
HAL Id: ensl-01529804
https://ens-lyon.hal.science/ensl-01529804v1

Submitted on 31 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CR-LIBM A library of correctly rounded elementary
functions in double-precision

Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu
Gallet, Nicolas Gast, Christoph Lauter, Jean-Michel Muller

To cite this version:
Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet, Nicolas Gast, et al..
CR-LIBM A library of correctly rounded elementary functions in double-precision. [Research Report]
LIP,. 2006. �ensl-01529804�

https://ens-lyon.hal.science/ensl-01529804v1
https://hal.archives-ouvertes.fr

CR-LIBM
A library of correctly rounded elementary functions in

double-precision

Catherine Daramy-Loirat, David Defour, Florent de Dinechin,
Matthieu Gallet, Nicolas Gast, Christoph Quirin Lauter, Jean-Michel Muller

december 2006

Important warning

This report describes and proves version 1.0beta5 of the crlibm library. It may therefore not correspond
to the latest version. An up-to-date version will always be distributed along with the code.

Many thanks to...

• Vincent Lefèvre, from INRIA-Lorraine, without whom this project would’t have started, and who
has since then lended a helpful hand in more than 17 occasions;

• The Arénaire project at ENS-Lyon, especially Marc Daumas, Sylvie Boldo, Guillaume Melquiond,
Nathalie Revol and Arnaud Tisserand;

• Guillaume Melquiond for Gappa and its first-class hotline;

• The MPFR developers, and especially the INRIA SPACES project;

• The Intel Nizhniy-Novgorod Lab, especially Andrey Naraikin, Sergei Maidanov and Evgeny
Gvozdev;

• The contributors of bits and pieces, Phil Defert and Eric McIntosh from CERN, Patrick Pelissier
from INRIA;

• All the people who have reported bugs, hoping that they continue until they have to stop: Evgeny
Gvozdev from Intel with special thanks, Christoph Lauter from TUMünchen (before he joined the
project), Eric McIntosh from CERN, Patrick Pelissier and Paul Zimmermann from INRIA Lorraine;

• William Kahan at UCBerkeley, Peter Markstein at HP, Neil Toda at Sun, Shane Story at Intel, and
many others for interesting and sometimes heated discussions;

• Serge Torres for LIPForge.

This work was partly funded by the INRIA, the ENS-Lyon and the Université de Perpignan.

2

Contents

0 Getting started with crlibm 7
0.1 What is crlibm? . 7
0.2 Compilation and installation . 7
0.3 Using crlibm functions in your program . 8
0.4 Currently available functions . 8
0.5 Writing portable floating-point programs . 9

1 Introduction: Goals and methods 11
1.1 Correct rounding and elementary functions . 11
1.2 A methodology for efficient correctly-rounded functions 11

1.2.1 The Table Maker’s Dilemma . 11
1.2.2 The onion peeling strategy . 12

1.3 The Correctly Rounded Mathematical Library . 12
1.3.1 Two steps are enough . 12
1.3.2 Portable IEEE-754 FP for a fast first step . 13
1.3.3 Ad-hoc, fast multiple precision for accurate second step 13
1.3.4 Relaxing portability . 13
1.3.5 Proving the correct rounding property . 14
1.3.6 Error analysis and the accuracy/performance tradeoff 14

1.4 An overview of other available mathematical libraries . 16
1.5 Various policies in crlibm . 16

1.5.1 Naming the functions . 16
1.5.2 Policy concerning IEEE-754 flags . 17
1.5.3 Policy concerning conflicts between correct rounding and expected mathematical

properties . 17
1.6 Organization of the source code . 17

2 Common notations, theorems and procedures 19
2.1 Notations . 19
2.2 Common C procedures for double-precision numbers . 19

2.2.1 Sterbenz Lemma . 19
2.2.2 Double-precision numbers in memory . 19
2.2.3 Conversion from floating-point to integer . 20
2.2.4 Conversion from floating-point to 64-bit integer . 20
2.2.5 Methods to raise IEEE-754 flags . 20

2.3 Common C procedures for double-double arithmetic . 21
2.3.1 Exact sum algorithm Add12 . 21
2.3.2 Exact product algorithm Mul12 . 21
2.3.3 Double-double addition Add22 . 22
2.3.4 Double-double multiplication Mul22 . 23
2.3.5 The multiplication procedure Mul122 . 23
2.3.6 Double-double Horner step procedures . 24
2.3.7 Multiplication of a double-double by an integer . 25

2.4 Common C procedures for triple-double arithmetic . 25

3

2.4.1 The addition operator Add33 . 26
2.4.2 The addition operator Add233 . 26
2.4.3 The addition operator Add133 . 27
2.4.4 The multiplication procedure Mul33 . 28
2.4.5 The multiplication procedure Mul23 . 29
2.4.6 The multiplication procedure Mul233 . 29
2.4.7 The multiplication procedure Mul133 . 30
2.4.8 The multiplication procedure Mul123 . 31
2.4.9 Final rounding to the nearest even . 31
2.4.10 Final rounding for the directed modes . 32

2.5 Horner polynomial approximations . 32
2.6 Helper functions . 35

2.6.1 High accuracy square roots . 35
2.7 Test if rounding is possible . 39

2.7.1 Rounding to the nearest . 39
2.7.2 Directed rounding modes . 42

2.8 The Software Carry Save library . 43
2.8.1 The SCS format . 43
2.8.2 Arithmetic operations . 44

2.9 Common Maple procedures . 46
2.9.1 Conversions . 46
2.9.2 Procedures for polynomial approximation . 48
2.9.3 Accumulated rounding error in Horner evaluation 48
2.9.4 Rounding . 49
2.9.5 Using double-extended . 50

3 The natural logarithm 51
3.1 General outline of the algorithm . 51
3.2 Proof of correctness of the triple-double implementation 53

3.2.1 Exactness of the argument reduction . 54
3.2.2 Accuracy proof of the quick phase . 56
3.2.3 Accuracy proof of the accurate phase . 62

3.3 Proof of correctness of the double-extended implementation 67
3.4 Performance results . 67

3.4.1 Memory requirements . 67
3.4.2 Timings . 67

4 The logarithm in base 2 69

5 The logarithm in base 10 71
5.1 Main considerations, critical accuracy bounds . 71
5.2 General outline of the algorithm and accuracy estimates 72
5.3 Timings . 72

6 The exponential 75
6.1 Overview of the algorithm . 75
6.2 Special case handling . 76
6.3 Argument reduction . 77
6.4 Polynomial approximation and reconstruction . 81

6.4.1 Quick phase polynomial approximation and reconstruction 81
6.4.2 Accurate phase polynomial approximation and reconstruction 82

6.5 Final rounding . 84
6.6 Accuracy bounds . 88
6.7 Timings . 88

7 The expm1 function 89

4

8 The log1p function 91

9 The trigonometric functions 93
9.1 Overview of the algorithms . 93

9.1.1 Exceptional cases . 93
9.1.2 Range reduction . 94
9.1.3 Polynomial evaluation . 94
9.1.4 Reconstruction . 94
9.1.5 Precision of this scheme . 95
9.1.6 Organisation of the code . 95

9.2 Details of range reduction . 96
9.2.1 Which accuracy do we need for range reduction? 96
9.2.2 Details of the used scheme . 96
9.2.3 Structure of the range reduction . 97
9.2.4 Cody and Waite range reduction with two constants 99
9.2.5 Cody and Waite range reduction with three constants 100
9.2.6 Cody and Waite range reduction in double-double 100
9.2.7 Payne and Hanek range reduction . 101
9.2.8 Maximum error of range reduction . 101
9.2.9 Maximum value of the reduced argument . 102

9.3 Actual computation of sine and cosine . 102
9.3.1 DoSinZero . 103
9.3.2 DoSinNotZero and DoCosNotZero . 104

9.4 Detailed examination of the sine . 108
9.4.1 Exceptional cases in RN mode . 108
9.4.2 Exceptional cases in RU mode . 108
9.4.3 Exceptional cases in RD mode . 109
9.4.4 Exceptional cases in RZ mode . 109
9.4.5 Fast approximation of sine for small arguments . 109

9.5 Detailed examination of the cosine . 110
9.5.1 Round to nearest mode . 110
9.5.2 RU mode . 111
9.5.3 RD mode . 111
9.5.4 RZ mode . 112

9.6 Detailed examination of the tangent . 113
9.6.1 Total relative error . 113
9.6.2 RN mode . 113
9.6.3 RU mode . 115
9.6.4 RD mode . 116
9.6.5 RZ mode . 117

9.7 Accurate phase . 118
9.8 Performance results . 118

10 The arcsine 121
10.1 Overview of the algorithm . 121
10.2 Special case handling, interval discrimination and argument reduction 123
10.3 Polynomial approximation and reconstruction . 125

10.3.1 Quick phase polynomial approximation and reconstruction 125
10.3.2 Accurate phase polynomial approximation and reconstruction 129

10.4 Accuracy bounds . 132
10.4.1 Quick phase accuracy . 132
10.4.2 Accurate phase accuracy . 132

10.5 Timings and memory consumption . 133

11 The arccosine 135

5

12 The arctangent 137
12.1 Overview . 137
12.2 Quick phase . 137

12.2.1 Overview of the algorithm for the quick phase. 137
12.2.2 Error analysis on atan quick . 138
12.2.3 Exceptional cases and rounding . 141

12.3 Accurate phase . 143
12.4 Analysis of the performance . 143

12.4.1 Speed . 143
12.4.2 Memory requirements . 144

12.5 Conclusion and perspectives . 144

13 The trig-of-πx functions 145
13.1 Overview . 145
13.2 Special cases for cos(πx) . 146

13.2.1 Worst case accuracy . 146
13.3 Special cases for sin(πx) . 146

13.3.1 Worst case accuracy . 146
13.3.2 Subnormal numbers . 146
13.3.3 Computing πx for small arguments . 147

13.4 tan(πx) . 147
13.4.1 Worst case accuracy . 147
13.4.2 Special cases . 147

13.5 arctan(πx) . 148
13.5.1 Proven correctly-rounded domain . 148
13.5.2 Implementation . 148

14 The hyperbolic sine and cosine 149
14.1 Overview . 149

14.1.1 Definition interval and exceptional cases . 149
14.1.2 Relation between cosh(x), sinh(x) and ex . 149
14.1.3 Worst cases for correct rounding . 150

14.2 Quick phase . 150
14.2.1 Overview of the algorithm . 150
14.2.2 Error analysis . 151
14.2.3 Details of computer program . 152
14.2.4 Rounding . 157
14.2.5 Directed rounding . 157

14.3 Accurate phase . 157
14.4 Analysis of cosh performance . 158

14.4.1 Speed . 158

15 The power function 159
15.1 Work in progress . 159

6

Chapter 0

Getting started with crlibm

0.1 What is crlibm?

The crlibm project aims at developing a portable, proven, correctly rounded, and efficient mathematical
library (libm) for double precision.

correctly rounded Current libm implementation do not always return the floating-point number that
is closest to the exact mathematical result. As a consequence, different libm implementation will
return different results for the same input, which prevents full portability of floating-point ap-
plications. In addition, few libraries support but the round-to-nearest mode of the IEEE754/IEC
60559 standard for floating-point arithmetic (hereafter usually referred to as the IEEE-754 stan-
dard). crlibm provides the four rounding modes: To nearest, to +∞, to −∞ and to zero.

portable crlibm is written in C and will be compiled by any compiler fulfilling basic requirements of
the ISO/IEC 9899:1999 (hereafter referred to as C99) standard. This is the case of gcc version 3 and
higher which is available on most computer systems. It also requires a floating-point implemen-
tation respecting the IEEE-754 standard, which is also available on most modern systems. crlibm
has been tested on a large range of systems.

proven Other libraries attempt to provide correctly-rounded result. For theoretical and practical rea-
sons, this behaviour is difficult to prove, and in extreme cases termination is not even guaranteed.
crlibm intends to provide a comprehensive proof of the theoretical possibility of correct rounding,
the algorithms used, and the implementation, assuming C99 and IEEE-754 compliance.

efficient performance and resource usage of crlibm should be comparable to existing libm implemen-
tations, both in average and in the worst case. In contrast, other correctly-rounded libraries have
worst case performance and memory consumption several order of magnitude larger than stan-
dard libms.

The ultimate goal of the crlibm project is to push towards the standardization of correctly-rounded
elementary functions.

0.2 Compilation and installation

See the INSTALL file in the main directory. This library is developed using the GNU autotools, and can
therefore be compiled on most Unix-like systems by ./configure; make.

The command make check will launch the selftest. For more advanced testing you will need to have
MPFR installed (see www.mpfr.org) and to pass the --enable-mpfr flag to configure. For other flags,
see ./configure --help .

7

www.mpfr.org

0.3 Using crlibm functions in your program

Currently crlibm functions have different names from the standard math.h functions. For example, for
the sine function (double sin(double) in the standard math.h), you have four different functions in
crlibm for the four different rounding modes. These functions are named sin rn, sin ru, sin rd and
sin rz for round to the nearest, round up, round down and round to zero respectively. These functions
are declared in the C header file crlibm.h.

The crlibm library relies on double-precision IEEE-754 compliant floating-point operations. For
some processors and some operating systems (most notably IA32 and IA64 processors under GNU/Linux),
the default precision is set to double-extended. On such systems you will need to call the crlibm init()

function before using any crlibm function to ensure such compliance. This has the effect of setting the
processor flags to IEEE-754 double-precision with rounding to the nearest mode. This function returns
the previous processor status, so that previous mode can be restored using the function crlibm exit().
Note that you probably only need one call to crlibm init() at the beginning of your program, not one
call before each call to a mathematical function.

Here is a non-exhaustive list of systems on which crlibm init() is NOT needed, and which can
therefore use crlibm as a transparent replacement of the standard libm:

• Most Power/PowerPC based systems, including those from Apple or from IBM;

• All the 64-bit Linux versions: the reason is that all x86-compatible processors (by AMD and In-
tel) supporting 64-bit addressing also feature SSE2 FP instructions, which are cleaner and more
efficient than the legacy x87 FPU. On such systems, SSE2 is therefore used by default by gcc for
double-precision FP computing.

• On recent 32-bit x86 processors also featuring SSE2 extensions (including pentium 4 and later, and
generally most processors produced after 2005), you can try to force the use of SSE2 instructions
using configure --enable-sse2. Beware, the code produced will not run on older hardware.

Here’s an example function named compare.c using the cosine function from crlibm library.

Listing 1: compare.c
1 # include<s t d i o . h>
2 # include<math . h>
3 # include<crl ibm . h>
4

5 i n t main (void) {
6 double x , res l ibm , r e s c r l i b m ;
7

8 p r i n t f (” Enter a f l o a t i n g point number : ”) ;
9 scanf (”%l f ” , &x) ;

10 res l ibm = cos (x) ;
11 c r l i b m i n i t () ; /∗ no need h e r e t o s a v e t h e o l d p r o c e s s o r s t a t e r e t u r n e d by c r l i b m i n i t () ∗ /
12 r e s c r l i b m = cos rn (x) ;
13 p r i n t f (”\n x=%.25e \n” , x) ;
14 p r i n t f (”\n cos (x) with the system : %.25e \n” , res l ibm) ;
15 p r i n t f (”\n cos (x) with crl ibm : %.25e \n” , r e s c r l i b m) ;
16 return 0 ;
17 }

This example will be compiled with gcc compare.c -lm -lcrlibm -o compare

0.4 Currently available functions

The currently available functions are summarized in Table 1.
Here are some comments on this table:

• Every function takes a double-precision number and returns a double-precision number.

• For trigonometric functions the angles are expressed in radian.

• The two last columns describe the state of the proof:

8

crlibm name State of the proof
C99 to nearest to +∞ to −∞ to zero Worst cases Proof of the code

exp exp rn exp ru exp rd exp rz complete complete (formal)
expm1 expm1 rn expm1 ru expm1 rd expm1 rz complete partial

log log rn log ru log rd log rz complete complete
log1p log1p rn log1p ru log1p rd log1p rz complete partial
log2 log2 rn log2 ru log2 rd log2 rz complete partial
log10 log10 rn log10 ru log10 rd log10 rz complete partial

sin sin rn sin ru sin rd sin rz [−π, π] complete (paper+formal)
cos cos rn cos ru cos rd cos rz [−π/2, π/2] complete (paper+formal)
tan tan rn tan ru tan rd tan rz [−π/2, π/2] complete (paper+formal)
asin asin rn asin ru asin rd asin rz complete partial
acos acos rn acos ru acos rd acos rz complete partial
atan atan rn atan ru atan rd atan rz complete complete (paper)
sinh sinh rn sinh ru sinh rd sinh rz complete complete (paper)
cosh cosh rn cosh ru cosh rd cosh rz complete complete (paper)
sinpi sinpi rn sinpi ru sinpi rd sinpi rz complete complete (formal)
cospi cospi rn cospi ru cospi rd cospi rz complete complete (formal)
tanpi tanpi rn tanpi ru tanpi rd tanpi rz [2−25, 2−5] complete (formal)

atanpi atanpi rn atanpi ru atanpi rd atanpi rz [tan(2−25π), tan(2−5π)] complete (paper)
pow pow rn see chapter 15 see chapter 15

Table 1: Current state of crlibm.

– The first indicates the state of the search for worst cases for correct rounding [26, 27]. If it
indicates “complete”, it means that the function is guaranteed to return correct rounding
on its whole floating-point input range. Otherwise, it mentions the interval on which the
function is guaranteed to return correct rounding. Note that crlibm is designed in such a
way that there is a very high probability that it is correctly rounded everywhere, however
this is not yet proven formally. This question is explained in details in section 1.3.

– The second indicates the state of the proof of the code itself. Some (older) functions have a
lengthy paper proof in this document, some other have a partial or complete formal proof
using the Gappa proof assistant [31, 13].

0.5 Writing portable floating-point programs

Here are some rules to help you design programs which have to produce exactly the same results on
different architectures and different operating systems.

• Try to use the same compiler on all the systems.

• Demand C99 compliance (pass the -C99, -std=c99, or similar flag to the compiler). For Fortran,
demand F90 compliance.

• Call crlibm init() before you begin floating-point computation. This ensures that the compu-
tations will all be done in IEEE-754 double-precision with round to nearest mode, which is the
largest precision well supported by most systems. On IA32 processors, problems may still occur
for extremely large or extremely small values.

9

• Do not hesitate to rely heavily on parentheses (the compiler should respect them according to
the standards, although of course some won’t). Many times, wondering where the parentheses
should go in an expression like a+b+c+d will even help you improve the accuracy of your code.

• Use crlibm functions in place of math.h functions.

10

Chapter 1

Introduction: Goals and methods

1.1 Correct rounding and elementary functions

The need for accurate elementary functions is important in many critical programs. Methods for com-
puting these functions include table-based methods[17, 38], polynomial approximations and mixed
methods[9]. See the books by Muller[34] or Markstein[30] for recent surveys on the subject.

The IEEE-754 standard for floating-point arithmetic[5] defines the usual floating-point formats (sin-
gle and double precision). It also specifies the behavior of the four basic operators (+,−,×,÷) and
the square root in four rounding modes (to the nearest, towards +∞, towards −∞ and towards 0). Its
adoption and widespread use have increased the numerical quality of, and confidence in floating-point
code. In particular, it has improved portability of such code and allowed construction of proofs on its
numerical behavior. Directed rounding modes (towards +∞, −∞ and 0) also enabled efficient interval
arithmetic[32, 21].

However, the IEEE-754 standard specifies nothing about elementary functions, which limits these
advances to code excluding such functions. Currently, several options exist: on one hand, one can
use today’s mathematical libraries that are efficient but without any warranty on the correctness of the
results. To be fair, most modern libraries are accurate-faithful: trying to round to nearest, they return a
number that is one of the two FP numbers surrounding the exact mathematical result, and indeed return
the correctly rounded result most of the time. This behaviour is sometimes described using phrases like
99% correct rounding or 0.501 ulp accuracy.

When stricter guarantees are needed, some multiple-precision packages like MPFR [33] offer correct
rounding in all rounding modes, but are several orders of magnitude slower than the usual mathe-
matical libraries for the same precision. Finally, there are are currently three attempts to develop a
correctly-rounded libm. The first was IBM’s libultim[29] which is both portable and fast, if bulky,
but lacks directed rounding modes needed for interval arithmetic. The second was Arénaire’s crlibm,
which was first distributed in 2003. The third is Sun correctly-rounded mathematical library called
libmcr, whose first beta version appeared in 2004. These libraries are reviewed in 1.4.

The goal of the crlibm project is to build on a combination of several recent theoretical and algorith-
mic advances to design a proven correctly rounded mathematical library, with an overhead in terms of
performance and resources acceptable enough to replace existing libraries transparently.

More generally, the crlibm project serves as an open-source framework for research on software
elementary functions. As a side effect, it may be used as a tutorial on elementary function development.

1.2 A methodology for efficient correctly-rounded functions

1.2.1 The Table Maker’s Dilemma

With a few exceptions, the image ŷ of a floating-point number x by a transcendental function f is a
transcendental number, and can therefore not be represented exactly in standard numeration systems.
The only hope is to compute the floating-point number that is closest to (resp. immediately above or

11

immediately below) the mathematical value, which we call the result correctly rounded to the nearest
(resp. towards +∞ or towards −∞).

It is only possible to compute an approximation y to the real number ŷ with precision ε. This ensures
that the real value ŷ belongs to the interval [y(1− ε), y(1 + ε)]. Sometimes however, this information
is not enough to decide correct rounding. For example, if [y(1− ε), y(1 + ε)] contains the middle of
two consecutive floating-point numbers, it is impossible to decide which of these two numbers is the
correctly rounded to the nearest of ŷ. This is known as the Table Maker’s Dilemma (TMD). For example,
if we consider a numeration system in radix 2 with n-bit mantissa floating point number and m the
number of significant bit in y such that ε ≤ 2m, then the TMD occurs:

• for rounding toward +∞, −∞, 0, when the result is of the form:

m bits︷ ︸︸ ︷
1.xxx...xx︸ ︷︷ ︸

n bits

111111...11 xxx...

or:
m bits︷ ︸︸ ︷

1.xxx...xx︸ ︷︷ ︸
n bits

000000...00 xxx...

• for rounding to nearest, when the result is of the form:

m bits︷ ︸︸ ︷
1.xxx...xx︸ ︷︷ ︸

n bits

011111...11 xxx...

or :
m bits︷ ︸︸ ︷

1.xxx...xx︸ ︷︷ ︸
n bits

100000...00 xxx...

1.2.2 The onion peeling strategy

A method described by Ziv [40] is to increase the precision ε of the approximation until the correctly
rounded value can be decided. Given a function f and an argument x, the value of f (x) is first eval-
uated using a quick approximation of precision ε1. Knowing ε1, it is possible to decide if rounding is
possible, or if more precision is required, in which case the computation is restarted using a slower
approximation of precision ε2 greater than ε1, and so on. This approach makes sense even in terms of
average performance, as the slower steps are rarely taken.

However there was until recently no practical bound on the termination time of such an algorithm.
This iteration has been proven to terminate, but the actual maximal precision required in the worst case
is unknown. This might prevent using this method in critical application.

1.3 The Correctly Rounded Mathematical Library

Our own library, called crlibm for correctly rounded mathematical library, is based on the work of Lefèvre
and Muller [26, 27] who computed the worst-case ε required for correctly rounding several functions
in double-precision over selected intervals in the four IEEE-754 rounding modes. For example, they
proved that 157 bits are enough to ensure correct rounding of the exponential function on all of its
domain for the four IEEE-754 rounding modes.

1.3.1 Two steps are enough

Thanks to such results, we are able to guarantee correct rounding in two iterations only, which we may
then optimize separately. The first of these iterations is relatively fast and provides between 60 and
80 bits of accuracy (depending on the function), which is sufficient in most cases. It will be referred

12

throughout this document as the quick phase of the algorithm. The second phase, referred to as the
accurate phase, is dedicated to challenging cases. It is slower but has a reasonably bounded execution
time, tightly targeted at Lefèvre’s worst cases.

Having a proven worst-case execution time lifts the last obstacle to a generalization of correctly
rounded transcendentals. Besides, having only two steps allows us to publish, along with each function,
a proof of its correctly rounding behavior.

1.3.2 Portable IEEE-754 FP for a fast first step

The computation of a tight bound on the approximation error of the first step (ε1) is crucial for the
efficiency of the onion peeling strategy: overestimating ε1 means going more often than needed through
the second step, as will be detailed below in 1.3.6. As we want the proof to be portable as well as the
code, our first steps are written in strict IEEE-754 arithmetic. On some systems, this means preventing
the compiler/processor combination to use advanced floating-point features such as fused multiply-
and-add or extended double precision. It also means that the performance of our portable library will
be lower than optimized libraries using these features (see [12] for recent research on processor-specific
correct-rounding).

To ease these proofs, our first steps make wide use of classical, well proven results like Sterbenz’
lemma or other floating-point theorems. When a result is needed in a precision higher than double
precision (as is the case of y1, the result of the first step), it is represented as as the sum of two floating-
point numbers, also called a double-double number. There are well-known algorithms for computing on
double-doubles, and they are presented in the next chapter. An advantage of properly encapsulating
double-double arithmetic is that we can actually exploit fused multiply-and-add operators in a trans-
parent manner (this experimental feature is currently available for the Itanium and PowerPC platforms,
when using the gcc compiler).

At the end of the quick phase, a sequence of simple tests on y1 knowing ε1 allows to decide whether
to go for the second step. The sequence corresponding to each rounding mode is shared by most func-
tions and is also carefully proven in the next chapter.

1.3.3 Ad-hoc, fast multiple precision for accurate second step

For the second step, we may use two specific multiple-precision libraries:

• We first designed an ad-hoc multiple-precision library called Software Carry-Save library (scslib)
which is lighter and faster than other available libraries for this specific application [14, 10]. This
choice is motivated by considerations of code size and performance, but also by the need to be
independent of other libraries: Again, we need a library on which we may rely at the proof level.
This library is included in crlibm, but also distributed separately [2]. This library is described in
more details in 2.8.

• More recently, we have been using redundant triple-double arithmetic for the second step. This
approach is lighter, about ten times faster, and has the advantage of making it easier to reuse
information from the fast step in the accurate one. The drawback is that it is more difficult to
master. The basic triple-double procedures, and associated usage theorems, are described in a
separate document (tripledoubleprocedures.pdf) also available in this distribution.

1.3.4 Relaxing portability

The crlibm framework has been used to study the performance advantage of using double-extended
(DE) arithmetic when available. More specifically, the first case may be implemented fully in DE preci-
sion, and the second step may be implemented fully in double-DE arithmetic. Experiments have been
performed on the logarithm and arctangent functions [12]. On some systems (mostly Linux on an IA32
processor) the logarithm will by default use this technology.

Another useful, non-portable hardware feature is the fused multiply-and-add available on Pow-
er/PowerPC and Itanium. The crlibm code does its best to use it when available.

13

1.3.5 Proving the correct rounding property

Throughout this document, what we call “proving” a function mostly means proving a tight bound on
the total relative error of our evaluation scheme. The actual proof of the correct rounding property is
then dependent on the availability of an actual worst-case accuracy for correctly rounding this function,
as computed by Lefèvre and Muller. Three cases may happen:

• The worst case have been computed over the whole domain of the function. In this case the
correct rounding property for this function is fully proven. The state of this search for worst cases
is described in Table 1 page 9.

• The worst cases have been computed only over a subdomain of the function. Then the correct
rounding property is proven on this subdomain. Outside of this domain crlibm offers “astronom-
ical confidence” that the function is correctly rounded: to the best of current knowledge [18, 12],
the probability of the existence of a misrounded value in the function’s domain is lower than 2−40.
This is the case of the trigonometric functions, for instance. The actual domain on which the proof
is complete is mentionned in the respective chapter of this document, and summed up in Table 1.

• The search for worst cases hasn’t begun yet.

We acknowledge that the notion of astronomical confidence breaks the objective of guaranteed cor-
rect rounding, and we sidestep this problem by publishing along with the library (in this document)
the domain of full confidence, which will only expand as time goes. Such behaviour has been proposed
as a standard in [15]. The main advantage of this approach is that it ensures bounded and consistent
worst-case execution time (within a factor 100 of that of the best available faithful libms), which we
believe is crucial to the generalization of correctly rounded functions.

The alternative to our approach would be to implement a multi-layer onion-peeling strategy, as do
GNU MPFR and Sun’s libmcr. There are however many drawbacks to this approach, too:

• One may argue that, due to the finite nature of computers, it only pushes the bounds of astronomy
a little bit further.

• The multilayer approach is only proven to terminate on elementary functions: the termination
proof needs a theorem stating for example that the image of a rational by the function (with some
well-known exceptions) will not be a rational. For other library functions like special functions,
we have no such theorem. For these functions, we prefer take the risk of a misrounded value than
the risk of an infinite loop.

• Similarly, the multilayer approach has potentially unbounded execution time and memory con-
sumption which make it unsuitable for real-time or safety-critical applications, whereas crlibm
will only be unsuitable if the safety depends on correct rounding, which is much less likely.

• Multilayer code is probably much more complex and error prone. One important problem is
that it contains code that, according all probabilities, will never be run. Therefore, testing this
code can not be done on the final production executable, but on a different executable in which
previous layers have been disabled. This introduces the possibility of undetected bugs in the final
production executable.

In the future, we will add, to those crlibm functions for which the required worst-case accuracy is
unknown, a misround detection test at the end of the second step. This test will either print out on
standard error a lengthy warning inviting to report this case, or launch MPFR computation, depending
on a compilation switch.

1.3.6 Error analysis and the accuracy/performance tradeoff

As there are two steps on the evaluation, the proof also usually consists of two parts. The code of the
second, accurate step is usually very simple and straightforward:

• Performance is not that much of an issue, since this step is rarely taken.

14

• All the special cases have already been filtered by the first step.

• The scslib library provides an overkill of precision.

Therefore, the error analysis of the second step, which ultimately proves the correct rounding prop-
erty, is not very difficult.

For the first step, however, things are more complicated:

• We have to handle special cases (infinities, NaNs, signed zeroes, over- and underflows).

• Performance is a primary concern, sometimes leading to “dirty tricks” obfuscating the code.

• We have to compute a tight error bound, as explained below.

Why do we need a tight error bound? Because the decision to launch the second step is taken by a
rounding test depending on

• the approximation yh + yl computed in the first step, and

• this error bound ε1, which is computed statically.

The various rounding tests are detailed and proven in 2.7. The important notion here is that the
probability of launching the second, slower step will be proportional to the error bound ε1 computed for the first
step.

This defines the main performance tradeoff one has to manage when designing a correctly-rounded
function: The average evaluation time will be

Tavg = T1 + p2T2 (1.1)

where T1 and T2 are the execution time of the first and second phase respectively (with T2 ≈ 100T1 in
crlibm), and p2 is the probability of launching the second phase (typically we aim at p2 = 1/1000 so
that the average cost of the second step is less than 10% of the total.

As p2 is almost proportional to ε1, to minimise the average time, we have to

• balance T1 and p2: this is a performance/precision tradeoff (the faster the first step, the less accu-
rate)

• and compute a tight bound on the overall error ε1.

Computing this tight bound is the most time-consuming part in the design of a correctly-rounded
elementary function. The proof of the correct rounding property only needs a proven bound, but a
loose bound will mean a larger p2 than strictly required, which directly impacts average performance.
Compare p2 = 1/1000 and p2 = 1/500 for T2 = 100T1, for instance. As a consequence, when there
are multiple computation paths in the algorithm, it makes sense to precompute different values of ε1 on
these different paths (see for instance the arctangent and the logarithm).

Apart from these considerations, computing the errors is mostly textbook science. Care must be
taken that only absolute error terms (noted δ) can be added, although some error terms (like the rounding
error of an IEEE operation) are best expressed as relative (noted ε). Remark also that the error needed for
the theorems in 2.7 is a relative error. Managing the relative and absolute error terms is very dependent
on the function, and usually involves keeping upper and lower bounds on the values manipulated
along with the error terms.

Error terms to consider are the following:

• approximation errors (minimax or Taylor),

• rounding error, which fall into two categories:

– roundoff errors in values tabulated as doubles or double-doubles (with the exception of
roundoff errors on the coefficient of a polynomial, which are counted in the appproxima-
tion error),

– roundoff errors in IEEE-compliant operations.

15

1.4 An overview of other available mathematical libraries

Many high-quality mathematical libraries are freely available and have been a source of inspiration for
this work.

Most mathematical libraries do not offer correct rounding. They can be classified as

• portable libraries assuming IEEE-754 arithmetic, like fdlibm, written by Sun[3];

• Processor-specific libraries, by Intel[20, 1] and HP[30, 28] among other.

Operating systems often include several mathematical libraries, some of which are derivatives of
one of the previous.

To our knowledge, three libraries currently offer correct rounding:

• The libultim library, also called MathLib, is developed at IBM by Ziv and others [29]. It provides
correct rounding, under the assumption that 800 bits are enough in all case. This approach suffers
two weaknesses. The first is the absence of proof that 800 bits are enough: all there is is a very
high probability. The second is that, as we will see in the sequel, for challenging cases, 800 bits are
much of an overkill, which can increase the execution time up to 20,000 times a normal execution.
This will prevent such a library from being used in real-time applications. Besides, to prevent
this worst case from degrading average performance, there is usually some intermediate levels
of precision in MathLib’s elementary functions, which makes the code larger, more complex, and
more difficult to prove (and indeed this library is scarcely documented).

In addition this library provides correct rounding only to nearest. This is the most used round-
ing mode, but it might not be the most important as far as correct rounding is concerned: correct
rounding provides a precision improvement over current mathematical libraries of only a fraction
of a unit in the last place (ulp). Conversely, the three other rounding modes are needed to guaran-
tee intervals in interval arithmetic. Without correct rounding in these directed rounding modes,
interval arithmetic looses up to one ulp of precision in each computation.

• MPFR is a multiprecision package safer than libultilm as it uses arbitrary multiprecision. It pro-
vides most of elementary functions for the four rounding modes defined by the IEEE-754 stan-
dard. However this library is not optimized for double precision arithmetic. In addition, as its
exponent range is much wider than that of IEEE-754, the subtleties of subnormal numbers are
difficult to handle properly using such a multiprecision package.

• The libmcr library, by K.C. Ng, Neil Toda and others at Sun Microsystems, had its first beta
version published in december 2004. Its purpose is to be a reference implementation for correctly
rounded functions in double precision. It has very clean code, offers arbitrary multiple precision
unlike libultim, at the expense of slow performance (due to, for example dynamic allocation of
memory). It offers the directed rounding modes, and rounds in the mode read from the processor
status flag.

1.5 Various policies in crlibm

1.5.1 Naming the functions

Current crlibm doesn’t by default replace your existing libm: the functions in crlibm have the C99
name, suffixed with rn, ru, rd, and rz for rounding to the nearest, up, down and to zero respectively.
They require the processor to be in round to nearest mode. Starting with version 0.9 we should provide
a compile-time flag which will overload the default libm functions with the crlibm ones with rounding
to nearest.

It is interesting to compare this to the behaviour of Sun’s library: First, Sun’s libmcr provides only
one function for each C99 function instead of four in crlibm, and rounds according to the processor’s
current mode. This is probably closer to the expected long-term behaviour of a correctly-rounded math-
ematical library, but with current processors it may have a tremendous impact on performance. Besides,

16

the notion of “current processor rounding mode” is no longer relevant on recent processors like the Ita-
nium family, which have up to four different modes at the same time. A second feature of libmcr is
that it overloads by default the system libm.

The policy implemented in current crlibm intends to provide best performance to the two classes
of users who will be requiring correct rounding: Those who want predictible, portable behaviour of
floating-point code, and those who implement interval arithmetic. Of course, we appreciate any feed-
back on this subject.

1.5.2 Policy concerning IEEE-754 flags

Currently, the crlibm functions try to raise the Overflow and Underflow flags properly. Raising the
other flags (especially the Inexact flag) is possible but considered too costly for the expected use, and
will usually not be implemented. We also appreciate feedback on this subject.

1.5.3 Policy concerning conflicts between correct rounding and expected mathe-
matical properties

As remarked in [15], it may happen that the requirement of correct rounding conflicts with a basic math-
ematical property of the function, such as its domain and range. A typical example is the arctangent of a
very large number which, rounded up, will be a number larger than π/2 (fortunately, ◦(π/2) < π/2).
The policy that will be implemented in crlibm will be

• to give priority to the mathematical property in round to nearest mode (so as not to hurt the
innocent user who may expect such a property to be respected), and

• to give priority to correct rounding in the directed rounding modes, in order to provide trustful
bounds to interval arithmetic.

Again, this policy is open to discussion.

1.6 Organization of the source code

For recent functions implemented using triple-double arithmetic, both quick and accurate phase are
provided in a single source file, e.g. exp-td.c.

For older functions using the SCS library, each function is implemented as two files, one with the
accurate suffix (for instance trigo accurate.c), the other named with the fast suffix (for instance
trigo fast.c).

The software carry-save multiple-precision library is contained in a subdirectory called scs lib.
The common C routines that are detailed in Chapter 2 of this document are defined in crlibm private.c

and crlibm private.h.
Many of the constants used in the C code have been computed thanks to Maple procedures which

are contained in the maple subdirectory. Some of these procedures are explained in Chapter 2. For some
functions, a Maple procedure mimicking the C code, and used for debugging or optimization purpose,
is also available.

The code also includes programs to test the crlibm functions against MPFR, libultim or libmcr, in
terms of correctness and performance. They are located in the tests directory.

Gappa proof scripts are located in the gappa directory.

17

18

Chapter 2

Common notations, theorems and
procedures

2.1 Notations

The following notations will be used throughout this document:

• +, − and × denote the usual mathematical operations.

• ⊕, 	 and ⊗ denote the corresponding floating-point operations in IEEE-754 double precision, in
the IEEE-754 round to nearest mode.

• ◦(x),4(x) and5(x) denote the value of x rounded to the nearest, resp. rounded up and down.

• ε (usually with some index) denotes a relative error, δ denotes an absolute error. Upper bounds
on the absolute value of these errors will be denoted ε and δ.

• ε−k – with a negative index – represents an error e such that |e| ≤ 2−k.

• For a floating-point number x, the value of the least significant bit of its mantissa is classically
denoted ulp(x).

