.e.

distΥ(vs(σ(x)), ιj(σ)(x)) < δ.

This, together with (4.11) and the uniform equicontinuity (4.2), implies that

vs(A
′′ \ Σ′′) ⊂ vs(C) ⊂ {F q < c} ∩ {F q

′
< c}. (4.13)

By equation (3.3), we have

ωm ◦ vs(C) ⊂ {Emp+1 < c}.

Now, we apply Lemma 4.3: for every σ ∈ Σ′d we obtain a Bangert homotopy
hv1(σ) with the properties (i–iv) given there. Notice that, by property (iii), these
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homotopies coincide on common faces of simplexes in Σ′. Moreover, by (4.13) and
property (ii), for every σ ∈ Σ′d \ Σ′′d the homotopy hv1(σ) is identically equal to
ωm ◦ v1 ◦ σ. By patching together the homotopies hv1(σ), we can build a homotopy

ws : A′′ → Λmp+1(M ; I), s ∈ [0, 1],

so that w0 = ωm ◦ v1, ws is identically equal to ωm ◦ v1 outside Σ′′, and

w1(A′′) ⊂ {Emp+1 < c}.

Finally, we construct the homotopy us of the lemma as

us(x) :=


u(x), if x ∈ K \A′′,
ωm ◦ v2s(x), if x ∈ A′′, s ∈

[
0, 1

2

]
,

w2s−1(x) if x ∈ A′′, s ∈
[

1
2 , 1
]
.

�

4.6. The case of positive mean index. Let now γ be an I-invariant geodesic exactly
as in the previous sections, except that it has positive mean index, meaning that
ind(E, γmp+1) is not zero for some m ∈ N. Grove and Tanaka’s Lemma 2.1 implies
that such index tends to infinity as m→∞. In this case, the assertion of Lemma 4.1
becomes a consequence of a general result from non-linear analysis (see e.g. [Cha93,
Thm. 2.1 on page 92] for a similar statement in the isolated critical point case).
We provide the proof in our setting of isometry-invariant geodesics, but the reader
can easily extract an abstract statement that works with smooth functions having
isolated critical circles.

Lemma 4.5. Let V ⊂ Λ(M ; I) be a sufficiently small neighborhood of an isolated
critical circle orb(γ) ⊂ crit(E). Consider a degree d such that 1 ≤ d < ind(E, γ),
a compact domain K ⊂ Rd, and a continuous map u : K → {E < E(γ)} ∪ V such
that u(∂K)∩V = ∅. There exists a homotopy us : K → Λ(M ; I) such that u0 = u,
u1(K) ⊂ {E < E(γ)}, and us ≡ u outside u−1(V ) for all s ∈ [0, 1].

Proof. The normal bundle of the critical circle orb(γ) ⊂ Λ(M ; I) splits as the
Whitney sum

N(orb(γ)) = N0 ⊕N+ ⊕N−,
where the fibers of N0 are the intersection of null-space of the Hessian of E with
the normal bundle N(orb(γ)), while the fibers of N+ and N− are the negative and
positive eigenspaces respectively of the Hessian of E. Let

π : N(orb(γ))→ orb(γ) ' S1

be the projection of the normal bundle onto the base. Let V 0
R ⊂ N0, V +

R ⊂ N+,

and V −R ⊂ N− be the open neighborhoods of the 0-section of radius R > 0. We
choose R sufficiently small so that, by means of the exponential map of Λ(M ; I),
we can identify V 0

R ⊕ V
+
R ⊕ V

−
R with an open neighborhood of the critical circle

orb(γ), and moreover there exists δ > 0 such that

∂2
x−x−E(x0, x+, x−)[v, v] < − δ2‖v‖

2
π(x),

∀x = (x0, x+, x−) ∈ V 0
R ⊕ V +

R ⊕ V
−
R , v ∈ π|

−1
N−(π(x)).

