
HAL Id: ensl-01527202
https://ens-lyon.hal.science/ensl-01527202v1

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Classical Relative Error Bounds for Computing√
(a2 + b2) and c/

√
(a2 + b2) in Binary Floating-Point

Arithmetic are Asymptotically Optimal
Claude-Pierre Jeannerod, Jean-Michel Muller, Antoine Plet

To cite this version:
Claude-Pierre Jeannerod, Jean-Michel Muller, Antoine Plet. The Classical Relative Error Bounds
for Computing

√
(a2 + b2) and c/

√
(a2 + b2) in Binary Floating-Point Arithmetic are Asymptotically

Optimal. ARITH-24 2017 - 24th IEEE Symposium on Computer Arithmetic, Jul 2017, London,
United Kingdom. pp.8. �ensl-01527202�

https://ens-lyon.hal.science/ensl-01527202v1
https://hal.archives-ouvertes.fr

The Classical Relative Error Bounds for
Computing

√
a2 + b2 and c/

√
a2 + b2 in Binary

Floating-Point Arithmetic are Asymptotically
Optimal

Claude-Pierre Jeannerod∗, Jean-Michel Muller†, and Antoine Plet‡

∗Inria, †CNRS, ‡ENS de Lyon
Université de Lyon – Laboratoire LIP (CNRS, Inria, ENS de Lyon, UCBL), Lyon, France

Abstract—We study the accuracy of classical algorithms for
evaluating expressions of the form

√
a2 + b2 and c/

√
a2 + b2

in radix-2, precision-p floating-point arithmetic, assuming
that the elementary arithmetic operations ±, ×, /,

√
are

rounded to nearest, and assuming an unbounded exponent
range.

Classical analyses show that the relative error is bounded
by 2u+O(u2) for

√
a2 + b2, and by 3u+O(u2) for c/

√
a2 + b2,

where u = 2−p is the unit roundoff. Recently, it was
observed that for

√
a2 + b2 the O(u2) term is in fact not

needed [1]. We show here that it is not needed either for
c/
√
a2 + b2. Furthermore, we show that these error bounds

are asymptotically optimal. Finally, we show that both the
bounds and their asymptotic optimality remain valid when
an FMA instruction is used to evaluate a2 + b2.

Index Terms—binary floating-point arithmetic; rounding
error analysis; relative error; hypotenuse function

I. INTRODUCTION

Expressions of the form
√
a2 + b2 and c/

√
a2 + b2

are basic building blocks of numerical computing that
frequently appear in calculations (computation of 2D-
norms, Givens rotations, etc.). In this paper, we give tight
error bounds for the evaluation of these expressions.

In the following, we assume a radix-2, precision-p
floating-point (FP) arithmetic, with unlimited exponent
range. (Hence in practice all our results apply to IEEE
floating-point arithmetic [2] as long as underflow and
overflow do not occur). Here, an FP number of exponent
e and integral significand M is a number of the form
M ·2e−p+1, where M and e are integers, and |M | 6 2p−1.

Throughout the paper, RN(t) means t rounded to a
nearest FP number, ties-to-even (so that, for example,
RN(a2) is the result of the floating-point multiplication
a*a, assuming the round-to-nearest mode), RD(t) is t
rounded towards −∞, and u = 2−p denotes the unit
roundoff. We have in particular the following relative
error bounds: RN(t) = t(1 + ε) with |ε| 6 u

1+u < u, and
RD(t) = t(1 + ε′) with |ε′| < 2u; see [3], [4].

It is well known (see for example [5]) that the rela-
tive errors of the classical algorithms for

√
a2 + b2 and

c/
√
a2 + b2 can be bounded by 2u+O(u2) and 3u+O(u2),

respectively, as u→ 0. We consider algorithms that only
use floating-point addition, multiplication, and square
root, as well as algorithms that take advantage of the
possible availability of a fused multiply-add (FMA) in-
struction to speed up the calculation of a2 + b2.

Recently, it was shown in [1] that the O(u2) term is not
needed for

√
a2 + b2 (that is, the relative error is always

bounded by 2u). In the following, we show that it is not
needed either for c/

√
a2 + b2. Furthermore, we show that

these error bounds are asymptotically optimal, and that
such optimality results are not impacted by the use of
the FMA.

Let us clarify what we mean by “asymptotically opti-
mal.” When giving for some algorithm a relative error
bound that is a function B(p) of the precision p,

• if we can show that there exist some FP inputs
parameterized by p and for which the bound is
attained for every p > p0 (for a given p0 > 2), then
we say that the bound is optimal;

• if we can show that there exist some FP inputs
parameterized by p and for which the relative error
E(p) satisfies E(p)/B(p)→ 1 as p→∞, then we say
that the bound is asymptotically optimal.