2.2 Common C procedures for double-precision numbers

2.2.1 Sterbenz Lemma

Theorem 1 (Sterbenz Lemma [37, 19]). If x and y are floating-point numbers, and if y/2 ≤ x ≤ 2y then
x	 y is computed exactly, without any rounding error.

2.2.2 Double-precision numbers in memory

A double precision floating-point number uses 64 bits. The unit of memory in most current architectures
is a 32-bit word. The order in which the two 32 bits words of a double are stored in memory depends
on the architecture. An architecture is said Little Endian if the lower part of the number is stored in
memory at the smallest address; It is the case of the x86 processors. Conversely, an architecture with
the high part of the number stored in memory at the smallest address is said Big Endian; It is the case of
the PowerPC processors.

In crlibm, we extract the higher and lower parts of a double by using an union in memory: the type
db number. The following code extracts the upper and lower part from a double precision number x.

Listing 2.1: Extract upper and lower part of a double precision number x
1 /∗ HI and LO a r e d e f i n e d a u t o m a t i c a l l y by a u t o c o n f / automake . ∗ /
2

3 db number xx ;

19

4 i n t x hi , x l o ;
5 xx . d = x ;
6 x h i = xx . i [HI]
7 x l o = xx . i [LO]

2.2.3 Conversion from floating-point to integer

Theorem 2 (Conversion floating-point to integer). The following algorithm, taken from [4], converts a
double-precision floating-point number d into a 32-bit integer i with rounding to nearest mode.

It works for all the doubles whose nearest integer fits on a 32-bit machine signed integer.

Listing 2.2: Conversion from FP to int
1 # d e f i n e DOUBLE2INT(i , d) \
2 {double t =(d +6755399441055744.0) ; i =LO(t) ;}

This algorithm adds the constant 252 + 251 to the floating-point number to put the integer part of x,
in the lower part of the floating-point number. We use 252 + 251 and not 252, because the value 251 is
used to contain possible carry propagations with negative numbers.

2.2.4 Conversion from floating-point to 64-bit integer

Theorem 3 (Conversion floating-point to a long long integer). The following algorithm, is derived from the
previous.

It works for any double whose nearest integer is smaller than 251 − 1.

Listing 2.3: Conversion from FP to long long int
1 # d e f i n e DOUBLE2LONGINT(i , d) \
2 { \
3 db number t ; \
4 t . d = (d +6755399441055744.0) ; \
5 i f (d >= 0) /∗ s i g n e x t e n d ∗ / \
6 i = t . l & 0x0007FFFFFFFFFFFFLL ; \
7 e l s e \
8 i = (t . l & 0x0007FFFFFFFFFFFFLL) | (0 xFFF8000000000000LL) ; \
9 }

2.2.5 Methods to raise IEEE-754 flags

The IEEE standard imposes, in certain cases, to raise flags and/or exceptions for the 4 operators (+, ×,
÷, √). Therefore, it is legitimate to require the same for elementary functions.

In ISO C99, the following instructions raise exceptions and flags:

• underflow : the multiplication ±smallest × smallest where smallest correspond to the smallest
subnormal number,

• overflow : the multiplication ±largest× largest where largest correspond to the largest normal-
ized number,

• division by zero : the division ±1.0/0.0,

• inexact : the addition (x + smallest) − smallest where x is the result and smallest the smallest
subnormal number,

• invalid : the division ±0.0/0.0.

20

2.3 Common C procedures for double-double arithmetic

Hardware operators are usualy limited to double precision. To perform operations with more precision,
then software solutions need to be used. One among them is to represent a floating point number as
the sum of two non-overlapping floating-point numbers (or double-double numbers).

The algorithms are given as plain C functions, but it may be preferable, for performance issue, to im-
plement them as macros, as in libultim. The code offers both versions, selected by the DEKKER AS FUNCTIONS

constant which is set by default to 1 (functions).
A more recent proof is available in [25].

2.3.1 Exact sum algorithm Add12

This algorithm is also known as the Fast2Sum algorithm in the litterature.

Theorem 4 (Exact sum [22, 7]). Let a and b be floating-point numbers, then the following method computes
two floating-point numbers s and r, such that s + r = a + b exactly, and s is the floating-point number which is
closest to a + b.

Listing 2.4: Add12Cond
1 void Add12Cond (double ∗s , double ∗r , a , b)
2 {
3 double z ;
4 s = a + b ;
5 i f (ABS(a) > ABS(b)) {
6 z = s − a ;
7 r = b − z ;
8 } e l s e {
9 z = s − b ;

10 r = a − z ;
11 }
12 }

Here ABS is a macro that returns the absolute value of a floating-point number. This algorithm requires 4 floating-
point additions and 2 floating point tests (some of which are hidden in the ABS macro).

Note that if it is more efficient on a given architecture, the test can be replaced with a test on the exponents of
a and b.

If we are able to prove that the exponent of a is always greater than that of b, then the previous
algorithm to perform an exact addition of 2 floating-point numbers becomes :

Listing 2.5: Add12
1 void Add12 (double ∗s , double ∗r , a , b)
2 {
3 double z ;
4 s = a + b ;
5 z = s − a ;
6 r = b − z ;
7 }

The cost of this algorithm is 3 floating-point additions.

2.3.2 Exact product algorithm Mul12

This algorithm is sometimes also known as the Dekker algorithm [16]. It was proven by Dekker but the
proof predates the IEEE-754 standard and is difficult to read. An easier proof is available in [19] (see
Th. 14).

Theorem 5 (Restricted exact product). Let a and b be two double-precision floating-point numbers, with 53
bits of mantissa. Let c = 2d

53
2 e + 1. Assuming that a < 2970 and b < 2970, the following procedure computes the

two floating-point numbers rh and rl such that rh + rl = a + b with rh = a⊗ b:

Listing 2.6: Mul12
1 void Mul12 (double ∗rh , double ∗ r l , double u , double v) {

21

2 const double c = 1 3 4 2 1 7 7 2 9 . ; /∗ 1+2ˆ27 ∗ /
3 double up , u1 , u2 , vp , v1 , v2 ;
4

5 up = u∗ c ; vp = v∗ c ;
6 u1 = (u−up) +up ; v1 = (v−vp) +vp ;
7 u2 = u−u1 ; v2 = v−v1 ;
8

9 ∗ rh = u∗v ;
10 ∗ r l = (((u1∗v1−∗rh) +(u1∗v2)) +(u2∗v1)) +(u2∗v2) ;
11 }

The cost of this algorithm is 10 floating-point additions and 7 floating-point multiplications.
The condition a < 2970 and b < 2970 prevents overflows when multiplying by c. If it cannot be

proved statically, then we have to first test a and b, and prescale them so that the condition is true.

Theorem 6 (Exact product). Let a and b be two double-precision floating-point numbers, with 53 bits of man-
tissa. Let c = 2d

53
2 e + 1. The following procedure computes the two floating-point numbers rh and rl such that

rh + rl = a + b with rh = a⊗ b:

Listing 2.7: Mul12Cond
1 void Mul12Cond (double ∗rh , double ∗ r l , double a , double b) {
2 const double two 970 = 0.997920154767359905828186356518419283 e292 ;
3 const double two em53 = 0.11102230246251565404236316680908203125 e−15;
4 const double two e53 = 9007199254740992 . ;
5 double u , v ;
6

7 i f (a>two 970) u = a∗ two em53 ;
8 e l s e u = a ;
9 i f (b>two 970) v = b∗ two em53 ;

10 e l s e v = b ;
11

12 Mul12 (rh , r l , u , v) ;
13

14 i f (a>two 970) {∗ rh ∗= two e53 ; ∗ r l ∗= two e53 ;}
15 i f (b>two 970) {∗ rh ∗= two e53 ; ∗ r l ∗= two e53 ;}
16 }

The cost in the worst case is then 4 tests over integers, 10 floating-point additions and 13 floating-
point multiplications.

Finally, note that a fused multiply-and-add provides the Mul12 and Mul12Cond in only two instruc-
tions [8]. Here is the example code for the Itanium processor.

Listing 2.8: Mul12 on the Itanium
1 # define Mul12Cond (rh , r l , u , v) \
2 { \
3 ∗rh = u∗v ; \
4 /∗ The f o l l o w i n g means : ∗ r l = FMS(u∗v−∗rh) ∗ / \
5 asm v o l a t i l e (”fms %0 = %1, %2, %3\n ; ; \ n” \
6 : ”= f ” (∗ r l) \
7 : ” f ” (u) , ” f ” (v) , ” f ” (∗ rh) \
8) ; \
9 }

10 # define Mul12 Mul12Cond

The crlibm distribution attempts to use the FMA for systems on which it is availables (currently
Itanium and PowerPC).

2.3.3 Double-double addition Add22

This algorithm, also due to Dekker [16], computes the sum of two double-double numbers as a double-
double, with a relative error smaller than 2−103 (there is a proof in [16], a more recent one can be found
in in [25]).

Listing 2.9: Add22Cond
1 void Add22Cond (double ∗zh , double ∗zl , double xh , double xl , double yh , double yl)
2 {
3 double r , s ;

22

4

5 r = xh+yh ;
6 s = (ABS(xh) > ABS(yh)) ? (xh−r+yh+yl+ x l) : (yh−r+xh+ x l +yl) ;
7 ∗zh = r+s ;
8 ∗ z l = r − (∗ zh) + s ;
9 }

Here ABS is a macro that returns the absolute value of a floating-point number. Again, if this test
can be resolved at compile-time, we get the faster Add22 procedure:

Listing 2.10: Add22
1 void Add22 (double ∗zh , double ∗zl , double xh , double xl , double yh , double yl)
2 {
3 double r , s ;
4

5 r = xh+yh ;
6 s = xh−r+yh+yl+ x l ;
7 ∗zh = r+s ;
8 ∗ z l = r − (∗ zh) + s ;
9 }

2.3.4 Double-double multiplication Mul22

This algorithm, also due to Dekker [16], computes the product of two double-double numbers as a
double-double, with a relative error smaller than 2−102, under the condition xh < 2970 and yh < 2970

(there is a proof in [16], a more recent one can be found in in [25]).

Listing 2.11: Mul22
1 void Mul22 (double ∗zh , double ∗zl , double xh , double xl , double yh , double yl)
2 {
3 double mh, ml ;
4

5 const double c = 1 3 4 2 1 7 7 2 9 . ; /∗ 0x41A00000 , 0 x02000000 ∗ /
6 double up , u1 , u2 , vp , v1 , v2 ;
7

8 up = xh∗c ; vp = yh∗c ;
9 u1 = (xh−up) +up ; v1 = (yh−vp) +vp ;

10 u2 = xh−u1 ; v2 = yh−v1 ;
11

12 mh = xh∗yh ;
13 ml = (((u1∗v1−mh) +(u1∗v2)) +(u2∗v1)) +(u2∗v2) ;
14

15 ml += xh∗yl + x l ∗yh ;
16 ∗zh = mh+ml ;
17 ∗ z l = mh − (∗ zh) + ml ;
18 }

Note that the bulk of this algorithm is a Mul12(mh,ml,xh,yh). Of course there is a conditional
version of this procedure but we have not needed it so far.

2.3.5 The multiplication procedure Mul122

Algorithm 1 (Mul122).
In: a double precision number a and a double-double number bh + bl
Out: a double-double number rh + rl
Preconditions on the arguments:

|bl| ≤ 2−53 · |bh|

Algorithm:

(t1, t2)← Mul12 (a, bh)
t3 ← a⊗ bl
t4 ← t2 ⊕ t3
(rh, rl)← Add12 (t1, t4)

23

Theorem 7 (Relative error of algorithm 1 Mul122).
Let be a and bh + bl the values taken by the arguments of algorithm 1 Mul122
So the following holds for the values returned rh and rl:

rh + rl = (a · (bh + bl)) · (1 + ε)

where ε is bounded as follows:
|ε| ≤ 2−102

The values returned rh and rl will not overlap at all.

2.3.6 Double-double Horner step procedures

The multiply-and-add operator MulAdd212

Algorithm 2 (MulAdd212).
In: a double-double number ch + cl, a double precision number a and a double-double number bh + bl
Out: a double-double number rh + rl
Preconditions on the arguments:

|bl| ≤ 2−53 · |bh|
|cl| ≤ 2−53 · |ch|

|a · (bh + bl)| ≤ 2−2 · |ch + cl|

Algorithm:

(t1, t2)← Mul12 (a, bh)
(t3, t4)← Add12 (ch, t1)
t5 ← bl ⊗ a
t6 ← cl ⊕ t2
t7 ← t5 ⊕ t6
t8 ← t7 ⊕ t4
(rh, rl)← Add12 (t3, t8)

Theorem 8 (Relative error of algorithm 2 MulAdd212).
Let be ch + cl, a and bh + bl the arguments of algorithm 2 MulAdd212 verifying the given preconditions.
So the following egality will hold for the returned values rh and rl

rh + rl = ((ch + cl) + a · (bh + bl)) · (1 + ε)

where ε is bounded by:
|ε| ≤ 2−100

The returned values rh and rl will not overlap at all.

The multiply-and-add operator MulAdd22

Algorithm 3 (MulAdd22).
In: three double-double numbers ch + cl, ah + al and bh + bl
Out: a double-double number rh + rl
Preconditions on the arguments:

al	≤ 2−53 ·	ah
bl	≤ 2−53 ·	bh
cl	≤ 2−53 ·	ch

|(ah + al) · (bh + bl)| ≤ 2−2 · |ch + cl|

Algorithm:

24

(t1, t2)← Mul12 (ah, bh)
(t3, t4)← Add12 (ch, t1)
t5 ← ah ⊗ bl
t6 ← al ⊗ bh
t7 ← t2 ⊕ cl
t8 ← t4 ⊕ t7
t9 ← t5 ⊕ t6
t10 ← t8 ⊕ t9
(rh, rl)← Add12 (t3, t10)

Theorem 9 (Relative error of algorithm 3 MulAdd22).
Let be ch + cl, ah + al and bh + bl the arguments of algorithm 3 MulAdd22 verifying the given preconditions.
So the following egality will hold for the returned values rh and rl

rh + rl = ((ch + cl) + (ah + al) · (bh + bl)) · (1 + ε)

where ε is bounded by:
|ε| ≤ 2−100

The returned values rh and rl will not overlap at all.

2.3.7 Multiplication of a double-double by an integer

Use Cody and Waite algorithm. See for instance the log and the trigonometric argument reduction
(chapter 3, p. 51).

2.4 Common C procedures for triple-double arithmetic

These procedures are used to reach accuracies of about 150 bits. They are detailed and proven in [25].

Algorithm 4 (Renormalization).
In: ah, am, al ∈ F verifying the following preconditions:
Preconditions:

• None of the numbers ah, am, al is subnormal

• ah et am do not overlap in more than 51 bits

• am et al do not overlap in more than 51 bits

which means formally:

am	≤ 2−2 ·	ah
al	≤ 2−2 ·	am
al	≤ 2−4 ·	ah

Out: rh, rm, rl ∈ F

(t1h, t1l) ← Add12 (am, al)

(rh, t2l) ← Add12 (ah, t1h)

(rm, rl) ← Add12 (t2l, t1l)

Theorem 10 (Correctness of the renormalization algorithm 4 Renormalize3).
For all arguments verifying the preconditions of procedure Renormalize3, the values returned rh, rm and rl will
not overlap unless they are all equal to 0 and their sum will be exactly the sum of the values in argument ah, am
et al. This implies:

|rm| ≤ 2−52 · |rh|

|rl| ≤ 2−53 · |rm|

25

2.4.1 The addition operator Add33

Algorithm 5 (Add33).
In: two triple-double numbers, ah + am + al and bh + bm + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

|bh| ≤
3
4
· |ah|

am	≤ 2−αo ·	ah
al	≤ 2−αu ·	am
bm	≤ 2−βo ·	bh
bl	≤ 2−βu ·	bm
αo ≥ 4
αu ≥ 1
βo ≥ 4
βu ≥ 1

Algorithm:

(rh, t1)← Add12 (ah, bh)
(t2, t3)← Add12 (am, bm)
(t7, t4)← Add12 (t1, t2)
t6 ← al ⊕ bl
t5 ← t3 ⊕ t4
t8 ← t5 ⊕ t6
(rm, rl)← Add12 (t7, t8)

Theorem 11 (Relative error of algorithm 5 Add33).
Let be ah + am + al and bh + bm + bl the triple-double arguments of algorithm 5 Add33 verifying the given
preconditions.
So the following egality will hold for the returned values rh, rm and rl

rh + rm + rl = ((ah + am + al) + (bh + bm + bl)) · (1 + ε)

where ε is bounded by:
|ε| ≤ 2−min(αo+αu ,βo+βu)−47 + 2−min(αo ,βo)−98

The returned values rm and rl will not overlap at all and the overlap of rh and rm will be bounded by the following
expression:

|rm| ≤ 2−min(αo ,βo)+5 · |rh|

2.4.2 The addition operator Add233

Algorithm 6 (Add233).
In: a double-double number ah + al and a triple-double number bh + bm + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

bh	≤ 2−2 ·	ah
al	≤ 2−53 ·	ah
bm	≤ 2−βo ·	bh
bl	≤ 2−βu ·	bm

Algorithm:

26

(rh, t1)← Add12 (ah, bh)
(t2, t3)← Add12 (al, bm)
(t4, t5)← Add12 (t1, t2)
t6 ← t3 ⊕ bl
t7 ← t6 ⊕ t5
(rm, rl)← Add12 (t4, t7)

Theorem 12 (Relative error of algorithm 6 Add233).
Let be ah + al and bh + bm + bl the values taken in argument of algorithm 6 Add233. Let the preconditions hold
for this values.
So the following holds for the values returned by the algorithm rh, rm and rl

rh + rm + rl = ((ah + am + al) + (bh + bm + bl)) · (1 + ε)

where ε is bounded by
|ε| ≤ 2−βo−βu−52 + 2−βo−104 + 2−153

The values rm and rl will not overlap at all and the overlap of rh and rm will be bounded by:

|rm| ≤ 2−γ · |rh|

with
γ ≥ min (45, βo − 4, βo + βu − 2)

2.4.3 The addition operator Add133

Algorithm 7 (Add133).
In: a double precision number a and a triple-double number bh + bm + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

bh	≤ 2−2 ·	a
bm	≤ 2−βo ·	bh
bl	≤ 2−βu ·	bm

Algorithm:

(rh, t1)← Add12 (a, bh)
(t2, t3)← Add12 (t1, bm)
t4 ← t3 ⊕ bl
(rm, rl)← Add12 (t2, t4)

Theorem 13 (Relative error of algorithm 7 Add133).
Let be a and bh + bm + bl the values taken in argument of algorithm 7 Add133. Let the preconditions hold for
this values.
So the following holds for the values returned by the algorithm rh, rm and rl

rh + rm + rl = (a + (bh + bm + bl)) · (1 + ε)

where ε is bounded by
|ε| ≤ 2−βo−βu−52 + 2−154

The values rm and rl will not overlap at all and the overlap of rh and rm will be bounded by:

|rm| ≤ 2−γ · |rh|

with
γ ≥ min (47, βo − 2, βo + βu − 1)

27

2.4.4 The multiplication procedure Mul33

Algorithm 8 (Mul33).
In: two triple-double numbers ah + am + al and bh + bm + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

am	≤ 2−αo ·	ah
al	≤ 2−αu ·	am
bm	≤ 2−βo ·	bh
bl	≤ 2−βu ·	bm

with

αo ≥ 2
αu ≥ 2
βo ≥ 2
βu ≥ 2

Algorithm:

(rh, t1)← Mul12 (ah, bh)
(t2, t3)← Mul12 (ah, bm)
(t4, t5)← Mul12 (am, bh)
(t6, t7)← Mul12 (am, bm)
t8 ← ah ⊗ bl
t9 ← al ⊗ bh
t10 ← am ⊗ bl
t11 ← al ⊗ bm
t12 ← t8 ⊕ t9
t13 ← t10 ⊕ t11
(t14, t15)← Add12 (t1, t6)
t16 ← t7 ⊕ t15
t17 ← t12 ⊕ t13
t18 ← t16 ⊕ t17
(t19, t20)← Add12 (t14, t18)
(t21, t22)← Add22 (t2, t3, t4, t5)
(rm, rl)← Add22 (t21, t22, t19, t20)

Theorem 14 (Relative error of algorithm 8 Mul33).
Let be ah + am + al and bh + bm + bl the values taken by the arguments of algorithm 8 Mul33
So the following holds for the values returned rh, rm and rl:

rh + rm + rl = ((ah + am + al) · (bh + bm + bl)) · (1 + ε)

where ε is bounded as follows:

|ε| ≤ 2−151

+ 2−99−αo

+ 2−99−βo

+ 2−49−αo−αu

+ 2−49−βo−βu

+ 2−50−αo−βo−βu

+ 2−50−αo−αu−βo

+ 2−101−αo−βo

+ 2−52−αo−αu−βo−βu

28

The values returned rm and rl will not overlap at all and the overlap of rh and rm will be bounded as follows:

|rm| ≤ 2−γo · |rh|

with
γo ≥ min (48, αo − 4, βo − 4, αo + αu − 4, βo + βu − 4, αo + αo − 4)

2.4.5 The multiplication procedure Mul23

Algorithm 9 (Mul23).
In: two double-double numbers ah + al and bh + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

|al| ≤ 2−53 · |ah|
|bl| ≤ 2−53 · |bh|

Algorithm:

(rh, t1)← Mul12 (ah, bh)
(t2, t3)← Mul12 (ah, bl)
(t4, t5)← Mul12 (al, bh)
t6 ← al ⊗ bl
(t7, t8)← Add22 (t2, t3, t4, t5)
(t9, t10)← Add12 (t1, t6)
(rm, rl)← Add22 (t7, t8, t9, t10)

Theorem 15 (Relative error of algorithm 9 Mul23).
Let be ah + al and bh + bl the values taken by arguments of algorithm 9 Mul23
So the following holds for the values returned rh, rm and rl:

rh + rm + rl = ((ah + al) · (bh + bl)) · (1 + ε)

where ε is bounded as follows:
|ε| ≤ 2−149

The values returned rm and rl will not overlap at all and the overlap of rh and rm will be bounded as follows:

|rm| ≤ 2−48 · |rh|

2.4.6 The multiplication procedure Mul233

Algorithm 10 (Mul233).
In: a double-double number ah + al and a triple-double number bh + bm + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

al	≤ 2−53 ·	ah
bm	≤ 2−βo ·	bh
bl	≤ 2−βu ·	bm

with

βo ≥ 2
βu ≥ 1

Algorithm:

29

(rh, t1)← Mul12 (ah, bh)
(t2, t3)← Mul12 (ah, bm)
(t4, t5)← Mul12 (ah, bl)
(t6, t7)← Mul12 (al, bh)
(t8, t9)← Mul12 (al, bm)
t10 ← al ⊗ bl
(t11, t12)← Add22 (t2, t3, t4, t5)
(t13, t14)← Add22 (t6, t7, t8, t9)
(t15, t16)← Add22 (t11, t12, t13, t14)
(t17, t18)← Add12 (t1, t10)
(rm, rl)← Add22 (t17, t18, t15, t16)

Theorem 16 (Relative error of algorithm 10 Mul233).
Let be ah + al and bh + bm + bl the values in argument of algorithm 10 Mul233 such that the given preconditions
hold.
So the following will hold for the values rh, rm and rl returned

rh + rm + rl = ((ah + al) · (bh + bm + bl)) · (1 + ε)

where ε is bounded as follows:

|ε| ≤ 2−99−βo + 2−99−βo−βu + 2−152

1− 2−53 − 2−βo+1 − 2−βo−βu+1 ≤ 2−97−βo + 2−97−βo−βu + 2−150

The values rm and rl will not overlap at all and the following bound will be verified for the overlap of rh and rm:

|rm| ≤ 2−γ · |rh|

where
γ ≥ min (48, βo − 4, βo + βu − 4)

2.4.7 The multiplication procedure Mul133

Algorithm 11 (Mul133).
In: a double number a and a triple-double number bh + bm + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

|bm| ≤ 2−βo · |bh|
|bl| ≤ 2−βu · |bm|

with

βo ≥ 2
βu ≥ 2

Algorithm:

(rh, t2)← Mul12 (a, bh)
(t3, t4)← Mul12 (a, bm)
t5 ← a⊗ bl
(t9, t7)← Add12 (t2, t3)
t8 ← t4 ⊕ t5
t10 ← t7 ⊕ t8
(rm, rl)← Add12 (t9, t10)

30

Theorem 17 (Relative error of algorithm 11 Mul133).
Let be a and bh + bm + bl the values in argument of algorithm 11 Mul133 such that the given preconditions
hold.
So the following will hold for the values rh, rm and rl returned

rh + rm + rl = (a · (bh + bm + bl)) · (1 + ε)

where ε is bounded as follows:
|ε| ≤ 2−101−βo + 2−49−βo−βu + 2−156

The values rm and rl will not overlap at all and the following bound will be verified for the overlap of rh and rm:

|rm| ≤ 2−γ · |rh|

where
γ ≥ min (47, βo − 5, βo + βu − 5)

2.4.8 The multiplication procedure Mul123

Algorithm 12 (Mul123).
In: a double number a and a double-double number bh + bl
Out: a triple-double number rh + rm + rl
Preconditions on the arguments:

|bl| ≤ 2−53 · |bh|

Algorithm:

(rh, t1)← Mul12 (a, bh)
(t2, t3)← Mul12 (a, bl)
(t5, t4)← Add12 (t1, t2)
t6 ← t3 ⊗ t4
(rm, rl)← Add12 (t5, t6)

Theorem 18 (Relative error of algorithm 12 Mul123).
Let be a and bh + bl the values in argument of algorithm 12 Mul123 such that the given preconditions hold.
So the following will hold for the values rh, rm and rl returned

rh + rm + rl = (a · (bh + bl)) · (1 + ε)

where ε is bounded as follows:
|ε| ≤ 2−154

The values rm and rl will not overlap at all and the following bound will be verified for the overlap of rh and rm:

|rm| ≤ 2−γ · |rh|

where
γ ≥ 47

2.4.9 Final rounding to the nearest even

Algorithm 13 (Final rounding to the nearest (even)).
In: a triple-double number xh + xm + xl
Out: a double precision number x′ returned by the algorithm
Preconditions on the arguments:

• xh and xm as well as xm and xl do not overlap

• xm = ◦ (xm + xl)

31

• xh 6= 0, xm 6= 0 and xl 6= 0

• ◦ (xh + xm) 6∈
{

x−h , xh, x+h
}
⇒ |(xh + xm)− ◦ (xh + xm)| 6= 1

2 · ulp (◦ (xh + xm))

Algorithm:

t1 ← x−h
t2 ← xh 	 t1
t3 ← t2 ⊗ 1

2
t4 ← x+h
t5 ← t4 	 xh
t6 ← t5 ⊗ 1

2

if (xm 6= −t3) and (xm 6= t6) then
return (xh ⊕ xm)

else
if (xm ⊗ xl > 0.0) then

if (xh ⊗ xl > 0.0) then
return x+h

else
return x−h

end if
else

return xh
end if

end if

Theorem 19 (Correctness of the final rounding procedure 13).
Let be A the algorithm 13 said “ Final rounding to the nearest (even)”. Let be xh + xm + xl triple-double number
for which the preconditions of algorithm A hold. Let us notate x′ the double precision number returned by the
procedure.
So

x′ = ◦ (xh + xm + xl)

i.e. A is a correct rounding procedure for round-to-nearest-ties-to-even mode.

2.4.10 Final rounding for the directed modes

Theorem 20 (Directed final rounding of a triple-double number).
Let be xh + xm + xl ∈ F + F + F a non-overlapping triple-double number.
Let be � a directed rounding mode.
Let be A the following instruction sequence:

(t1, t2)← Add12 (xh, xm)
t3 ← t2 ⊕ xl
return � (t1 + t3)

So A is a correct rounding procedure for the rounding mode �.

2.5 Horner polynomial approximations

Most function evaluation schemes include some kind of polynomial evaluation over a small interval.
Classically, we use the Horner scheme, which is the best suited in this case.

For a polynomial of degree d, noting ci its coefficients, the Horner scheme consists in computing S0
using the following recursion:

32

{
Sd(x) = cd
Sk(x) = ck + xSk+1(x) for 0 ≤ k < d

In the quick phase, the evaluation always begins in double-precision, but it may end with double-
double arithmetic in order to compute the result as a double-double (from a performance point of view
it is a less costly to begin the double-double part with a double-double addition rather than with a
double-double multiplication). In this section only, ⊕ and ⊗ therefore denote either a double, or a
double-double, or an SCS operation.

For fast and accurate function evaluation, we try to have x small with respect to the coefficients. In
this case the error in one step is scaled down for the next step by the multiplication by x, allowing for
an accumulated overall error which is actually close to that of the last operation.

In addition we note

• δ⊕ and δ⊗ the absolute error when performing an atomic⊕ or⊗, and ε⊕ and ε⊗ the corresponding
relative error (we use whichever allows the finer error analysis, as detailed below). It can change
during a Horner evaluation, typically if the evaluation begins in double-precision (ε⊕ = ε⊗ =
2−53) and ends in double-double (ε⊕ = ε⊗ = 2−102).

• cj the coefficient of P of degree j, considered exactly representable (if cj is an approximation to
some exact value ĉj, the corresponding error is taken into account in the computation of the ap-
proximation error for this polynomial)

• x the maximum value of |x| over the considered interval

• εx a bound on the relative error of the input x with respect to the exact mathematical value x̂
it represents. Note that sometimes argument reduction is exact, and will yield εx = 0 (see for
instance the logarithm). Also note that εx may change during the evaluation: Typically, if x̂ is
approximated as a double-double xh + xl = x̂(1 + ε), then the first iterations will be computed
in double-precision only, and the error will be εx = 2−53 if one is able to prove that xh = ◦(x̂).
For the last steps of the evaluation, using double-double arithmetic on xh + xl , the error will be
improved to εx = ε.

• pk = x ⊗ sk the result of a multiplication step in the Horner scheme. We recursively evaluate
its relative and absolute error ε×j and δ

×
j with respect to the exact mathematical value Pj(x̂) =

xSj+1(x̂).

• sk = ck ⊕ pk+1 (with sd = cd) the result of an addition step in the Horner scheme. We recursively
evaluate its absolute error ε+j with respect to the exact mathematical value Sk(x̂).

• sk the maximum value that sk may take for |x| ≤ x.

• ||Sk||∞ the infinite norm of Sk for |x| ≤ x.

Given |x| ≤ x, we want to compute by recurrence{
pk = x⊗ sk+1 = x̂Sk+1(x̂)(1 + ε×k)

sk = ck ⊕ pk = Sk(x̂) + δ
+
k

The following computes tight bounds on ε×k and on δ+k .

• Initialization/degree 0 polynomial:
sd = cd
sd = sd = |cd|
ε+d = 0

• Horner steps:

33

– multiplication step:

pk = x⊗ sk+1

= x̂(1 + εx) ⊗ (Sk+1(x̂) + δ+k+1)

= x̂Sk+1(x̂)(1 + εx)(1 +
δ+k+1

Sk+1(x̂)
)(1 + ε⊗)

We therefore get
pk = Pk(x̂)(1 + ε×k) (2.1)

with
ε×k = (1 + εx)(1 + ε+k+1)(1 + ε⊗)− 1 (2.2)

Here we will take ε′⊗ = 2−53 or ε′⊗ = 2−102 or ε′⊗ = 2−205 respectively for double, double-
double, or SCS operations.

– addition step

sk = ck ⊕ pk

= ck + pk + δ⊕
= ck + Pk(x̂)(1 + ε×k) + δ⊕

= ck + Pk(x̂) + ε×k Pk(x̂) + δ⊕

= Sk(x̂) + ε×k Pk(x̂) + δ⊕

We therefore get
sk = Sk(x̂) + δ+k (2.3)

δ
+
k = ε×k ||Pk||∞ + δ⊕ (2.4)

Here δ⊕ will be computed for double-precision operations as

δ⊕ =
1
2

ulp(||Sk||∞ + ε×k ||Pk||∞) .

For double-double or SCS operations, δ⊕ will be computed as

δ⊕ = 2−ν(||Sk||∞ + ε×k ||Pk||∞)

with ν = 102 and ν = 205 respectively.

To compute a relative error out of the absolute error δ
+
0 , there are two cases to consider.

• If c0 6= 0, for small values of x, a good bound on the overall relative error is to divide δ0 by the
minimum of |s0|, which – provided x is sufficiently small compared to c0 – is well approximated
by

s0 = |c0| − x.s1

where s1 = ||S1||∞ + δ1. An upper bound on the total relative error is then

ρ =
δ+0

|c0| − x.s1

When computing on double-precision numbers we want the error bound to be as tight as possible,
as it directly impacts the performance as explained in Section 1.3.6. We may therefore check that
ck ⊕ pk has a constant exponent for all the values of pk. In which case, the above approximation
is the tightest possible. If it is not the case (which is unlikely, as pk is small w.r.t ck), then the ulp
above may take two different values. We divide the interval of pk into two sub-intervals, and we
compute δ+k , s0 and ρ on both to take the max.

This is currently not implemented.

34

• If c0 = 0, then the last addition is exact in double as well as double-double, and an efficient
implementation will skip it anyway. The overall relative error is that of the last multiplication,
and is given as ε′0.

2.6 Helper functions

2.6.1 High accuracy square roots

Some of crlibm’s functions need high precision square roots. They are not intended to be used outside
crlibm. In particular, we do currently not guarantee the correct rounding of their results because this
property is not needed for our purposes. Their implementation does not handle all possible special
cases (x < 0, NaN, ∞ etc.) neither.

We currently provide two C macros computing the square root of a double precision argument
either in double-double precision with at least 100 correct bits (in faithful rounding) or in triple-double
precision with an accuracy of at least 146 bits (in faithful rounding). The corresponding macros are
called sqrt12 and sqrt13.

The implementation of these macros was guided by the following principles:

• no dependency on other libms, so avoidance of bootstrapping a Newton iteration by a double
precision square root implemented elsewhere,

• high efficiency,

• a small memory footprint,

• the possible use of hardware support on some platforms in the future.

Overview of the algorithm

The algorithm uses a combination of polynomial approximation and Newton iteration.
After handling some special cases, the argument x = 2E′ ·m′ is reduced into its exponent E′ stored

in integer and its fractional part m′ stored as a double precision number. This argument reduction is
obviously exact. The two values are then adjusted as follows:

E =

{
E′ if ∃n ∈N . E′ = 2n
E′ + 1 otherwise m =

{
m′ if ∃n ∈N . E′ = 2n
m′
2 otherwise

One easily checks that 1
2 ≤ m ≤ 2 and that E is always even. Thus

√
x =
√

2E ·m = 2
E
2 ·
√

m = 2
E
2 ·m · 1√

m

The algorithm therefore approximates r̂ = 1√
m and reconstructs the square root by multiplying by m

and exactly by 2
E
2 .

The reciprocal square root r̂ is approximated in two steps. First, a polynomial approximation yields
to r0 = r̂ · (1 + ε1), which is exact to about 8 bits. In a second step, this approximation is refined by a
Newton iteration that approximately doubles its accuracy at each step. So for a double-double result, 4
iterations are needed and for a triple-double result 5.

The initial polynomial approximation is less exact than the one provided by Itanium’s operation,
which allows for using this hardware assistance in the future.

Special case handling

The square root of a double precision number can never be subnormal. In fact, if
√

x ≤ 2−1021, x =√
x2 ≤ 2−1042441, a value that is is not representable in double precision.

Concerning subnormals in argument, it to be mentioned that still E′ and m′ can be found such that
x = 2E′ ·m exactly and 1 ≤ m′ ≤ 2. Only the extraction sequence must be modified: x is first multiplied

35

by 252 where E′ is set to −52. The double number x is thus no longer a subnormal an integer handling
can extract its mantissa easily. The extraction of the exponent takes into account the preceeding bias of
E′. The case x = 0 is filtered out before. Obviously

√
0 = 0 is returned for this argument.

The special cases x < 0, x = ±∞ and x = NaN are not handled since they can be easily excluded by
the code using the square root macros.

Special case handling is implemented as follows:

Listing 2.12: Special case handling
1 /∗ S p e c i a l c a s e x = 0 ∗ /
2 i f (x == 0) {
3 ∗ resh = x ;
4 ∗ r e s l = 0 ;
5 } e lse {
6

7 E = 0 ;
8

9 /∗ Conver t t o i n t e g e r f o r m a t ∗ /
10 xdb . d = x ;
11

12 /∗ Handle subnormal c a s e ∗ /
13 i f (xdb . i [HI] < 0 x00100000) {
14 E = −52;
15 xdb . d ∗= ((db number) ((double) SQRTTWO52)) . d ; /∗ make x a normal number ∗ /
16 }
17

18 /∗ E x t r a c t e x p o n en t E and m a n t i s s a m ∗ /
19 E += (xdb . i [HI]>>20)−1023;
20 xdb . i [HI] = (xdb . i [HI] & 0 x 0 0 0 f f f f f) | 0 x3f f00000 ;
21 m = xdb . d ;
22

23 /∗ Make e x p o n en t even ∗ /
24 i f (E & 0 x00000001) {
25 E++;
26 m ∗= 0 . 5 ; /∗ Suppose now 1 / 2 <= m <= 2 ∗ /
27 }
28

29 /∗ C o n s t r u c t s q r t (2 ˆ E) = 2 ˆ (E / 2) ∗ /
30 xdb . i [HI] = (E/2 + 1023) << 2 0 ;
31 xdb . i [LO] = 0 ;

Polynomial approximation

The reciprocal square root r̂ = 1√
m is approximated in the domain m ∈

[
1
2 ; 2
]

by a polynomial p (m) =

4
∑

i=0
ci · mi of degree 4. The polynomial’s coefficients c0 through c4 are stored in double precision. The

following values are used:

c0 = 2.50385236695888790947606139525305479764938354492188
c1 = −3.29763389114324168005509818613063544034957885742188
c2 = 2.75726076139124520736345402838196605443954467773438
c3 = −1.15233725777933848632983426796272397041320800781250
c4 = 0.186900066679800969104974228685023263096809387207031

The relative approximation error εapprox =
p(m)−r̂

r̂ is bounded by |εapprox| ≤ 2−8.32 for m ∈
[

1
2 ; 2
]
.

The polynomial is evaluated in double precision using Horner’s scheme. There may be some can-
cellation in the different steps but the relative arithmetical error εarithpoly is always less in magnitude than
2−30. This will be shown in more detail below.