(4.14)

Here, the norm on the bundle N− is the one associated with the Riemannian metric
of Λ(M ; I). By the implicit function theorem, there exists r ∈ (0, R/2) and a bundle
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map

φ : V 0
r ⊕ V +

r → V −R/2

such that, for each (x0, x+, x−) ∈ V 0
r ⊕V +

r ⊕V −R/2, we have ∂x−E(x0, x+, x−) = 0 if

and only if x− = φ(x0, x+). We use φ to define the diffeomorphism onto its image

Φ : V 0
r ⊕ V +

r ⊕ V −R/2 → V 0
r ⊕ V +

r ⊕ V −R
given by Φ(x0, x+, φ(x0, x+)+x−). From now on, we will replace the energy function
E by the composition E ◦ Φ, so that ∂x−E(x0, x+, x−) = 0 if and only if x− = 0.
By equation (4.14) we have

E(x0, x+, x−) ≤ E(x0, x+, 0)− δ ‖x−‖2π(x),

∀x = (x0, x+, x−) ∈ V 0
r ⊕ V +

r ⊕ V −R/2.
(4.15)

Let ηs : V −R/2 \ {0-section} → V −R/2 \ {0-section}, for s ∈ [0, 1], be the radial defor-

mation

ηs(x
−) =

(
(1− s) + s

R

2‖x−‖π(0,0,x−)

)
x−,

whose time-1 map η1 is the radial retraction onto ∂V −R/2. Since x− 7→ E(x0, x+, x−)

is a fiberwise strictly concave function, it decreases along the deformation ηs, i.e.

d
dsE(x0, x+, ηs(x

−)) < 0.

Now, let ρ ∈ (0, r/2) be so small that

sup
V 0
ρ ⊕V

−
ρ ⊕V +

ρ

E < E(γ) + δR/2. (4.16)

We require the neighborhood V of the statement to be small enough so that

V ⊂ V 0
ρ/2 ⊕ V

−
ρ/2 ⊕ V

+
ρ/2.

Let u : K → {E < E(γ)} ∪ V be a continuous map such that u(∂K) ∩ V = ∅.
We consider the open set A := u−1(V ). Notice that there exists a compact subset
K ′ ⊂ A and a quantity ε > 0 such that u(K \K ′) ⊂ {E < E(γ) − ε}. Therefore,
for our purpose, we only need to focus on the restriction

u|A = (u0, u+, u−) : A→ V.

By our assumption, the degree d = dim(K) is smaller than the Morse index
ind(E, γ), which is the rank of the bundle N−. Therefore, by the transversality
theorem, we can perturb the map u− inside a compact subset of A in order to
obtain that u−(K ′) does not intersect the 0-section of N−. The perturbation can
be chosen arbitrarily small in the C0-topology, and in particular so small that the
perturbed u still maps the complement of K ′ to the sublevel set {E < E(γ)}, and
A to the set V 0

ρ ⊕ V +
ρ ⊕ V −ρ .

Let χ : K → [0, 1] be a smooth map that is identically 1 on K ′ and has support
inside A. The desired homotopy us : K → Λ(M ; I) will be given by

us(z) := (u0(z), u+(z), ηχ(z)s ◦ u−(z)), ∀z ∈ A.

Indeed, us is stationary on the complement of the compact subset supp(χ) ⊂ A, it
does not increase the energy, i.e.

d
dsE(us(z)) ≤ 0,
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and, by equations (4.15) and (4.16), its time-1 map u1 satisfies

E(u1(z)) ≤ E(u(z))− δR/2 < E(γ), ∀z ∈ K ′. �

5. The homotopic multiplicity result

Let (M, g) be a non-simply connected closed Riemannian manifold. Each con-
nected component of its free loop space Λ(M ; id) is not simply connected. Indeed,
the fundamental group of M injects into the fundamental group of the connected
components of Λ(M ; id) of the contractible loops; moreover, given any element
γ ∈ Λ(M ; id), its orbit under the circle action t · γ = γ(t+ ·) is a contractible loop
in Λ(M ; id) if and only if γ itself is a contractible loop in M .

Let I be an isometry of (M, g). If I is homotopic to the identity (not necessarily
through isometries), the space of I-invariant curves Λ(M ; I) is homotopy equivalent
to the free loop space Λ(M ; id), see [Gro73, Lemma 3.6]. Therefore, all the con-
nected components of Λ(M ; I) are not simply connected. If M were the circle, all
connected components of Λ(M ; I) would be homotopy equivalent to the circle. Ob-
viously, in this case, there is only one I-invariant geodesic: the circle M itself. The
next theorem, which is the main result of this paper, asserts that there are infinitely
many isometry-invariant geodesics whenever the homotopy groups of Λ(M ; I) are
richer than in the example of the circle.

Theorem 5.1. Let (M, g) be a connected closed Riemannian manifold equipped with
an isometry I. Assume that there exists a degree d ≥ 1 and an infinite sequence
of pairwise distinct connected components Cn ⊂ Λ(M ; I), for n ∈ N, with non-
trivial homotopy group πd(Cn). If d = 1, assume further that these fundamental
groups are not cyclic. Then, there exist infinitely many I-invariant geodesics in
C := ∪n∈NCn.