Knowing that a bound is asymptotically optimal has
its importance: it shows that there is no need to try to
obtain a substantially better bound.

The paper is organized as follows. Section II deals with
the computation of

√
a2 + b2 by the classical method

(Algorithm 1) or its FMA-based variant (Algorithm 2).
We recall the relative error bound 2u from [1] and prove
its asymptotic optimality. In Section III, we bound by
3u the relative error of classical methods for c/

√
a2 + b2

(Algorithm 3 and, with an FMA, Algorithm 4), and show
that this bound is asymptotically optimal.

II. COMPUTATION OF
√
a2 + b2

A. Error bound
Given two FP numbers a and b, we consider the

evaluation of
√
a2 + b2 by means of one of the following

two algorithms (without or with an FMA):

Algorithm 1 Computation of
√
a2 + b2 in binary precision-p

floating-point arithmetic.

sa ← RN(a2)
sb ← RN(b2)
s← RN(sa + sb)
ρ← RN(

√
s)

return ρ

Algorithm 2 FMA-based computation of
√
a2 + b2 in binary

precision-p floating-point arithmetic.

sb ← RN(b2)
s← RN(a2 + sb)
ρ← RN(

√
s)

return ρ

As we shall see, these two algorithms have their
relative error bounded by 2u and this bound is asymp-
totically optimal. Incidentally, this means that both al-
gorithms are rather equivalent in terms of worst-case
error. This does not necessarily mean that they are
always equivalent: the result of Algorithm 2 tends to
be more often closer to the exact result than the result
of Algorithm 1. To compare both algorithms, we have
performed experiments in binary64 IEEE arithmetic and
obtained the following results.

For 1, 000, 000 randomly chosen pairs (a, b) of binary64
FP numbers with the same exponent:
• both algorithms yield the same error in 90.08% of

cases;
• Algorithm 2 is more accurate in 6.26% of cases;
• Algorithm 1 is more accurate in 3.65% of cases.
For 100, 000 randomly chosen pairs (a, b) of binary64

FP numbers with respective exponents ea and eb satisfy-
ing ea − eb = −26, we always have the same error with
both algorithms.

For 100, 000 randomly chosen pairs (a, b) of binary64
FP numbers with ea − eb = +26:
• both algorithms yield the same error in 83.90% of

cases;
• Algorithm 2 is more accurate in 13.79% of cases;
• Algorithm 1 is more accurate in 2.32% of cases.
Let us now focus on the bound on the relative error

of Algorithms 1 and 2. As said above, it is well known
that this relative error is upper bounded by 2u+O(u2).
Recently, the error analysis of the most common FP
operations was revisited in [1] and it was noted in
particular that the relative error of Algorithm 1 is at most

2u (that is, there is no O(u2) term). The proof from [1]
is easily adapted to Algorithm 2: the same bound holds
for that algorithm. In practice, this bound is tight. For
example, in IEEE binary64 arithmetic (p = 53), with
the two FP numbers a = 1723452922282957/264 and
b = 4503599674823629/252, Algorithms 1 and 2 return
the same result, which corresponds to a relative error of
the form 1.99999993022 . . . u.

B. Asymptotic optimality of the bound
As said above, what we are interested in is to show

that the bound 2u is asymptotically optimal. We establish
the following result.

Theorem II.1. For p > 12, there exist floating-point inputs
a and b for which the result ρ of Algorithm 1 or Algorithm 2
satisfies ∣∣∣∣∣ρ−

√
a2 + b2√

a2 + b2

∣∣∣∣∣ = 2u− ε, |ε| = O(u3/2).

Before giving the values a and b of Theorem II.1
and proving that they lead to an error asymptotically
equivalent to 2u, let us explain how they are built. We
mainly focus on Algorithm 1 (but we also give the details
specific to Algorithm 2):

1) We restrict to a and b such that 0 < a < b.
2) b is chosen such that the largest possible absolute

error (that is, half an ulp of b2) is committed when
computing b2. To make sure that this absolute
error leads to a relative error that is large enough
asymptotically (that is, of the order of u), b must
also be slightly above a power of 2. We choose
• b = 1 + 2−p/2 if p is even;
• b = 1 +

⌈√
2 · 2

p−3
2

⌉
· 2−p+1 if p is odd.