The code implementing the polynomial approximation reads:

Listing 2.13: Polynomial approximation
1 r0 = SQRTPOLYC0 + m ∗ (SQRTPOLYC1 + m ∗ (SQRTPOLYC2 + m ∗ (SQRTPOLYC3 + m ∗ SQRTPOLYC4))) ;

So 4 double precision multiplications and 4 additions are needed for computing the initial approxima-
tion. They can be replaced by 4 FMA instructions, if available.

36

Double and double-double Newton iteration

The polynomial approximation is then refined using the following iteration scheme:

ri+1 =
1
2
· ri · (3−m · r2

i)

If the arithmetic operations were exact, one would obtain the following error estimate:

εi+1 =
ri − r̂

r̂

=
1
2 · ri ·

(
3−m · r2

i
)
− r̂

r̂

=

1
2 · r̂ · (1 + εi) ·

(
3−m · r̂2 · (1 + εi)

2
)
− r̂

r̂

=
1
2
· (1 + εi) ·

(
3−m · 1

m
· (1 + εi)

2
)
− 1

=
1
2
· (1 + εi) ·

(
3− 1− 2 · εi − ε2

i

)
− 1

= (1 + εi) ·
(

1− εi −
1
2
· ε2

i

)
− 1

= 1− εi −
1
2
· ε2

i + εi − ε2
i −

1
2
· ε3

i − 1

= −3
2
· ε2

i −
1
2
· ε3

i

So the accuracy of the approximation of the reciprocal square root is doubled at each step.
Since the initial accuracy is about 8 bits, it is possible to iterate two times on pure double precision

without any considerable loss of accuracy. After the two iterations about 31 bits will be correct. The
macro implements therefore:

Listing 2.14: Newton iteration - double precision steps
1 r1 = 0 . 5 ∗ r0 ∗ (3 − m ∗ (r0 ∗ r0)) ;
2 r2 = 0 . 5 ∗ r1 ∗ (3 − m ∗ (r1 ∗ r1)) ;

For these two iterations, 8 double precision multiplications and 2 additions are needed.
The next iteration steps must be performed in double-double precision because the 53 bit mantissa

of a double cannot contain the about 60 bit exact value m · r2
2 ≈ 1 before cancellation in the substraction

with 3 and the multiplication by r2.
In order to exploit maximally the parallelism in the iteration equation, we rewrite it as

r3 =
1
2
· r2 ·

(
3−m · r2

2

)
=

(
r2 +

1
2
· r2

)
− 1

2
· (m · r2) · (r2 · r2)

Since multiplications by integer powers of 2 are exact, it is possible to compute r2 +
1
2 · r2 exactly as a

double-double. Concurrently it is possible to compute m · r2 and r2 · r2 exactly as double-doubles by
means of an exact multiplication. The multiplication (m · r2) · (r2 · r2) is then implemented as a double-
double multiplication. The multiplication by 1

2 of the value obtained is exact and can be performed

pairwise on the double-double. A final double-double addition leads to r3 =
(

r2 +
1
2 · r2

)
− 1

2 · (m · r2) ·
(r2 · r2). Here, massive cancellation is no longer possible since the values added are approximately 3

2 · r2

and 1
2 · r2.

These steps are implemented as follows:

Listing 2.15: Newton iteration - first double-double step

37

1 Mul12(&r2Sqh , &r2Sql , r2 , r2) ; Add12 (r2PHr2h , r2PHr2l , r2 , 0 . 5 ∗ r2) ;
2 Mul12(&mMr2h, &mMr2l , m, r2) ;
3 Mul22(&mMr2Ch, &mMr2Cl , mMr2h, mMr2l , r2Sqh , r2Sql) ;
4

5 MHmMr2Ch = −0.5 ∗ mMr2Ch;
6 MHmMr2Cl = −0.5 ∗ mMr2Cl ;
7

8 Add22(&r3h , &r3 l , r2PHr2h , r2PHr2l , MHmMr2Ch, MHmMr2Cl) ;

The next iteration step provides enough accuracy for a double-double result. We rewrite the basic
iteration equation once again as:

r4 =
1
2
· r3 ·

(
3−m · r2

3

)
= r3 ·

(
3
2
− 1

2
·m · r2

3

)
= r3 ·

(
3
2
− 1

2
·
((

m · r2
3 − 1

)
+ 1
))

= r3 ·
(

1− 1
2
·
(

m · r2
3 − 1

))
Further, we know that r3, stored as a double-double, verifies r3 = r̂ · (1 + ε3) with |ε3| ≤ 2−60. So we
check that

m · r2
3 = m · r̂2 · (1 + ε3)

2 = 1 + 2 · ε3 + ε2
3

Clearly,
∣∣2 · ε3 + ε2

3

∣∣ < 1
2 ulp (1). So when squaring r3h + r3l in double-double precision and multiplying

it in double-double precision by m produces a double-double mMr3Sqh + mMr3Sql = m · (r3h + r3l)
2 ·

(1 + ε), |ε| ≤ 2−100 such that mMr3Sqh = 1 in all cases.
So we can implement the iteration equation

r4 = r3 ·
(

1− 1
2
·
(

m · r2
3 − 1

))
as follows:

Listing 2.16: Newton iteration - second double-double step
1 Mul22(&r3Sqh , &r3Sql , r3h , r3 l , r3h , r 3 l) ;
2 Mul22(&mMr3Sqh , &mMr3Sql , m, 0 , r3Sqh , r3Sql) ;
3

4 Mul22(&r4h , &r4 l , r3h , r3 l , 1 , −0.5 ∗ mMr3Sql) ;

We since get r4h + r4l = r̂ · (1 + ε4) with |ε4| ≤ 2−102, the accuracy being limited by the accuracy of the
last double-double multiplication operator.

This approximation is than multiplied by m in double-double precision, leading to an approximation
srtmh + srtml =

√
m · (1 + ε) with |ε| ≤ 2−100.

Out of this value, the square root of the initial argument can be reconstructed by multiplying by
2

E
2 , which has already been stored in xdb.d. This multiplication is exact because it cannot produce a

subnormal.
These two steps are implemented as shown below:

Listing 2.17: Multiplication m · r̂, reconstruction
1 Mul22(&srtmh ,& srtml ,m, 0 , r4h , r 4 l) ;
2

3 /∗ M u l t ip l y componentwise by s q r t (2 ˆ E) , which i s an i n t e g e r power o f 2 t h a t may not p r o d u c e a
subnormal ∗ /

4

5 ∗ resh = xdb . d ∗ srtmh ;
6 ∗ r e s l = xdb . d ∗ sr tml ;

38

Triple-double Newton iteration

For producing a triple-double approximate to r̂ with an accuracy of at least 147 bits, one more Newton
iteration is needed. We apply the same equation as in the last double-double step, which reads:

r5 = r4 ·
(

1− 1
2
·
(

m · r2
4 − 1

))
Once again, the first component of the triple-double number holding an approximation to m · r2

4 is
exactly equal to 1. So by neglecting this component, we substract 1 from it. Unfortunately, a renormal-
ization step is needed after the multiplications for squaring r4 and by m because the values computed
might be overlapped which would prevent us form substracting 1 by neglecting a component.

We implement thus:

Listing 2.18: Newton iteration - triple-double step
1 Mul23(&r4Sqh , &r4Sqm , &r4Sql , r4h , r4 l , r4h , r 4 l) ;
2 Mul133(&mMr4Sqhover , &mMr4Sqmover , &mMr4Sqlover , m, r4Sqh , r4Sqm , r4Sql) ;
3 Renormalize3(&mMr4Sqh , &mMr4Sqm, &mMr4Sql , mMr4Sqhover , mMr4Sqmover , mMr4Sqlover) ;
4

5 HmMr4Sqm = −0.5 ∗ mMr4Sqm;
6 HmMr4Sql = −0.5 ∗ mMr4Sql ;
7

8 Mul233(&r5h ,&r5m,& r5 l , r4h , r4 l , 1 ,HmMr4Sqm, HmMr4Sql) ;

This approximation r5h + r5m + r5l = r̂ · (1 + ε5), where |ε5| ≤ 2−147 is then multiplied by m in order
to obtain a triple-double approximation of

√
m. Once renormalized result is exactly multiplied by 2

E
2

stored in xdb.d. We implement:

Listing 2.19: Newton iteration - triple-double step
1 Mul133(&srtmhover , &srtmmover , &srtmlover ,m, r5h , r5m , r 5 l) ;
2

3 Renormalize3(&srtmh ,&srtmm,& srtml , srtmhover , srtmmover , sr tmlover) ;
4

5 (∗ (resh)) = xdb . d ∗ srtmh ;
6 (∗ (resm)) = xdb . d ∗ srtmm ;
7 (∗ (r e s l)) = xdb . d ∗ sr tml ;

Accuracy bounds

TODO: see possibly available Gappa files meanwhile

2.7 Test if rounding is possible

We assume here that an evaluation of y = f (x) has been computed with a total relative error smaller
than ε, and that the result is available as the sum of two non-overlapping floating-point numbers yh
and yl (as is the case if computed by the previous algorithms). This section gives and proves algorithms
for testing if yh is the correctly rounded value of y according to the relative error ε. This correspond to
detect whether we are in a hard to round case.

2.7.1 Rounding to the nearest

Theorem 21 (Correct rounding of a double-double to the nearest double, avoiding subnormals).
Let y be a real number, and ε, e, yh and yl be double-precision floating-point numbers such that

• yh = yh ⊕ yl

• none of yh and yl is a NaN or ±∞,

• |yh| ≥ 2−1022+54 (i.e. 1
4 ulp(yh) is not subnormal),

• |yh + yl − y| < ε.|y| (i.e. the total relative error of yh + yl with respect to y is bounded by ε),

39

• 0 < ε ≤ 2−53−k with k ≥ 3 integer,

• e ≥ (1− 2−53)−1
(

1 +
254ε

1− ε− 2−k+1

)
and e ≤ 2.

The following test determines whether yh is the correctly rounded value of y in round to nearest mode.

Listing 2.20: Test for rounding to the nearest

1 i f (yh == (yh + (yl∗ e)))
2 r e turn yh ;
3 e l s e /∗ more a c c u r a c y i s needed , l aunch a c c u r a t e p h a s e ∗ /

Proof. Remark that the condition |yh| ≥ 2−1022+54 implies that yh is a normal number.

The implication we need to prove is: if the test is true, then yh = ◦(y) (failure of the test does not
necessary mean that yh 6= ◦(y)).

Let us note u = ulp(yh) and consider only the case when yh is positive (as the other case is symmet-
rical).

We have to consider separately the following two cases.
If yh is not a power of two or yl ≥ 0
In this case we will always assume that yl ≥ 0,
as the case yl ≤ 0 is symmetrical when yh is not
a power of two.

If yh is a power of two and yl < 0

To prove that yh = ◦(y), it is enough to prove
that |yh − y| ≤ u/2. As |yh + yl − y| < ε.|y|
(fourth hypothesis) it is enough to prove that
u/2− yl > εy.
By definition of the ulp of a positive normal
number, we have yh ∈ [252u, (253 − 1)u].

To prove that yh = ◦(y), it is enough to prove
that |yh − y| ≤ u/4. As yl ≤ 0, we have y ≤ yh
and |yh − y| = y− yh.
From fourth hypothesis, it is enough to prove
that u/4 + yl > εy.
By our definition of the ulp of a normal number,
we have yh = 252u in this case.

From the first hypothesis we have

yl ≤
1
2

u (2.5)

Therefore yh + yl ≤ (253 − 1)u + 1
2 u, and

y < (yh + yl)/(1− ε). Hence

y <
253 − 1

2
1− ε

u

As a consequence, since ε ≤ 2−56,

y < 253u (2.6)

We have yh = 252u and yl ≤ 0, therefore
yh + yl ≤ 252u, and

y <
252u
1− ε

(2.7)

The easy case is when we have yh = ◦(y) regard-
less of the result of the test. This is true as soon as
yl is sufficiently distant from u/2. More specifi-
cally, if 0 ≤ yl <

(
1
2 − 2−k

)
u, we combine (2.6)

with the fifth hypothesis to get εy < 2−ku. From
yl <

(
1
2 − 2−k

)
u we deduce

u/2− yl > 2−ku > εy, which proves that yh =
◦(y).

The easy case is when we have yh = ◦(y) re-
gardless of the result of the test. This is true
as soon as yl is sufficiently distant from −u/4.
More specifically, if −

(
1
4 −

2−k−1

1−ε

)
u < yl ≤ 0,

after combining (2.7) with the fifth hypothesis to
get εy < 2−k−1u

1−ε , we deduce

yl +
u
4 > 2−k−1

1−ε u > εy, which proves that yh =
◦(y).

40

Now consider the case when yl ≥
(

1
2 − 2−k

)
u.

The condition |yh| ≥ 2−1022+54 ensures that u/4
is a normal number, and now yl > u/4, so in
this case yl is a normal number. As 1 < e ≤ 2,
the result is also normal, therefore

yl × e(1− 2−53) ≤ yl ⊗ e ≤ yl × e(1 + 2−53)

Now consider the case when −yl ≥(
1
4 −

2−k−1

1−ε

)
u. The condition |yh| ≥ 2−1022+54

ensures that u/8 is a normal number, and now
yl > u/8, so in this case yl is a normal number.
As 1 < e ≤ 2, the result is also normal, therefore

−yl× e(1− 2−53) ≤ −yl⊗ e ≤ −yl× e(1+ 2−53)
Suppose that the test is true (yh ⊕ yl ⊗ e = yh).
With IEEE-54 compliant rounding to nearest, this

implies |yl ⊗ e| ≤ u
2

, which in turn implies

yl × e(1− 2−53) ≤ u
2

(as yl is a normal number
and 1 < e ≤ 2). This is rewritten

u
2
− yl ≥ yl

(
e
(

1− 2−53
)
− 1
)

Suppose that the test is true (yh ⊕ yl ⊗ e = yh).
For this value of yh and this sign of yl , this im-

plies |yl ⊗ e| ≤ u
4

, which in turn implies

−yl × e(1− 2−53) ≤ u
4

.
This is rewritten

u
4
+ yl ≥ −yl

(
e
(

1− 2−53
)
− 1
)

Using yl ≥ (1
2 − 2−k)u, we get

u
2
− yl ≥

(
1
2
− 2−k

)
u
(

e
(

1− 2−53
)
− 1
) Using −yl ≥

(
1
4 −

2−k−1

1−ε

)
u, we get

u
4
+ yl ≥

(
1
4
− 2−k−1

1− ε

)
u
(

e
(

1− 2−53
)
− 1
)

We want to ensure that
u
2
− yl ≥ εy, we will

again use (2.6) and ensure that
u
2
− yl ≥ 253εu.

This provides the condition that must be full-
filled by e for the theorem to hold in this case:
we need

(
1
2
− 2−k

)
u
(

e(1− 2−53)− 1
)
≥ 253εu

To ensure that
u
4
+ yl ≥ εy, we again use (2.7)

and ensure that
u
4
+ yl ≥

252u
1− ε

ε. This provides

the condition that must be fullfilled by e for the
theorem to hold in this case: we need

(
1
4
− 2−k−1

1− ε

)
u
(

e(1− 2−53)− 1
)
≥ 252u

1− ε
ε

rewritten as:

e ≥ (1− 2−53)−1
(

1 +
254ε

1− 2−k+1

) rewritten as:

e ≥ (1− 2−53)−1
(

1 +
254ε

1− ε− 2−k+1

)
Taking for contraint on e the max of these values completes the proof of the theorem.

Notes

• In general we will target values of ε in the order of 2−53−10 to balance the execution times of the
quick and accurate phases.

• A similar theorem could be written for yh subnormal. In most cases, there will be a property such
as ◦(f (x)) = x, deduced from the Taylor theorem. For the rare functions that come close to zero
without such a property (an example is exp), it is simpler and safer to launch the accurate phase
systematically in this case.

• These theorems are not proven for yh = ±∞ (an implementation would depend on the correct
behaviour of the double-double arithmetic in the neighborhood of ±∞ anyway). This is not a
problem in practice, because an implementation will fall into one of the following cases:

– It can be proven statically that the function is bounded well below the largest representable
double-precision number. This will be the case of the logarithm and tangent functions in
their respective chapters.

– The function comes close to infinity, but monotonicity or another mathematical property
allows to prove that ±∞ should be returned for x above or below some statically-defined

41

threshold, and never otherwise. This will be the case of exponential and hyperbolic func-
tions, for instance.

In both cases, returning a value close to infinity won’t require a rounding test.

• A fused multiply-and-add should probably not be used for the computation of yh + yl × e. Study-
ing this question is on the TODO list.

2.7.2 Directed rounding modes

Directed rounding is much easier to achieve than round to the nearest: The difficult cases are the cases
when the exact value y is very close to a machine number, and we have in yh + yl an approximation to
y with a relative error smaller than the half-ulp of yh. Therefore we have in |yl | an approximation to the
distance of yh to the closest machine number, with a known approximation error.

We use in crlibm the following macro which does the test and then the rounding. It should be used
as follows (example taken from atan fast.c):

Listing 2.21: An occurence of the test for rounding up
1 TEST AND RETURN RU(atanhi , atanlo , maxepsilon) ;
2 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
3 return s c s a t a n r u (x) ;

Theorem 22 (Test for correct rounding up of a double-double to a double).
Let y be a real number, and yh, yl and ε be floating-point numbers such that

• yh = yh ⊕ yl ,

• yh is neither a NaN, a subnormal, ±0 or ±∞.

• yl is neither a NaN or ±∞.

• |yh + yl − y| < ε.|y|
The following test determines whether yh is the correctly rounded value of y in round up mode.

Listing 2.22: Test for directed rounding
1 # d e f i n e TEST AND RETURN RU(y h , y l , e p s) \
2 { \
3 db number yh , yl , u53 ; i n t yh neg , y l n e g ; \
4 yh . d = y h ; y l . d = y l ; \
5 yh neg = (yh . i [HI] & 0 x80000000) ; \
6 y l n e g = (y l . i [HI] & 0 x80000000) ; \
7 yh . l = yh . l & 0 x 7 f f f f f f f f f f f f f f f L L ; /∗ compute t h e a b s o l u t e v a l u e ∗ / \
8 y l . l = y l . l & 0 x 7 f f f f f f f f f f f f f f f L L ; /∗ compute t h e a b s o l u t e v a l u e ∗ / \
9 u53 . l = (yh . l & 0 x7f f0000000000000LL) + 0 x0010000000000000LL ; \

10 i f (y l . d > e p s ∗ u53 . d) { \
11 i f (! y l n e g) { /∗ The c a s e y l ==0 i s f i l t e r e d by t h e a b o v e t e s t ∗ / \
12 /∗ r e t u r n nex t up ∗ / \
13 yh . d = y h ; \
14 i f (yh neg) yh . l−−; e l s e yh . l ++; /∗ Beware : F a i l s f o r z e r o ∗ / \
15 r e turn yh . d ; \
16 } \
17 e l s e r e tu rn y h ; \
18 } \
19 }

Proof. The first lines compute |yh|, |yl |, boolean values holding the sign information of yh and yl , and
u53 = 253ulp(yh). Here we use integer 64-bit arithmetic for readability, but other implementations may
be more efficient on some systems. Note that these computations don’t work for infinities, zeroes or
subnormals.

As previously, by definition of the ulp, we have y < 253u.
The main test which determines whether correct rounding is possible is line 10. If this test is true,

then yl > (253u)⊗ ε = 253εu (the multiplication by u53, a power of two, is exact), hence yl > εy so we
are in an easy case for directed rounding.

The remaining computations and tests (lines 11 and following) compute nextafter(yh,inf) in an
efficient way since an integer representation of yh is already available. For the other directed rounding
modes, only these lines change in a straightforward way.

42

Notes

• Rounding down and to zero are identical to the previous, except for the computation of the
rounded value itself.

• These tests launch the accurate phase when yl=0, in particular in the exceptional cases when
the image of a double is a double. See the chapter 3 for an example where it may introduce a
misround.

• These tests don’t work if yh is a subnormal. If one cannot prove statically that this case doesn’t
appear, a sensible solution is to test for subnormals and launch the accurate phase.

• Finally, remark that for some functions, the tests on the sign of yh are statically predictable to be
true because the function is always positive. We shall use this macro anyway for safety. Tanks
to branch predictor logic in modern processors, it will make little difference from a performance
point of view.

2.8 The Software Carry Save library

The software carry-save internal representation of multiple-precision numbers was designed specifi-
cally for simple and fast implementations of addition and multiplication in the 100-500 bit precision
range, as required by the accurate phase of our algorithms. More details on software carry-save are
available in [14, 10].

The parameters of scslib are set up so that all the operators offer a relative error better than 2−208.
This is a large overkill for all the functions in crlibm, as the worst cases computed by Lefevre never
require more than 158 bits of accuracy. This enables simple proofs for the second steps, assuming the
operators in scslib are correct.

Another feature that makes accuracy proofs simple when using scslib is the following: The range of
SCS numbers includes the range of IEEE double-precision numbers, including subnormals and excep-
tional cases. Conversions between SCS format and IEEE-754 doubles, as well as arithmetic operations,
follow the IEEE rules concerning the exceptional cases. SCS doesn’t ensure correct rounding, but pro-
vides conversions to doubles in the four IEEE-754 rounding modes, which is enough for the purpose of
crlibm.

However, a formal proof of correctness of the scslib operators remains to be done. Currently there
is nothing more than good confidence based on the simplicity of the code.

2.8.1 The SCS format

A MP number is represented in the proposed format as a Software Carry Save (SCS) structure R, depicted
on Figure 2.1 and composed of the following fields:

R.digits[nr] A table of nr digits with mr bits of precision. These digits can in principle be either integer
or FP machine numbers, however integer is always faster and simpler. We will not mention FP
digits anymore here, the interested reader is referred to [14, 10].

R.index An integer storing the index of the first digit in the range of representable numbers, as depicted
on Figure 2.1;

R.sign A sign information.

In other words, the value x of a representation R is:

x = R.sign×
nr

∑
j=1

R.digits[j]× 2mr∗(R.index−j) (2.8)

In such a normal SCS number R, the bits from mI to mr of the R.digits fields are thus set to zero.
They will be exploited by the algorithms to store temporary carry information, and are therefore called
carry-save bits. An SCS number where these bits are non-zero is said to be non-normal.

43

2
r2.m

2
r3.m m r −mr −2.mr

0 00 0 0 000 01 1 1 1 1 1 11 1 1 1 1 1 11,X =

0 00 0 0 000 01 1 1 1 1 1 11 1 1 1 1 1 11 0 0 00 0 0R.digits =

Software Carry Save Structure (SCSS)R.sign = 1

R.index = 3

22 22

3 2 0 −1 −2

0

Index =

Value =

Figure 2.1: The proposed format

The values of the parameters for use in crlibm is nr = 8 digits of mi = 30 bits stored on mr = 32-bit
words. The worst-case precision that this format may hold is when the most significant digit is equal to
1, meaning that an SCS numbers holds only 1 + 7× 30 = 211 significant digits.

2.8.2 Arithmetic operations

Conversion from double to SCS

A first method for converting a double precision floating point number d into an SCS representation is
to extract the exponent dexp from d, and then determine the corresponding R.index as the integer part

of dexp
2mr .
Another method uses a variable number of multiplications by 2mr or 2−mr . This method is faster

than the previous one when the exponent of d is close to 0.
After testing both methods in crlibm, the first method was preferred.

Addition and subtraction

The addition of two SCS numbers of the same sign consists in aligning, then adding digits of the same
order. Thanks to the carry-save bits, all these additions will be exact and independent. However the
result will usually not be a normal SCS number: the sums will have overflown in the carry-save bits.
A renormalization procedure is presented in section 2.8.2 to propagate these carry bits and get again a
normal SCS number. However, the advantage of SCS representation is that many SCS numbers can be
summed before needing to perform this expensive step (up to 7 with the choice of parameters made in
crlibm).

The subtraction (addition of two numbers of opposite signs) is very similar to the addition algo-
rithm. It may also classically lead to a cancellation, which may need an update of the index of the
result. However, as in other floating-point formats, a subtraction involving a a cancellation is exact.

Although all the digit operations are exact, the addition or subtraction of two numbers also classi-
cally involves a rounding error, due to aligning the digits of same magnitude. For performance reason
this rounding is a truncation, so the worst-case relative error is one ulp of the least accurate repre-
sentable number, or 2−211.

Multiplication

The multiplication of two normal SCS numbers involves the operations depicted on the Figure 2.2: The
partial products are computed (in parallel) and summed in columns. The parameters are set up so that
none of these operation overflow. Again, the result is not a normal SCS number, and a renormalization
procedure (described below) has to be applied to empty the carry bits. However, a few additions may
follow a multiplication before this renormalization, which allows for further optimization of algorithms
using SCS arithmetic. For instance, a polynomial evaluation can be implemented with a renormalization
after one multiplication and one addition.

44

Y4 X4Y4Y4
4

X
Y X1

X3
2

3Y3
3Y3

X4X3
Y

2X1

4Y3Y

Y

Y2Y2Y2

X

2

X4X3X2X1

2Y1Y

1Y1Y1Y1X1
X2

X3
X4

4

Y

X3X2X1

C1
C2

C3
C4

X

Y

Z2 Z3 Z4Z1

Figure 2.2: SCS multiplication

Here also, a rounding error is involved when two nr-digit numbers are multiplied if the result is to
fit on nr digits. The actual implementation tests if the most significant digit (z1 on Figure 2.2) is null, in
which case the index of the result is that of z2.

If the whole of the computations of Figure 2.2 are implemented, the worst case for relative accuracy
is again 2−211. However a further optimization is to avoid computing the columns of lower magnitude,
at the expense of an increase in the rounding error. More specifically, we compute 9 columns instead of
16. The wors case is now when z1 is null, in which case the relative error correspond to the truncation
of the 8 leftmost columns, whose maximum value is smaller than 3 ulps of the SCS result. Therefore
the relative error of the multiplication is bounded by 2−208 with this optimization, which is still a large
overkill for the purpose of crlibm.

This optimization is therefore implemented if the loop are hand-unrolled. If they are not, the in-
creased control complexity actually degrades performance.

Renormalization (carry propagation)

Renormalization is a carry propagation from the low order to high order digits: Starting with an initially
null carry, at each step, the previous carry is added to the current digit, and this sum is then split into
two parts using masks. The low mr bits are a digit of the normalized result, and the upper part is the
next carry.

The actual algorithm is a little bit more complex. The initial non-normal number may not be repre-
sentable exactly as a normal SCS number, therefore the index of the normalized result may have to be
increased by one or two. Normalization thus again involves a rounding error. Note that this error was
already taken into account in the previous discussions of addition and multiplication.

Conversion from SCS to floating-point

A few (4 in the worst case) multiplications and additions suffice to get the FP number closest to a SCS
number. For instance, for mI = 53 and mr = 26, we need to compute d = A.sign × 2A.index×mr ×
(A.digits[0] + 2−mr × A.digits[1] + 2−2.mr × A.digits[2] + 2−3.mr × A.digits[3]). The number 2A.index×mr

is build using integer masks. The actual implementation of this formula is slightly less simple, but this
conversion is still very fast.

Mixed 32- and 64-bit arithmetics

An improvement implemented in scslib was the combined use of integer 32- and 64-bit arithmetics as
follows:

45

• MP digits are stored as 32-bit numbers where only a few bits are reserved for carries. This removes
the main problem of the initial implementation [14], namely its memory inefficiency.

• Addition uses 32-bit arithmetic.

• In the MP multiplication, the partial products are products of two 32-bit digits, which are 64-
bit numbers. The column sums need thus to be computed using 64-bit arithmetic. This can be
expressed in the C language in a non-ISO-C99, but de-facto standard way, as follows: 32-bit num-
bers have the unsigned int type; 64-bit numbers have the unsigned long long int type. When
multiplying two digits, one is first cast into this 64-bit type.

For UltraSPARC architectures (detected at build time) the conversion is to floating-point, but we
will not detail this peculiarity further.

This works well because all modern processors either have 64-bit integer units, or offer instructions
which store the 64-bit product of two 32-bit integers into two 32-bit registers. The compiler does the
rest well, because it is conceptually simple: casting unsigned 32-bit into unsigned 64-bit is trivial; 64-bit
addition is translated straightforwardly into one 32-bit add followed by one 32-bit add-with carry.

Implementation considerations

For portability purposes, the implemention uses C as defined by the ISO C99 standard, and tries to
use a recent version of gcc. We could not exhibit a case where a native compiler from the processor
vendor (Intel or Sun) gave significantly better results than gcc, which is probably a consequence of the
simplicity of our code.

However, when tuning for performance, we observed that the same code which was efficient on one
processor could lead to very poor results on another. Usually, this difference can be traced down to the
capabilities of the processor itself. The typical example is the knowingly poor integer multiplication
on UltraSPARC II. Sometimes however, the processor should be able to perform well, and it is the
processor-specific backend of the compiler which is to blame, which can be checked by observing the
assembly code produced. A typical example is the casting of 32-bits digits to 64-bit arithmetic (or to an
FP number in the case of the UltraSPARC) in the multiplication algorithm. In these cases we tried to
change the programming style in a way that works well on all processors. Sometimes it wasn’t possible,
in which case the code contains, along with a generic version, several processor-specific tricky versions
of the problematic operation, selected at compile time thanks to the GNU automake/autoconf tools.

More surprisingly, we were disappointed by the higher-level capabilities of the compilers, especially
at unrolling loops. Our code exhibits many small for loops whose size is known at compile-time (usu-
ally n). This is the ideal situation for loop unrolling, a technique well known and described in most
textbooks on compiler design. Options exist in most compilers to turn on this optimisation. Unfor-
tunately, leaving loop unrolling to the compiler gives very poor results, even when compared to the
non-unrolled case. Since unrolling the loops by hand in the C code takes a few minutes, we did it for
the version of the library which we use (m = 30, n = 8). It marginally increases the code sizes for
this small n, and sometimes provides a twofold improvement on speed, depending of the processor.
Of course, this is not satisfactory: We don’t want to do it for all values of n, nor do we want to study
for each processor the tradeoffs involved as n increase. We expect however future compilers to handle
unrolling better, and we were surprised that no compiler had a clear edge on the other in this respect.
Some argue, however, that this issue is pointless, as superscalarity, along with register renaming and
branch prediction inside modern processors, sum up to the equivalent of dynamic unrolling of the code.
In our tests (in 2003), it doesn’t: unrolling does bring a speed-up.

2.9 Common Maple procedures

2.9.1 Conversions

Procedure ieeedouble returns the sign, the exponent and the mantissa of the IEEE-754 double-precision
number closest to input value x.

46

Listing 2.23: ieeedouble
1 ieeedouble := proc (xx)
2 l o c a l x , sgn , logabsx , exponent , mantissa , infmant issa , powermin , powermax , expmin , expmax ,

expmiddle , powermiddle ;
3 D i g i t s := 1 0 0 ;
4 x := e v a l f (xx) ;
5 i f (x =0) then sgn , exponent , mantissa := 1 , −1022 , 0
6 e lse
7 i f (x < 0) then sgn := −1
8 e lse sgn := 1
9 f i :

10 x := abs (x) ;
11 i f x >= 2 ˆ (1 0 2 3) ∗(2−2ˆ(−53)) then mantissa := i n f i n i t y ; exponent := 1023
12 e lse i f x <= 2ˆ(−1075) then mantissa := 0 ; exponent := −1022
13 e lse
14 i f x <= 2ˆ(−1022) then exponent := −1022
15 e lse
16 # x i s between 2ˆ(−1022) and 2 ˆ (1 0 2 4)
17 powermin := 2ˆ(−1022) ; expmin := −1022;
18 powermax := 2 ˆ 1 0 2 4 ; expmax := 1024 ;
19 while (expmax−expmin > 1) do
20 expmiddle := round ((expmax+expmin) /2) ;
21 powermiddle := 2ˆ expmiddle ;
22 i f x >= powermiddle then
23 powermin := powermiddle ;
24 expmin := expmiddle
25 e lse
26 powermax := powermiddle ;
27 expmax := expmiddle
28 f i
29 od ;
30 # now, expmax − expmin = 1 and powermin <= x < powermax ,
31 # powermin = 2ˆ expmin and powermax = 2ˆ expmax , so expmin i s the exponent of x
32 exponent := expmin ;
33 f i ;
34 in fmant i ssa := x∗2ˆ(52− exponent) ;
35 i f f r a c (in fmant i ssa) <> 0 . 5 then mantissa := round (in fmant i ssa)
36 e lse
37 mantissa := f l o o r (in fmant i ssa) ;
38 i f type (mantissa , odd) then mantissa := mantissa +1 f i
39 f i ;
40 mantissa := mantissa ∗2ˆ(−52) ;
41 f i ;
42 f i ;
43 f i ;
44 sgn , exponent , mantissa ;
45 end :

Procedure ieeehexa returns the hexadecimal representation of the nearest double to its input x.

Listing 2.24: ieeehexa
1 ieeehexa := proc (x)
2 l o c a l hex2 , xx , longint , expo , sgn , f rac , r e s u l t a t ;
3 i f (x =0) then r e s u l t a t : = [” 00000000 ” , ” 00000000 ”] ;
4 e l i f (x=−0) then r e s u l t a t : = [” 80000000 ” , ” 00000000 ”] ; # n ice t r y
5 e lse
6 xx := ieeedouble (x) ;
7 sgn := xx [1] :
8 expo := xx [2] :
9 f r a c := xx [3] :

10 i f (expo = −1023) then
11 l o n g i n t := (f r a c) ∗2ˆ51 ; # subnormal
12 e lse
13 l o n g i n t := (f rac −1)∗2ˆ52 + (expo +1023) ∗2 ˆ 5 2 ;
14 f i :
15 i f (sgn=−1) then
16 l o n g i n t := l o n g i n t + 2 ˆ 6 3 ;
17 f i :
18 l o n g i n t := l o n g i n t + 2 ˆ 6 4 : # to get a l l the hexadecimal d i g i t s when we ’ l l convert to

s t r i n g
19 hex2 := convert (longint , hex) ;
20 hex2 := convert (hex2 , s t r i n g) :
21

22 r e s u l t a t : = [subs t r ing (hex2 , 2 . . 9) , subs t r ing (hex2 , 1 0 . . 1 8)] :
23 f i :
24 r e s u l t a t ;
25 end proc :

47

Procedure hexa2ieee performs the reciprocal conversion.
Procedure hi lo returns two IEEE-double numbers x hi and x lo so that x = x hi + x lo + ε−103.

Listing 2.25: hi lo
1 h i l o := proc (x)
2 l o c a l x hi , x lo , r es :
3 x h i := n e a r e s t (e v a l f (x)) :
4 r es := x−x h i :
5 i f (r es = 0) then
6 x l o : = 0 :
7 e lse
8 x l o := n e a r e s t (e v a l f (r es)) :
9 end i f ;

10 x hi , x l o ;
11 end :

Procedure showHowDifficultToRound takes a real number, and prints the bits after the 53th of its
nearest IEEE floating-point number.

Listing 2.26: showHowDifficultToRound
1 showHowDifficultToRound := proc (x)
2 l o c a l xb , xs , s , e ,m:
3 D i g i t s : = 2 0 0 :
4 s , e ,m := ieeedouble (x) :
5 xb := convert (e v a l f (x∗2ˆ(−e)) , binary) :
6 xs := convert (xb , s t r i n g) :
7 subs t r ing (xs , 5 5 . . 1 5 3)
8 end proc :

2.9.2 Procedures for polynomial approximation

Procedure Poly exact2 takes in arguments a polynomial P and a integer n. It returns a truncated poly-
nomial, of which coefficients are exactly IEEE-double numbers. The n first coefficients are written over
2 IEEE-double numbers.

Listing 2.27: poly exact2
1 poly exac t2 := proc (P , n)
2 l o c a l deg , i , coef , c o e f h i , c o e f l o , Q:
3 Q:= 0 :
4 convert (Q, polynom) :
5 deg := degree (P , x) :
6 for i from 0 to deg do
7 coef := c o e f f (P , x , i) :
8 c o e f h i , c o e f l o := h i l o (coef) :
9 Q:= Q + c o e f h i ∗x ˆ i :

10 i f (i<n) then
11 Q := Q + c o e f l o ∗x ˆ i :
12 f i :
13 od :
14 return (Q) ;
15 end :

We also have procedures for computing good truncated polynomial approximation for a function.
As they are useless to the proof, we do not describe them here, the interested reader is referred to file
maple/common-procedures.mpl for more details.

2.9.3 Accumulated rounding error in Horner evaluation

The following Maple procedures implement the error analysis described in Section 2.5.
Procedure compute abs rounding error computes a bound on the accumulated rounding error

caused by the Horner evaluation of a truncated polynomial. poly is the polynomial, xmax is the max
value of |x|, nn is the degree when poly is computed in double double, and the first double-double
operation is an addition.

48

This procedure returns the maximum absolute error, and safe bounds on the minimum and max-
imum values of the function. It also checks on the fly that the fast (test-free) versions of the double-
double addition can be used, and prints warnings if it not the case.

Listing 2.28: compute abs rounding error
1 compute abs rounding error := proc (poly , xmax , nn)
2 l o c a l n , deg , del ta , deltap , i , S , P , Snorm , Smin , Smax , prec :
3 del tap : = 0 :
4 d e l t a : = 0 :
5 deg := degree (poly) :
6

7 prec : = 5 3 ; # p r e c i s i o n of the f i r s t i t e r a t i o n s
8

9 S := c o e f f (poly , x , deg) :
10 Smax:= abs (S) :
11 Smin :=Smax :
12

13 i f nn<0 then n : = 0 : e lse n:= nn : f i : # sometimes c a l l e d by compute re l rounding error with n=−1
14

15 for i from (deg−1) to 0 by −1 do
16 P:= convert (S∗x , polynom) :
17 Smin := abs (c o e f f (poly , x , i)) − xmax∗Smax :
18 i f (Smin<=0) then
19 p r i n t f (”Warning ! in compute abs rounding error , Smin<=0 at i t e r a t i o n %d , consider

decreas ing xmax\n” , i) ;
20 f i :
21 d e l t a := e v a l f (xmax∗del tap + 2∗∗(−prec) ∗xmax∗Smax) :
22 i f i<n then
23 # f a s t Add22 ?
24 i f abs (c o e f f (poly , x , i)) < xmax∗Smax # may be improved to xmax∗Smax/2
25 then p r i n t f (”WARNING Add22 cannot be used at s tep %d , use Add22Cond\n” , i) ;
26 p r i n t f (” c o e f f =%1.20e , xmax∗Smax=%1.20e” , abs (c o e f f (poly , x , i)) , xmax∗Smax) ;
27 f i :
28 f i :
29 S := convert (P+ c o e f f (poly , x , i) , polynom) :
30 Snorm := e v a l f (infnorm (S , x=−xmax . . xmax)) :
31 i f i =n−1 then prec : = 1 0 0 : f i : # from the addi t ion of the n−1−th i t e r a t i o n
32 del tap := e v a l f (d e l t a + 2∗∗(−prec) ∗ (d e l t a + Snorm)) :
33 Smax := Snorm + del tap :
34 od :
35 deltap , Smin , Smax ;
36 end proc :

Procedure compute rel rounding error computes a bound on the total relative rounding error of a
Horner polynomial evaluation, in the same condition as the previous procedure.