Proof. Since we are looking for infinitely many I-invariant geodesics in C, we can
assume that the critical circles of E|C are isolated. In particular, all I-invariant
geodesics contained in C must be periodic curves. We choose as base-point of Cn
an I-invariant geodesic αn whose critical circle is a global minimum of E in the
connected component. In general we cannot expect the family of the αn’s to give
infinitely many I-invariant geodesics: for instance, in the worst case scenario, α1

may be an I-invariant geodesic that is periodic with minimal period q ≥ 1, and
each αn may be of the form αnq+1

1 .
We will prove the theorem by contradiction: we assume that C contains only

the I-invariant geodesics γ1, ..., γr (together with infinitely many of their “iterates”).
For each of these γi’s, we denote by pi ≥ 1 its minimal period, and by mi the integer
such that for all m ≥ mi the assertion of Lemma 4.1 holds. If n is large enough,
say n ≥ n, an iterated I-invariant geodesic γmpi+1

i belongs to Cn only if m ≥ mi.
We fix n ≥ n and a non-trivial homotopy class hn ∈ πd(Cn, αn). If d = 1, we

assumed that πd(Cn, αn) is not cyclic, and therefore we can choose hn that is not
represented by a multiple of the critical circle orb(αm). The representatives of hn
are maps of the form u : (Bd, ∂Bd)→ (Cn, αn). Notice that every such map cannot
have image entirely contained in a small tubular neighborhood N ⊂ Cn of orb(αn).
Otherwise, the map u could be deformed inside orb(αn), which would force d = 1
and hn to be represented by a multiple of the critical circle orb(αn). Since orb(αn)
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is a strict local minimum of the energy E, we have

c := inf
[u]=hn

max
x∈Bd

E(u(x)) > E(αn). (5.1)

By Morse theory, c is a critical value of E|Cn . The assumption made in the previous

paragraph implies that every critical circle in Cn at level c is of the form γmipi+1
i ,

where γi ∈ {γ1, ..., γr} and mi ≥ mi. We denote by Vi ⊂ Cn a sufficiently small

neighborhood of the critical circle orb(γmipi+1
i ) that does not contain other critical

circles of E, and by V the (disjoint) union of the these neighborhoods for all the
critical circles in Cn at level c. By Morse theory, we can find a representative
u : (Bd, ∂Bd) → (Cn, αn) of hn such that u(Bd) ⊂ {E < c} ∪ V . By Lemma 4.1,
there exists a homotopy us : (Bd, ∂Bd)→ (Cn, αn) such that u0 = u and u1(Bd) ⊂
{E < c}. This contradicts the definition of c in (5.1). �

Proof of Theorem 1.1. Let ev : Λ(M ; id)→M be the evaluation map ev(γ) = γ(0).
We fix a generator θ of the fundamental group π1(M) ' Z, and we denote by
Dn ⊂ Λ(M ; id) the connected component of the free loop space containing the
n-fold iteration of the curve θ. Since the closed manifold M is not a circle, it is
not homotopy equivalent to a circle. In particular, by Whitehead Theorem, M
must have a non-trivial homotopy group in some degree d ≥ 2. We fix d to be
a minimal such degree. Bangert and Hingston proved in [BH84] that there exists
k ∈ N and, for all n ∈ N, a non-trivial homotopy class hn ∈ πd−1(Dkn) such
that ev∗(hn) = 0. As we have already remarked at the beginning of this section,
all connected components Dn are not simply connected, and the evaluation map
induces a surjective homomorphism ev∗ : π1(Dn)→ π1(M) for all n > 0. Therefore,
if the above degree d is equal to 2, Bangert and Hingston’s result implies that, for
all n > 0, the fundamental group πd−1(Dkn) is not cyclic.

Now, let I be an isometry that is homotopic to the identity. We already recalled
that there exists a homotopy equivalence ι : Λ(M ; id) → Λ(M ; I). We denote
by Cn ⊂ Λ(M ; I) the connected component containing ι(Dn). Notice that these
connected components are pairwise distinct, and they have the same homotopy
groups as the corresponding Dn’s. Therefore, the sequence Ckn, for n ∈ N, satisfies
the assumptions of Theorem 5.1, which implies that the union C := ∪n∈NCkn
contains infinitely many I-invariant geodesics. �
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