(Notice that although these choices of b seem very
different, they can be viewed as the same value
1 +

⌈
2p/2−1

⌉
· 2−p+1.)

3) In Algorithm 1, we have sa 6 sb since a < b.
When adding sa and sb, the significand of sa is
right-shifted by a number of positions equal to the
difference of their exponents. One can find the form
sa should have in order to produce a relative error
that is large enough; this is illustrated in Figure 1.

4) We just choose a equal to the square root of that
value, adequately rounded.

sb
sa

We would like this part
to maximize the error

of the computation of
√
s. We would like that part

to be of the form 01111 · · ·
or 10000 · · · to maximize the error

of the computation of s.

Fig. 1. Some objectives when constructing suitable generic
inputs to Algorithms 1 and 2.

1) If p is even: As said above, we choose

b = 1 + 2−p/2,

which due to the ties-to-even rule gives

sb = 1 + 21−p/2.

Note that sb is b2 rounded down. To force the rounding
errors to accumulate (and not compensate), we must
ensure that sa + sb and

√
s are rounded down as well.

Define

G =
⌈
2

p
2

(√
2− 1

)
+ δ
⌉
· 2

p
2+1 + 2

p
2

with

δ =

{
1 if

⌈
2

p
2

√
2
⌉
is odd,

2 otherwise,
(1)

and let
a = RD

(
2−

3p
4

√
G
)
.

By definition of RD, this implies that a2 satisfies

2−
3p
2 G

(
1− 2−p+1

)2
< a2 6 2−

3p
2 G.

Now, for p > 12, we have 2p−1 < G < 2p, from
which it follows that 2−

3p
2 G is an FP number and that

2−
3p
2 G

(
1− 2−p+1

)2 is lower bounded by 2−
3p
2 (G − 4),

which is also an FP number:

2−
3p
2 (G− 4) < a2 6 2−

3p
2 G. (2)

Using the monotonicity of RN, we deduce that the
variable sa = RN(a2) of Algorithm 1 satisfies

2−
3p
2 (G− 4) 6 sa 6 2−

3p
2 G.

This means that sa lies between the two FP numbers
whose binary expansions are as in Figures 2 and 3.

1101010 · · · 0

2−
p
2
−1 2−p+1

2−
3p
2

011111111111 · · · 1100

p
2
− 1 bits that represent

⌈
2

p
2

(√
2− 1

)
+ δ
⌉

p
2
+ 1 bits

Fig. 2. Bit pattern of the lower bound on sa.

1101010 · · · 0

2−
p
2
−1 2−p+1

2−
3p
2

100000000000 · · · 0000

p
2
− 1 bits that represent

⌈
2

p
2

(√
2− 1

)
+ δ
⌉

p
2
+ 1 bits

Fig. 3. Bit pattern of the upper bound on sa.

Note that the choice of δ in (1) implies that the bit
of sa of weight 2−p+1 is always zero. Hence, thanks to

1000000000 · · · 000

20 2−
p
2
+1

101101010 · · · 0

2−p+1

p/2− 1 bits p/2 + 1 bits
that represent⌈
2

p
2
√
2 + δ

⌉
the choice of δ

implies that this
last bit is 0.

Fig. 4. Bit pattern of s.

the ties-to-even rule, sa + sb is always rounded down to
s = RN(sa+sb), whose binary expansion is as in Figure 4.

Consequently, s = RN(sa + sb) has the form

s = 1 + ω, ω = 2−p+1
⌈
2p/2
√
2 + δ

⌉
. (3)

For Algorithm 2, we can deduce in exactly the same
way, by replacing sa with a2 and by using (2), that
RN(a2+ sb) also has the form (3). Hence, for our chosen
values of a and b, Algorithm 2 will return the same final
value ρ as Algorithm 1.

Let us now give an explicit formula for that value ρ.
First, notice that 1 + ω

2 is an FP number thanks to the
choice of δ in (1). Since ω > 0 and since δ 6 2 and
p > 12, this implies further 1+2−p+1 6 1+ ω

2 < 2. Then,
writing f to denote the FP predecessor of 1 + ω/2, we
have

f = 1 +
ω

2
− 2−p+1, (4)

which is an FP number in [1, 2). Third, we will show
now that the exact square root

√
1 + ω satisfies

f 6
√
1 + ω < f + 2−p. (5)

Since u = 2−p, for the lower bound it suffices to check
that (1 + ω

2 − 2u)2 6 1 + ω, or, equivalently, that the
polynomial P (x) = 1

4x
2−2ux−4u+4u2 satisfies P (ω) 6

0. The latter inequality holds, since the roots of P (x) are
±4
√
u+ 4u and since

ω = 2u
⌈√

2/
√
u+ δ

⌉
< 2
√
2
√
u+ 6u for δ 6 2,

6 4
√
u+ 4u for p > 2.