Listing 2.29: compute abs rounding error
1 compute re l rounding error := proc (poly , xmax , n)
2 l o c a l deg , p , rho , deltap , Smin , Smax :
3

4 deg := degree (poly) :
5 i f (n>0) then p : = 1 0 0 : e lse p : = 5 3 : f i :
6

7 i f c o e f f (poly , x , 0) = 0 then
8 deltap , Smin , Smax := compute abs rounding error (poly/x , xmax , n−1) :
9 rho := (2ˆ(−p) ∗ (Smax+del tap) +del tap) / Smin :

10 e lse
11 deltap , Smin , Smax := compute abs rounding error (poly , xmax , n) :
12 rho := del tap / Smin :
13 f i :
14 rho ;
15 end proc :

Procedures compute abs rounding error firstmult and compute abs rounding error firstmult

are similar to the previous, but in the case when the first double-double operation is a multiplication.

2.9.4 Rounding

Procedure compute rn constant computes a good constant for the round-to-nearest test of Theorem 21.
Its input is a bound of the overall relative error of the approximation scheme.

49

2.9.5 Using double-extended

The file maple/double-extended.mpl contains procedures similar to those previously described to han-
dle double-extended precision (64 bits of mantissa and 15 bits of exponent). This is currently used in
experimental code only: The crlibm CVS repository at http://lipforge.ens-lyon.fr/ contains such
code for exponential and arctangent on Itanium, and arctangent on IA32 processors. For more details
see [11, 12].

50

http://lipforge.ens-lyon.fr/

Chapter 3

The natural logarithm

There are two versions of the logarithm.

• The first relies on 80-bit double-extended arithmetic, and is well suited to IA32 and IA64 archi-
tectures which have hardware support for such arithmetic. It computes the quick step in double-
extended arithmetic, and the accurate step in double-double-extended arithmetic.

• The second relies only on double-precision arithmetic, and is portable. It uses double-double for
the quick step, and triple-double for the accurate step.

Both implementations use the same algorithm, which is detailed in 3.1. Sections 3.3 and 3.2 detail
the proof of both implementations, and 3.4 give some performance results.

3.1 General outline of the algorithm

The algorithm used is mainly due to Wong and Goto[39] and has been discussed further in [34]. In
the case we are given here, both quick and accurate phase use principally the same algorithm however
optimized for different accuracies.

The function’s argument x ∈ F is first checked for special cases, such as x ≤ 0, +∞, NaN etc. These
checks are mainly implemented using integer arithmetics and will be further explained in section 3.2.1.
Then, the argument is reduced using integer arithmetics as follows:

x = 2E′ ·m

where E′ is the exponent of x and m a double corresponding to the mantissa of x. This decomposition is
done such that in any case, i.e. even if x is subnormal, 1 ≤ m < 2. In the subnormal case, the exponent
of x is adjusted accordingly. This first argument reduction corresponds to the equality

log (x) = E′ · log (2) + log (m)

Using this term directly would lead to catastrophic cancellation in the case where E′ = −1 and m ≈ 2.
To overcome this difficulty, a second adjustment is done as follows:

E =

{
E′ if m ≤

√
2

E′ + 1 if m >
√

2
y =

{
m if m ≤

√
2

m
2 if m >

√
2

The decision whether m ≤
√

2 or not is performed using integer arithmetics on the high order bits of
the mantissa m. The test is therefore not completely exact which is no disadvantage since, in any case,
the bound

√
2 is somewhat arbitrary.

All the previous reduction steps can be implemented exactly as they consist mainly in decompo-
sitions of a floating point number, multiplications by powers of 2 and integer additions on the corre-
sponding exponent value. All this leads to the following equation

log (x) = E · log (2) + log (y)

51

where
−1

2
· log (2) ≤ log (y) ≤ 1

2
· log (2)

The magnitude of y is thus still too great for allowing for a direct polynomial approximation of log (y).
Therefore, a second argument reduction step is performed using a table of 128 entries as follows: using
the high order bits of y as an index i, a tabulated value ri is looked up which approximated very well 1

y .
Setting z = y · ri − 1, one obtains

log (y) = log (1 + z)− log (ri)

Since y = 1
ri
+ δ the magnitude of z is finally small enough (typically |z| < 2−8) for approximating

log (1 + z) by a Remez polynomial p (z). The values for log (ri) are of course also tabulated.
It is important to notice that the reduction step

z = y · ri − 1

can be implemented exactly which eases the correctness proof of the algorithm. This property will be
proven in section 3.2.1. The reduced argument z will be represented as a double-double number zh + zl
that will be fed into the polynomial approximation algorithms of both quick and accurate phase. Each
of these phases will take into account the lower significant value zl for more or less higher monomial
degrees.

Both phases will finally reconstruct the function’s value as follows:

log (x) ≈ E · log (2) + p (z)− log (ri)

using a double (respectively a triple for the accurate phase) double value for each log (2) and − log (ri).
The computations necessary for performing this reconstruction are carried out in double-double arith-
metics for the quick phase and triple-double for the accurate phase.

The quick phase uses a modified Remez polynomial of degree 7 of the form

p (z) = z− 1
2
· z2 + z3 · (c3 + z · (c4 + z · (c5 + z · (c6 + z · c7))))

with ci ∈ F. This polynomial is evaluated as indicated by the parenthesis in the following term:

p (zh + zl) ≈
(
(zh + zl)−

1
2
· z2

h

)
+
(
(−zh · zl) +

(
z2

h · zh

)
· (c3 + zh · (c4 + zh · (c5 + zh · (c6 + zh · c7))))

)
The mathematical relative approximation error of the polynomial p (z) defined as

εmeth =
p (z)− log (1 + z)

log (1 + z)

is bounded by
|εmeth| ≤ 2−62.99

This methodical error is joined by the arithmetical error induced by the evaluation of p (z) and by the
rounding of the constants log (2) and log (ri). As will be shown in section 3.2.2, the overall error of the
quick phase defined as

εquick =
(logh + logl)− log (x)

log (x)

is bounded by
|εquick| ≤ 5 · 2−65 ≤ 2−62.6

After the computation of the quick phase double-double value (logh + logl) a rounding test is per-
formed using the rounding constants according to 21. If the rounding cannot be decided, the accurate
phase is launched.

52

The accurate phase performs all its computations on the same reduced argument z = zh + zl which
will be shown to be exact. An approximation polynomial of degree 14 is used. It is once again a modified
Remez polynomial and has the following form:

p (z) = z +
1
2
· z + z3 · q (z)

where
q (z) = c′3 + z ·

(
c′4 + z ·

(
c′5 + z ·

(
c′6 + z ·

(
c′7 + z ·

(
c′8 + z ·

(
c′9 + z · r (z)

))))))
with c′i = cih + cil ∈ F + F and

r (z) = c10 + z · (c11 + z · (c12 + z · (c13 + z · c14)))

with ci ∈ F. The mathematical relative error

εmeth =
p (z)− log (1 + z)

log (1 + z)

is bounded by
|εmeth| ≤ 2−125

The polynomial is evaluated using double precision for r (z), double-double arithmetic for q (z) and a
triple-double representation for p (z) and the final reconstruction.

The overall error

εaccurate =
(logh + logm + logl)− log (x)

log (x)

is bounded by
|εaccurate| ≤ 5735 · 2−132 ≤ 2−119.5

as will be shown in section 3.2.3. Here (logh + logm + logl) are obtained by reconstructing the logarithm
as indicated by the parenthesis in the following term:

logh + logm + logl = (E · (log2h + log2m + log2l)) + ((ph + pm + pl) + (logih + logim + logil))

where log2h + log2m + log2l ≈ log (2) and logih + logim + logil ≈ − log (ri).
Since the critical accuracy of the double precision log function is 118 bits according to [11], rounding

logh +logm + logl ≈ log (x) to double precision is equivalent to rounding the infinite precision value
log (x) to double precision. Using the final rounding sequences presented in [25], which are supposed to
be correct, the double precision value returned by the function is the correctly rounded double precision
value of log (x).

3.2 Proof of correctness of the triple-double implementation

Proving that an implementation of an elementary function is correctly rounded means mainly proving
two bounds on the relative error εquick and εaccurate, using the appropriate lemma for proving the correctness
of the rounding test and conluding by means of the theorem stating the critical accuracy of the function
considered. The computation of the error bounds will be done mainly using the Gappa tool[31] but
some parts of the proof are still based on paper or Maple computations. These parts will be shown in
sections 3.2.1, 3.2.2 and 3.2.3 and mainly comprise the following:

• the demonstration that all special cases are handled correctly,

• a proof that zh + zl = ri · y− 1 exactly,

• the bounds for the mathematical approximation errors for the polynoms,

• a proof of the exactness of some multiplications in the code,

• the proof for the accuracy of all basic addition and multiplication code sequences on double-
double and triple-double numbers,

53

• the correctness proof of the final rounding sequences for rounding triple-double numbers to dou-
ble precision and

• the mathematical equality of the term rewriting hints in the Gappa code.

The proofs for the accuracy of the basic operation bricks and the correctness proof of the final rounding
sequences are somewhat lengthy and are not given here; they can be found in [25].

3.2.1 Exactness of the argument reduction

In this section, we will show that all special cases are handled correctly and that the reduced argument
consisting in E and zh + zl is exact, which means that we have the mathematically exact equation

log (x) = E · log (2) + log (1 + (zh + zl))− log (ri)

This part of the algorithm is performed by the following code sequences which we will analyse line by
line:

Listing 3.1: Handling of special cases and table access
1 E=0;
2 xdb . d=x ;
3

4 /∗ F i l t e r c a s e s ∗ /
5 i f (xdb . i [HI] < 0 x00100000) { /∗ x < 2ˆ(−1022) ∗ /
6 i f (((xdb . i [HI] & 0 x 7 f f f f f f f) | xdb . i [LO]) ==0){
7 return −1.0/0.0 ;
8 } /∗ l o g (+/−0) = −I n f ∗ /
9 i f (xdb . i [HI] < 0){

10 return (x−x) /0; /∗ l o g (−x) = Nan ∗ /
11 }
12 /∗ Subnormal number ∗ /
13 E = −52;
14 xdb . d ∗= ((db number) ((double) two52)) . d ; /∗ make x a normal number ∗ /
15 }
16

17 i f (xdb . i [HI] >= 0 x7f f00000) {
18 return x+x ; /∗ I n f o r Nan ∗ /
19 }
20

21

22 /∗ Do argument r e d u c t i o n ∗ /
23 E += (xdb . i [HI]>>20)−1023; /∗ e x t r a c t t h e e x p o n e n t ∗ /
24 index = (xdb . i [HI] & 0 x 0 0 0 f f f f f) ;
25 xdb . i [HI] = index | 0 x3f f00000 ; /∗ do ex p o n e n t = 0 ∗ /
26 index = (index + (1<<(20−L−1))) >> (20−L) ;
27

28 /∗ r e d u c e such t h a t s q r t (2) / 2 < xdb . d < s q r t (2) ∗ /
29 i f (index >= MAXINDEX) { /∗ c o r r e s p o n d s t o xdb>s q r t (2) ∗ /
30 xdb . i [HI] −= 0 x00100000 ;
31 E++;
32 }
33 y = xdb . d ;
34 index = index & INDEXMASK;
35

36 ed = (double) E ;
37

38 r i = a r g r e d t a b l e [index] . r i ;
39

40 log ih = a r g r e d t a b l e [index] . log ih ;
41 logim = a r g r e d t a b l e [index] . logim ;

Analysis of the code:

line 1 and 2: Initialization of integer E and db number xdb which is now equal to x.

line 5: As the integer ordering and the ordering on floating point numbers are compatible, x <
+2−1022, i.e. negative, negative infinite, equal to zero or a subnormal.

line 6: xdb.i[HI] & 0x7fffffff is the high order word of x without the sign bit. If the test is true,
|x| = 0. As the logarithm of 0 is not defined but as the limit −∞ is known, returning −1.0/0.0 is
correct.

54

line 9: Since the integer ordering and the ordering on floating point numbers are compatible,
xdb.i[HI] < 0 implies x < 0. The logarithm is not defined for negative numbers, so the result
must be NaN. 0.0/0.0 leads to a NaN; one uses (x− x) /0.0 in order to overcome the static tests
of the compiler.

line 13 and 14: if this code lines are reached, x is a subnormal. Since E equals 0 at this point,
setting it to −52 and multipliying xdb by 2−52 means bringing xdb to the normal number range
and rescaling the internal representation x = 2E ·m = 2E·xdb in consequence.

line 17: As the integer ordering and the ordering on floating point numbers are compatible and as
0x7fefffff ffffffff is the greatest normal, the test being true implies that x is equal to +∞ or
NaN. In the case of x = +∞, +∞ must be returned which is done. In the other case, NaN must
be returned which is still assured by x + x.

line 23: At this point of the code, the most significant bit of the high order word of xdb must be 0 as
the case where x < 0 is already filtered out. So xdb.i[HI] > > 20 is equal to the biased exponent
of xdb because a double number consists in 1 sign bit, 11 exponent bits and the word bit length is
supposed to be 32. Subtracting 1023 yields to the unbiased exponent which is written to E.

line 24 and 25: Since a double number consists in 1 sign bit and 11 exponent bits, the oper-
ation xdb.i[HI] & 0x000fffff masks out the mantissa bits in the higher order word of xdb.
Rewriting xdb.i[HI] = index | 0x3ff00000 means setting the exponent of xdb to 0 because
0x3ff−1023 = 0.

line 26: Before execution of this line of code, index contains the high order bits of the normalized
mantissa of x stored as a double in xdb.d and verifying thus 1 ≤ m < 2. The second argument
reduction step will slice this intervall in 128 intervalls for each of which we dispose of a table entry.
For reasons of possible cancellation in the reconstruction step on the operation p (z)− log (ri), we
want the small intervalls to be centered around 1. That means e.g. for the intervall around 1 and a
table indexed by 7 bits that mantissas (as doubles) with the high order word 0x3fefffff through
0x3ff00fff must be mapped to 0. The decision is therefore made at the 7+ 1th bit of the mantissa
part of the double depending on whether this bit is 0 – in which case the value falls in the lower
intervall – or 1 – in which case the value goes to the next higher intervall. So adding 1 to the
(20− 7− 1) rightmost bit (L = 7) increases the index value by 1 iff this bit is 1. So after execution
of the line, index contains the number of the intervall for the second argument reduction step
centered in 1.

line 29 through 31: The second adjustment to be made on E′ and m is the decision whether m >
√

2
as indicated in section 3.1. The high order word of

√
2 rounded to a double is 0x3ff6a09e. As one

can simply verify, the value for index calculated for this value is 53. As the integer ordering and
the ordering of floating point numbers are compatible and as the computations for computing
index are monotone, index being greater or equal than 53 implies that the (normalized) mantissa
of x is greater than

√
2 + δ with a neglectable error δ. As MAXINDEX is equal to 53, the test will be

true iff the adjustment on E′ leading to E and m yielding y is to be made. It is trivial to see that the
code in the if’s body implements the adjustment correctly.

lines 33 and 34: the final value of the reduced argument y – still stored in xdb.d – is copied to
a double variable (or register) named y. The final index value is masked out by means of an
INDEXMASK which is equal to 127 = 27 − 1.

lines 36: The integer value of the exponent E stored in E is cast to a double ed.

lines 38 through 41: The table is indexed by index and values ri= ri and logih= logih and
logim= logim are read. Since the latter form a double-double precision value, we know that
logih + logim = log (ri) · (1 + ε) with |ε| ≤ 2−106. The value ri is stored as a single precision
variable and a Maple procedure assures that for each value y the following inegality is verified:

|z| = |y · ri − 1| ≤ 2−8

55

Let us show now that the following line calculate zh and zl such that for each y and corresponding
ri, we obtain exactly

zh + zl = y · ri − 1

Listing 3.2: Argument reduction
42 Mul12(&yrih , &y r i l , y , r i) ;
43 th = yr ih − 1 . 0 ;
44 Add12Cond (zh , zl , th , y r i l) ;

We know that we can suppose that the multiplication and addition sequences Mul12 and Add12 used
at lines 42 and 44 are exact. Thus, it suffices to show that

yrih − 1.0 = yrih 	 1.0

because in that case, we can note

zh + zl = th + yril = yrih 	 1.0 + yril = y · ri − 1.0

We will show this property using Sterbenz’ lemma. It suffices thus to prove that

1
2
≤ yrih ≤ 2

We know that

yrih = ◦ (y · ri)

≤ ◦
(

1 + 2−8
)

= 1 + 2−8

< 2

since the rounding function ◦ is monotonic and the accuracy of the format is greater than 9 bits.
The other way round, we get

yrih = ◦ (y · ri)

≥ ◦
(

1− 2−8
)

= 1− 2−8

>
1
2

for the same reasons.
Thus zh + zl = y · ri exactly. Since the previous phases of the argument reduction were all exact, the

reduced argument verifies x = 2E · y exactly.
Still in this section, let us show that neither the reduced argument of the logarithm function nor its

result may be a sub-normal double number. The first property has already been assured by special case
handling as shown above. The latter can be proven as follows: the log (x) function has one zero for
x = 1 and only one. As it is monotone, for x = 1± 1ulp = 1± 2−52 we will obtain log

(
1± 2−52) =

0± 2−52 + δ with |δ| ≤ 2−103. As 0± 2−1022 is the least normal, the result of the logarithm function
will always be a normal. Further, in both double-double and triple-double representations for the final
intermediate result for the function, as its critical accuracy is 118, the least significant double in the
representation will still be a normal as 52 + 106 = 158 < 1022.

3.2.2 Accuracy proof of the quick phase

As already mentionned, the accuracy proof of the quick phase is mainly based on the Gappa tool. To
prove the desired accuracy bound defined as

εquick =
(logh + logl)− log (x)

log (x)

56

and given by
|εquick| ≤ 5 · 2−65 ≤ 2−62.6

three different Gappa proof files are necessary depending on the following cases:

• for E ≥ 1 and all indexes to the table 0 ≤ i ≤ 127, a general proof file named log-td.gappa is
used

• for E = 0 and all indexes to the table except 0, i.e. 1 ≤ i ≤ 127, a proof file named log-td-E0.gappa

comes to hand and

• for E = 0 and the table index i = 0, a proof file called log-td-E0-logir0.gappa is employed. This
latter file uses relative error computations in opposition to the other two cases where absolute
error estimates suffice. This is necessary because in this case and in this one only, the logarithm
function has a zero in the intervall considered.

In each of the three proof files, we will ask the Gappa tool to verify the accuracy bound expressed in its
syntax as follows:

Listing 3.3: Accuracy bound to prove
109 −>
110 ((logh + logm) − Log) / Log in [−5b−65 ,5b−65]

Still in any proof file, some hypothesis are made on the correctness of one multiplication sequence and
the accuracy of the constants and resting operations carried out in double-double arithmetic. These
hypothesis are the following:

• The operations in the following code sequence are exact since the constants are stored with enough
trailing zeros:

Listing 3.4: Multiplication by E
50 Add12 (log2edh , log2edl , log2h ∗ ed , log2m ∗ ed) ;

This means that log2edh + log2edl = E · (log2h + log2l) exactly.

• The operations in the following code sequence are exact since multiplications with a power of 2
are exact as long as the result is not underflowed:

Listing 3.5: Multiplication by −0.5
60 zhSquareHalfh = zhSquareh ∗ −0.5;
61 zhSquareHalfl = zhSquarel ∗ −0.5;

i.e. zhSquareHal fh + zhSquareHal fl = −0.5 · (zhSquareh + zhSquarel).

• The following hypothesis on the accuracy bounds, expressed here in Gappa syntax, are verified:

Listing 3.6: Gappa hypothesis
100 (T2hl − T2) / T2 in [−1b−103 ,1b−103]
101 /\ (Phl − PE) / PE in [−1b−103 ,1b−103]
102 /\ (LogTabPolyhl − LogTabPoly) / LogTabPoly in [−1b−103 ,1b−103]
103 /\ (Loghm − LogE) / LogE in [−1b−103 ,1b−103]
104 /\ (Log2hm − Log2) / Log2 in [−1b−84 ,1b−84]
105 /\ (Logihm − Logir) / Logir in [−1b−106 ,1b−106]
106 /\ Z in [zmin , zmax]
107 /\ (P − Log1pZ) / Log1pZ in [− epsilonApproxQuick , epsilonApproxQuick]
108 /\ ((logh + logm) − Loghm) / Loghm in [−1b−106 ,1b−106]

Here, zmin, zmax and epsilonApproxQuick are replaced by Maple calculated values, typically
−zmin = zmax = 2−8 and epsilonApproxQuick = 2−62.99.

Let us now show each of this hypothesises.

57

1. The operations yielding log2edh and log2edl are all exact because the Add12 sequence is sup-
posed to be exact in any case and because the constants log2h and log2m are calculated by the
following Maple code and have in consequence at least 11 trailing zeros and ed = E is less than
1024 in magnitude since 1024 is the maximum exponent value for double precision.

Listing 3.7: Maple code for computing log2h and log2m

21 log2acc := log (2) :
22 log2h := round (log2acc ∗ 2∗∗ (f l o o r (− log [2] (abs (log2acc))) + (53 − 11))) /
23 2∗∗ (f l o o r (− log [2] (abs (log2acc))) + (53 − 11)) :
24 log2m := round ((log2acc − log2h) ∗ 2∗∗ (f l o o r (− log [2] (abs ((log2acc − log2h)))) +
25 (53 − 11))) / 2∗∗ (f l o o r (− log [2] (abs ((log2acc − log2h)))) + (53 − 11)) :

2. To show that zhSquareHal fh + zhSquareHal fl = −0.5 · (zhSquareh + zhSquarel) we just have to
show that both values zhSquareh and zhSquarel are either equal to 0 or greater than 2 times the
smallest normal. Let us first give the definitions of both values:

zhSquareh = ◦ (zh · zh)

zhSquarel = zh · zh − zhSquareh

where zh = ◦ (z). Let us suppose that z 6= 0. Otherwise all values are equal to 0 and we can
conclude.

Let us first show that |zhSquareh| is greater than 254 times the smallest normal. Let us therefore
suppose that this is not the case, i.e. |zhSquareh| < 2−948. Since the rounding function is mono-
tonic, this implies that |zh| ≤ 2−424. For the same reason, we can note that |z| ≤ 2−424. As we
have z = y · ri − 1, clearly neither y nor ri can be exactly 1. If this were the case for both, we would
obtain z = 0 which we excluded; if there were one of them only that was exactly 1, the other being
a floating point number in the intervall [0.5; 1.5], the resulting inegality |z| ≥ 2−53 which would
be contradictory.

Otherwise, since we know that 1− 2−8 ≤ y · ri ≤ 1 + 2−8 and since the precision of all formats
used is greater than 9, the hypothesis that 1− 2−424 ≤ y · ri ≤ 1+ 2−424 and y · ri 6= 0 would imply
that the infinite precision mantissa of y · ri contains a 1 weighted with 20 and a 1 weighted with
less than 2−424. So its length would be greater than 423 bits. As it is the product of two floating
point numbers which have 52 and 23 significant bits, there cannot be a 1 weighted with less than
76 if there is a 1 weighted with 20 which is the case. Contradiction.

So−0.5 · zhSquareh is not underflowed. Additionally, with a similar argument, since zh is a double
precision number, zhSquarel is either 0 or greater in magnitude than 2−53 · |zhSquareh|which is 252

times greater in magnitude than the smallest normal. So zhSquarel is either 0 or 2 times greater in
magnitude than the smallest normal.

So, the floating point multiplication of zhSquareh and zhSquarel with −0.5 can be considered to be
exact.

3. (T2hl - T2) / T2 in [-1b-103,1b-103] which means that∣∣∣∣T2hl − T2
T2

∣∣∣∣ ≤ 2−103

is verified as T2hl and T2 are defined as follows:

T2hl = t2h + t2l ← Add22 (zh, zl, zhSquareHal fh, zhSquareHal fl)

T2 = (zh + zl) + (zhSquareHal fh + zhSquareHal fl)

The given bound is thus just the accuracy bound of the Add22 sequence for which a proof can be
found in [25].

4. (Phl - PE) / PE in [-1b-103,1b-103] is verified for the same reason; let us just recall the def-
initions

Phl = ph + pl ← Add22 (t2h, t2l, t1h, t1l)

PE = (t2h + t2l) + (t1h + t1l)

58

5. (LogTabPolyhl - LogTabPoly) / LogTabPoly in [-1b-103,1b-103] falls still into the same case
with

LogTabPolyhl = logTabPolyh + logTabPolyl ← Add22 (logih, logim, ph, pl)

LogTabPoly = (logih,+logim) + (ph + pl)

6. And finally, (Loghm - LogE) / LogE in [-1b-103,1b-103]which is also just the accuracy bound
of the Add22 sequence for

Loghm = logh + logm ← Add22 (log2edh, log2edl, logTabPolyh, logTabPolyl)

LogE = (log2edh + log2edl) + (logTabPolyh + logTabPolyl)

7. (Log2hm - Log2) / Log2 in [-1b-84,1b-84] is verified since log2h and log2m are computed as
already indicated in listing 3.7. This means that at least 11 trailing zeros are stored in each in the
doubles in this (pseudo-)double-double number, so it is exact to 2−106−2·11 = 2−84.

8. (Logihm - Logir) / Logir in [-1b-106,1b-106] which means∣∣∣∣ (logih + logim)− log (ri)

log (ri)

∣∣∣∣ ≤ 2−106

is verified by construction as logih and logim are computed by the following Maple code:

Listing 3.8: Maple code for computing logih and logim
35 (log ih [i] , logim [i] , l o g i l [i]) := h i m i l o (e v a l f (− log (r [i]))) :

where hi mi lo is the procedure for rounding an arbitrary precision number to a triple-double
number the higher significant numbers of which form a double-double number.

9. The hypothesis Z in [zmin, zmax] simply recalls the bounds for z as calculated by Maple.

10. The same can be said on the hypothesis
(P - Log1pZ) / Log1pZ in [- epsilonApproxQuick, epsilonApproxQuick]

which gives the mathematical approximation error of the polynomial. This bound is computed
by Maple using the following instructions:

Listing 3.9: Maple code for computing the relative error of the polynomial
129 epsilonApproxQuick := numapprox [infnorm] (1−polyQuick/log (1+ x) , x=zminmin . . zmaxmax)

11. Finally, Gappa’s hypothesis ((logh + logm) - Loghm) / Loghm in [-1b-106,1b-106] simply
restates the fact that a double-double precision number is exact to at least 2−106 in terms of its
relative error.

The Gappa tool itself is not capable of proving the final accuracy bound it is asked for a complex al-
gorithm as the one given here. Its user must provide hints to help it to rewrite the interval arithmetics
terms it encounters in the program. These hints are generally given in the form α -> β where β is an
expression we want the tool to rewrite the expression α by. Generally speaking, the idea behind each
hint is one of the following:

• For computing intervall bounds on differences like α = a − A where both a and A are sums of
terms like a = c + C and B = d + D, it is often useful to rewrite α by β = (c− d) + (C− D).

• An intervall bound can often be easier found for a term A representing an exact mathematical
value that for a which is its arithmetical equivalent. So it is useful to rewrite a by A ·

(
1 + a−A

A

)
when an intervall for a−A

A is known.

59

• Fractional left hand sides like a
b where both expressions a and b are functions in a common argu-

ment x that can be written like a = a (x) = xn · a′ (x) and b = b (x) = xm · b′ (x) should usually be
rewritten as follows:

a (x)
b (x)

=
xn · a′ (x)
xm · b′ (x)

= xn−m · a′ (x)
b′ (x)

In particular, this kind of hint is needed when an intervall for the denominator of a fractional
left-hand-side comprises 0.

• Fractional left-hand-sides of the form a−A
A with an unknown A can easily be written like

a− A
A

=
a− B

B
+

B− A
A

+
a− B

B
· B− A

A

We can show this equivalence like this

a− A
A

=
a− B + B− A

A

=
a− B

A
+

B− A
A

=
a− B

B
· B

A
+

B− A
A

=
a− B

B
·
(

1 +
B− A

A

)
+

B− A
A

=
a− B

B
+

B− A
A

+
a− B

B
· B− A

A

This is particularly useful when a bound on the relative error of some term a with regard to B
should be extended to the next approximation level.

Clearly, the left-hand-side A and right-hand-side B of an hint must be mathematically equivalent to
provide a correct result. The Gappa tool checks for this equivalence and sometimes is able to prove
it. If not, it emits a warning indicating that the formal proof it is generating for the accuracy bound
computations is valid only under the hypothesis that both sides of the rewriting hint are mathematically
equivalent. Further, it prints out the difference A− B of both sides A and B which it has already reduced
using the equivalences given in the Gappa code. It is relatively simple to verify that all this differences
are equal to 0 modulo the definitions given in the Gappa code by means of Maple-scripts. This work
can even been done automatically. Thus, we refrain from giving a paper proof of each hint in the
Gappa files used for proving the logarithm function but just give the exhaustive list of the hints in files
log-td.gappa and log-td-E0-logir0.gappa:

Listing 3.10: Gappa term rewriting hints in file log-td.gappa

115 T2hl − T2 −> ((T2hl − T2) / T2) ∗ T2 ;
116 T2hl −> (T2hl − T2) + T2 ;
117

118 Phl − PE −> ((Phl − PE) / PE) ∗ PE ;
119 Phl −> (Phl − PE) + PE ;
120

121

122 LogTabPolyhl −> (LogTabPolyhl − LogTabPoly) + LogTabPoly ;
123

124 Loghm −> (Loghm − LogE) + LogE ;
125

126 Log2 −> Log2hm ∗ (1 / (((Log2hm − Log2) / Log2) + 1)) ;
127

128 Logir −> Logihm ∗ (1 / (((Logihm − Logir) / Logir) + 1)) ;
129

130

131 LogTabPolyhl − LogTabPoly −> ((LogTabPolyhl − LogTabPoly) / LogTabPoly) ∗ LogTabPoly ;
132

133 HZZsimp −> (−0.5 ∗ zh ∗ zh) − (0 . 5 ∗ z l ∗ z l) ;
134

135 T2hl − ZpHZZsimp −> (0 . 5 ∗ z l ∗ z l) + d e l t a 1 ;
136

137 zhCube − ZZZ −> (Z ∗ (zhSquareh − Z ∗ Z)) − (z l ∗ zhSquareh) ;

60

138

139 polyUpper − ZZZPhigher −> ZZZ ∗ (polyHorner − Phigher) + polyHorner ∗ d e l t a 3 + d e l t a 2 ;
140

141 ZpHZZ + ZZZPhigher −> ZpHZZsimp + ZZZPhigherPzhzl ;
142

143 Phl − P −> (T2hl − ZpHZZsimp) + (T1hl − ZZZPhigherPzhzl) + d e l t a 4 ;
144

145 Log1pZ −> P ∗ (1 / (((P − Log1pZ) / Log1pZ) + 1)) ;
146 P − Log1pZ −> ((P − Log1pZ) / Log1pZ) ∗ Log1pZ ;
147

148 Phl − Log1pZ −> (Phl − P) + d e l t a 6 ;
149

150 LogTabPolyhl − Log1pZpTab −> (Logihm − Logir) + (Phl − Log1pZ) + d e l t a 7 ;
151

152 Loghm − Log −> (Log2edhm − Log2E) + (LogTabPolyhl − Log1pZpTab) + d e l t a 5 ;
153

154 (logh + logm) − Loghm −> (((logh + logm) − Loghm) / Loghm) ∗ Loghm ;
155

156 (logh + logm) − Log −> ((logh + logm) − Loghm) + (Loghm − Log) ;

Listing 3.11: Gappa term rewriting hints in file log-td-E0-logir0.gappa

81 T2hl − T2 −> ((T2hl − T2) / T2) ∗ T2 ;
82 T2hl −> (T2hl − T2) + T2 ;
83

84 Phl − PE −> ((Phl − PE) / PE) ∗ PE ;
85 Phl −> (Phl − PE) + PE ;
86

87

88 (ZhSquarehl − ZZ) / ZZ −> 2 ∗ ((zh − Z) / Z) + ((zh − Z) / Z) ∗ ((zh − Z) / Z) ;
89

90 (zhSquareh − ZZ) / ZZ −> ((ZhSquarehl − ZZ) / ZZ) + ((zhSquareh − ZhSquarehl) / ZZ) ;
91

92 (zhSquareh − ZhSquarehl) / ZZ −> ((zhSquareh − ZhSquarehl) / ZhSquarehl) ∗ (ZhSquarehl / ZZ) ;
93

94 ZhSquarehl / ZZ −> ((ZhSquarehl − ZZ) / ZZ) + 1 ;
95

96 (ZhCube − ZZZ) / ZZZ −> (((zh ∗ zhSquareh) − ZZZ) / ZZZ) + ((ZhCube − (zh ∗ zhSquareh)) / ZZZ)
;

97

98 ((zh ∗ zhSquareh) − ZZZ) / ZZZ −> (1 + ((zh − Z) / Z)) ∗ (1 + ((zhSquareh − ZZ) / ZZ)) − 1 ;
99

100 ((ZhCube − (zh ∗ zhSquareh)) / ZZZ) −> ((ZhCube − (zh ∗ zhSquareh)) / (zh ∗ zhSquareh)) ∗ (((
zh − Z) / Z) + 1) ∗ (((zhSquareh − ZZ) / ZZ) + 1) ;

101

102 polyHorner / Phigher −> ((polyHorner − Phigher) / Phigher) + 1 ;
103

104 (polyUpper − ZZZPhigher) / ZZZPhigher −> ((polyHorner − Phigher) / Phigher) + ((ZhCube − ZZZ)
/ ZZZ) ∗ (polyHorner / Phigher) +

105 + ((polyUpper − (polyHorner ∗ ZhCube)) / (polyHorner
∗ ZhCube)) ∗ (polyHorner / Phigher) +

106 + ((ZhCube − ZZZ) / ZZZ) ∗ ((polyUpper − (polyHorner
∗ ZhCube)) / (polyHorner ∗ ZhCube)) ∗

107 (polyHorner / Phigher) ;
108

109

110 ((ZhSquareHalfhl − (zh ∗ z l)) − HZZ) / HZZ −> − ((zh − Z) / Z) ∗ ((zh − Z) / Z) ;
111

112 (ZhSquareHalfhl − HZZ) / HZZ −> (ZhSquarehl − ZZ) / ZZ ;
113

114 ((T2hl − (zh ∗ z l)) − ZpHZZ) / ZpHZZ −> ((HZ ∗ (((ZhSquareHalfhl − (zh ∗ z l)) − HZZ) / HZZ)) +
((T2hl − T2) / T2)

115 + (HZ ∗ ((T2hl − T2) / T2))
116 + (HZ ∗ ((ZhSquareHalfhl − HZZ) / HZZ) ∗ ((T2hl − T2)

/ T2))) / (1 + HZ) ;
117

118 (PE − P) / P −> (((1 + HZ) ∗ (((T2hl − (zh ∗ z l)) − ZpHZZ) / ZpHZZ)) +
119 ((1 + ((zh − Z) / Z)) ∗ (Z ∗ ((zh − Z) / Z)) ∗ ((F l z h z l − (zh ∗ z l)) / (zh ∗

z l)))
120 + (ZZ ∗ Phigher ∗ ((polyUpper − ZZZPhigher) / ZZZPhigher))) / (1 + HZ + ZZ ∗

Phigher) ;
121

122 (Phl − P) / P −> ((PE − P) / P) + ((((PE − P) / P) + 1) ∗ ((Phl − PE) / PE)) ;
123

124 (Loghm − Log) / Log −> ((Loghm − P) / P) + ((P − Log) / Log) + ((Loghm − P) / P) ∗ ((P − Log)
/ Log) ;

125

126 (((logh + logm) − Log) / Log) −> (((logh + logm) − Loghm) / Loghm) + ((Loghm − Log) / Log) +

61

(((logh + logm) − Loghm) / Loghm) ∗ ((Loghm − Log) / Log) ;

For the reasons mentionned, we can consider the accuracy proof of the quick phase to be correct.

3.2.3 Accuracy proof of the accurate phase

The accuracy proof of the accurate phase is also based mainly on the use of the Gappa tool. Neverthe-
less, since the tool is currently not directly supporting triple-double representations, some additional
hand-proven accuracy bound results for the main addition and multiplication operators are needed.
They can be found in [25]. Since all these accuracy bounds are parameterized by the maximal overlap
bound for the triple-double numbers along the computations, before being able to give a numerical
value for these error bounds understood by the Gappa tool, it is necessary to do a maximal overlap
bound analysis using the theorems given in [25].

Eventually, since not an overlapped triple-double intermediate result is to be returned by the log-
arithm function but a double precision number that is the correct rounding according to the rounding
mode chosen, the algorithm effectuates a renormalizing operation on the final result and rounds this
non-overlapped result down to a double using an appropriate rounding sequence. All this renormal-
ization and rounding sequences are exact and have been shown to be correct in [25]. The same way,
all properties shown in section 3.2.1 concerning the special case handling and exactness argument re-
duction can be reused because the algorithm implemented in the accurate phase uses the same reduced
argument and is substantially the same as for the quick phase.