To establish the upper bound in (5), it suffices to check
that 1 + ω < (1 + ω

2 − u)
2, or, equivalently, that Q(x) =

1
4x

2−ux−2u+u2 satisfies Q(ω) > 0. This is true since the
roots of Q(x) are ±2

√
2
√
u+2u and since ω > 2

√
2
√
u+2u

for δ > 1 and p even.
From (5) we deduce that rounding down occurs when

evaluating ρ = RN(
√
s), so that

ρ = 1 +
ω

2
− 2−p+1. (6)

Finally, to estimate the relative error of this approxi-
mation ρ, we must determine (or, at least, adequately ap-
proximate) the exact value

√
a2 + b2. From b = 1+2−p/2

TABLE I
RELATIVE ERRORS OF ALGORITHM 1 OR ALGORITHM 2 FOR
OUR GENERIC VALUES a AND b OF SECTION II-B1 AND FOR

VARIOUS even VALUES OF p BETWEEN 16 AND 64.

p relative error

16 1.97519352187392 . . . u

20 1.99418559548869 . . . u

24 1.99873332158282 . . . u

28 1.99967582969338 . . . u

32 1.99990783760560 . . . u

36 1.99997442258505 . . . u

40 1.99999449547633 . . . u

44 1.99999835799502 . . . u

48 1.99999967444005 . . . u

52 1.99999989989669 . . . u

56 1.99999997847972 . . . u

60 1.99999999397377 . . . u

64 1.99999999849587 . . . u

and (2) we deduce that

1 + 2−p/2+1 + 2−p + 2−3p/2(G− 4) < a2 + b2

6 1 + 2−p/2+1 + 2−p + 2−3p/2G.

Replacing G by its expression
⌈
2

p
2

(√
2− 1

)
+ δ
⌉
·2

p
2+1+

2
p
2 and using (3), we obtain

1 + ω + 2−p+1 − 2−3p/2+2 < a2 + b2 6 1 + ω + 2−p+1.

From this, we deduce that for p→∞,√
a2 + b2 = 1 +

ω

2
+ 2−p − ω2

8
+O

(
2−3p/2

)
and, noting that (3) implies ω2

8 = 2−p +O
(
2−3p/2

)
,√

a2 + b2 = 1 +
ω

2
+O

(
2−3p/2

)
. (7)

Combining (6) and (7) gives
∣∣ρ − √a2 + b2

∣∣ = 2−p+1 +
O
(
2−3p/2

)
and, on the other hand, it follows from (3)

and (7) that
√
a2 + b2 = 1 + O

(
2−p/2

)
. Hence, recalling

that u = 2−p, we conclude that the relative error has the
form 2u + O(u3/2) as u → 0. This terminates the proof
of Theorem II.1 when p is even.

Table I gives the relative errors obtained with the
values a and b of our generic example for various even
values of p between 16 and 64. We see that the a priori
bound 2u is tight already for reasonably small precisions.

2) If p is odd: As stated above, we choose

b = 1 + η, η =
⌈√

2 · 2
p−3
2

⌉
· 2−p+1. (8)

From
√
2 · 2

−p−1
2 < η <

√
2 · 2

−p−1
2 + 2−p+1, we easily

deduce that

2−p < η2 < 2−p +
√
2 · 2

−3p+3
2 + 2−2p+2. (9)

Since b = 1 + η, it follows from (9) that the number
b2 = 1 + 2η + η2 is slightly above 1 + 2η + 2−p, that
is, slightly above the middle of the two consecutive FP

numbers 1 + 2η and 1 + 2η + 2−p+1. This implies that
rounding up occurs when computing sb = RN(b2):

sb = 1 + 2η + 2−p+1. (10)

Now define

H = 2
−p+3

2 − 2η − 3 · 2−p + 2
−3p+3

2 . (11)

Notice that H is close to (1−1/
√
2)·2(−p+3)/2. We choose

a = RN
(√
H
)
. (12)

By definition of RN, this implies

H · (1− 2−p)2 < a2 < H · (1 + 2−p)2. (13)

Hence, the variable sa = RN(a2) of Algorithm 1 satisfies

H · (1− 2−p)3 < sa < H · (1 + 2−p)3. (14)

This gives (as soon as p > 2)

H · (1− 3 · 2−p) < sa < H · (1 + 4 · 2−p),

or, equivalently, using (11),

2
−p+3

2 − 2η − 3 · 2−p − 2 · 2
−3p+3

2

+ 6η · 2−p + 9 · 2−2p − 3 · 2
−5p+3

2

<sa < 2
−p+3

2 − 2η − 3 · 2−p + 5 · 2
−3p+3

2

− 8η · 2−p − 12 · 2−2p + 4 · 2
−5p+3

2 .

Hence, recalling that sb = 1 + 2η + 2 · 2−p,

1 + 2
−p+3

2 − 2−p + ϕ(η) < sa + sb

< 1 + 2
−p+3

2 + ψ(η),

where ϕ and ψ depend linearly on η as follows:

ϕ(η) = −2 · 2
−3p+3

2 + 6η · 2−p + 9 · 2−2p − 3 · 2
−5p+3

2

and

ψ(η) = −2−p +5 · 2
−3p+3

2 − 8η · 2−p− 12 · 2−2p +4 · 2
−5p+3

2 .

Now, using the definition of η in (8), it is easy to check
that ψ(η) < 0 < ϕ(η) as soon as p > 3. We then deduce
immediately that

1 + 2
−p+3

2 − 2−p < sa + sb < 1 + 2
−p+3

2 .

Hence rounding up occurs when evaluating s = RN(sa+
sb), that is,

s = 1 + 2
−p+3

2 .

The enclosure in (14) being weaker than the one
in (13), we can replace sa with a2 in the derivation
above and conclude that RN(a2 + sb) is also equal to
1 + 2

−p+3
2 . Consequently, for our choice of a and b both

Algorithms 1 and 2 yield the same intermediate value
s = 1+2

−p+3
2 and thus the same final value ρ = RN(

√
s).

TABLE II
RELATIVE ERRORS OF ALGORITHM 1 OR ALGORITHM 2 FOR
OUR GENERIC VALUES a AND b OF SECTION II-B2 AND FOR

VARIOUS odd VALUES OF p BETWEEN 53 AND 113.

p relative error

53 1.9999999188175005308 . . . u

57 1.9999999764537355319 . . . u

61 1.9999999949811629228 . . . u

65 1.9999999988096732861 . . . u

69 1.9999999997055095283 . . . u

73 1.9999999999181918151 . . . u

77 1.9999999999800815518 . . . u

81 1.9999999999954499727 . . . u

85 1.9999999999987674393 . . . u

89 1.9999999999997033180 . . . u

93 1.9999999999999246073 . . . u

97 1.9999999999999803397 . . . u

101 1.9999999999999949423 . . . u

105 1.9999999999999986669 . . . u

109 1.9999999999999996677 . . . u

113 1.9999999999999999175 . . . u

Using the fact that 1+ x
2 −

x2

8 <
√
1 + x < 1+ x

2 for all
x > 0, we have in particular

1 + 2
−p+1

2 − 2−p <

√
1 + 2

−p+3
2 < 1 + 2

−p+1
2 ,

so rounding up occurs when computing ρ:

ρ = 1 + 2
−p+1

2 . (15)

Finally, let us estimate the relative error of ρ. We have
b2 = 1 + 2η + η2, and from (13), we deduce that

H · (1− 2−p+1) < a2 < H · (1 + 2−p+1 + 2−2p),

which implies that a2 is between

2
−p+3

2 − 2η − 3 · 2−p + 2
−3p+3

2 − 2
−3p+5

2

+2−p+2η + 3 · 2−2p+1 − 2
−5p+5

2

and

2
−p+3

2 − 2η − 3 · 2−p + 2
−3p+3

2 + 2
−3p+5

2

−2−p+2η − 3 · 2−2p+1 + 2
−5p+5

2 +O
(
2

−5p
2

)
.

Therefore, using this last result and (9), we have a2+b2 =

1+2
−p+3

2 −2−p+1+O
(
2

−3p
2

)
, from which we easily deduce

that √
a2 + b2 = 1 + 2

−p+1
2 − 2−p+1 +O

(
2

−3p
2

)
. (16)

For u = 2−p, we deduce from (15) and (16) that
the relative error |ρ −

√
a2 + b2|/

√
a2 + b2 has the form

2u + O(u3/2) as u → 0. This concludes the proof of
Theorem II.1 when p is odd.

Table II gives the relative errors obtained with the
values a and b of our generic example for various odd
values of p between 53 and 113. Again, the a priori
bound 2u is tight already for reasonably small precisions.