We will thus rely on all these properties and simply show the following accuracy bound

εaccurate =
(logh + logm + logl)− log (x)

log (x)

is bounded by
|εaccurate| ≤ 5735 · 2−132 ≤ 2−119.5

which will be expressed in Gappa syntax as follows:

Listing 3.12: Accuracy bound to prove for the accurate phase
165 −>
166 ((logh + logm + l o g l) − MLog) / MLog in [−5735b−132 ,5735b−132]

The Gappa proof files still make the hypothesis that two of the multiplications in the accurate phase
code can be considered to be exact. This property must therefore be shown in a paper proof in the
following.

The first of these multiplications is the following sequence:

Listing 3.13: Multiplication of triple-double ◦ (Z · Z) by − 1
2

99 zSquareHalfh = zSquareh ∗ −0.5;
100 zSquareHalfm = zSquarem ∗ −0.5;
101 zSquareHalf l = zSquarel ∗ −0.5;

As it will be shown below, the relative error εZSquare defined as

εZSquare =
(zSquareh + zSquarem + zSquarel)− Z2

Z2

is bounded by
∣∣εZSquare

∣∣ ≤ 2−149. Using the same argument as the one given in section 3.2.2, one can
show that Z is either 0 or greater in magnitude than at least 2−77. So the following is true

Z2 = 0∨
∣∣∣Z2
∣∣∣ ≥ 2−154

If Z2 = 0, ZSquarehml = zSquareh + zSquarem + zSquarel trivially is 0, too, and the multiplication is
with − 1

2 is therefore exact. Since we can note ZSquarehml = Z2 ·
(
1 + εZSquare

)
, we know that in the

other case,
|ZSquarehml| ≥ 2−155

62

We can suppose that in the triple-double number zSquareh + zSquarem + zSquarel, zSquarem and zSquarel
are not overlapped at all (since zSquarem = ◦ (zSquarem + zSquarel)) and that zSquareh and zSquarem are
not fully overlapped. So we can note |zSquarem| ≤ 2−βo · |zSquareh| and |zSquarel| ≤ 2−βu · |zSquarem|
with βo ≥ 1 and βu ≥ 53. We will show this property below we are just supposing here. So we can
verify the following

|ZSquarehml| = |zSquareh + zSquarem + zSquarel|
≤ |zSquareh|+ |zSquarem|+ |zSquarel|
≤ |zSquareh|+ 2−βo · |zSquareh|+ 2−βo · 2−βu · |zSquareh|
≤ 2 · |zSquareh|

In consequence, we obtain

|zSquareh| ≥
1
2
· |ZSquarehml|

and thus
|zSquareh| ≥ 2−156

under the hypothesis that it is not exactly zero. So zSquareHal fh = − 1
2 · zSquareh will never be under-

flowed.
Let us now show first that the operations for computing zSquareHal fm and zSquareHal fl cannot

both be inexact. We will use the fact that |zSquarel| ≤ 2−53 · |zSquarem|. Suppose first that

zSquareHal fm ← −
1
2
⊗ zSquarem

is inexact. So |zSquarem| < 2−1022 and in consequence |zSquarel| < 2−1022−53. Note that the inegality
is strict. Since the least (in magnitude) representable denormalized double precision floating point
number is 2−52 · 2−1023, zSquarel = 0 in this case. So

zSquareHal fl ← −
1
2
⊗ zSquarel

is exact because trivially, a multiplication with 0 is exact.
Suppose now that

zSquareHal fl ← −
1
2
⊗ zSquarel

is inexact. So |zSquarel| < 2−1022. Further, the least significant bit of the mantissa of zSquarel is 1 because
otherwise, a bit-shift in its mantissa by 1 would be an exact operation. Thus |zSquarel| ≥ 2−52 · 2−1023

and |zSquarem| ≥ 2−1022. So

zSquareHal fm ← −
1
2
⊗ zSquarem

cannot be inexact because in this case we would have |zSquarem| < 2−1022.
So, in any case, if ever zSquareHal fm + zSquareHal fl are not exactly − 1

2 · (zSquarem + zSquarel),
the error made will be 1

2 · d in magnitude, where d = 0+ is the smallest representable denormalized
non-zero double. So we can note down in this case

zSquareHal fh + zSquareHal fm + zSquareHal fl = −
1
2
· (zSquareh + zSquarem + zSquarel) + δ

with |δ| ≤ 2−1075. Since we know that
∣∣∣− 1

2 · (zSquareh + zSquarem + zSquarel)
∣∣∣ ≥ 2−156, we can give

the following bound ∣∣∣∣∣ δ

− 1
2 · (zSquareh + zSquarem + zSquarel)

∣∣∣∣∣ ≤ 2−1075

2−156 = 2−919

So we get

ZSquareHal f hml = −1
2
· ZSquarehml · (1 + ε)

63

with |ε| ≤ 2−919

In contrast, since we know that |Z| ≤ 2−8 thus that
∣∣Z2
∣∣ ≤ 2−16 but that

∣∣Z2
∣∣ ≥ 2−154, we can

assume that the infinite precision mantissa of Z2 can always be written exactly with at most 154− 16 =

138 < 149 bits. As we can show that 1
2 · |ZSquarehml| ≤ |zSquareh| ≤ 2 · |ZSquarehml| we know that

if ever one of zSquarem or zSquarel is such that the multiplication with − 1
2 is not exact, the error made

has already been accounted for in the error bound for ZSquarehml with regard to Z2. So the operation
computing ZSquareHal f hml out of ZSquarehml can be considered to be exact.

Let us now analyse the following sequence

Listing 3.14: Multiplication of triple-double Log2hml by E
126 log2edhover = log2h ∗ ed ;
127 log2edmover = log2m ∗ ed ;
128 log2edlover = l o g 2 l ∗ ed ;

Similar to the argumentation that has been given in section 3.2.2, since E = ed is bound in magnitude
by 1024 = 210 and since log2h, log2m are stored with at least 11 trailing bits at zero, the multiplications
in these components are exact. The constant log2l is not stored with 11 trailing bits at zero but it could
be because we will be just supposing the bound

∣∣∣εLog2hml

∣∣∣ ≤ 2−3·53+33 = 2−126 for

εLog2hml =
log2h + log2m + log2l − log (2)

log (2)

So the multiplication is not exact in itself but the final result is exacter than the bound we are using for
it.

Let us finally just recall the Maple code for computing the constants:

Listing 3.15: Maple code for computing Log2hml
21 log2acc := log (2) :
22 log2h := round (log2acc ∗ 2∗∗ (f l o o r (− log [2] (abs (log2acc))) + (53 − 11))) / 2∗∗ (f l o o r (− log [2] (

abs (log2acc))) + (53 − 11)) :
23 log2m := round ((log2acc − log2h) ∗ 2∗∗ (f l o o r (− log [2] (abs ((log2acc − log2h)))) + (53 − 11))) /

2∗∗ (f l o o r (− log [2] (abs ((log2acc − log2h)))) + (53 − 11)) :
24 l o g 2 l := log2acc − (log2h + log2m) :

So the multiplication can be considered to be exact as long the less accurate bound for εLog2hml is used.
Let us know analyse the bounds that we can give for the maximal overlap of the components of

the triple-double numbers in the logarithm implementation. For doing this, we will assign each triple-
double number in the code an overlap bound as follows. Call the number in consideration e.g. ah +
am + al. So we will give the bounds expressed like this:

|am| ≤ 2−αo · |ah|
|al| ≤ 2−αu · |am|

where αo, αu ≥ 2. We will then propagate this information following the flow of control in the imple-
mentation and using the overlap bound theorems given in [25]. Here, we understand by “propagating”
checking a system of constraints of the bounds under the limitations provided by the theorems. As the
control-flow-graph of our implementation is completely linear, this check is linear, too. The theorems
mentionned can be summarized as follows:

Operation 1st arg. 2nd arg. result high result low
Add33 αo ≥ 4, αu ≥ 1 βo ≥ 4, βu ≥ 1 γo ≥ min (αo, βo)− 5 γu ≥ 53
Add233 - βo ≥ 2, βu ≥ 1 γo ≥ min (45, βo − 4, βo + βu − 2) γu ≥ 53
Mul23 - - γo ≥ 48 γu ≥ 53
Mul233 - βo ≥ 2, βu ≥ 1 γo ≥ min (48, βo − 4, βo + βu − 4) γu ≥ 53

So let us analyse the following code:

Listing 3.16: Triple-double computations
90 Mul23(&zSquareh , &zSquarem , &zSquarel , zh , zl , zh , z l) ;
91 Mul233(&zCubeh , &zCubem , &zCubel , zh , zl , zSquareh , zSquarem , zSquarel) ;

64

92 Mul233(&higherPolyMultZh , &higherPolyMultZm , &higherPolyMultZl , t14h , t 1 4 l , zCubeh , zCubem ,
zCubel) ;

93 zSquareHalfh = zSquareh ∗ −0.5;
94 zSquareHalfm = zSquarem ∗ −0.5;
95 zSquareHalf l = zSquarel ∗ −0.5;
96 Add33(&polyWithSquareh , &polyWithSquarem , &polyWithSquarel ,
97 zSquareHalfh , zSquareHalfm , zSquareHalfl ,
98 higherPolyMultZh , higherPolyMultZm , higherPolyMultZl) ;
99 Add233(&polyh , &polym , &polyl , zh , zl , polyWithSquareh , polyWithSquarem , polyWithSquarel) ;

100 Add33(&logyh , &logym , &logyl , logih , logim , l o g i l , polyh , polym , poly l) ;
101 log2edhover = log2h ∗ ed ;
102 log2edmover = log2m ∗ ed ;
103 log2edlover = l o g 2 l ∗ ed ;
104 log2edh = log2edhover ;
105 log2edm = log2edmover ;
106 log2edl = log2edlover ;
107 Add33(&loghover , &logmover , &loglover , log2edh , log2edm , log2edl , logyh , logym , l o g y l) ;

This code will finally generate triple-double numbers respecting the following overlap bounds as will
be shown below:

Variable Line(s) αo ≥ αu ≥
ZSquarehml 90 48 53
ZCubehml 91 44 53
HigherPolyMultZhml 92 40 53
ZSquareHal f hml 93-95 48 53
PolyWithSquarehml 96-98 35 53
Polyhml 99 31 53
Logyhml 100 26 53
Log2edhml 101-106 40 40
Logoverhml 107 21 53

So let us verify exemplarily some of these bounds:

• At line 90, ZSquarehml is computed out of the double-double number zh + zl by use of the Mul23 se-
quence. Since the inputs of this function are not triple-double, the overlap bound is just the bound
provided by the sequence itself, i.e. αo ≥ 48, αu ≥ 53.

• ZCubehml is the result of a Mul233 sequence at line 91. Its overlap bound depends therefore on
the one for ZSquarehml, which is the second argument of the function. Since we know the bound
for this variable, we easily verify the one for ZCubehml which is αo ≥ 44 and αu ≥ 53.

• Log2edhml is the exact pairwise product of the triple-double constant Log2hml and double E.
Since E may be as small as 0 in magnitude and further, since the multiplication is pairwise, the
overlap bound we dispose of for Log2edhml is the same as for Log2hml which is stored with at
least 11 bit trailing zeros. So an appropriate bound is αo ≥ 52− 11 ≥ 40 and αu ≥ 40.

All other bounds can be verified the same way using the theorems given in [25] and indicated above.
Since we have computed the overlap bounds for the different triple-double operands in the code,

we can now calculate the accuracy bounds for the operations. Doing this is only possible with the
knowledge of the overlap of the operations because all accuracy bound theorems given in [25] are
parameterized with this overlap expressions.

Let us first give a list of the accuracy of the different basic operations which is not exhaustive with
regard to its lack of listing almost all preconditions on the sequences required for theorems to hold. We
refrain from explicitely verifying each of this preconditions in this document as this is only fastidious
work but not of special interest.

Operation Overlap 1st arg. Overlap 2nd arg. Relative error ε

Add22 - - |ε| ≤ 2−103.5 ≤ 2−103

Mul22 - - |ε| ≤ 2−102

Add33 αo ≥ 4, αu ≥ 1 βo ≥ 4, βu ≥ 1 |ε| ≤ 2−min(αo+αu ,βo+βu)−47 + 2−min(αo ,βo)−98

Add233 - βo ≥ 2, βu ≥ 1 |ε| ≤ 2−βo−βu−52 + 2−βo−104 + 2−153

Mul23 - - |ε| ≤ 2−149

Mul233 - βo ≥ 2, βu ≥ 1 |ε| ≤ 2−97−βo + 2−97−βo−βu + 2−150

65

Still analyzing the following double-double computations code and the code given at listing 3.16, one
can now easily check the bounds for the relative error of the different operations listed in the table
below. We define here the relative error of an operation ∗ and its arithmetical equivalent ~ as follows:

ε =
(a ~ b)− (a ∗ b)

(a ∗ b)

Listing 3.17: Double-double computations in accurate phase
73 Mul12(&t1h , &t 1 l , zh , highPoly) ;
74 Add22(&t2h , &t 2 l , accPolyC9h , accPolyC9l , t1h , t 1 l) ;
75 Mul22(&t3h , &t 3 l , zh , zl , t2h , t 2 l) ;
76 Add22(&t4h , &t 4 l , accPolyC8h , accPolyC8l , t3h , t 3 l) ;
77 Mul22(&t5h , &t 5 l , zh , zl , t4h , t 4 l) ;
78 Add22(&t6h , &t 6 l , accPolyC7h , accPolyC7l , t5h , t 5 l) ;
79 Mul22(&t7h , &t 7 l , zh , zl , t6h , t 6 l) ;
80 Add22(&t8h , &t 8 l , accPolyC6h , accPolyC6l , t7h , t 7 l) ;
81 Mul22(&t9h , &t 9 l , zh , zl , t8h , t 8 l) ;
82 Add22(&t10h , &t 1 0 l , accPolyC5h , accPolyC5l , t9h , t 9 l) ;
83 Mul22(&t11h , &t 1 1 l , zh , zl , t10h , t 1 0 l) ;
84 Add22(&t12h , &t 1 2 l , accPolyC4h , accPolyC4l , t11h , t 1 1 l) ;
85 Mul22(&t13h , &t 1 3 l , zh , zl , t12h , t 1 2 l) ;
86 Add22(&t14h , &t 1 4 l , accPolyC3h , accPolyC3l , t13h , t 1 3 l) ;

Result Line(s) Operation Relative error ε

T1hl through T14hl 73 - 86 Add22 / Mul22 |ε| ≤ 2−103 / |ε| ≤ 2−102

ZSquarehml 90 Mul23 |ε| ≤ 2−149

ZCubehml 91 Mul233 |ε| ≤ 2−144

HigherPolyMultZhml 92 Mul233 |ε| ≤ 2−141

PolyWithSquarehml 96-98 Add33 |ε| ≤ 2−137

Polyhml 99 Add233 |ε| ≤ 2−134

Logyhml 100 Add33 |ε| ≤ 2−128

Logoverhml 107 Add33 |ε| ≤ 2−123

Let us just explicitely check the bound for one of the operations for sake of an example. Let us take
therefore the Add33 sequence at lines 96-98 computing PolyWithSquarehml out of ZSquareHal f hml
and HigherPolyMultZhml. We have already obtained to following overlap bounds:

|zSquareHal fm| ≤ 2−48 · |zSquareHal fh|
|zSquareHal fl| ≤ 2−53 · |zSquareHal fm|

|higherPolyMultZm| ≤ 2−40 · |higherPolyMultZh|
|higherPolyMultZl| ≤ 2−53 · |higherPolyMultZm|

Feeding now this bounds into the theorem on the accuracy of Add33, we get

|ε| ≤ 2−min(48+53,40+53)−47 + 2−min(48,40)−98 ≤ 2−140 + 2−138 ≤ 2−137

All other error bounds can be verified in a similar way. They are finally expressed in Gappa syntax as
follows:

Listing 3.18: Relative error bounds in Gappa code
139 (T2hl − T2) / T2 in [−1b−103 ,1b−103]
140 /\ (T3hl − T3) / T3 in [−1b−102 ,1b−102]
141 /\ (T4hl − T4) / T4 in [−1b−103 ,1b−103]
142 /\ (T5hl − T5) / T5 in [−1b−102 ,1b−102]
143 /\ (T6hl − T6) / T6 in [−1b−103 ,1b−103]
144 /\ (T7hl − T7) / T7 in [−1b−102 ,1b−102]
145 /\ (T8hl − T8) / T8 in [−1b−103 ,1b−103]
146 /\ (T9hl − T9) / T9 in [−1b−102 ,1b−102]
147 /\ (T10hl − T10) / T10 in [−1b−103 ,1b−103]
148 /\ (T11hl − T11) / T11 in [−1b−102 ,1b−102]
149 /\ (T12hl − T12) / T12 in [−1b−103 ,1b−103]

66

150 /\ (T13hl − T13) / T13 in [−1b−102 ,1b−102]
151 /\ (T14hl − T14) / T14 in [−1b−103 ,1b−103]
152 /\ (ZSquarehml − ZSquare) / ZSquare in [−1b−149 ,1b−149]
153 /\ (ZCubehml − ZCube) / ZCube in [−1b−144 ,1b−144]
154 /\ (HigherPolyMultZhml − HigherPolyMultZ) / HigherPolyMultZ in [−1b−141 ,1b−141]
155 /\ (PolyWithSquarehml − PolyWithSquare) / PolyWithSquare in [−1b−137 ,1b−137]
156 /\ (Polyhml − Poly) / Poly in [−1b−134 ,1b−134]
157 /\ (Logyhml − Logy) / Logy in [−1b−128 ,1b−128]
158 /\ (Loghml − Logover) / Logover in [−1b−123 ,1b−123]
159 /\ (Log2hml − MLog2) / MLog2 in [−1b−126 ,1b−126]
160 /\ (Logihml − MLogi) / MLogi in [−1b−159 ,1b−159]
161 /\ (MPoly − MLog1pZ) / MLog1pZ in [− epsilonApproxAccurate , epsilonApproxAccurate]
162 /\ Z in [zmin , zmax]
163 /\ ((logh + logm + l o g l) − Loghml) / Loghml in [−1b−159 ,1b−159]

Concerning the Gappa proofs for accurate phase, in a similar way as for the quick phase, three different
proof files are used. They reflect once again the three main cases for the argument of the logarithm
function:

• For cases where after argument reduction |E| ≥ 1, the file log-td-accurate.gappa is used. In this
case, absolute error computations are sufficient for the final relative error bound to be calculable
because |log (x)| ≥ 1

2 log (2) in this case.

• For the case where after argument reduction, E = 0 and i 6= 0, the file log-td-accurate-E0.gappa
is used. The same way here, we have a preponderant constant term so absolute error computa-
tions suffice.

• For the other case, where E = 0 and i = 0 the file log-td-accurate-E0-logir0.gappa provides
the accuracy bound proof. In contrast to the other cases, we obliged to relative error estimations
since the beginning since the function log (x) has a zero in this intervall.

Once again, several term rewriting hints are needed in the Gappa proof files for enabling the Gappa tool
to generate a proof for the accuracy bounds. In a similar way, the hints which cannot directly be checked
for their mathematical correctness by the tool itself are verified by semi-automatic Maple scripts.

By the existence of an accuracy proof for a final relative error of |εaccurate| ≤ 2−119.5 and by the use
of the critical accuracy of the double precision natural logarithm function which is 118 bits[11], we
can consider the implementation to be correctly rounding under the hypothesis that the final rounding
sequence used is exact and correct. Since we suppose this – a correctness proof can be found in [25] –
the correctly rounding property is verified.

3.3 Proof of correctness of the double-extended implementation

3.4 Performance results

The given implementation of the natural logarithm function aims at being both portable and more
performant than the previous implementations using the SCS libary for the accurate phase. This goal is
acheived in terms of memory consumption (if the code sizes for scslib are taken into account) and in
terms of speed performance. The reason for this is mainly the possibility of reusing all values computed
in the argument reduction phase and the tables for the accurate phase directly.

3.4.1 Memory requirements

3.4.2 Timings

67

68

Chapter 4

The logarithm in base 2

Todo. In between, see files log2-td.{h,c,mpl,gappa}.

69

70

Chapter 5

The logarithm in base 10

This chapter is contributed by Ch. Q. Lauter.

5.1 Main considerations, critical accuracy bounds

If one wants to guarantee that an implementation of the logarithm in base 10, log10 (x), in double preci-
sion is correctly rounded, one has to ensure that the final intermediate approximation before rounding
to double precision has a relative error of less than 2−122.

An implementation of log10 (x) can also be derived from an implementation of the natural logarithm
ln (x) using the formula:

log10 (x) =
1

ln (10)
· ln (x) (5.1)

When doing so, one must ensure that the constant log10inv = 1
ln(10) is stored with enough accuracy, that

the approximation for ln (x) is exact enough and that the multiplication sequence does not introduce
too great an error. As we will see in the next section 5.2, this implies slight changes to the code for the
natural logarithm with regard to what has been presented in Chapter 3.

With regard to final rounding, the elementary function log10 presents a particular issue that is some-
what singular amongst all considered elementary functions: There exist a large set of input double-
precision numbers x such that log10(x) is a rational and is representable as a double-precision number.

For such cases, a final directed rounding will be correct only if the approximation error is exactly 0.
Indeed, the rounding � (f (x)) of the exactly representably value f (x) ∈ F is trivially � (f (x)) = f (x)
[5]. In contrast, � (f (x) + δ) 6= f (x) ∈ F holds for all |δ| > 0.

As it is impossible to achieve an approximation error exactly equal to zero, it is preferable to filter out
such cases and handle them separately. Other functions described so far had only one such argument
(x = 1 for log, x=0 for the trigs). log2 has a set of such cases (x = 2k, k ∈ Z) which is equally trivial to
handle in binary floating point.

For f = log10, filtering much more difficult. In fact, y = log (x) is algebraic for exactly all x = 10k,
k ∈ Z [6]. Filtering means thus testing whether an input x can be written x = 10k with an integer k ∈ Z.
This is equivalent to testing if log10 (x) an integer, i.e. log10 (x) ∈ Z. However, since log10 (x) can only
be approximated, filtering this way is impossible.

One possibility is the following approach. In floating point arithmetic, in order to be in a situation of
difficult rounding, not only log10 (x) must be algebraic but also the corresponding x = 10k, k ∈ Z, must
be representable in floating point. To start with eliminating cases, we can argue that this impossible for
all k < 0. Indeed, since 2 - 5, there exist no m ∈N and e ∈ Z for any k ∈ Z− such that 10k = 2e ·m [34].
So we have reduced the range of cases to filter to all x = 10k, k ∈N∪ {0}. Further in double precision,
the mantissa’s length is 53. So 10k = 2k · 5k = 2e · m is exactly representable in double precision only
for values k ∈ N ∪ {0} such that 5k ≤ 253. This yields to k ≤ 53 · ln(2)

ln(5) ≈ 22.82; hence 0 ≤ k ≤
22. In consequence, it would be possible to filter out the 23 arguments x = 10k with k ∈ {0 . . . 22}.

71

Nevertheless, this approach would be relatively costly. It is not the way that has been chosen for the
implementation presented here.

Our approach uses the critical worst case accuracy of the elementary function log10 (x). As already
mentioned, it is 2−122. Under the condition that we can provide an approximation to the function that is
exact to at least 2−123, we can decide the directed rounding using a modified final rounding sequence:
We know that a 1 after a long series of 0s (respectively a 0 after a long series of 1s) must be present at
least at the 122th bit of the intermediate mantissa. If it is not, we can consider a potentially present 1
after the 122th bit to be an approximation error artefact. In fact this means neglecting δs relatively less
than 2−122 when rounding � (f (x) + δ) instead of � (f (x)).

One shortcoming of this approach is that the accurate phase is launched for arguments where the
quick phase’s accuracy would suffice to return the correct result. As such arguments are extremely
rare (p = 23

263 ≈ 2.5 · 10−18 !), this is not of an issue. The modification of the final rounding sequence
is relatively lightweight: merely one floating point multiplication, two integer masks and one integer
comparison have to be added to handle the case.

One remarks this approach is only possible because the critical worst case accuracy of the function
is known by Lefèvre’s works. Ziv’s oignon peeling strategy without the filtering of the 23 possible cases
in input and without any accuracy limitation for intermediate computations yields to nontermination
of the implementation of the function on such arguments x = 10k.

An earlier crlibm implementation of the log10 (x) function based on the SCS format did not handle
the problem and returned incorrectly rounded results for inputs x = 10k in the directed rounding
modes.

5.2 General outline of the algorithm and accuracy estimates

The quick phase of the implementation of the log10 (x) follows exactly the scheme depicted by equation
(5.1) above. Similarly to the logarithm in base 2, the natural logarithm’s intermediate double-double re-
sult is multiplied by a double-double precision approximation of log10inv. The rounding test is slightly
modified in order to ensure safe rounding or launching the accurate phase.

Concerning the accurate phase, some modifications in the natural logarithm’s code are necessary be-
cause of the tighter accuracy bound needed for the worst case. The natural logarithms accurate phase
polynomial approximation relative error has already been less than 2−125 which is exact enough for
log10 (x). The fact that the complete triple-double implementation is exact to only 119 bits, is mainly
due to the inexactness of the operators used in reconstruction phase. In turn, this inexactness is caused
by the relatively high overlap in the triple-double numbers handled. By adding two additional renor-
malisations the triple-double operators become exact enough.

The constant log10inv cannot be stored in double-double precision with an accuracy of 124 bits.
A triple-double approximation is therefore used. Its relative approximation error is smaller than 2−159.
The final multiplication of the triple-double constant representing log10inv and the triple-double natural
logarithm result is performed by a Mul33. The relative error of this operator on non-overlapping triple-
doubles is not greater than 2−140. This last operation therefore offers a large accuracy overkill.

TODO The combination of the previous errors should be verified in Gappa.

5.3 Timings

We compare crlibm’s portable triple-double implementation for log10 (x) to other correctly rounded
and not-correctly rounded implementations. “crlibm portable using scslib” is the timing for the ear-
lier implementation in crlibm, which has been superseded by the one depicted here since version 0.10β.
This earlier implementation was completely based on the SCS format and did not contain a quick phase
implemented in double precision arithmetic. The values are given in arbitrary units and obtained on a
IBM Power 5 processor with gcc 3.3.3 on a Linux Kernel 2.6.5.

On average, our triple-double based implementation is even 10% faster than its incorrectly rounding
counterpart on Power. On Pentium, we observe the usual factor 2 with respect to an implementation
using double-extended arithmetic. Worst case timings are acceptable in both cases.

72

Library avg time max time
Power5 / Linux-2.6 / gcc-3.3

MPFR 9490 84478
crlibm portable using scslib 2624 2744
crlibm portable using triple-double 60 311
default libm (not correctly rounded) 66 71

PentiumM / Linux-2.6 / gcc-4.0
crlibm portable using triple-double 304 1529
default libm (not correctly rounded) 153 1904

Table 5.1: Log10 timings on Power5 and PentiumM architectures

73

74

Chapter 6

The exponential

This chapter is contributed by Ch. Q. Lauter.

6.1 Overview of the algorithm

The exponential function allows for additive argument reduction with multiplicative reconstruction:
ea+b = ea · eb. In particular, the following equation is useful in developing an argument reduction:

ex = eE·ln(2)+z =
(

eln(2)
)E
· ez = 2E · ez

Here, E can be considered to be a signed integer, E ∈ Z and z to be a reduced argument such that
|z| < ln (2). One remarks that the use of such an argument reduction implies a multiplication with
a transcendental constant, ln (2). This means that the reduced argument will not be exact. The corre-
sponding error bound will be given in section 6.3.

A reduced argument obtained by the reduction shown above is generally still to great for polynomial
approximation. By use of tabulation methods, the following argument reduction can be employed and
yields to smaller reduced arguments.

k =

⌊
x · 2l

ln (2)

⌉

r̂ = x− k · ln (2)
2l

k = 2l ·M + 2w1 · i2 + i1

where r̂ is the reduced argument, k, M ∈N are intermediate integers, and w1, w2 ∈N, l = w1 + w2, are
the widths of the indices to the two tables. The corresponding reconstruction phase is

ex = 2M · 2
i2

2w1 · 2
i1
2l · er̂ = 2M · t1 · t2 · er̂

with the table values t1 = 2
i2

2w1 and t2 = 2
i1
2l . The argument reduction ensures that |r̂| ≤ ln(2)

2l < 2−l .
This magnitude is small enough for allowing for polynomial approximation.

In the case of the given algorithm, we use l = 12 and w1 = w2 = 6.

The subtraction r̂ = x − k · ◦
(

ln(2)
2l

)
can be implemented exactly but leads to catastrophic cancel-

lation that amplifies the absolute error of the potentially exact multiplication of k by the approximated
ln(2)

2l . Is is nevertheless not of such an issue, as will be shown in section 6.6.

75

6.2 Special case handling

The exponential function ex, which is monotone increasing, produces results that are representable in a
floating point format for arguments

x ∈ [underflowBound; overflowBound]

Herein the following values are observed for double precision:

underflowBound = ◦
(

ln
(

2−1075
))
≈ −745.13

and
overflowBound = ◦

(
ln
(

21024 ·
(

1− 2−53
)))

≈ 709.78

Its double precision result is gradually underflowed in the argument domain

x ∈ [underflowBound; denormBound]

where
denormBound = ◦

(
ln
(

2−1022
))
≈ −708.40

for double precision. No special case can therefore occur for arguments x such that

|x| ≤ min (|underflowBound| , |overflowBound| , |denormBound|) ≈ 708.40

This provides us a very efficient filter for the greatest part of the definition domain. Since also some
arguments are filtered out that actually do not represent a special case, additional tests are made in
the body of the main special handling sequence launched by the filter. Particular cases like x = ±∞,
x = NaN are handled as follows:

• The result for x = NaN is NaN.

• The result for x = +∞ is +∞.

• The result for x = −∞ is 0, even in round-upwards mode.

If the result is clearly underflowed, 0 is returned with the inexact flag set for round-to-nearest and
round-downwards, 0+ is returned for round-upwards.

The ordering of double precision numbers is compatible with the integer ordering of the signed 64
bit integers the floating point numbers can be read in memory as. Further the ordering on numbers
is equal to the lexicographic ordering of its digits. So if the higher order word of |x| is less than the
higher order word of overUnderDenormBound = min (|underflowBound| , |overflowBound| , |denormBound|), no
underflow, gradual underflow or overflow can occur. In the other cases, special handling in the re-
construction step may be necessary. A flag mightBeDenorm is set for possible subnormals. Cases where
intermediate results are not representable because of overflow but where the final result is representable
can be overcome by replacing the corresponding floating point multiplication by an integer manipula-
tion. This will be shown below.

Since ex = 1 + x +O
(

x2) for small |x|, underflowed arguments x (|x| ≤ 2−1022) can be handled as
follows:

• In round-to-nearest mode, 1 can be returned since ◦ (1 + x) = 1 for |x| ≤ 2−54.

• In round-upwards mode, 1 must be returned for x = 0. For x < 0, 1 can be returned, too, because
4 (1− |x|) = 1. If x > 0, 1+ must be returned.

• Round-downwards mode is analogous to round-upwards mode, but the signs are inverted.

• Round-towards-zero mode is equivalent to round-downwards mode since ex > 0 ∀x ∈ R.

The following sequence realizes the special case handling for round-to-nearest. The sequences for
the other rounding modes are straightforward and will not be shown here. The constants
OVRUDRFLWSMPLBOUND, OVRFLWBOUND and DENORMBOUND are computed by the corresponding Maple script
that realizes the equations given above.

76

Listing 6.1: Handling special cases
1 /∗ S p e c i a l c a s e s t e s t s ∗ /
2 xIntHi = xdb . i [HI] ;
3 mightBeDenorm = 0 ;
4 /∗ T e s t i f argument i s a denormal o r z e r o ∗ /
5 i f ((xIntHi & 0 x7f f00000) == 0) {
6 /∗ We a r e in t h e RN c a s e , r e t u r n 1 . 0 in a l l c a s e s ∗ /
7 return 1 . 0 ;
8 }
9

10 /∗ T e s t i f argument i s g r e a t e r than approx . 709 in magnitude ∗ /
11 i f ((xIntHi & 0 x 7 f f f f f f f) >= OVRUDRFLWSMPLBOUND) {
12 /∗ I f we a r e he r e , t h e r e s u l t might be o v e r f l o w e d , under f l owed , i n f , o r NaN ∗ /
13

14 /∗ T e s t i f +/− I n f o r NaN ∗ /
15 i f ((xIntHi & 0 x 7 f f f f f f f) >= 0 x7f f00000) {
16 /∗ E i t h e r NaN or I n f in t h i s c a s e s i n c e e x p o ne n t i s maximal ∗ /
17

18 /∗ T e s t i f NaN: m a n t i s s a i s not 0 ∗ /
19 i f (((xIntHi & 0 x 0 0 0 f f f f f) | xdb . i [LO]) != 0) {
20 /∗ x = NaN, r e t u r n NaN ∗ /
21 return x + x ;
22 } e lse {
23 /∗ +/− I n f ∗ /
24

25 /∗ T e s t s i g n ∗ /
26 i f ((xIntHi & 0 x80000000) ==0)
27 /∗ x = +I n f , r e t u r n + I n f ∗ /
28 return x ;
29 e lse
30 /∗ x = −I n f , r e t u r n 0 ∗ /
31 return 0 ;
32 } /∗ End which in NaN, I n f ∗ /
33 } /∗ End NaN or I n f ? ∗ /
34

35 /∗ I f we a r e he r e , we might be o v e r f l o w e d , d e n o r m a l i z e d or u n d e r f l o w e d in t h e r e s u l t
36 but t h e r e i s no s p e c i a l c a s e (NaN, I n f) l e f t ∗ /
37

38 /∗ T e s t i f a c t u a l l y o v e r f l o w e d ∗ /
39 i f (x > OVRFLWBOUND) {
40 /∗ We a r e a c t u a l l y o v e r f l o w e d in t h e r e s u l t ∗ /
41 return LARGEST ∗ LARGEST ;
42 }
43

44 /∗ T e s t i f s u r e l y u n d e r f l o w e d ∗ /
45 i f (x <= UNDERFLWBOUND) {
46 /∗ We a r e a c t u a l l y s u r e t o be u n d e r f l o w e d and not d e n o r m a l i z e d any more
47 So we r e t u r n 0 and r a i s e t h e i n e x a c t f l a g ∗ /
48 return SMALLEST ∗ SMALLEST ;
49 }
50

51 /∗ T e s t i f p o s s i b l y d e n o r m a l i z e d ∗ /
52 i f (x <= DENORMBOUND) {
53 /∗ We know now t h a t we a r e not s u r e t o be n o r m a l i z e d in t h e r e s u l t
54 We j u s t s e t an i n t e r n a l f l a g f o r a f u r t h e r t e s t
55 ∗ /
56 mightBeDenorm = 1 ;
57 }
58 } /∗ End might be a s p e c i a l c a s e ∗ /

6.3 Argument reduction

Mathematically, the argument reduction used for quick and accurate phase is the same. The reduced
argument is nevertheless different for the both phases because the reduction is inexact. It is therefore
implemented in two or three phases:

First, k corresponding to
⌊

x · 212

ln(2)

⌉
is computed in both integer and floating point (double) repre-

sentation. Herein 212

ln(2) is represented in double precision and the multiplication by x is performed in
double precision, too. Then the nearest integer k to the number obtained is computed. This compu-
tational problem is principally subject to the Table Maker’s Dilemma: x · 212

ln(2) is transcendental for all
x 6= ln (2) and the to-nearest-integer operation is equivalent to a rounding to the nearest. It is not

77

possible to guarantee that the computed k is really the integer nearest to x · 212

ln(2) . Nevertheless, this is

not a problem. The following argument reduction steps, as r̂ = x− k · ln(2)
212 , and the reconstruction are

mathematically correct for any k. So computing the wrong k only leads to a slight enlargement of the
interval of the reduced argument r̂, as one can see with the following argument:

The function’s argument’s value x is bounded in magnitude by 210. So, x · 212

ln(2) is bounded in mag-

nitude by 222. Since the accuracy of the value xMultLog2InvMult2L = ◦
(

x · ◦
(

212

ln(2)

))
with respect to

the exact value x · 212

ln(2) is at least 51 bits, an error is made not earlier than at the 19th bit following the
integer-fractional point. Thus ∣∣∣∣∣∣

k− x · 212

ln(2)

x · 212

ln(2)

∣∣∣∣∣∣ ≤ 1
2
+ 2−19

Therefore r̂′ is actually bounded by |r̂′| ≤ ln(2)
212 ·

(
1
2 + 2−19

)
instead of |r̂| ≤ ln(2)

212 · 1
2 . This difference

can be taken into account in the error computation, and we may safely assume that its effects will be
negligible.

Note further that k is computed exactly (k = 0) for |x| ≤ 2−14 because no Table Maker’s Dilemma
can no longer occur.

This first step is performed by the following code sequence:

Listing 6.2: Argument reduction - first step
1 xMultLog2InvMult2L = x ∗ log2InvMult2L ;
2 shiftedXMult = xMultLog2InvMult2L + s h i f t C o n s t ;
3 kd = shiftedXMult − s h i f t C o n s t ;
4 shiftedXMultdb . d = shiftedXMult ;
5 k = shiftedXMultdb . i [LO] ;

Here, k and kd represent k in integer and floating point (double) format. The technique for computing
bze out of z is explained in section 2.2.3, page 20.

In the second step of the argument reduction, an arithmetical approximation to r̂ = x − k · ln(2)
212 ,

rh + rm = r̂ + δargred, is computed using a double-double approximation to ln(2)
212 and double-double

precision for computations. We will consider its absolute error δargredquick = rh + rm − r̂ and the resulting
relative error on the exponential function εargredquick =

er̂+δ−er̂

er̂ below.
This argument reduction step is implemented as follows:

Listing 6.3: Argument reduction - second step
1 Mul12(&s1 ,& s2 , msLog2Div2Lh , kd) ;
2 s3 = kd ∗ msLog2Div2Lm ;
3 s4 = s2 + s3 ;
4 s5 = x + s1 ;
5 Add12Cond (rh , rm , s5 , s4) ;

Here, msLog2Div2Lh and msLog2Div2Lm are a double-double representing − ln(2)
212 with an relative er-

ror |ε logconstquick| =
∣∣∣msLog2Div2Lh+msLog2Div2Lm+2−12·ln(2)

−2−12·ln(2)

∣∣∣ ≤ 2−109. Further, |msLog2Div2Lm| ≤ 2−54 ·
|msLog2Div2Lh|.

Let us now show first a bound on the absolute round-off error of the given sequence. We know that
the multiplication s1 + s2 = kd ·msLog2Div2h and the final addition rh + rm = s5 + s4 are exact. Further,
the addition s5 = x⊕ s1 is exact as per Sterbenz’ lemma. In fact, since∣∣∣∣x− ⌊x · 212

ln (2)

⌉
· ln (2)

212

∣∣∣∣ ≤ 2−12

and

s1 = −
⌊

x · 212

ln (2)

⌉
· ln (2)

212 ·
(
1 + ε′

)
78

with |ε′| ≤ 2−50, it is trivial to see that

1
2
· |s1| ≤ |x| ≤ 2 · |s1|

In addition, s1 and x are clearly of opposed sign. So, noting

s3 = k ·msLog2Div2Lm · (1 + ε1)

and
s4 = (s2 + s3) · (1 + ε2)

with |ε1| ≤ 2−53 and |ε2| ≤ 2−53, we get

rh + rm = x + k · (msLog2Div2Lh + msLog2Div2Lm) + δ′

with ∣∣δ′∣∣ ≤ |ε1| · |k ·msLog2Div2Lm|+ |ε2| · |s2 + s3|
We have

|s2| ≤ 2−53 · |s1| ≤ 2−53 · |◦ (k ·msLog2Div2Lh)| ≤ 2−52 · |k ·msLog2Div2Lh|
and further

|s3| ≤ |k ·msLog2Div2Lm (1 + ε1)| ≤ |k ·msLog2Div2Lm|+ |ε1| · |k ·msLog2Div2Lm|

So one can easily check that ∣∣δ′∣∣ ≤ 2−104 · |k ·msLog2Div2Lh|

In consequence using the fact that |msLog2Div2Lh| =
∣∣∣◦ (ln(2)

212

)∣∣∣ ≤ 2 ·
∣∣∣ ln(2)

212

∣∣∣ and the bound for k, one
obtains ∣∣δ′∣∣ ≤ ∣∣∣∣(x · 212

ln (2)
+

1
2
+ 2−19

)
· ln (2)

212

∣∣∣∣
Since |x| ≤ 746 after filtering out the special cases, we obtain |δ′| ≤ 2−103 · 210 = 2−93.

To this round-off error adds the approximation error comitted by rounding ln(2)
212 to a double-double.

We can note

rh + rm = x− k · ln (2)
212 · (1 + ε logconstquick) + δ′

This gives us
rh + rm = r̂ + δ

with |δ| ≤
∣∣∣k · ln(2)

212 · ε logconstquick

∣∣∣+ |δ′|. One can easily check that one obtains thus finally |δ| ≤ 2−92.
This absolute error δ in the reduced argument r̂ translates to a relative error εargredquick in the function

er̂ as follows:

er = er̂+δ

= er̂ · eδ

= er̂ ·
∞

∑
i=0

1
i!
· δi

= er̂ ·
(

1 +
∞

∑
i=1

1
i!
· δi

)
= er̂ · (1 + εargredquick)

with εargredquick =
∞
∑

i=1

1
i! · δ

i = δ ·
∞
∑

i=0

1
(i+1)! · δ

i. Since |δ| < 1
2 , we get

∀i ≥ 0 .
∣∣∣∣ 1
(i + 1)!

· δi
∣∣∣∣ ≤ (1

2

)i

79

In consequence,
∞
∑

i=0

1
(i+1)! · δ

i ≤
∞
∑

i=0

(
1
2

)i
= 2.

Thus we get |εargredquick| ≤ 2 · |δ| ≤ 2−91.
Still in the second step of the argument reduction, the values M, i1 and i2 are computed exactly in

integer computation as follows:

Listing 6.4: Argument reduction - second step (cont’d)
1 M = k >> L ;
2 index1 = k & INDEXMASK1;
3 index2 = (k & INDEXMASK2) >> LHALF;

Here L is equal to 12 and LHALF is equal to 6. The values INDEXMASK1 and INDEXMASK2 are masks to the
lowest 6 bits and respectively to bits 6 through 15 of an 32 bit word.

If ever the accurate phase must be launched, a third argument reduction phase is performed. It
computes a triple-double rh + rm + rl = r̂ + δ such that the resulting relative error on the exponential
function εargredaccurate =

er̂+δ−er̂

er̂ is bounded by |εargredaccurate| ≤ 2−140 as will be shown below. This step uses a

triple-double approximation to ln(2)
212 with a relative error

|ε logconstaccurate| =
∣∣∣∣msLog2Div2Lh + msLog2Div2Lm + msLog2Div2Ll + 2−12 · ln (2)

−2−12 · ln (2)

∣∣∣∣ ≤ 2−163

It is implemented as follows:

Listing 6.5: Argument reduction - third step
1 Mul133(&msLog2Div2LMultKh,&msLog2Div2LMultKm,&msLog2Div2LMultKl , kd , msLog2Div2Lh , msLog2Div2Lm ,

msLog2Div2Ll) ;
2 t 1 = x + msLog2Div2LMultKh ;
3 Add12Cond (rh , t2 , t1 , msLog2Div2LMultKm) ;
4 Add12Cond (rm , r l , t2 , msLog2Div2LMultKl) ;

The values for k, M, i1 and i2 that have been exactly computed already at the second argument reduction
step can of course be reused.

All operation but the first Mul133 operator are exact: the last two by their general properties, the
addition t1 = x⊕msLog2Div2LMultKh as per Sterbenz’ lemma analogously as in the second argument
reduction step. So one can note

rh + rm + rl = x− k · (msLog2Div2Lh + msLog2Div2Lm + msLog2Div2Ll) · (1 + ε1)

where ε1 is the relative error bound of the Mul133 operator, for instance |ε1| ≤ 2−153. Integrating also
the rounding error in the constant, we get

rh + rm + rl = x− k · ln (2)
212 + δ

with |δ| ≤
∣∣∣k · ln(2)

212

∣∣∣ · (2−163 + 2−153) ≤ 2−152 ·
∣∣∣k · ln(2)

212

∣∣∣ ≤ 2−141. One checks the previous upper
bounds by using analogous arguments as the ones given for the second argument reduction step. Once
again, this absolute error δ translates to a relative error εargredaccurate =

er̂+δ−er̂

er̂ in a similar way as mentioned
above. We get

|εargredaccurate| ≤ 2−140

which is the bound to prove.
Let us still remark that argument reduction is exact for arguments x such that |x| ≤ ln(2)

213 < 2−13. In

fact, in this case, k = 0 which implies that all multiplications of k by the constants for ln(2)
212 are exact.

According to their uses either in quick or accurate phase, the table values t1 = e
i1

212 and t2 = e
i1

212 for
i1, i2 ∈ {0 . . . 63} are read as a double-double or as a triple-double. By construction, the double-double
values have a relative error ε tablequick =

tblih+tblim−ti
ti

bounded by |ε tablequick| ≤ 2−106. The triple-double values

with ε tableaccurate =
tblih+tblim+tblil−ti

ti
verify |ε tableaccurate| ≤ 2−159. For i1 = 0 and i2 = 0 both errors are equal to

0, so both argument reduction and reconstruction steps are exact for argument x that verify |x| ≤ 2−13.

80

6.4 Polynomial approximation and reconstruction

In both quick and accurate phase, the reduced argument rh + rm respectively rh + rm + rl corresponding
to their mathematical equivalent r̂ are bounded by |r̂| ≤ ln(2)

212 ·
(
2−1 + 2−19) + δ < 2−13. After sim-

plification by erh+rm+rl = erh · erm · erl , erh − 1 is approximated by a polynomial of degree 4 or 7. The
functions erm − 1 and potentially erl − 1 are both approximated linearly by rm or, respectively, rl.

Concerning the approximation errors for erm and erl , one can note that |rm| ≤ 2−52 · 2−13 ≤ 2−65

and |rl| ≤ 2−105 · 2−13 ≤ 2−118. In consequence εapproxargmiddle =
rm−(erm−1)
(erm−1) and εapproxarglower =

rl−(erl−1)
(erl−1) are

bounded by |εapproxargmiddle| ≤ 2−66 and |εapproxarglower| ≤ 2−119.

6.4.1 Quick phase polynomial approximation and reconstruction

In quick phase erh − 1 is approximated by a polynomial p (rh) of the following form

p (rh) = rh +
1
2
· r2

h + c3 · r3
h + c4 · r4

h

The coefficients c3 and c4 are stored in double precision, 1
2 is exactly representable. For rh bounded as in-

dicated above, the relative approximation error εapproxarghighquick =
p(rh)−erh+1

erh−1 is bounded by |εapproxarghighquick| ≤
2−62.

The polynomial p (rh) − rh = 1
2 · r2

h + c3 · r3
h + c4 · r4

h is evaluated in double precision using the
following scheme:

1. In the beginning, an approximation to r2
h, rhSquare, is computed. Concurrently, c3 is multiplied

by rh yielding to rhC3 = c3 · rh · (1 + ε).

2. At the first step, the squared argument rhSquare is multiplied by 1
2 yielding to the approximation

rhSquareHal f . At the same time, it is multiplied by rhC3 which results in monomialCube approx-
imating now c3 · r3

h. Still in the same moment, it is squared once again yielding to rhFour which
approximates thus r4

h.

3. At the next dependency top, rhFour is multiplied by c4. This results in monomialFour – a value
corresponding to c4 · r4

h.

4. In the next moment, monomialCube and monomialFour are added together. This gives a value
approximating c3 · r3

h + c4 · r4
h.

5. Finally, rhSquareHal f is added to the value obtained at the previous step yielding to an arithmeti-
cal approximation of 1

2 · rh + c3 · r3
h + c4 · r4

h, stored in highPolyWithSquare.

This scheme does not completely exploit the possible parallelism for purpose of not deteriorating too
much the final accuracy. It is implemented as follows:

Listing 6.6: Quick phase polynomial evaluation - high order terms
1 rhSquare = rh ∗ rh ;
2 rhC3 = c3 ∗ rh ;
3

4 rhSquareHalf = 0 . 5 ∗ rhSquare ;
5 monomialCube = rhC3 ∗ rhSquare ;
6 rhFour = rhSquare ∗ rhSquare ;
7

8 monomialFour = c4 ∗ rhFour ;
9

10 highPoly = monomialCube + monomialFour ;
11

12 highPolyWithSquare = rhSquareHalf + highPoly ;

The following steps must still add the linear term rh of the polynomial (p (rh) = rh + highPolyWithSquare)
and reconstruct the exponential as

ex = 2M · (tbl1h + tbl1m) · (tbl2h + tbl2m) · (1 + rh + highPolyWithSquare) · (1 + rm) + δ

In order to allow for increasing speed by approximating different terms, they are implemented as this:

81

1. The two table values tbl1h + tbl1m and tbl2h + tbl2m are multiplied using a double-double multipli-
cation operator yielding to tablesh + tablesl = (tbl1h + tbl1m) · (tbl2h + tbl2m) · (1 + ε).

2. The term
(1 + rh + highPolyWithSquare) · (1 + rm) =
1 + rh + highPolyWithSquare + rm + rh · rm + highPolyWithSquare · rm
is approximated by neglecting the quadratic terms. First rh and highPolyWithSquare are added
together in double precision. Their sum is then added to rh in double precision, too. This yields
to the intermediate value t9. The addition with 1 is not explicited.

3. The multiplication (tablesh + tablesl) · (1 + t9) is approximated by tablesh + tablesl + tablesh · t9.
The multiplication tablesh · t9 is performed in double precision. It produces t10.

4. The addition tablesh + tablesl + t10 is carried out in double-double precision. Its result polyTblh +
polyTblm approximates finally

polyTblh + polyTblm = (tbl1h + tbl1m) · (tbl2h + tbl2m) · (1 + p (rh)) · (1 + rm) · (1 + ε)

for some relative error ε.

The steps explained above are implemented in the code as follows:

Listing 6.7: Quick phase reconstruction
1 Mul22(& tablesh ,& t a b l e s l , tbl1h , tbl1m , tbl2h , tbl2m) ;
2

3 t 8 = rm + highPolyWithSquare ;
4 t 9 = rh + t8 ;
5

6 t10 = t a b l e s h ∗ t 9 ;
7

8 Add12 (t11 , t12 , tab lesh , t10) ;
9 t13 = t12 + t a b l e s l ;

10 Add12 (polyTblh , polyTblm , t11 , t13) ;

The final result for the exponential is ex ≈ 2M · (polyTblh + polyTblm). On this value, a rounding
test would have to be performed. Since gradual underflow is excluded by special case handling, the
multiplication by 2M is exact. In consequence, it is possible to do the rounding test on polyTblh +
polyTblm and to multiply then by 2M. This is the way chosen in the given implementation. See section
6.5, page 84, for further details.

6.4.2 Accurate phase polynomial approximation and reconstruction

In accurate phase, erh − 1 is approximated by a polynomial p (rh) of degree 7. It has the following form:

p (rh) = rh +
1
2
· r2

h + r3
h · ((c3h + c3l) + rh · ((c4h + c4l) + rh · (c5 + rh · (c6 + rh · c7))))

Coefficients c3h + c3l and c4h + c4l are stored as double-double numbers, coefficients c5 through c7 are
stored in double precision.

For rh bounded by |rh| ≤ 2−13, the relative approximation error εapproxarghighaccu =
p(rh)−erh+1

erh−1 is bounded
by |εapproxarghighaccu| ≤ 2−113. For rh such that |rh| ≤ 2−30, εapproxarghighaccu is bounded by |εapproxarghighaccu| ≤ 2−160.

The polynomial p (rh) is evaluated as follows:

1. The high order terms of p (rh), c5 + rh · (c6 + rh · c7) are evaluated in double precision using
Horner’s scheme. The result of this evaluation is stored in highPoly ≈ c5 + rh · (c6 + rh · c7).

2. The multiplication rh · highPoly is implemented using an exact operator and yields to a double-
double t1h + t1l. The following steps leading to t4h + t4l ≈ (c3h + c3l)+ rh · ((c4h + c4l) + (t1h + t1l))
are implemented using double-double computations and Horner’s scheme.

82

3. The sum of the low order terms rh +
1
2 · r2

h, stored in a non-overlapped triple-double lowPolyh +
lowPolym + lowPolyl, is computed exactly as follows: first rh is squared exactly using an exact
multiplication operator producing rhSquareh + rhSquarel = rh · rh. Since for arguments x to the
exponential function such that |x| ≤ 2−55 rounding is trivial in all rounding modes, we can sup-
pose that |x〉 2−55. In consequence, since x is a double precision number, the reduced argument rh
is either equal to 0 or greater in magnitude than 2−58. So both rhSquareh and rhSquarel are either
exactly 0 or greater in magnitude than

(
2−58)2 · 2−53 = 2−169. They are thus never subnormal.

Therefore the pairwise multiplication of rhSquareh + rhSquarel by 1
2 yielding to rhSquareHal fh +

rhSquareHal fl =
1
2 · r2

h is exact. Since rh is such that |rh| ≤ 2−13, rh + rhSquareHal fh + rhSquareHal fl
can be considered as a partially overlapped triple-double number. The overlap bound is such
that |rhSquareHal fh| ≤ 2−12 · |rh| and |rhSquareHal fl| ≤ 2−53 · |rhSquareHal fh|. Thus it is possi-
ble to use the Renormalize3 sequence [25] to obtain a non-overlapped triple-double lowPolyh +

lowPolym + lowPolyl which is exactly equal to rh +
1
2 · r2

h because the renormalization operator is
exact and all preceeding operations have been, too.

4. An triple-double approximation to r3
h, stored in rhCubeh + rhCubem + rhCubel is computed by mul-

tiplying rh by the exact rhSquareh + rhSquarel computed in the previous step. For this operation
the Mul23 sequence is used.

5. The approximation of the high order terms of the polynomial, t4h + t4l is then multiplied by
rhCubeh + rhCubem + rhCubel using a triple-double multiplication operator. The result of this
operation is added to lowPolyh + lowPolym + lowPolyl in order to obtain a potentially overlapped
triple-double ph + pm + pl approximating p (rh).

All this steps are implemented by the following code:

Listing 6.8: Accurate phase polynomial approximation
1 highPoly = accPolyC5 + rh ∗ (accPolyC6 + rh ∗ accPolyC7) ;
2

3 Mul12(&t1h ,& t 1 l , rh , highPoly) ;
4 Add22(&t2h ,& t 2 l , accPolyC4h , accPolyC4l , t1h , t 1 l) ;
5 Mul22(&t3h ,& t 3 l , rh , 0 , t2h , t 2 l) ;
6 Add22(&t4h ,& t 4 l , accPolyC3h , accPolyC3l , t3h , t 3 l) ;
7

8 Mul12(&rhSquareh ,& rhSquarel , rh , rh) ;
9 Mul23(&rhCubeh ,&rhCubem,&rhCubel , rh , 0 , rhSquareh , rhSquarel) ;

10

11 rhSquareHalfh = 0 . 5 ∗ rhSquareh ;
12 rhSquareHalf l = 0 . 5 ∗ rhSquarel ;
13

14 Renormalize3(&lowPolyh ,&lowPolym,& lowPolyl , rh , rhSquareHalfh , rhSquareHalf l) ;
15

16 Mul233(&highPolyMulth ,&highPolyMultm ,& highPolyMultl , t4h , t 4 l , rhCubeh , rhCubem , rhCubel) ;
17

18 Add33(&ph,&pm,& pl , lowPolyh , lowPolym , lowPolyl , highPolyMulth , highPolyMultm , highPolyMultl) ;

For reconstructing ex out of the polynomial approximation of erh − 1, erm − 1, erl − 1 and the table values
tbl1h + tbl1m + tbl1l and tbl2h + tbl2m + tbl2l the following term must be approximated:

ex ≈ 2M · (tbl1h + tbl1m + tbl1l) · (tbl2h + tbl2m + tbl2l) · (1 + (ph + pm + pl)) · (1 + rm) · (1 + rl)

First, the following approximation is possible

(1 + (ph + pm + pl)) · (1 + rm) · (1 + rl) ≈ 1 + (ph + pm + pl + rm + rl + (rm + rl) · (ph + pm))

First an arithmetical approximation f ullPolyh + f ullPolym + f ullPolyl to ph + pm + pl + rm + rl +(rm + rl) ·
(ph + pm) is computed as follows:

1. By means of an exact, unconditional addition, ph and pm, which may be potentially overlapped
because of being the higher significant parts of an overlapped triple-double, are renormalized.

2. They are then multiplied by the non-overlapping rm + rl using a double-double multiplication
operator. The result of this product is added to rm + rl in double-double precision.

83

3. The result of this addition, qh + ql, approximates thus rm + rl + (rm + rl) · (ph + pm).

4. The triple-double addition operator Add233 allows then for adding ph + pm + pl to qh + ql result-
ing in f ullPolyh + f ullPolym + f ullPolyl.

Then 1 is added to f ullPolyh + f ullPolym + f ullPolyl by the following code sequence:

Listing 6.9: Addition with 1
1 Add12 (polyAddOneh , t5 , 1 , f u l l P o l y h) ;
2 Add12Cond (polyAddOnem , t6 , t5 , fullPolym) ;
3 polyAddOnel = t6 + f u l l P o l y l ;

Since the Add12 operator is exact, the round-off error of this adding of 1 is equal to the round-off
error in the last addition polyAddOnel = t6 ⊕ f ullPolyl. In absolute value, it is always less than 2−53 ·
|t6 + f ullPolyl|. Since |rh| ≤ 2−12, one checks that 1

2 < polyAddOneh < 2. So the relative error of this
addition with 1, εaddOne is in magnitude less than 2−52 · |t6 + f ullPolyl|. This is particularly important
when considering high critical precision worst cases, see section 6.6, page 88.

The result of the polynomial approximation,

polyWithOneh + polyWithOnem + polyWithOnel ≈ erh · erm · erl

is then multiplied in two steps first by tbl1h + tbl1m + tbl2l and then by tbl2h + tbl2m + tbl2l using each
time the triple-double multiplication operator Mul33. Remark that these multiplications are exact for
arguments |x| ≤ 2−14 because in this case, k = 0, i1 = 0 and i2 = 0 which implies that tbl1h = 1,
tbl2h = 1 and tblim = 0 and tblil = 0. In fact machine multiplications by 1 are always exact.

The final product of this multiplications may be overlapped and is therefore renormalized using
the Renormalize3 sequence. This yields to the non-overlapped triple-double polyTblh + polyTblm +

polyTbll approximating ex

2M .
All these steps are implemented by the following code sequence:

Listing 6.10: Accurate phase reconstruction
1 Add12 (phnorm , pmnorm, ph ,pm) ;
2 Mul22(&rmlMultPh ,& rmlMultPl , rm , r l , phnorm , pmnorm) ;
3 Add22(&qh,& ql , rm , r l , rmlMultPh , rmlMultPl) ;
4

5 Add233Cond(& ful lPolyh ,& fullPolym ,& f u l l P o l y l , qh , ql , ph ,pm, pl) ;
6 Add12 (polyAddOneh , t5 , 1 , f u l l P o l y h) ;
7 Add12Cond (polyAddOnem , t6 , t5 , fullPolym) ;
8 polyAddOnel = t6 + f u l l P o l y l ;
9 Mul33(&polyWithTbl1h ,&polyWithTbl1m ,& polyWithTbl1l , tbl1h , tbl1m , t b l 1 l , polyAddOneh , polyAddOnem ,

polyAddOnel) ;
10 Mul33(&polyWithTablesh ,&polyWithTablesm ,& polyWithTablesl ,
11 tbl2h , tbl2m , t b l 2 l ,
12 polyWithTbl1h , polyWithTbl1m , polyWithTbl1l) ;
13

14 Renormalize3 (polyTblh , polyTblm , polyTbll , polyWithTablesh , polyWithTablesm , polyWithTablesl) ;

The multiplication of polyTblh + polyTblm + polyTbll by 2M and the final rounding will be discussed
in the next section.

6.5 Final rounding

For both quick and accurate phase, final rounding is simple when the result cannot be underflowed.
In this case, the final multiplication of t1 · t2 · er by 2M only affects the exponent of t1 · t2 · er. So the
rounding test and the final rounding (in quick and accurate phase) can be done on t1 · t2 · er before
this value is multiplied by 2M. This rounding is a standard crlibm rounding of respectively a double-
double or a triple-double. Since M might be as great as M = 1024 (whilst t1 · t2 · er < 1 in this case,
because overflow in the final result has been filtered out), 2M may not be representable. Nevertheless it
is possible not to representate 2M explicitely in a variable and to replace the operation by the following
sequence. We suppose that polyTblh = ◦ (t1 · t2 · er + δ).

84

Listing 6.11: Final multiplication by 2M

1 polyTblhdb . d = polyTblh ;
2 polyTblhdb . i [HI] += M << 2 0 ;
3 return polyTblhdb . d ;

If the result might be gradually underflowed but is not completely underflowed (i.e. not equal to 0
or 0+ depending on the rounding mode), the quick phase is not used and the accurate phase is launched
in any case. This does not sensibly affect performance. The triple-double result of the accurate phase,
polyTblh, polyTblm and polyTbll, where polyTblh + polyTblm + polyTbll ≈ t1 · t2 · er, is multiplied by
2M and rounded to double precision as follows:

• polyTblh is multiplied by 2M in two steps: 2M is not representable in double precision but 2−1000

and 2M+1000 are. This multiplication generates a subnormal t4, which prevents us from replacing
it by an integer sequence manipulating the exponent of the numbers involved. We have t4 =

◦
(
2M · polyTblh

)
= 2M polyTblh + δ with |δ| ≤ 1

2 · ulp (denorm) = 2−1075.

• The obtained value t4 is remultiplied by 2−M, once again in 2 steps. This multiplication produces
a normal number and is therefore exact: t6 = 2−M · ◦

(
2M · polyTblh

)
= polyTblh + 2−M · δ.

• Since |M| ≤ 1075 and |polyTblh| ≤ 2, one checks that

1
2
· polyTblh ≤ t6 ≤ 2 · polyTblh

is verified. So the arithmetical substraction t7 = polyTblh 	 t6 is exact by Sterbenz’ lemma and
one obtains:

t7 = 2−M ·
(

2M · polyTblh − ◦
(

2M · polyTblh
))

We obtain therefore

t4 + 2M · (t7 + polyTblm + polyTbll) = 2M · (polyTblh + polyTblm + polyTbll)

Further, since the triple-double number polyTblh + polyTblm + polyTbll is non-overlapping, we
know that

t4 ∈
{

r−, r, r+
}

with r = ◦ (polyTblh + polyTblm + polyTbll). In addition, since the precision of a denormal
is maximally 52 bits and that of a normal (like polyTblh) is 53 bits, t7 is either 0 or greater in
magnitude than polyTblm + polyTbll. If this were not the case, the triple-double would overlap.
Thus 2M · (t7 + polyTblm + polyTbll) corresponds to the part of the high accuracy mantissa that is
rounded off when rounding to the subnormal and if t7 is not zero, it contains at least the first bit
that is rounded off.

The arithmetical steps mentioned are performed by the following code sequence:

Listing 6.12: Underflowed final multiplication and rounding
1 /∗ F i n a l rounding and m u l t i p l i c a t i o n with 2 ˆM
2

3 We f i r s t m u l t i p l y t h e h i g h e s t s i g n i f i c a n t b y t e by 2ˆM in two s t e p s
4 and a d j u s t i t t h en depend ing on t h e l o w e r s i g n i f i c a n t p a r t s .
5

6 We cannot m u l t i p l y d i r e c t l y by 2ˆM s i n c e M i s l e s s than −1022.
7 We f i r s t m u l t i p l y by 2ˆ(−1000) and then by 2 ˆ (M+1000) .
8

9 ∗ /
10

11 t 3 = polyTblh ∗ twoPowerM1000 ;
12

13 /∗ Form now twoPowerM with a d j u s t e d M ∗ /
14 twoPowerMdb . i [LO] = 0 ;
15 twoPowerMdb . i [HI] = (M + 2023) << 2 0 ;
16

17

18 /∗ M u l t ip l y with t h e r e s t o f M, t h e r e s u l t w i l l be d e n o r m a l i z e d ∗ /
19 t 4 = t3 ∗ twoPowerMdb . d ;
20

85

21 /∗ For x86 , f o r c e t h e c o m p i l e r t o p a s s through memory f o r hav ing t h e r i g h t rounding ∗ /
22

23 t4db . d = t4 ; /∗ Do not # i f−i f y t h i s l i n e , we need t h e copy ∗ /
24 # i f defined (CRLIBM TYPECPU AMD64) | | defined (CRLIBM TYPECPU X86)
25 t4db2 . i [HI] = t4db . i [HI] ;
26 t4db2 . i [LO] = t4db . i [LO] ;
27 t 4 = t4db2 . d ;
28 # endif
29

30 /∗ R e m u l t i p l y by 2ˆ(−M) f o r m a n i p u l a t i n g t h e rounding e r r o r and t h e l o w e r s i g n i f i c a n t p a r t s ∗ /
31 M ∗= −1;
32 twoPowerMdb . i [LO] = 0 ;
33 twoPowerMdb . i [HI] = (M + 23) << 2 0 ;
34 t 5 = t4 ∗ twoPowerMdb . d ;
35 t 6 = t5 ∗ twoPower1000 ;
36 t 7 = polyTblh − t 6 ;

One remarks that on x86 platforms, it is necessary to write t4 to memory and to reread it from there in
order to to overcome the inexistence of pseudosubnormals in the underlying 80 bit register format.

Depending on the rounding mode, t4 is then adjusted to the correct rounding of
2M · (polyTblh + polyTblm + polyTbll) as follows:

• In round-to-nearest mode, the rounding decision when rounding to a subnormal is made at a
constant value 1

2 · ulp (denorm) = 2−1075.

Rounding is simple for round-to-nearest when the mantissa does not contain a one following the
last mantissa bit of the rounded result. In this case, the rounding downwards and thus equivalent
to a truncation. Truncation to different lengths is associative. Omitting polyTblm + polyTbll is a
truncation. The rounding of 2M · polyTblh to a subnormal is correct as per the use of a IEEE 754
operation. So t4 already is equal to ◦ (polyTblh + polyTblm + polyTbll).

If the first bit following the last mantissa bit of the rounded result is a one, two cases must be
considered: if the TMD’s case is such that the next following mantissa one is contained in the
bits of polyTblh that are rounded of, the rounding ◦

(
2M · polyTblh

)
is equivalent to the rounding

◦
(
2M · (polyTblh + polyTblm + polyTbll)

)
because both roundings are upwards. So in this case,

too, t4 already contains the correct result.

In contrast, if the the TMD’s case is such that the next following mantissa one (after the first one
following the rounded mantissa) is only contained in polyTblm + polyTbll, the rounding direction
of ◦

(
2M · polyTblh

)
and ◦

(
2M · (polyTblh + polyTblm + polyTbll)

)
may be different. As t7 is the

(scaled) correction of the roundoff of ◦
(
2M · polyTblh

)
and greater in magnitude than polyTblm +

polyTbll, its sign determines the rounding direction of the rounding t4 = ◦
(
2M · polyTblh

)
. The

sign of polyTblm = ◦ (polyTblh + polyTbll) determines then that of the direction of
◦
(
2M · (polyTblh + polyTblm + polyTbll)

)
and such whether t4 must be adjusted by ±1ulp.

The algorithm is thus the following: 2M · t7 is compared to 1
2 · ulp (denorm) by comparing t7 to

2−1075−M. This determines whether the rounding is easy and t4 can be returned or whether an
adjustment must be made. If the latter is the case, the signs of t7 and polyTblh are examined and
t4 is adjusted. Since ex > 0 ∀x ∈ R, the adjustment of t4 by ±ulp can be simplified. The code
sequence below implements this:

Listing 6.13: Rounding adjustment in round-to-nearest
1 /∗ The rounding d e c i s i o n i s made a t 1 / 2 ulp o f a denormal , i . e . a t 2ˆ(−1075)
2 We c o n s t r u c t t h i s number and by compar ing with i t we g e t t o know
3 whethe r we a r e in a d i f f i c u l t rounding c a s e o r not . I f no t we j u s t r e t u r n
4 t h e known r e s u l t . Othe rwi s e we c o n t i n u e with f u r t h e r t e s t s .
5 ∗ /
6

7 twoPowerMdb . i [LO] = 0 ;
8 twoPowerMdb . i [HI] = (M − 52) << 2 0 ;
9

10 i f (ABS(t7) != twoPowerMdb . d) return t 4 ;
11

12 /∗ I f we a r e he r e , we a r e in a d i f f i c u l t rounding c a s e ∗ /
13

14 /∗ We have t o a d j u s t t h e r e s u l t i f f t h e s i g n o f t h e e r r o r on
15 rounding 2ˆM ∗ p o l y T b l h (which must be an ulp o f a denormal)
16 and polyTblm + a r i t h p o l y T b l l i s t h e same which means t h a t

86

17 t h e e r r o r made was g r e a t e r than an ulp o f an denormal .
18 ∗ /
19

20 polyTblm = polyTblm + polyTbl l ;
21

22 i f (t 7 > 0 . 0) {
23 i f (polyTblm > 0 . 0) {
24 t4db . l ++;
25 return t4db . d ;
26 } e lse return t 4 ;
27 } e lse {
28 i f (polyTblm < 0 . 0) {
29 t4db . l−−;
30 return t4db . d ;
31 } e lse return t 4 ;
32 }

• In round-upwards mode, the rounding 4 (polyTblh + polyTblm + polyTbll) is determined by
◦ (polyTblh) and the rounding rest 2M · (t7 + polyTblm + polyTbll).

If t7 not equal to 0, it is greater in magnitude than polyTblm + polyTbll. Thus the rounding direc-
tion of the to-nearest rounding ◦ (polyTblh) is downwards if t7 + polyTblm + polyTbll is positive.
In this case, an adjustment of +1ulp must be made on t4.

If t7 is equal to 0, the rounding ◦ (polyTblh) was errorless and t4 = 2M · polyTblh. So we get

4
(

2M · (polyTblh + polyTblm + polyTbll)
)
= 4

(
t4 + 2M · (polyTblm + polyTbll)

)
Clearly, 2M · (polyTblm + polyTbll) is less than ulp (t4) because polyTblh + polyTblm + polyTbll is
non-overlapping. One can show that

4 (x + µ) = 4 (x + ν)

if x ∈ F and sgn (µ) = sgn (ν), |µ| , |ν| < ulp (x) and µ, ν ∈ R [25]. Since the algebraic images
of double arguments have been filtered out, it is thus possible to find µ ∈ R such that with ν =
2M · (polyTblm + polyTbll) respectively ν = ulp (t4) + 2M · (polyTblm + polyTbll) the following
can be verified:

4
(

t4 + 2M · (polyTblm + polyTbll)
)
=

{
t4 if polyTblm + polyTbll < 0
t+4 otherwise

So it suffices to add t7 and polyTblm = ◦ (polyTblm + polyTbll) together and to check for the sign
of this sum. The rounding error of this operation may not affect the sign of its result. If the sign is
positive, +1ulp is added to t4. The following code sequence realizes this:

Listing 6.14: Rounding adjustment in round-upwards
1 /∗ The rounding can be d e c i d e d us ing t h e s i g n o f t h e a r i t h m e t i c a l sum o f t h e
2 round−to−n e a r e s t−e r r o r (i . e . t7) and t h e l o w e r p a r t (s) o f t h e f i n a l r e s u l t .
3 We add f i r s t t h e l o w e r p a r t s and add t h e r e s u l t t o t h e e r r o r in t7 . We have t o
4 k e e p in mind t h a t e v e r y t h i n g i s s c a l e d by 2ˆ(−M) .
5 t8 can n e v e r be e x a c t l y 0 s i n c e we f i l t e r out t h e c a s e s where t h e image o f t h e
6 f u n c t i o n i s a l g e b r a i c and t h e i m p l e m e n t a t i o n i s e x a c t e r than t h e TMD wors t c a s e .
7 ∗ /
8

9 polyTblm = polyTblm + polyTbl l ;
10 t 8 = t7 + polyTblm ;
11

12 /∗ S i n c e we a r e rounding upwards , t h e round−to−n e a r e s t−rounding r e s u l t in t4 i s
13 e q u a l t o t h e f i n a l r e s u l t i f t h e rounding e r r o r (i . e . t h e e r r o r p l u s t h e l o w e r

p a r t s)
14 i s n e g a t i v e , i . e . i f t h e rounding−to−n e a r e s t was upwards .
15 ∗ /
16

17 i f (t 8 < 0 . 0) return t 4 ;
18

19 /∗ I f we a r e he r e , we must a d j u s t t h e f i n a l r e s u l t by +1 ulp
20 R e l y i n g on t h e f a c t t h a t t h e e x p o n e n t i a l i s a lways p o s i t i v e , we can s i m p l i f y t h i s
21 a d j u s t m e n t
22 ∗ /

87

23

24 t4db . l ++;
25 return t4db . d ;

• Round-downwards mode is analogous to round-upwards mode with signs inverted.

• Round-towards-zero is equivalent to rounding downwards.

6.6 Accuracy bounds

In this section we give an overview on the error bound computation. The actual error bound proof is
implemented using the Gappa tool.

An implementation of the exponential function in double precision can be considered to be correctly
rounding if the accuracy of the accurate phase is at least 113 bits for arguments x such that |x| ≥ 2−30

and at least 158 bits for 2−54 ≤ |x| < 2−30 – provided that the rounding test after the quick phase is
correct [11].

In order to give a first error estimate, one can consider

exp(x) = 2M · tbl1 · tbl2 · (1 + p (rh)) · (1 + rm) · (1 + rl) · (1 + εarith)

= 2M · t1 · (1 + ε tbl1) · t2 (1 + ε tbl1) ·
· (1 + (erh − 1) · (1 + εapproxhigh)) ·
· (1 + (erm − 1) · (1 + εapproxmiddle)) ·
· (1 + (erl − 1) · (1 + εapproxlower)) · (1 + εarith)

= 2M · t1 · t2 · erh+rm+rl ·
· (1 + ε tbl1) · (1 + ε tbl2) ·

(
1 + ε′approxhigh

)
·
(
1 + ε′approxmiddle

)
·
(
1 + ε′approxlower

)
· (1 + εarith)

= 2M · t1 · t2 · er̂ ·
· (1 + ε tbl1) · (1 + ε tbl2) ·

(
1 + ε′approxhigh

)
·
(
1 + ε′approxmiddle

)
·
(
1 + ε′approxlower

)
· (1 + εarith) · (1 + εargred)

= ex · (1 + ε)

where ε′approxhigh = εapproxhigh −
εapproxhigh

erh , ε′approxmiddle = εapproxmiddle −
εapproxmiddle

erm and ε′approxlower = εapproxlower −
εapproxlower

erl .
The Gappa proof files integrate all these errors and allow for evaluating the relative arithmetical round-
off error εarith.

6.7 Timings

For evaluating the timings of the triple-double based implementation of the exponential function ex, in
comparison with other correctly rounded functions. “crlibm portable using scslib” still stands for a
logarithm implementation in crlibm before the work on triple-double. The values are given in arbitrary
units and obtained on a IBM Power 5 processor with gcc 3.3.3 on a Linux Kernel 2.6.5. The timings on
other systems are comparable.

Library avg time max time
MPFR 2128 4908
crlibm portable using scslib 44 1976
crlibm portable using triple-double 39 258
default libm (IBM’s libultim) 34 221062

On average, our triple-double based implementation wins about 12% speed-up in comparison with the
SCS based implementation. It is however slightly less performant than Ziv’s library.

Concerning worst case timing, the results are more striking and confirm the general results concer-
ing triple-double: the use of triple-double arithmetic instead of the SCS format allows for a speed-up
of a factor of about 7.65. In comparison with IBM’s libultim a performance gain of a factor 857 is
achieved. The timing difference between average and worst-case is decreased to a factor of about 6.6.

88

Chapter 7

The expm1 function

Todo. In between, see files expm1-td.{h,c,mpl,gappa}.

89

90

Chapter 8

The log1p function

Todo. In between, see files log1p-td.{h,c,mpl,gappa}.

91

92

Chapter 9

The trigonometric functions

This chapter is contributed by F. de Dinechin with assistance of C. Daramy-Loirat and D. Defour.

Introduction

This chapter describes the implementations of sine, cosine and tangent, as they share much of their
code. The proof sketch below is supported by the Maple script maple/trigo.mpl and the Gappa scripts
gappa/trigoSinCosCase3.gappa and gappa/trigoTanCase2.gappa of the crlibm distribution. These
scripts implement the computations of error bounds and validity bounds for the various algorithmic
paths described here.