III. THE CASE OF c/
√
a2 + b2

A. Error bound
We consider now the following computation of

c/
√
a2 + b2: first, we evaluate

√
a2 + b2 using either Algo-

rithm 1 (without FMA) or Algorithm 2 (with FMA), and
then we perform the floating-point division of c by the
obtained value. This corresponds to the two algorithms
below.

Algorithm 3 Computation of c/
√
a2 + b2 in binary precision-

p floating-point arithmetic.

sa ← RN(a2)
sb ← RN(b2)
s← RN(sa + sb)
ρ← RN(

√
s)

g ← RN(c/ρ)
return g

Algorithm 4 FMA-based computation of c/
√
a2 + b2 in binary

precision-p floating-point arithmetic.

sb ← RN(b2)
s← RN(a2 + sb)
ρ← RN(

√
s)

g ← RN(c/ρ)
return g

A rounding error analysis valid for both algorithms is
given by the following theorem.

Theorem III.1. If p 6= 3, then the relative error committed
when approximating c/

√
a2 + b2 by the result g of Algo-

rithm 3 or 4 is less than 3u.

Proof: If p 6= 3, then [6, Lemma 2] says that sa =
a2(1+ ε1) and sb = b2(1+ ε2) with |ε1|, |ε2| 6 u

1+3u =: u3.
Furthermore, there exist ε3 and ε4 such that |ε3|, |ε4| 6
u

1+u =: u1 and

s =

{
(sa + sb)(1 + ε3) for Algorithm 3,

(a2 + sb)(1 + ε4) for Algorithm 4.

Hence, in both cases, s can be bounded as follows:

(a2 + b2)(1− u1)(1− u3) 6 s 6 (a2 + b2)(1 + u1)(1 + u3).

Recalling from [1] that the relative error of division in
radix-2 FP arithmetic is at most u− 2u2, we have

g =
c√

s (1 + ε5)
(1 + ε6)

with |ε5| 6 u1 and |ε6| 6 u− 2u2, and then

c√
s
· 1− u+ 2u2

1 + u1
6 g 6

c√
s
· 1 + u− 2u2

1− u1
.

Consequently, ζ c√
a2+b2

6 g 6 ζ ′ c√
a2+b2

with

ζ :=
1√

(1 + u1)(1 + u3)
· 1− u+ 2u2

1 + u1

and
ζ ′ :=

1√
(1− u1)(1− u3)

· 1 + u− 2u2

1− u1
.

To conclude, it suffices to check that 1 − 3u < ζ and
ζ ′ < 1 + 3u for all u 6 1/2.

B. Asymptotic optimality of the bound
We are going to show that the previously obtained

bound is asymptotically optimal. More precisely, we
establish the following result.

Theorem III.2. For p > 12, there exist floating-point inputs
a, b, and c for which the result g returned by Algorithm 3 or
Algorithm 4 satisfies∣∣∣∣∣g −

c√
a2+b2

c√
a2+b2

∣∣∣∣∣ = 3u− ε, |ε| = O(u3/2).

The values of a and b we are going to choose to
prove Theorem III.2 are the same as the ones we have
chosen for

√
a2 + b2 in Section II-B1 (if p is even) and

in Section II-B2 (if p is odd). For these values, we have
shown that Algorithms 1 and 2 return the same result. As
a consequence, the variable ρ will have the same value
in Algorithms 3 and 4. Therefore, for these chosen input
values a and b, Algorithms 3 and 4 will return the same
final value g. Hence, in the following, we do not need
to analyze these algorithms separately.

1) If p is even: Let us show that when the precision
p is even, the error bound given by Theorem III.1 is
asymptotically optimal. To do this, we exhibit generic
inputs a, b, c parameterized by p. For a and b, we use
the same values as in Section II-B1, namely, b = 1+2−p/2

and a = RD
(
2−

3p
4

√
G
)
, where G =

⌈
2

p
2

(√
2− 1

)
+ δ
⌉
·

2
p
2+1 + 2

p
2 and

δ =

{
1 if

⌈
2

p
2

√
2
⌉
is odd,

2 otherwise.

Recall from (3), (6), and (7) in Section II-B1 that

ρ = 1 +
ω

2
− 2−p+1

and √
a2 + b2 = 1 +

ω

2
+O

(
2−3p/2

)
, (17)

where
ω = 2−p+1

⌈
2p/2
√
2 + δ

⌉
.