9.1 Overview of the algorithms

9.1.1 Exceptional cases

The three trigonometric functions return NaN for infinite and NaN arguments, and are defined other-
wise.

An argument based on continued fractions to find the worst cases for range reduction may also be
used to show that the sine and cosine of a floating-point number outside of [−1, 1] is always larger than
2−150, and therefore never flushes to zero nor to subnormal (see [34] p. 151 and following). Therefore
tan(x) = sin(x)/ cos(x) also remains larger than 2−150.

This has two important consequences:

• as the output a trigonometric function is never a subnormal except for inputs around zero (for
which the value to return is trivial anyway), we can safely use the rounding tests from Section 2.7
p. 39.

• as the cosine never flushes to zero, the tangent of a floating-point number is never an infinity, and
does not even come close, so again we may safely use the rounding tests from Section 2.7.

For very small arguments,

• sin(x) = x− x3/6+O(x5) = x(1− x2/6) +O(x5) where O(x5) has the sign of x. Therefore sin(x)
is rounded to x or one of its floating-point neighbours as soon as |x| < 2−26.

• cos(x) = 1− x2/2 + O(x4) where O(x4) is positive. Therefore cos(x) is rounded to 1 in RN and
RU mode if x <

√
2−53. In RD and RZ modes, we have cos(0) = 1 and cos(x) = 1− 2−53 for

|x| < 2−26.

• tan(x) = x + x3/3 + O(x5) = x(1 + x2/3) + O(x5) where O(x5) has the sign of x. Therefore
tan(x) is rounded to x or one of its neighbours for all the rounding modes if |x| < 2−27.

93

9.1.2 Range reduction

Most implementations of the trigonometric functions have two steps of range reduction:

• first the input number x is reduced to y ∈ [−π
4 , π

4], with reconstruction using periodicity and
symmetry properties,

• then the reduced argument is further broken down as y = a + z, with reconstruction using the
formula for sin(a + z) and cos(a + z), using tabulated values of sin(a) and cos(a)

We chose to implement range reduction in one step only, which computes an integer k and a reduced
argument y such that

x = k
π

256
+ y (9.1)

where k is an integer and |y| ≤ π/512. This step computes y as a double-double: y ≈ yh + yl .
In the following we note

a = kπ/256.

Then we read off a table

sah + sal ≈ sin(a)

cah + cal ≈ cos(a)

Only 64 quadruples (sah, sal , cah, cal) are tabulated (amounting to 64× 8× 4 = 2048 bytes), the rest
is obtained by periodicity and symmetry, implemented as masks and integer operations on the integer
k. For instance, a mod 2π is implemented by k mod 512, π/2− a is implemented as 128− k, etc.

Then we use the reconstruction steps:

sin(x) = sin(a + y) = cos(a) sin(y) + sin(a) cos(y) (9.2)

cos(x) = cos(a + y) = cos(a) cos(y)− sin(a) sin(y) (9.3)

tan(x) =
sin(x)
cos(x)

(9.4)

9.1.3 Polynomial evaluation

To implement the previous equations, cos(y) and sin(y) are computed as unevaluated 1 + tc and (yh +
yl)(1 + ts) respectively, where tc and ts are doubles computed using a polynomial approximation of
small degree:

• ts = y2(s3 + y2(s5 + y2s7))) with s3, s5 and s7 the Taylor coefficients.

• tc = y2(c2 + y2(c4 + y2c6)) with c2, c4 and c6 the Taylor coefficients (or a more accurate minimax
approximation).

9.1.4 Reconstruction

Sine

According to equation (9.2), we have to compute:

sin(a + y) = sin(a) cos(y) + cos(a) sin(y)
≈ (sah + sal)(1 + tc) + (cah + cal)(yh + yl)(1 + ts)

Figure 9.1 shows the worst-case respective orders of magnitude of the terms of this sum. The terms
completely to the right of the vertical bar will be neglected, and a bound on the error thus entailed is
computed in the following. Note that the term cahyh has to be computed exactly by a Mul12.

Finally the reconstruction consists of adding together the lower-order terms in increasing order of
magnitude, and computing the double-double result by an Add12.

94

sah sal
sahtc sal tc

cahyh cahyh
cahyl
calyh

cahyhts

cahyl ts

calyhts

Figure 9.1: The sine reconstruction

Cosine

According to equation (9.3), we have to compute in double-double precision:

cos(a + y) = cos(a) cos(y)− sin(a) sin(y)
≈ (cah + cal)(1 + tc)− (sah + sal)(yh + yl)(1 + ts)

This is similar to the case of the sine, and the respective orders of magnitude are given by Figure 9.1.

cah cal
cahtc cal tc

−sahyh −sahyh
−sahyl
−salyh

−sahyhts

−sahyl ts

−salyhts

Figure 9.2: The cosine reconstruction

Tangent

The tangent is obtained by the division of the sine by the cosine, using the Div22 procedure which is
accurate to 2−104.

9.1.5 Precision of this scheme

As we have |y| < 2−7, this scheme computes these functions accurately to roughly 253+13 bits, so these
first steps are very accurate.

9.1.6 Organisation of the code

The code for range reduction is shared by the three trigonometric functions. It is detailed and proven
in Section 9.2.

Then there are four procedures (currently implemented as macros for efficiency), respectively called
DoSinZero, DoCosZero, DoSinNotZero and DoCosNotZero which do the actual computation after range
reduction as per Figures 9.1 and 9.2. The tangent function is computed by dividing the sine by the
cosine. These procedures are studied in section 9.3.

95

Finally, each of the three trigonometric functions comes in four variants for the four rounding modes.
These four variants differ in the beginning (special cases) and in the end (rounding), but share the bulk
of the computation. The shared computation is called compute_trig_with_argred.

9.2 Details of range reduction

9.2.1 Which accuracy do we need for range reduction?

The additive reduction consists in adding or removing N times a certain constant C from the input ar-
gument. For trigonometric function this constant is usually equal to π/2 or π/4, in our case it is π/128.
A naive range reduction based on machine precision for trigonometric function would be implemented
as :

k = b x
C c

x∗ = x− kC. (9.5)

Obviously, this subtraction cancels all the bits common to x and kC:

• The absolute accuracy of x∗ with respect to the exact value of x− kC depends only on the precision
used to compute the subtraction and the product in x− kC (x is considered exact as it is the input
to the function).

• However, the relative accuracy of x∗ with respect to the exact value of x− kC also depends on this
exact value. For a given precision of the operations used in computing x− kC, the closer x to kC,
the smaller the exact value of x− kC, and the worse the relative accuracy (or, in less formal terms,
the more bits of the results are lost to cancellation).

As the theorems for correct rounding of Section 2.7 p. 39 depend on the relative accuracy of the
evaluation (and therefore on the relative accuracy of the reduced argument), we have to prove bounds
on the relative accuracy of range reduction.

Formulated in simpler terms, how many bits can be lost in the subtraction x− kC ? This number is re-
lated to the knowledge of the closest input number x to a multiple of C. There exists an algorithm due to
Kahan/Douglas and based on continued fraction to compute this number and therefore the number of
bit lost (see [34] p. 151 and following). We used a Maple version from [34] to determine than up to 62 bits
may be cancelled during range reduction for a ieee double precision number. This Maple procedure is
implemented as function WorstCaseForAdditiveRangeReduction in maple/common-procedures.mpl.

One advantage of having C = π/128, however, is that this is only a concern when x is close to a
multiple of π/2 (that is, k mod 128 = 0): in the other cases (i.e. in the general, most frequent case) the
reconstruction will add some tabulated non-zero value, so the error to consider in the range reduction is
the absolute error. Only in the cases when k mod 128 = 0 do we need to have 62 extra bits to compute
with. This is ensured by using a slower, more accurate range reduction. As a compensation, in this case
when k mod 128 = 0, there is no table to read and no reconstruction to perform: a simple polynomial
approximation to the function suffices.

9.2.2 Details of the used scheme

We have 4 possible range reductions, depending on the magnitude of the input number (and the previ-
ous considerations):

• Cody and Waite with 2 constants (the fastest),

• Cody and Waite with 3 constants (almost as fast),

• Cody and Waite with 3 constants in double-double and k a 64-bit int, and

• Payne and Hanek, implemented in SCS (the slowest).

Each of these range reductions except Payne and Hanek is valid for x smaller than some bound. The
computation of these bounds is detailed below.

Section 9.2.3 details the organization of this multi-level range reduction, and is followed by a de-
tailed proof of each level.

96

9.2.3 Structure of the range reduction

The complete code is detailed below. To provide a complete picture to the reader it actually also includes
the reconstruction.

Listing 9.1: Multilevel range reduction
1 s t r u c t r r i n f o s {double rh ; double r l ; double x ; i n t absxhi ; i n t func t ion ;} ;
2 typedef s t r u c t r r i n f o s r r i n f o ;
3 # define changesign funct ion /∗ s a v e s one i n t in t h e r r i n f o s t r u c t u r e ∗ /
4

5 s t a t i c void ComputeTrigWithArgred (r r i n f o ∗ r r i) {
6 double sah , sa l , cah , ca l , yh , yl , yh2 , ts , tc , kd ;
7 double kch h , kch l , kcm h , kcm l , th , t l , sh , s l , ch , c l ;
8 i n t k , quadrant , index ;
9 long long i n t kl ;

10

11 i f (r r i−>absxhi < XMAX CODY WAITE 3) {
12 /∗ Compute k , d educe t h e t a b l e i n d e x and t h e quadrant ∗ /
13 DOUBLE2INT(k , r r i−>x ∗ INV PIO256) ;
14 kd = (double) k ;
15 quadrant = (k>>7)&3;
16 index =(k&127)<<2;
17 i f ((index == 0)) {
18 /∗ Here a l a r g e c a n c e l l a t i o n on yh+ y l would be a problem , so use doub l e−d o u b l e RR ∗ /
19 /∗ a l l t h i s i s e x a c t ∗ /
20 Mul12(&kch h , &kch l , kd , RR DD MCH) ;
21 Mul12(&kcm h , &kcm l , kd , RR DD MCM) ;
22 Add12 (th , t l , kch l , kcm h) ;
23 /∗ on ly rounding e r r o r in t h e l a s t m u l t i p l i c a t i o n and a d d i t i o n ∗ /
24 Add22 (&yh , &yl , (r r i−>x + kch h) , (kcm l − kd∗RR DD CL) , th , t l) ;
25 goto computeZero ;
26 }
27 e lse {
28 /∗ i n d e x <> 0 , don ’ t worry a b o u t c a n c e l l a t i o n s on yh+ y l ∗ /
29 i f (r r i−>absxhi < XMAX CODY WAITE 2) {
30 /∗ CW 2 : a l l t h i s i s e x a c t but t h e r i g h t m o s t m u l t i p l i c a t i o n ∗ /
31 Add12 (yh , yl , (r r i−>x − kd∗RR CW2 CH) , (kd∗RR CW2 MCL)) ;
32 }
33 e lse {
34 /∗ CW 3 : a l l t h i s i s e x a c t but t h e r i g h t m o s t m u l t i p l i c a t i o n ∗ /
35 Add12Cond (yh , yl , (r r i−>x − kd∗RR CW3 CH) − kd∗RR CW3 CM, kd∗RR CW3 MCL) ;
36 }
37 }
38 goto computeNotZero ;
39 }
40

41 e lse i f (r r i−>absxhi < XMAX DDRR) {
42 /∗ x s u f f i c i e n t l y s m a l l f o r a Cody and Waite in doub l e−d o u b l e ∗ /
43 DOUBLE2LONGINT(kl , r r i−>x∗INV PIO256) ;
44 kd=(double) k l ;
45 quadrant = (kl>>7)&3;
46 index =(kl &127)<<2;
47 i f (index == 0) {
48 /∗ Here a g a i n a l a r g e c a n c e l l a t i o n on yh+ y l would be a problem ,
49 so we do t h e a c c u r a t e range r e d u c t i o n ∗ /
50 RangeReductionSCS () ; /∗ r e c o m p u t e s k , index , quadrant , and yh and y l ∗ /
51 /∗ Now i t may happen t h a t t h e new k d i f f e r s by 1 o f k l , s o c h e c k t h a t ∗ /
52 i f (index ==0) /∗ no s u r p r i s e ∗ /
53 goto computeZero ;
54 e lse
55 goto computeNotZero ;
56 }
57 e lse { /∗ index<>0 : doub l e−d o u b l e range r e d u c t i o n ∗ /
58 /∗ a l l t h i s i s e x a c t ∗ /
59 Mul12(&kch h , &kch l , kd , RR DD MCH) ;
60 Mul12(&kcm h , &kcm l , kd , RR DD MCM) ;
61 Add12 (th , t l , kch l , kcm h) ;
62 /∗ on ly rounding e r r o r in t h e l a s t m u l t i p l i c a t i o n and a d d i t i o n ∗ /
63 Add22 (&yh , &yl , (r r i−>x + kch h) , (kcm l − kd∗RR DD CL) , th , t l) ;
64 goto computeNotZero ;
65 }
66 } /∗ c l o s e s i f (a b s x h i < XMAX DDRR) ∗ /
67

68 e lse {
69 /∗ Worst c a s e : x ve ry l a r g e , s i n (x) p r o b a b l y m e a n i n g l e s s , we r e t u r n
70 c o r r e c t rounding but do ’ t mind t a k i n g t ime f o r i t ∗ /
71 RangeReductionSCS () ;

97

72 quadrant = (k>>7)&3;
73 i f (index == 0)
74 goto computeZero ;
75 e lse
76 goto computeNotZero ;
77 }
78

79

80 computeZero :
81 switch (r r i−>func t ion) {
82

83 case SIN :
84 i f (quadrant &1)
85 DoCosZero(& r r i−>rh , &r r i−>r l) ;
86 e lse
87 DoSinZero(& r r i−>rh , &r r i−>r l) ;
88 r r i−>changesign =(quadrant ==2) | | (quadrant ==3) ;
89 return ;
90

91 case COS:
92 i f (quadrant &1)
93 DoSinZero(& r r i−>rh , &r r i−>r l) ;
94 e lse
95 DoCosZero(& r r i−>rh , &r r i−>r l) ;
96 r r i−>changesign= (quadrant ==1) | | (quadrant ==2) ;
97 return ;
98

99 case TAN:
100 r r i−>changesign = quadrant &1;
101 i f (quadrant &1) {
102 DoSinZero(&ch , &c l) ;
103 DoCosZero(&sh , &s l) ;
104 } e lse {
105 DoSinZero(&sh , &s l) ;
106 DoCosZero(&ch , &c l) ;
107 }
108 Div22(& r r i−>rh , &r r i−>r l , sh , s l , ch , c l) ;
109 return ;
110 }
111

112 computeNotZero :
113 i f (index<=(64<<2)) {
114 sah=s incosTable [index + 0] . d ; /∗ s i n (a) , h igh p a r t ∗ /
115 s a l =s incosTable [index + 1] . d ; /∗ s i n (a) , low p a r t ∗ /
116 cah=s incosTable [index + 2] . d ; /∗ c o s (a) , h igh p a r t ∗ /
117 c a l =s incosTable [index + 3] . d ; /∗ c o s (a) , low p a r t ∗ /
118 } e lse { /∗ cah <= sah ∗ /
119 index =(128<<2) − index ;
120 cah=s incosTable [index + 0] . d ; /∗ c o s (a) , h igh p a r t ∗ /
121 c a l =s incosTable [index + 1] . d ; /∗ c o s (a) , low p a r t ∗ /
122 sah=s incosTable [index + 2] . d ; /∗ s i n (a) , h igh p a r t ∗ /
123 s a l =s incosTable [index + 3] . d ; /∗ s i n (a) , low p a r t ∗ /
124 }
125 yh2 = yh∗yh ;
126 t s = yh2 ∗ (s3 . d + yh2∗ (s5 . d + yh2∗s7 . d)) ;
127 t c = yh2 ∗ (c2 . d + yh2∗ (c4 . d + yh2∗c6 . d)) ;
128 switch (r r i−>func t ion) {
129

130 case SIN :
131 i f (quadrant &1)
132 DoCosNotZero(& r r i−>rh , &r r i−>r l) ;
133 e lse
134 DoSinNotZero(& r r i−>rh , &r r i−>r l) ;
135 r r i−>changesign =(quadrant ==2) | | (quadrant ==3) ;
136 return ;
137

138 case COS:
139 i f (quadrant &1)
140 DoSinNotZero(& r r i−>rh , &r r i−>r l) ;
141 e lse
142 DoCosNotZero(& r r i−>rh , &r r i−>r l) ;
143 r r i−>changesign =(quadrant ==1) | | (quadrant ==2) ;
144 return ;
145

146 case TAN:
147 r r i−>changesign = quadrant &1;
148 i f (quadrant &1) {
149 DoSinNotZero(&ch , &c l) ;
150 DoCosNotZero(&sh , &s l) ;

98

151 } e lse {
152 DoSinNotZero(&sh , &s l) ;
153 DoCosNotZero(&ch , &c l) ;
154 }
155 Div22(& r r i−>rh , &r r i−>r l , sh , s l , ch , c l) ;
156 return ;
157 }
158 }

Here are some comments on the structure of this code (the details on actual range reduction come
in the following sections).

• The DOUBLETOINT macro at line 13 is called only if x < XMAX_CODY_WAITE_3 (line 11). This
constant is defined (see Listing 9.6 below) such that the conditions for this macro to work (see
Section 2.2.3) are fullfilled.

• Similarly for the DOUBLETOLONGINT macro (see Section 2.2.4) at line 43, which is called for
inputs smaller than XMAX_DDR defined in Listing 9.8 below.

• There is one subtlety at lines 51 and following. There we take the decision of computing a more
accurate range reduction depending on the value of index = k mod 256. However, in the case
when x × 256

π is very close to the middle between two integers, it may happen (very rarely) that
the value of k mod 256 computed by this second range reduction differs from the first by ±1. In
such cases, both values will provide different but equally valid reduced arguments, but we have
to ensure that k and the reduced value match, hence the test line 52.

9.2.4 Cody and Waite range reduction with two constants

Here we split C into two floating-point constants Ch and Cl such that Ch holds 21 bits of the mantissa of
C (the rest being zeroes), and Cl = ◦(C− Ch). The following gives the Maple code that computes these
constants, and then computes the bound on which this range reduction is valid.

Listing 9.2: Maple script for computing constants for Cody and Waite 2
bi tsCh 0 : = 3 2 : # e n s u r e s a t l e a s t 53+11 b i t s

1 / 2 <= C / 2 ˆ (expC +1) <1
Ch:= round (e v a l f (C ∗ 2 ˆ (bitsCh 0−expC−1))) / (2 ˆ (bi tsCh 0−expC−1)) :
recompute b i t s C h in c a s e we a r e l u c k y (and we a r e f o r b i t s C h 0 =32)
bitsCh :=1+ log2 (op (2 , ieeedouble (Ch) [3])) : # t h i s means t h e l o g o f t h e denomina to r

Cl := n e a r e s t (C − Ch) :
Cody and Waite range r e d u c t i o n w i l l work f o r | k |<kmax cw2
kmax cw2:=2ˆ(53− bitsCh) :

The c o n s t a n t s t o move t o t h e . h f i l e
RR CW2 CH := Ch :
RR CW2 MCL := −Cl :
XMAX CODY WAITE 2 := n e a r e s t (kmax cw2∗C) :

The C code that performs the reduction in this case is the following:

Listing 9.3: Cody and Waite range reduction with two constants
31 Add12 (yh , yl , (x − kd∗RR CW2 CH) , (kd∗RR CW2 MCL)) ;

Here only the rightmost multiplication involving a rounding:

• The multiplication kd⊗ RR CW2 CH is exact because kd is a small integer and RR CW2 CH has
enough zeroes in the mantissa.

• The subtraction is exact thanks to Sterbenz Lemma.

• The Add12 procedure is exact.

The following Maple code thus computes the maximum absolute error on the reduced argument
(with respect to the ideal reduced argument) in this case.

99

Listing 9.4: Maple script for computing absolute error for Cody and Waite 2
del ta repr C cw2 := abs (C−Ch−Cl) ;
delta round cw2 := kmax cw2 ∗ 1/2 ∗ ulp (Cl) ;
d e l t a c o d y w a i t e 2 := kmax cw2 ∗ del ta repr C cw2 + delta round cw2 ;
Th i s i s t h e d e l t a on y , t h e r e d u c e d argument

9.2.5 Cody and Waite range reduction with three constants

The C code that performs the reduction in this case is the following:

Listing 9.5: Cody and Waite range reduction with three constants
35 Add12Cond (yh , yl , (x − kd∗RR CW3 CH) − kd∗RR CW3 CM, kd∗RR CW3 MCL) ;

Here again all the operations are exact except the rightmost multiplication.
The following Maple code computes the constants, the bound on x for this reduction to work, and

the resulting absolute error of the reduced argument with respect to the ideal reduced argument.

Listing 9.6: Maple script for computing constants for Cody and Waite 3
bi tsCh 0 : = 2 1 :
Ch:= round (e v a l f (C ∗ 2 ˆ (bitsCh 0−expC−1))) / (2 ˆ (bi tsCh 0−expC−1)) :
recompute b i t s C h in c a s e we a r e l u c k y
bitsCh :=1+ log2 (op (2 , ieeedouble (Ch) [3])) : # t h i s means t h e l o g o f t h e denomina to r

r := C−Ch :
Cmed := round (e v a l f (r ∗ 2 ˆ (2∗ bitsCh−expC−1))) / (2 ˆ (2∗ bitsCh−expC−1)) :
bitsCmed :=1+ log2 (op (2 , ieeedouble (Cmed) [3])) :

Cl := n e a r e s t (C − Ch − Cmed) :

kmax cw3 := 2 ˆ 3 1 : # Otherwi s e we have i n t e g e r o v e r f l o w

The c o n s t a n t s t o move t o t h e . h f i l e
RR CW3 CH := Ch ;
RR CW3 CM := Cmed:
RR CW3 MCL := −Cl :
XMAX CODY WAITE 3 := n e a r e s t (kmax cw3∗C) :

The e r r o r in t h i s c a s e (we need a b s o l u t e e r r o r)
del ta repr C cw3 := abs (C − Ch − Cmed − Cl) :
delta round cw3 := kmax cw3 ∗ 1/2 ∗ ulp (Cl) :
d e l t a c o d y w a i t e 3 := kmax cw3 ∗ del ta repr C cw3 + delta round cw3 :
Th i s i s t h e d e l t a on y , t h e r e d u c e d argument

9.2.6 Cody and Waite range reduction in double-double

The C code that performs the reduction in this case is the following:

Listing 9.7: Cody and Waite range reduction in double-double
20 /∗ a l l t h i s i s e x a c t ∗ /
21 Mul12(&kch h , &kch l , kd , RR DD MCH) ;
22 Mul12(&kcm h , &kcm l , kd , RR DD MCM) ;
23 Add12 (th , t l , kch l , kcm h) ;
24 /∗ on ly rounding e r r o r in t h e l a s t m u l t i p l i c a t i o n and a d d i t i o n ∗ /
25 Add22 (&yh , &yl , (x + kch h) , (kcm l − kd∗RR DD CL) , th , t l) ;

The error and the bound are computed by the following Maple code.

Listing 9.8: Maple script for computing constants for Cody and Waite double-double
Th i s max i n t v a l u e can be produced by DOUBLE2LONGINT
kmax:=2ˆ46−1:
XMAX DDRR:= n e a r e s t (kmax∗C) ;

in t h i s c a s e we have C s t o r e d as 3 d o u b l e s
Ch := n e a r e s t (C) :
Cmed := n e a r e s t (C−Ch) :
Cl := n e a r e s t (C−Ch−Cmed) :

RR DD MCH := −Ch :

100

RR DD MCM := −Cmed:
RR DD CL := Cl :

d e l t a r e p r C := abs (C − Ch − Cmed − Cl) :

and we have on ly e x a c t Add12 and Mul12 o p e r a t i o n s . The on ly p l a c e
with p o s s i b l e rounding e r r o r s i s :
Add22 (pyh , pyl , (x + k c h h) , (k cm l − kd∗RR DD CL) , th , t l) ;
where (x + k c h h) i s e x a c t (S t e r b e n z) wi th up t o kmax b i t s o f c a n c e l l a t i o n
and t h e e r r o r i s s imp ly t h e e r r o r in (kcm l − kd∗RR DD CL)
At t h e ve ry wors t :
delta round :=

kmax ∗ 1/2 ∗ ulp (Cl) # f o r kd∗RR DD CL
+ kmax∗ulp (Cl) # f o r t h e s u b t r a c t i o n
+ 2ˆ(−100) ∗ Pi /512 : # f o r t h e Add22

delta RR DD := kmax ∗ d e l t a r e p r C + delta round :

The value of kmax defined here will be explained below in Section 9.2.9.

9.2.7 Payne and Hanek range reduction

This range reduction is very classical (see K.C. Ng’s paper[35] or Muller’s book [34]) and the code both
too long and too simple to appear here. The Payne and Hanek reduction uses SCS computations which
ensure relative accuracy of 2−200. The result is then converted to a double-double. Even counting a
worst-case cancellation of less than 70 bits, the final absolute error is much smaller than for the other
reductions.

Listing 9.9: Payne and Hanek error
delta PayneHanek := 2ˆ(−100) :

9.2.8 Maximum error of range reduction

We have two cases here.

Case when k mod 256 6= 0 In this case we will need the absolute error of range reduction to compute
the total relative error of DoSinNotZero and DoCosNotZero: These procedures add tabulated values to
the reduced argument. This error bound is computed by the following Maple code.

Listing 9.10: Maple script computing the absolute error bound of range reduction
delta ArgRed := max(de l ta cody wai te 2 , de l ta cody wai te 3 ,

delta RR DD , delta PayneHanek) :

We find that δargred ≈ 2−71

Case when k mod 256 = 0 Here we directly need the relative error εargred on range reduction, which
will be used below in Section 9.3.1. Looking back at Listing 9.2.3, we see that in this case we compute
range reduction either in double-double, or in SCS. The following Maple code computes εargred.

Listing 9.11: Maple script computing the relative error bound of range reduction
F i r s t , what i s t h e wors t c a s e f o r c a n c e l l a t i o n ?

emax := ieeedouble (XMAX DDRR) [2] +1 :
a b o v e emax , we w i l l use Payne and Hanek so we do not worry

(wcn , wce , wceps) := WorstCaseForAdditiveRangeReduction (2 ,53 ,−8 , emax , C) :
wcx := wcn ∗ 2ˆ wce :
wck := round (wcx/C) :
wcy := wcx − wck∗C:

log2 (wcy) ; # y > 2ˆ(−67) ;

In t h e s e c a s e s we use t h e doub l e−d o u b l e range r e d u c t i o n , f o r | k |<kmax cw3
and t h e r e l a t i v e p r e c i s i o n in t h e wors t c a s e i s f o r wcy

delta round := kmax cw3 ∗ 1/2 ∗ ulp (Cl) # f o r kd∗RR DD CL

101

+ kmax cw3 ∗ ulp (Cl) : # f o r t h e s u b t r a c t i o n

delta RR DD := kmax cw3 ∗ d e l t a r e p r C + delta round :

eps ArgRed := (1+ delta RR DD/wcy) ∗(1+2ˆ(−100)) −1:

This script first computes the smallest possible reduced value thanks to the Kahan/Douglas algo-
rithm. It then computes the absolute worst-case error of double-double reduction, divides it by the
smallest possible value to get a relative error, and adds the relative error of the final Add22.

We find that εargred ≈ 2−69.6.

9.2.9 Maximum value of the reduced argument

For simplicity, we want to define a common upper bound ymax on |ŷ|, |yh+ yl| and |yh|. This bound
takes into account εargred, an ε53 for the case when it is a bound on yh, and also an error due to the
fact that we had a rounding error when computing x⊗ INV_PIO256, so the reduced value may slightly
exceed π/512. This rounding error is at most one half-ulp of x× 256/π, but cancellation may then scale
it up.

More precisely, the DOUBLE2INT macro always returns the nearest integer of its argument, so we have
dxc = x + ε−1. However its argument is

x⊗ INV_PIO256 = x× INV_PIO256(1 + ε−53) = x× 256/π(1 + ε−53)(1 + ε′) = x× 256/π(1 + εk)

where ε′ = INV_PIO256× 256/π − 1 can be computed exactly.
Therefore we have

k =

⌈
x× 256

π
(1 + εk)

⌋
= x× 256

π
(1 + εk)− f where | f | ≤ 1/2

And, assuming this computation was done exactly,

ŷ = x− k
π

256
= f

π

256
− xεk

In absolute value,
|ŷ| ≤ π

512
+ |x|εk

where εk < ε−52.
Again to compute this value precisely we have to consider the various paths of the algorithm. The

SCS range reduction is not concerned, since the Payne and Hanek algorithm used there does not com-
pute k in this manner. For the other paths, the worst case is of course for the larger x, in the double-
double argument reduction. There we define xmax = kmax ∗ C, hence |ŷ| ≤ π

512 + 2kmax π
256 εk where

εk < 2−52.
This is the reason for the bound on x defined in 9.2.6: although this range reduction could work for

values up to kmax = 252− 1, larger values would increase the maximum value of the reduced argument,
decreasing the accuracy of the polynomial evaluation. With a smaller value of kmax, we still have |ŷ|
close to π/512.

Finally we compute the common maximum value of yh, yh + yl and ŷ by taking into account the
rounding errors and the less-than-ulp difference between yh, yh + yl and ŷ.

9.3 Actual computation of sine and cosine

A sine or a cosine will actually be computed by one of DoSinZero, DoSinNotZero, DoCosZero and Do-
CosNotZero (with a possible change of sine). Section 9.3.2 will show how we compute the maximum
total error of DoSinNotZero and DoCosNotZero. As DoCosZero is a simpler, more accurate computa-
tion than DoCosNotZero, its worst-case error will be smaller than that of DoCosNotZero, and we do
not need to compute it. We currently have only one rounding constant for the Zero and NotZero cases,
because having separate constants would degrade performance.

102

However, DoSinZero is slightly different in that it doesn’t add a constant value at the end of the
computation, as do the three others. Its error computation has to consider more relative errors than
absolute errors. We therefore need to compute its error separately, which is done in the following
section.

This section 9.3.1 should also help understanding the method used to write the Gappa input file
given in Section 9.3.2.

9.3.1 DoSinZero

Upon entering DoSinZero, we have in yh + yl an approximation to the ideal reduced value ŷ = x− k π
256

with a relative accuracy εargred:

yh + yl = (x− k
π

256
)(1 + εargred) = ŷ(1 + εargred) (9.6)

with, depending on the quadrant, sin(ŷ) = ± sin(x) or sin(ŷ) = ± cos(x) and similarly for cos(ŷ). This
just means that ŷ is the ideal, errorless reduced value.

In the following we will assume we are in the case sin(ŷ) = sin(x), (the proof is identical in the other
cases), therefore the relative error that we need to compute is

εsinkzero =
(∗psh+ ∗psl)

sin(x)
− 1 =

(∗psh+ ∗psl)
sin(ŷ)

− 1 (9.7)

Listing 9.12: DoSinZero
1 yh2 = yh∗yh ; \
2 t s = yh2 ∗ (s3 . d + yh2∗ (s5 . d + yh2∗s7 . d)) ; \
3 Add12(∗psh ,∗ psl , yh , y l+ t s ∗yh) ; \

One may remark that we almost have the same code as we have for computing the sine of a small
argument (without range reduction) in Section 9.4.5. The difference is that we have as input a double-
double yh+ yl, which is itself an inexact term.

At Line 4, the error of neglecting yl and the rounding error in the multiplication each amount to half
an ulp: yh2 = yh2(1 + ε−53), with yh = (yh+ yl)(1 + ε−53) = ŷ(1 + εargred)(1 + ε−53)

Therefore
yh2 = ŷ2(1 + εyh2) (9.8)

with
εyh2 = (1 + εargred)

2(1 + ε−53)
3 − 1 (9.9)

Line 5 is a standard Horner evaluation. Its approximation error is defined by:

Pts(ŷ) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)

This error is computed in Maple as in 9.4.5, only the interval changes:

εapproxts =

∥∥∥∥ xPts(x)
sin(x)− x

− 1
∥∥∥∥

∞

We also compute εhornerts, the bound on the relative error due to rounding in the Horner evaluation
thanks to the compute horner rounding error procedure. This time, this procedure takes into account
the relative error carried by yh2, which is εyh2 computed above. We thus get the total relative error on
ts:

ts = Pts(ŷ)(1 + εhornerts) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)(1 + εhornerts) (9.10)

The final Add12 is exact. Therefore the overall relative error is:

103

εsinkzero =
((yh⊗ ts)⊕ yl) + yh

sin(ŷ)
− 1

=
(yh⊗ ts+ yl)(1 + ε−53) + yh

sin(ŷ)
− 1

=
yh⊗ ts+ yl+ yh + (yh⊗ ts+ yl).ε−53

sin(ŷ)
− 1

Let us define for now
δaddsin = (yh⊗ ts+ yl).ε−53 (9.11)

Then we have

εsinkzero =
(yh+ yl)ts(1 + ε−53)

2 + yl+ yh + δaddsin
sin(ŷ)

− 1

Using (9.6) and (9.10) we get:

εsinkzero =
ŷ(1 + εargred)×

sin(ŷ)−ŷ
ŷ (1 + εapproxts)(1 + εhornerts)(1 + ε−53)

2 + yl+ yh + δaddsin

sin(ŷ)
− 1

To lighten notations, let us define

εsin1 = (1 + εapproxts)(1 + εhornerts)(1 + ε−53)
2 − 1 (9.12)

We get

εsinkzero =
(sin(ŷ)− ŷ)(1 + εsin1) + ŷ(1 + εargred) + δaddsin − sin(ŷ)

sin(ŷ)

=
(sin(ŷ)− ŷ).εsin1 + ŷ.εargred + δaddsin

sin(ŷ)

Using the following bound:

|δaddsin| = |(yh⊗ ts+ yl).ε−53| < 2−53 × |y|3/3 (9.13)

we may compute the value of εsinkzero as an infinite norm under Maple. We get an error smaller than
2−67.

9.3.2 DoSinNotZero and DoCosNotZero

The proof would here be much longer than the previous one, in the same spirit. It would therefore
be much more error prone. We probably would be even less confident in such a proof than if it was
generated automatically using experimental software. Therefore, let us do just that: We will use Gappa

(see http://lipforge.ens-lyon.fr/projects/gappa/), another development of the Arenaire project
to automate the proof of numerical properties, including an interface to the automatic theorem prover
Coq. Gappa will assist us in computing bounds (in the form of intervals) for all the errors entailed by
our code.

Here we need to compute the error bound for the following straight line of code.

Listing 9.13: DoSinNotZero
1 yh2 = yh∗yh ;
2 t s = yh2 ∗ (s3 . d + yh2∗ (s5 . d + yh2∗s7 . d)) ;
3 t c = yh2 ∗ (c2 . d + yh2∗ (c4 . d + yh2∗c6 . d)) ;
4 Mul12(&cahyh h ,& cahyh l , cah , yh) ;
5 Add12 (th i , t l o , sah , cahyh h) ;
6 t l o = t c ∗sah +(t s ∗cahyh h +(s a l +(t l o +(cahyh l +(c a l ∗yh + cah∗yl))))) ;
7 Add12(∗psh ,∗ psl , th i , t l o) ;

104

http://lipforge.ens-lyon.fr/projects/gappa/

The additional information we have is

• The range reduction total absolute error, such that

yh + yl = (x− k
π

256
)(1 + εargred) = ŷ(1 + εargred) (9.14)

• The rounding error of the double-double tabulated values sah + sal and cah + cal (ε−104) and their
ranges

• The approximation error of the polynomials used, computed in Maple

We use Gappa to compute the evaluation error, then the total error. Currently, we actually have to
lauch Gappa 63 times, one time for each of the possibles values of a = kπ/256 that appear in our tables.
The reason is that, in the current version of Gappa, we are unable to express the identity sin2(a) +
cos2(a) = 1 in a useful manner. Without this identity, the only information that we could give to Gappa
is that both sin(a) and cos(a) belong to [−1, 1], which leads to an overestimation of the error.

The Maple script that computes the table of (cah, cal , sah, sal), the polynomial coefficient, and the
approximation errors, also outputs it in a form suitable for input to Gappa (for technical reasons they
have to be substituted in the code using the Unix utility sed).