Now, let us define

c = 1 + 2−p+1 ·
⌊
3
√
2 · 2p/2−2

⌋
.

One can write c = 1 + 2−p+1(3
√
2 · 2p/2−2 + α1) with

−1 < α1 < 0. Similarly, one can write

ω = 2−p+1
(
2p/2
√
2 + δ + α2

)
(18)

with 0 < α2 < 1. Notice that the choice of δ implies that⌈
2p/2
√
2 + δ

⌉
= 2p/2

√
2 + δ + α2 is an even integer.

Defining
t = 2−p/2,

we obtain c = 1+ 3
2

√
2 t+ 2α1t

2 and ρ = 1+
√
2 t+ (δ +

α2 − 2)t2, so the exact quotient c/ρ has the form

c

ρ
= 1 +

√
2

2
t+ (2α1 − δ − α2 + 1) t2 + ε(t),

where ε(t) = O(t3) as t→ 0. Furthermore,
• we know that 3

√
2 · 2p/2−2 +α1 is an integer, which

implies that

A(t) =
3

2

√
2 t+ 2α1t

2

is a multiple of 2t2 = 2−p+1;
• we know that 2p/2

√
2 + δ + α2 is an even integer,

which implies that

B(t) =
√
2 t+ (δ + α2)t

2

is a multiple of 2t2.
Consequently, we can rewrite c/ρ as

c

ρ
= 1 +A(t)−B(t) + t2 + ε(t)

=
(
multiple of 21−p

)
+ 2−p + ε(t).

Now, it is easily checked that the ranges of δ, α1, and
α2 imply that −5 < 2α1−δ−α2 < −1 and, consequently,
that 0 6 A(t)−B(t) < 1 as soon as p > 6. This means that
the integer (1+A(t)−B(t))/21−p is in {2p−1, . . . , 2p−1}.

On the other hand, one can check that 0 < ε(t) 6 2−p

as soon as p > 6. Indeed, the definitions of c, ρ, and ε
imply that

ε(t)

t2
=

P1t+ P2t
2

1 +
√
2t+Q2t2

with
• P1 =

√
2
2 δ − 2

√
2α1 +

√
2
2 α2,

• P2 = Q2(Q2 + 1− 2α1),
• Q2 = δ + α2 − 2.

Using again the ranges of δ, α1, and α2, one can check
that

√
2
2 < P1 <

7
2

√
2, −1 < Q2 < 1, and −3 < P2 < 4,

and then, for p > 6 (that is, t 6 1/8), that 1+
√
2t+Q2t

2

is larger than 1 and that P1t + P2t
2 is positive and less

than 1.
Hence rounding up occurs when computing g =

RN(c/ρ):

g = 1 +A(t)−B(t) + 2−p+1

= 1 +

√
2

2
t+ (2α1 − δ − α2 + 2)t2. (19)

To estimate the relative error of g, it remains to esti-
mate the exact value c/

√
a2 + b2. First, from (17) and (18)

we deduce that√
a2 + b2 = 1 +

√
2t+ (δ + α2)t

2 +O(t3).

Since c = 1 + 2−p+1(3
√
2 · 2p/2−2 + α1), this implies

c√
a2 + b2

= 1 +

√
2

2
t+ (2α1 − δ − α2 − 1)t2

+O(t3). (20)

By combining (19) and (20), we find that the relative
error committed when applying Algorithm 3 or Algo-
rithm 4 to the above inputs a, b, and c has the form
3t2+O(t3), or, equivalently, 3u+O(u3/2). This concludes
the proof of Theorem III.2 in the case where p is even.

2) If p is odd: Let us show that when the precision
p is odd, the error bound given by Theorem III.1 is
asymptotically optimal. To do this, we exhibit a generic
example parameterized by p. We will use the same
values a and b as in Section II-B2, as defined in (8), (11),
and (12). We remind the reader that for these particular
values we proved in (15) that

ρ = 1 + 2
−p+1

2

and, in (16), that√
a2 + b2 = 1 + 2

−p+1
2 − 2−p+1 +O

(
2

−3p
2

)
.

Let us now choose c = 1 + 3 · 2
−p−1

2 + 2−p+1. Setting

t = 2
−p+1

2

gives c = 1+ 3
2 t+ t2 and ρ = 1+ t, and, since t > 0, it is

then easily checked that

1 +
t

2
<
c

ρ
< 1 +

t

2
+
t2

2
.

Since 1 + t/2 = 1 + 2
−p−1

2 is an FP number in [1, 2), and
since t2/2 = 2−p, we deduce that rounding down occurs
when evaluating g = RN(c/ρ):

g = 1 +
t

2
. (21)

Now, the definition of t also implies that
√
a2 + b2 =

1 + t− t2 +O(t3) and, consequently,

c√
a2 + b2

= 1 +
t

2
+

3

2
t2 +O(t3). (22)

From (21) and (22) we deduce that the relative error
committed when approximating c/

√
a2 + b2 by the result

g of Algorithm 3 or Algorithm 4 with a, b, and c as above
has the form 3

2 t
2 +O(t3). Since t = 2

−p+1
2 =

√
2u, this is

3u+O(u3/2), which concludes the proof of Theorem III.1
when p is odd.

Table III illustrates the tightness of the a priori bound
3u by giving (for various common precisions p) the
relative errors obtained with the values a, b, c introduced
in Sections III-B1 and III-B2.

TABLE III
RELATIVE ERRORS OBTAINED, FOR VARIOUS PRECISIONS p,

WHEN RUNNING ALGORITHM 3 OR ALGORITHM 4 WITH OUR
GENERIC VALUES a, b, AND c OF SECTION III-B1 (FOR p EVEN)

AND SECTION III-B2 (FOR p ODD).

p relative error

24 2.998002589136762596763498 . . . u

53 2.999999896465758351542169 . . . u

64 2.999999997359196820010396 . . . u

113 2.999999999999999896692295 . . . u

128 2.999999999999999999566038 . . . u

CONCLUSION

After having reminded the relative error bound for√
a2 + b2, slightly improved the bound for c/

√
a2 + b2

(by showing that the quadratic term O(u2) can be re-
moved), and considered variants that take advantage of
the possible availability of an FMA instruction, we have
shown that these bounds are asymptotically optimal.
Hence, trying to significantly refine them further is hope-
less. In the paper we assumed an unbounded exponent
range, so that our results hold provided that no under-
flow or overflow occurs. Several authors have suggested
ways to avoid spurious overflows and underflows in the
evaluation of

√
a2 + b2, either using an exception handler

and/or scaling the input values [7]–[11]. Of course, if
the scaling introduces further rounding errors, then our
error bounds may not hold anymore. However, if a and
b are scaled by a power of 2 (as advocated in [8], [10],
[11]), then our analyses still apply.

ACKNOWLEDGMENT

The work of C.-P. Jeannerod and J.-M. Muller was sup-
ported in part by the French National Research Agency
under grant ANR-13-INSE-0007 (MetaLibm project).

REFERENCES

[1] C.-P. Jeannerod and S. M. Rump, “On relative errors of
floating-point operations: optimal bounds and applications,”
Mathematics of Computation, 2016, to appear. [Online]. Available:
https://hal.inria.fr/hal-00934443

[2] IEEE Standard for Floating-Point Arithmetic, IEEE Standard 754-2008.
New York: IEEE Computer Society, 2008.

[3] D. E. Knuth, The Art of Computer Programming, Volume 2, Seminu-
merical Algorithms, 3rd ed. Reading, MA, USA: Addison-Wesley,
1998.

[4] P. H. Sterbenz, Floating-Point Computation. Englewood Cliffs, NJ,
USA: Prentice-Hall, 1974.

[5] J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford Uni-
versity Press, London, 1965.

[6] C.-P. Jeannerod, N. Louvet, J.-M. Muller, and A. Plet, “Sharp
error bounds for complex floating-point inversion,” Numerical
Algorithms, vol. 73, no. 3, pp. 735–760, 2016.

[7] W. Kahan, “Branch cuts for complex elementary functions or
much ado about nothing’s sign bit,” in The State of the Art in
Numerical Analysis, A. Iserles and M. J. D. Powell, Eds. Oxford
University Press, 1987, pp. 165–211.

[8] T. E. Hull, T. F. Fairgrieve, and P. T. P. Tang, “Implementing
complex elementary functions using exception handling,” ACM
Transactions on Mathematical Software, vol. 20, no. 2, pp. 215–244,
1994.

https://hal.inria.fr/hal-00934443

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cam-
bridge University Press, 1997.

[10] A. Ziv, “Sharp ULP rounding error bound for the hypotenuse
function,” Mathematics of Computation, vol. 68, no. 227, pp. 1143–
1148, 1999.

[11] D. Bindel, J. Demmel, W. Kahan, and O. Marques, “On computing
Givens rotations reliably and efficiently,” ACM Transactions on
Mathematical Software, vol. 28, no. 2, pp. 206–238, 2002.