The input to Gappa is as follows:

Listing 9.14: Gappa input to compute the error of DoSineNotZero
Usage : You need t o s e t t h e c o n s t a n t s cah , c a l , sah , s a l . Running t h e t r i g o . mpl Maple s c r i p t
s h o u l d c r e a t e 64 f i l e s in maple /TEMPTRIG, which can be t e s t e d i n d e p e n d e n t l y as
s e d − f . . / maple /TEMPTRIG/ SinACosA 1 . s e d t r i g o S i n C o s C a s e 3 . gappa | ˜ / gappa / s r c / gappa >

/ dev / n u l l

NOTATION CONVENTION
V a r i a b l e s t h a t c o r r e s p o n d t o doub l e−p r e c i s i o n v a r i a b l e s in t h e c o d e b e g i n with a s m a l l

l e t t e r
Other v a r i a b l e s b e g i n with a c a p i t a l l e t t e r .
V a r i a b l e s t h a t w i l l be r e p l a c e d with Maple−computed c o n s t a n t s b e g i n with an u n d e r s c o r e
Otherwi s e a v o i d u n d e r s c o r e s a s t h e y a r e p a i n f u l t o c a r r y on t o LaTeX :)

Rounding o p e r a t o r s and s e q u e n c e s d e f i n i t i o n

@IEEEdouble = f l o a t<i eee 64 , ne>;

p o l y n o m i a l c o e f f i c i e n t s , computed by Maple
s3 = IEEEdouble (s 3) ;
s5 = IEEEdouble (s 5) ;
s7 = IEEEdouble (s 7) ;
c2 = IEEEdouble (c2) ;
c4 = IEEEdouble (c4) ;
c6 = IEEEdouble (c6) ;

T a b l e v a l u e s , computed by Maple
cah = IEEEdouble (cah) ;
c a l = IEEEdouble (c a l) ;
sah = IEEEdouble (sah) ;
s a l = IEEEdouble (s a l) ;

The v a r i a b l e s used h e r e :
x i n p u t
My p e r f e c t r e d u c e d argument
Yhl = yh+yl , h i s d i s t a n c e t o My i s s p e c i f i e d as an h y p o t h e s i s
Mts p e r f e c t t s
Mtc p e r f e c t t c
Msinx e x a c t r e s u l t f o r s i n (x)
Msina , Mcosa p e r f e c t s i n (kPi / 2 5 6) and c o s (kPi / 2 5 6)

yh = IEEEdouble (Yhl) ;
y l = Yhl − yh ;

##

F i r s t , a t r a n s c r i p t i o n o f t h e a c t u a l computa t i on , which c o u l d (and
s h o u l d e v e n t u a l l y) be g e n e r a t e d a u t o m a t i c a l l y from t h e a c t u a l c o d e

105

−−−−−−−−−−−−−−−−−−−−−Code s h a r e d by s i n and cos , c u t from ComputeTrigWithArgRed :
yh2 IEEEdouble= yh ∗ yh ;
t s IEEEdouble= yh2 ∗ (s3 + yh2∗ (s5 + yh2∗s7)) ;
t c IEEEdouble= yh2 ∗ (c2 + yh2∗ (c4 + yh2∗c6)) ;

−−−−−−−−−−−−−−−−−−−−−Code f o r t h e s i n e , c u t from DosinNotZero :
Mul12(& cahyh h ,& c a h y h l , cah , yh) ;
cahyh = cah ∗ yh ;
cahyh h = IEEEdouble (cahyh) ;
cahyh l = cahyh − cahyh h ; # Exac t e q u a t i o n b e c a u s e Mul12 i s e x a c t

Add12 (t h i , t l o , sah , cahyh h) ;
TSin = sah + cahyh h ;
t h i S i n = IEEEdouble (TSin) ;
t l o S i n 1 = TSin − t h i S i n ; # Exac t e q u a t i o n b e c a u s e Add12 i s e x a c t

Rem : need t o Rename t l o t o t l o S i n 1 , and i t s s e c o n d use t o t l o S i n 2 .
I t would be s a f e r t o t r a n s l a t e c o d e t o s i n g l e−a s s i g n m e n t b e f o r e
us ing Gappa , modern c o m p i l e r s won ’ t make any d i f f e r e n c e .

t l o = t c ∗ sah +(t s ∗ cahyh h +(s a l +(t l o +(c a h y h l +(c a l ∗yh + cah∗ y l))))) ;
t l o S i n 2 IEEEdouble= t c ∗sah + (t s ∗cahyh h + (s a l + (t l o S i n 1 + (cahyh l + (c a l ∗yh + cah∗yl))))) ;

Add12 (∗ r e s h i , ∗ r e s l o , t h i , t l o) ;
ResSinhi lo = t h i S i n + t l o S i n 2 ; # we don ’ t need t o s p l i t i t f o r t h e p r o o f .

−−−−−−−−−−−−−−−−−−−−−Code f o r t h e cos , c u t from DoCosNotZero :
Mul12(& sahyh h ,& s a h y h l , sah , yh) ;
sahyh = sah ∗ yh ;
sahyh h = IEEEdouble (sahyh) ;
sahyh l = sahyh − sahyh h ; # Exac t e q u a t i o n b e c a u s e Mul12 i s e x a c t

Add12 (t h i , t l o , cah , −s a h y h h) ;
TCos = cah − sahyh h ;
thiCos = IEEEdouble (TCos) ;
t loCos1 = TCos − thiCos ; # Exac t e q u a t i o n b e c a u s e Add12 i s e x a c t

t l o = t c ∗ sah +(t s ∗ cahyh h +(s a l +(t l o +(c a h y h l +(c a l ∗yh + cah∗ y l))))) ;
t loCos2 IEEEdouble= t c ∗cah−(t s ∗sahyh h−(c a l +(tloCos1−(sahyh l +(s a l ∗yh+sah∗yl))))) ;

Add12 (∗ pch , ∗ pc l , t h i , t l o) ;
ResCoshilo = thiCos + tloCos2 ; # No need t o s p l i t i t f o r t h e p r o o f .

##

D e f i n i t i o n s o f t h e m a t h e m a t i c a l o b j e c t s

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#With t h e s e n o t a t i o n s , t h e e x a c t s i n e and c o s i n e a r e g i v e n by t h e s e
e x a c t m a t h e m a t i c a l f o r m u l a e

Msinx = Msiny ∗ Mcosa + Mcosy ∗ Msina ;
Mcosx = Mcosy ∗ Mcosa − Msiny ∗ Msina ;

Now l e t us p i l e up l a y e r s o f a p p r o x i m a t i o n s
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
yh2 i s an a p p r o x i m a t i o n t o :
My2 = My∗My;
through t h r e e l a y e r s :
1 / Yhl=yh+ h l = My +/− d e l t a A r g R e d : in t h e h y p o t h e s e s be low
2 / yh = Yhl − y l : a l r e a d y w r i t t e n
3 / rounding e r r o r in t h e mult : a l r e a d y w r i t t e n

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t s i s an a p p r o x i m a t i o n t o :
Mts = My2 ∗ (s3 + My2∗ (s5 + My2∗s7)) ;
through two l a y e r s :
1 / t h e a p p r o x i m a t i o n y2 o f My2 : done j u s t a b o v e
2 / t h e rounding e r r o r s in Horner : a l r e a d y w r i t t e n

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
PolySinY = My ∗ (1 + Mts) ;
PolySinY i s an a p p r o x i m a t i o n t o s i n (My) as e x p r e s s e d in t h e h y p o t h e s e s be low :
PolySinY − Msiny in [−0.24126 e−23, 0 .24126 e−23] # d e l t a a p p r o x S i n C a s e 3

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

106

Same f o r PolyCosY
Mtc = My2 ∗ (c2 +(My2 ∗ (c4 + (My2 ∗ c6)))) ;
PolyCosY = 1 + Mtc ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t c i s an a p p r o x i m a t i o n t o Mtc through t h e rounding e r r o r s , d e f i n e d
in t h e d e f i n i t i o n o f t c . Same f o r t s

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S i n R e c o n s t r E x a c t i s an a p p r o x i m a t i o n t o R e s S i n h i l o
SinReconstrExact = PolySinY ∗ Mcosa + PolyCosY ∗ Msina ;

The d e l t a be tween R e s S i n h i l o and S i n R e c o n s t r E x a c t i s due t o t h e two
m a t h e m a t i c a l p o l y approx , and has be en d e f i n e d j u s t a b o v e
CosReconstrExact = PolyCosY ∗ Mcosa − PolySinY ∗ Msina ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
The r e c o n s t r u c t i o n a p p r o x i m a t e s t h e f o l l o w i n g
SinReconstrNoRound = Yhl ∗ (1 + t s) ∗ (cah+ c a l) + (1 + t c) ∗ (sah+ s a l) ;
where Yhl i s an a p p r o x i m a t i o n t o Y
t s i s an a p p r o x i m a t i o n t o Mts
t c i s an a p p r o x i m a t i o n t o Mtc : a l l a l r e a d y d e s c r i b e d
A l l what we s t i l l need t o e x p r e s s i s t h a t t h e a c t u a l c o m p u t a t i o n w i l l n e g l e c t some te rms
CosReconstrNoRound = ((1 + t c) ∗ (cah+ c a l) − Yhl ∗ (1 + t s) ∗ (sah+ s a l)) ;

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t l o S i n 2 i s an a p p r o x i m a t i o n t o TloSin2NoRound (b e c a u s e o f rounding e r r o r in t h e o p e r a t i o n s ,

a l r e a d y d e s c r i b e d)
TloSin2NoRound = t c ∗sah +(t s ∗cahyh h +(s a l +(t l o S i n 1 +(cahyh l +(c a l ∗yh+cah∗yl))))) ;
TloCos2NoRound = t c ∗cah−(t s ∗sahyh h−(c a l +(tloCos1−(sahyh l +(s a l ∗yh+sah∗yl))))) ;

tloSinNoRound i s an a p p r o x i m a t i o n t o SinReconstrNoRound − t S i n h i , t h e
d i f f e r e n c e b e i n g t h e n e g l e c t e d t e rms . Th i s e r r o r w i l l be g i v e n as an h i n t

NeglectedSinTerms = SinReconstrNoRound − (t h i S i n + TloSin2NoRound) ;
NeglectedCosTerms = CosReconstrNoRound − (thiCos + TloCos2NoRound) ;

And f i n a l l y , R e s S i n h i l o i s an a p p r o x i m a t i o n t o Msinx through many l a y e r s which a r e g i v e n in
t h e h i n t s .

##
The theor em t o p r o v e
{
(Yhl in [− ymaxCase3 , −1b−200] \ / Yhl in [−1b−200 , ymaxCase3])

computed by Maple
Yhl in [− ymaxCase3 , ymaxCase3] # computed by Maple

/\ Yhl − My in [− delta ArgRed , delta ArgRed] # computed by
Maple

/\ PolySinY − Msiny in [− del ta approx Sin Case3 , de l ta approx S in Case3] # computed by
Maple

/\ PolyCosY − Mcosy in [− delta approx Cos Case3 , del ta approx Cos Case3] # computed by
Maple

/\ Msina−sah−s a l in [−1b−104 , 1b−104]
/\ Mcosa−cah−c a l in [−1b−104 , 1b−104] # doub l e−d o u b l e a b s o l u t e rounding e r r o r , wi th margin

−>
(ResS inhi lo − Msinx) /Msinx in [−3b−66 ,3b−66]
/\
(ResCoshilo − Mcosx) /Mcosx in [−3b−66 ,3b−66]
}

##
Hints t o t h e r e d u c t i o n e n g i n e : Gappa i s not s u p p o s ed t o be c l e v e r , i t ’ s an a s s i s t a n t

To g e t bounds on Msinx , t r y R e s S i n h i l o
Msinx −> ResSinhi lo − (ResS inhi lo − Msinx) ;
Mcosx −> ResCoshilo − (ResCoshilo − Mcosx) ;

To g e t bounds on Msina , t r y sah+ s a l
Msina −> sah + s a l + (Msina − sah − s a l) ;
Mcosa −> cah + c a l + (Mcosa − cah − c a l) ;

To g e t bounds on My, t r y Yhl
My −> Yhl − (Yhl − My) ;

One l a y e r o f approx e r r o r , and one l a y e r o f rounding e r r o r f o r Msiny and Mcosy
1 + t c − Mcosy −> (1 + t c − PolyCosY) + (PolyCosY − Mcosy) ;
(My + My ∗ t s) − Msiny −> ((My + My ∗ t s) − PolySinY) + (PolySinY − Msiny) ;

107

L a y e r s o f a p p r o x i m a t i o n s
ResSinhi lo − Msinx −> (ResS inhi lo − SinReconstrNoRound) + (SinReconstrNoRound −

SinReconstrExact) + (S inReconstrExact − Msinx) ;
ResCoshilo − Mcosx −> (ResCoshilo − CosReconstrNoRound) + (CosReconstrNoRound −

CosReconstrExact) + (CosReconstrExact − Mcosx) ;

NeglectedSinTerms −> s a l ∗ t c + c a l ∗yl + t s ∗ (cahyh l + cah∗yl + c a l ∗yh + c a l ∗yl) ;
ResS inhi lo − SinReconstrNoRound −> (ResS inhi lo − (t h i S i n + TloSin2NoRound)) − (

SinReconstrNoRound − (t h i S i n + TloSin2NoRound)) ;

NeglectedCosTerms −> c a l ∗ t c − s a l ∗yl − t s ∗ (sahyh l + sah∗yl + s a l ∗yh + s a l ∗yl) ;
ResCoshilo − CosReconstrNoRound −> (ResCoshilo − (thiCos + TloCos2NoRound)) − (

CosReconstrNoRound − (thiCos + TloCos2NoRound)) ;

Yhl ∗ (1 + t s) ∗ (cah+ c a l) − PolySinY ∗ Mcosa −> (Yhl ∗ (1 + t s)− PolySinY) ∗ (cah+ c a l) − PolySinY ∗ (
Mcosa − cah − c a l) ;

(1 + t c) ∗ (cah+ c a l) − PolyCosY ∗ Mcosa −> ((1 + t c)− PolyCosY) ∗ (cah+ c a l) − PolyCosY ∗
(Mcosa − cah −c a l) ;

(1 + t c) ∗ (sah+ s a l) − PolyCosY ∗ Msina −> ((1 + t c)− PolyCosY) ∗ (sah+ s a l) − PolyCosY ∗
(Msina − sah −s a l) ;

The max of the bounds computed by Gappa for all the values of this table is a little bit smaller than
2−66. Therefore, we take εSinCosCase3 = 2−66 for the trigonometric functions (because the reconstruction
simply manipulates the signs and is therefore exact).

In the very near future, this bound should be machine-checked by the Coq proof assistant.

9.4 Detailed examination of the sine

The sine begins with casting the high part of the absolute value of the input number into a 32-bit integer,
to enable faster comparisons. However we have to be aware that we lost the lower part of x, which had
a value up to (231− 1)ulp(x). This is taken care of in the procedure that converts a Maple high-precision
number into an integer to which x will be compared (procedure outputHighPart in trigo.mpl).

Listing 9.15: Casting to an int for faster comparisons
1 db number x s p l i t ;
2 x s p l i t . d=x ;
3 absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;

9.4.1 Exceptional cases in RN mode

Listing 9.16: Exceptional cases for sine RN
1 /∗ SPECIAL CASES : x =(Nan , I n f) s i n (x) =Nan ∗ /
2 i f (absxhi>=0x7f f00000) return x−x ;
3

4 e lse i f (absxhi < XMAX SIN CASE2) {
5 /∗ CASE 1 : x s m a l l enough s i n (x) =x ∗ /
6 i f (absxhi <XMAX RETURN X FOR SIN)
7 return x ;

9.4.2 Exceptional cases in RU mode

Listing 9.17: Exceptional cases for sine RU
1 /∗ SPECIAL CASES : x =(Nan , I n f) s i n (x) =Nan ∗ /
2 i f (absxhi>=0x7f f00000) return x−x ;
3

4 i f (absxhi < XMAX SIN CASE2) {
5

6 /∗ CASE 1 : x s m a l l enough , r e t u r n x s u i t a b l y rounded ∗ /
7 i f (absxhi <XMAX RETURN X FOR SIN) {
8 i f (x>=0.)
9 return x ;

108

10 e lse {
11 x s p l i t . l −−;
12 return x s p l i t . d ;
13 }
14 }

9.4.3 Exceptional cases in RD mode

Listing 9.18: Exceptional cases for sine RD
1 /∗ SPECIAL CASES : x =(Nan , I n f) s i n (x) =Nan ∗ /
2 i f (absxhi>=0x7f f00000) return x−x ;
3

4 i f (absxhi < XMAX SIN CASE2) {
5

6 /∗ CASE 1 : x s m a l l enough , r e t u r n x s u i t a b l y rounded ∗ /
7 i f (absxhi <XMAX RETURN X FOR SIN) {
8 i f (x<=0.)
9 return x ;

10 e lse {
11 x s p l i t . l −−;
12 return x s p l i t . d ;
13 }
14 }

9.4.4 Exceptional cases in RZ mode

Listing 9.19: Exceptional cases for sine RZ
1 /∗ SPECIAL CASES : x =(Nan , I n f) s i n (x) =Nan ∗ /
2 i f (absxhi>=0x7f f00000) return x−x ;
3

4 i f (absxhi < XMAX SIN CASE2) {
5

6 /∗ CASE 1 : x s m a l l enough , r e t u r n x s u i t a b l y rounded ∗ /
7 i f (absxhi <XMAX RETURN X FOR SIN) {
8 x s p l i t . l −−;
9 return x s p l i t . d ;

10 }

9.4.5 Fast approximation of sine for small arguments

Listing 9.20: Sine, case 2
1 xx = x∗x ;
2 t s = xx ∗ (s3 . d + xx ∗ (s5 . d + xx∗s7 . d)) ;
3 Add12 (sh , s l , x , x∗ t s) ;

Here we have had no range reduction, therefore x is exact. We need to compute the relative error of
sh+ sl with respect to sin(x). As sh+ sl is the result of an (exact) Add12, the error is:

εsinCase2 =
x⊗ ts+ x

sin(x)
− 1 =

x× ts(1 + ε−53) + x

sin(x)
− 1 (9.15)

The polynomial used to compute ts approximates sin(x)−x
x :

Pts(x) = s3.x2 + s5.x4 + s7.x6 =
sin(x)− x

x
(1 + εapproxts)

We compute a bound on this error in Maple as

εapproxts =

∥∥∥∥ xPts(x)
sin(x)− x

− 1
∥∥∥∥

∞
[−xmax...xmax]

109

We also compute εhornerts, the relative error due to rounding in the Horner evaluation thanks to the
compute horner rounding error procedure. For this we need the relative error carried by xx, which is
only due to the rounding error in the multiplication since x is exact:

xx = x2(1 + ε−53)

We therefore have:

ts = Pts(x)(1 + εhornerts) =
sin(x)− x

x
(1 + εapproxts)(1 + εhornerts)

Reporting this in (9.15), we get

εsinCase2 =
(sin(x)− x)(1 + εapproxts)(1 + εhornerts)(1 + ε−53) + x

sin(x)
− 1

or,

εsinCase2 =
sin(x)− x

sin(x)
(
(1 + εapproxts)(1 + εhornerts)(1 + ε−53) − 1

)
Finally

εsinCase2 =

∥∥∥∥ sin(x)− x

sin(x)

∥∥∥∥
∞
((1 + εapproxts)(1 + εhornerts)(1 + ε−53) − 1) (9.16)

9.5 Detailed examination of the cosine

The bulk of the computation is shared with the sine. The main differences are therefore in handling
special values. We juste show the code here. The error computation for small arguments is similar to
that of the sine, and is implemented in maple/trigo.mpl.

9.5.1 Round to nearest mode

Listing 9.21: Exceptional cases for cosine RN
1 double cos rn (double x) {
2 double tc , x2 ;
3 r r i n f o r r i ;
4 db number x s p l i t ;
5

6 x s p l i t . d=x ;
7 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
8

9 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
10 i f (r r i . absxhi>=0x7f f00000) {
11 /∗ was : r e t u r n x−x ;
12 but i t ’ s o p t i m i z e d out by I n t e l c o m p i l e r (bug r e p o r t e d) .
13 Who c a r e s t o be s low in t h i s c a s e anyway . . . ∗ /
14 x s p l i t . l =0 xff f8000000000000LL ;
15 return x s p l i t . d−x s p l i t . d ;
16 }
17

18 i f (r r i . absxhi < XMAX COS CASE2) {
19 /∗ CASE 1 : x s m a l l enough c o s (x) =1. ∗ /
20 i f (r r i . absxhi <XMAX RETURN 1 FOR COS RN)
21 return 1 . ;
22 e lse {
23 /∗ CASE 2 : F a s t p o l y n o m i a l e v a l u a t i o n ∗ /
24 x2 = x∗x ;
25 t c = x2 ∗ (c2 . d + x2 ∗ (c4 . d + x2∗c6 . d)) ;
26 Add12 (r r i . rh , r r i . r l , 1 . 0 , t c) ;
27 i f (r r i . rh == (r r i . rh + (r r i . r l ∗ RN CST COS CASE2)))
28 return r r i . rh ;
29 e lse
30 return s c s c o s r n (x) ;
31 }
32 }
33 e lse {
34 /∗ CASE 3 : Need range r e d u c t i o n ∗ /

110

35 r r i . x=x ;
36 r r i . func t ion=COS;
37 ComputeTrigWithArgred(& r r i) ;
38 i f (r r i . rh == (r r i . rh + (r r i . r l ∗ RN CST COS CASE3)))
39 i f (r r i . changesign) return −r r i . rh ; e lse return r r i . rh ;
40 e lse
41 return s c s c o s r n (x) ;
42 }
43 }

9.5.2 RU mode

Listing 9.22: Exceptional cases for cosine RU
1 double cos ru (double x) {
2 double x2 , tc , eps i lon ;
3 r r i n f o r r i ;
4 db number x s p l i t ;
5

6 x s p l i t . d=x ;
7 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
8

9 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
10 i f (r r i . absxhi>=0x7f f00000) {
11 x s p l i t . l =0 xff f8000000000000LL ;
12 return x s p l i t . d − x s p l i t . d ;
13 }
14

15 i f (r r i . absxhi < XMAX COS CASE2) {
16 /∗ CASE 1 : x s m a l l enough c o s (x) =1. ∗ /
17 i f (r r i . absxhi <XMAX RETURN 1 FOR COS RDIR)
18 return 1 . ;
19 e lse{
20 /∗ CASE 2 : F a s t p o l y n o m i a l e v a l u a t i o n ∗ /
21 x2 = x∗x ;
22 t c = x2 ∗ (c2 . d + x2 ∗ (c4 . d + x2∗c6 . d)) ;
23 Add12 (r r i . rh , r r i . r l , 1 , t c) ;
24 eps i lon=EPS COS CASE2 ;
25 }
26 }
27

28 e lse {
29 /∗ CASE 3 : Need range r e d u c t i o n ∗ /
30 r r i . x=x ;
31 r r i . func t ion=COS;
32 ComputeTrigWithArgred(& r r i) ;
33 eps i lon=EPS COS CASE3 ;
34 i f (r r i . changesign) {
35 r r i . rh = −r r i . rh ;
36 r r i . r l = −r r i . r l ;
37 }
38 }
39

40

41 TEST AND RETURN RU(r r i . rh , r r i . r l , eps i lon) ;
42

43 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
44 return s c s c o s r u (x) ;
45 }

9.5.3 RD mode

Listing 9.23: Exceptional cases for cosine RD
1 double cos rd (double x) {
2 double x2 , tc , eps i lon ;
3 r r i n f o r r i ;
4 db number x s p l i t ;
5

6 x s p l i t . d=x ;
7 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
8

111

9 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
10 i f (r r i . absxhi>=0x7f f00000) {
11 x s p l i t . l =0 xff f8000000000000LL ;
12 return x s p l i t . d − x s p l i t . d ;
13 }
14

15 i f (r r i . absxhi < XMAX COS CASE2) {
16 i f (x==0) return 1 ;
17 /∗ CASE 1 : x s m a l l enough c o s (x) =1. ∗ /
18 i f (r r i . absxhi <XMAX RETURN 1 FOR COS RDIR)
19 return ONE ROUNDED DOWN;
20 e lse {
21 /∗ CASE 2 : F a s t p o l y n o m i a l e v a l u a t i o n ∗ /
22 x2 = x∗x ;
23 t c = x2 ∗ (c2 . d + x2 ∗ (c4 . d + x2∗c6 . d)) ;
24 Add12 (r r i . rh , r r i . r l , 1 , t c) ;
25 eps i lon=EPS COS CASE2 ;
26 }
27 }
28 e lse {
29 /∗ CASE 3 : Need range r e d u c t i o n ∗ /
30 r r i . x=x ;
31 r r i . func t ion=COS;
32 ComputeTrigWithArgred(& r r i) ;
33 eps i lon=EPS COS CASE3 ;
34 i f (r r i . changesign) {
35 r r i . rh = −r r i . rh ;
36 r r i . r l = −r r i . r l ;
37 }
38 }
39

40 TEST AND RETURN RD(r r i . rh , r r i . r l , eps i lon) ;
41

42 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
43 return s c s c o s r d (x) ;
44 }

9.5.4 RZ mode

Listing 9.24: Exceptional cases for cosine RZ
1 double c o s r z (double x) {
2 double x2 , tc , eps i lon ;
3 r r i n f o r r i ;
4 db number x s p l i t ;
5

6 x s p l i t . d=x ;
7 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
8

9 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
10 i f (r r i . absxhi>=0x7f f00000) {
11 x s p l i t . l =0 xff f8000000000000LL ;
12 return x s p l i t . d − x s p l i t . d ;
13 }
14

15 i f (r r i . absxhi < XMAX COS CASE2) {
16 i f (x==0) return 1 ;
17 /∗ CASE 1 : x s m a l l enough c o s (x) =1. ∗ /
18 i f (r r i . absxhi <XMAX RETURN 1 FOR COS RDIR)
19 return ONE ROUNDED DOWN;
20 e lse {
21 /∗ CASE 2 : F a s t p o l y n o m i a l e v a l u a t i o n ∗ /
22 x2 = x∗x ;
23 t c = x2 ∗ (c2 . d + x2 ∗ (c4 . d + x2∗c6 . d)) ;
24 Add12 (r r i . rh , r r i . r l , 1 , t c) ;
25 eps i lon=EPS COS CASE2 ;
26 }
27 }
28 e lse {
29 /∗ CASE 3 : Need range r e d u c t i o n ∗ /
30 r r i . x=x ;
31 r r i . func t ion=COS;
32 ComputeTrigWithArgred(& r r i) ;
33 eps i lon=EPS COS CASE3 ;
34 i f (r r i . changesign) {
35 r r i . rh = −r r i . rh ;

112

36 r r i . r l = −r r i . r l ;
37 }
38 }
39

40 TEST AND RETURN RZ(r r i . rh , r r i . r l , eps i lon) ;
41

42 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
43 return s c s c o s r z (x) ;
44 }

9.6 Detailed examination of the tangent

9.6.1 Total relative error

In the general case, we compute the tangent by using successively the macros for computing the sine
and the cosine (each accurate to εSinCosCase3), then dividing sine by cosine using the Div22 macro, accu-
rate to 2−100 << εSinCosCase3 (see lines 146-156 of listing 9.1). The overall error is thus bounded by

εtan = 2.1εSinCosCase3.

9.6.2 RN mode

Listing 9.25: Exceptional cases for tangent RN
1 double tan rn (double x) {
2 double x2 , p5 , t t ;
3 r r i n f o r r i ;
4 db number x s p l i t , rndcst ;
5

6 x s p l i t . d=x ;
7 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
8

9 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
10 i f (r r i . absxhi>=0x7f f00000) {
11 x s p l i t . l =0 xff f8000000000000LL ;
12 return x s p l i t . d − x s p l i t . d ;
13 }
14

15 i f (r r i . absxhi < XMAX TAN CASE2) {
16 i f (r r i . absxhi < XMAX RETURN X FOR TAN)
17 return x ;
18 /∗ Dynamic c o m p u t a t i o n o f t h e rounding c o n s t a n t ∗ /
19 rndcst . i [HI] = 0 x3f f00000 + (((r r i . absxhi & 0 x 0 0 0 f f f f f) +0x00100000) >> (0 x 3 f f +2 − (r r i .

absxhi>>20))) ;
20 rndcst . i [LO] =0 x f f f f f f f f ;
21 /∗ F a s t T a y l o r s e r i e s ∗ /
22 x2 = x∗x ;
23 p5 = t5 . d + x2 ∗ (t7 . d + x2 ∗ (t9 . d + x2∗ t11 . d)) ;
24 t t = x2 ∗ (t3h . d + (t 3 l . d +x2∗p5)) ;
25 Add12 (r r i . rh , r r i . r l , x , x∗ t t) ;
26 /∗ T e s t i f round t o n e a r e s t a c h i e v e d ∗ /
27 i f (r r i . rh == (r r i . rh + (r r i . r l ∗ rndcst . d)))
28 return r r i . rh ;
29 e lse
30 return s c s t a n r n (x) ;
31 }
32 e lse {
33 /∗ Otherwi s e : Range r e d u c t i o n then s t a n d a r d e v a l u a t i o n ∗ /
34 r r i . x=x ;
35 r r i . func t ion=TAN;
36 ComputeTrigWithArgred(& r r i) ;
37

38 /∗ T e s t i f round t o n e a r e s t a c h i e v e d ∗ /
39 i f (r r i . rh == (r r i . rh + (r r i . r l ∗ RN CST TAN CASE3)))
40 i f (r r i . changesign) return −r r i . rh ; e lse return r r i . rh ;
41 e lse
42 return s c s t a n r n (x) ;
43 }
44 }

113

There is a peculiarity in lines 19 and 20: We compute the rounding constant dynamically, out of
the value of x. The idea here is that in the neighborhood of zero, both tan and its approximation are
equivalent to x with no order-2 term, therefore the relative error ε is equivalent to x2 and therefore ε/x
will vanish as x → 0 (of course, in the presence of rounding error this has to be proven more rigorously
- we will use Gappa below). As the error constant is computed out of ε (see Theorem 21 page 39), for x
sufficiently small we can compute e out of x and get a finer rounding constant, hence a lower probability
of going through the accurate phase.

The lines 19-20 implement
rndcst ≈ 1 + 2−2|x|

with
rndcst ≥ 1 + 2−2|x|

ensured by line 20.
To prove that that this rounding constant is correct, we just have to check that it fulills the require-

ments of Theorem 21.
Let us note εTanCase2 simply ε in this section. First, we compute in Gappa (file

maple/trigoTanCase2.gappa below), using the same constants (produced by the same Maple) as in the

C code, a bound M on
ε

|x| . We find that, for x < 2−4, we have

εTanCase2 < 2−60.9

(hence the k of Theorem 21 may be chosen as k = 7) and

ε

|x| < M = 2−56.5.

Or,
|x| > ε/M

Therefore,
rndcst > 1 + 2−2/Mε

.

It is now trivial to check that 2−2/M >
254

(1− 2−7)(1− 2−53)
, therefore for any x the value of rndcst

thus computed allows to determine correct rounding according to Theorem 21.
Note that the computation of the rounding constant, although complex, is performed in integer

arithmetic and independently of the evaluation of the polynomial. Therefore both computations may
be carried out in parallel in a superscalar processor.

The input to Gappa is as follows. Note that it needs a bound on
p(x)− tan(x)

x tan(x)
which has been

computed as an infinite norm in Maple.

Listing 9.26: Gappa input file to prove the previous bounds on εTanCase2 and εTanCase2/x
Usage : You need t o r e p l a c e a few c o n s t a n t s (b e g i n n i n g by) by n u m e r i c a l
v a l u e s . Running t h e t r i g o . mpl Maple s c r i p t w i l l g e n e r a t e a
TEMPTRIG/ tanCase2 . s e d s e d s c r i p t t h a t d o e s i t .
Then s e d − f TEMPTRIG/ TanCase2 . s e d t r i g o T a n C a s e 2 . gappa | gappa > / dev / n u l l

NOTATION CONVENTION
V a r i a b l e s t h a t c o r r e s p o n d t o doub l e−p r e c i s i o n v a r i a b l e s in t h e c o d e b e g i n with a s m a l l

l e t t e r
Other v a r i a b l e s b e g i n with a c a p i t a l l e t t e r .
Otherwi s e a v o i d u n d e r s c o r e s a s t h e y a r e p a i n f u l t o c a r r y on t o LaTeX :)

D e f i n i t i o n o f t h e p o l y n o m i a l c o n s t a n t s :
t11 = <f loa t64ne >(t 1 1) ;
t 9 = <f loa t64ne >(t 9) ;
t 7 = <f loa t64ne >(t 7) ;
t 5 = <f loa t64ne >(t 5) ;

114

t3h = <f loa t64ne >(t 3 h) ;
t 3 l = <f loa t64ne >(t 3 l) ;

##

F i r s t , a t r a n s c r i p t i o n o f t h e a c t u a l computa t i on , which c o u l d (and
s h o u l d e v e n t u a l l y) be g e n e r a t e d a u t o m a t i c a l l y from t h e a c t u a l c o d e

−−−−−−−−−−−−−−−−−−−−−Code c u t from t a n r n :
x2 = x∗x ;
x2 <f loa t64ne>= x ∗ x ;
X2 = x∗x ;

p5 = t5 + x2 ∗ (t7 + x2 ∗ (t9 + x2∗ t11)) ;
p5 <f loa t64ne>= t5 + x2 ∗ (t7 + x2 ∗ (t9 + x2∗ t11)) ;
P5 = t5 + X2∗ (t7 + X2∗ (t9 + X2∗ t11)) ;

t t = x2 ∗ (t3h + (t 3 l + x2∗p5)) ;
t t <f loa t64ne>= x2 ∗ (t3h + (t 3 l + x2∗p5)) ;
Tt = X2∗ (t3h + (t 3 l + X2∗p5)) ;

Add12 (r r i . rh , r r i . r l , x , x∗ t t) ;
rdd = x + <f loa t64ne >(x∗ t t) ; # The Add12 i s e x a c t

Poly = x+x∗Tt ;

eps i lon =(rdd − TanX) /TanX ;

{
x in [1 b−30, xmax]

/\ (Poly − TanX) /TanX in [− maxEpsApprox , maxEpsApprox]
/\ ((Poly − TanX) /TanX) /x in [− maxEpsApproxOverX , maxEpsApproxOverX]

−>

eps i lon in ?
/\
eps i lon/x in [−1b−56 ,1b−56]

}

Use a d i cho tomy on x t o g e t an i n t e r v a l o f e p s i l o n / x
eps i lon/x $ x ;

The u s u a l h i n t f o r r e l a t i v e e r r o r s , wi th an a d d i t i o n a l / x∗x so t h a t Gappa u s e s t h e Maple−
computed m a t h e m a t i c a l bound

(rdd − TanX) /TanX −> (rdd − Poly) /Poly + (((Poly − TanX) /TanX) /x) ∗x + ((rdd − Poly) /Poly) ∗
((Poly − TanX) /TanX) ;

(rdd − Poly) /Poly −> ((< f loa t64ne >(x∗ t t) − x∗Tt) / x) ∗ (x/Poly) ;

I ’m not s u r e I u n d e r s t a n d why t h i s one i m p r o ve s t h e r e s u l t
(< f loa t64ne >(x∗ t t) − x∗Tt) /x −> ((< f loa t64ne >(x∗ t t) − x∗ t t) /(x∗ t t)) ∗ t t + (t t − Tt) ;

Easy h i n t s
x/Poly −> 1/(Poly/x) ;
Poly/x −> 1+Tt ;

9.6.3 RU mode

Listing 9.27: Exceptional cases for tangent RU
1 double tan ru (double x) {
2 double epsi lon , p5 , t t , x2 ;
3 db number x s p l i t ;
4 r r i n f o r r i ;
5

6 x s p l i t . d=x ;
7 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
8

9 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
10 i f (r r i . absxhi>=0x7f f00000) {
11 x s p l i t . l =0 xff f8000000000000LL ;
12 return x s p l i t . d − x s p l i t . d ;
13 }
14

115

15 i f (r r i . absxhi < XMAX TAN CASE2) {
16 i f (r r i . absxhi < XMAX RETURN X FOR TAN) {
17 i f (x<=0.)
18 return x ;
19 e lse {
20 x s p l i t . l ++;
21 return x s p l i t . d ;
22 }
23 }
24 e lse {
25 /∗ F a s t T a y l o r s e r i e s ∗ /
26 x2 = x∗x ;
27 p5 = t5 . d + x2 ∗ (t7 . d + x2 ∗ (t9 . d + x2∗ t11 . d)) ;
28 t t = x2 ∗ (t3h . d + (t 3 l . d +x2∗p5)) ;
29 Add12 (r r i . rh , r r i . r l , x , x∗ t t) ;
30

31 /∗ TODO dynamic c o m p u t a t i o n o f e r r o r c o n s t a n t ∗ /
32 TEST AND RETURN RU(r r i . rh , r r i . r l , EPS TAN CASE2) ;
33

34 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
35 return s c s t a n r u (x) ;
36 }
37 }
38 e lse {
39 /∗ Normal c a s e : Range r e d u c t i o n then s t a n d a r d e v a l u a t i o n ∗ /
40 r r i . x=x ;
41 r r i . func t ion=TAN;
42 ComputeTrigWithArgred(& r r i) ;
43 eps i lon=EPS TAN CASE3 ;
44 i f (r r i . changesign) {
45 r r i . rh= −r r i . rh ;
46 r r i . r l=− r r i . r l ;
47 }
48 }
49

50 TEST AND RETURN RU(r r i . rh , r r i . r l , eps i lon) ;
51

52 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
53 return s c s t a n r u (x) ;
54 }

9.6.4 RD mode

Listing 9.28: Exceptional cases for tangent RD
1 double tan rd (double x) {
2 double epsi lon , p5 , t t , x2 ;
3 r r i n f o r r i ;
4 db number x s p l i t ;
5

6

7 x s p l i t . d=x ;
8 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
9

10 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
11 i f (r r i . absxhi>=0x7f f00000) {
12 x s p l i t . l =0 xff f8000000000000LL ;
13 return x s p l i t . d − x s p l i t . d ;
14

15 }
16

17 i f (r r i . absxhi < XMAX TAN CASE2) {
18 i f (r r i . absxhi < XMAX RETURN X FOR TAN) {
19 i f (x>=0.)
20 return x ;
21 e lse {
22 x s p l i t . l ++;
23 return x s p l i t . d ;
24 }
25 }
26

27 /∗ F a s t T a y l o r s e r i e s ∗ /
28 x2 = x∗x ;
29 p5 = t5 . d + x2 ∗ (t7 . d + x2 ∗ (t9 . d + x2∗ t11 . d)) ;
30 t t = x2 ∗ (t3h . d + (t 3 l . d +x2∗p5)) ;
31 Add12 (r r i . rh , r r i . r l , x , x∗ t t) ;

116

32

33 TEST AND RETURN RD(r r i . rh , r r i . r l , EPS TAN CASE2) ;
34

35 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
36 return s c s t a n r d (x) ;
37 }
38

39 e lse {
40 /∗ normal c a s e : Range r e d u c t i o n then s t a n d a r d e v a l u a t i o n ∗ /
41 r r i . x=x ;
42 r r i . func t ion=TAN;
43 ComputeTrigWithArgred(& r r i) ;
44 eps i lon=EPS TAN CASE3 ;
45 i f (r r i . changesign) {
46 r r i . rh= −r r i . rh ;
47 r r i . r l=− r r i . r l ;
48 }
49 }
50

51 TEST AND RETURN RD(r r i . rh , r r i . r l , eps i lon) ;
52

53 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
54 return s c s t a n r d (x) ;
55 }

9.6.5 RZ mode

Listing 9.29: Exceptional cases for tangent RZ
1 double t a n r z (double x) {
2 double epsi lon , p5 , t t , x2 ;
3 r r i n f o r r i ;
4 db number x s p l i t ;
5

6 x s p l i t . d=x ;
7 r r i . absxhi = x s p l i t . i [HI] & 0 x 7 f f f f f f f ;
8

9 /∗ SPECIAL CASES : x =(Nan , I n f) c o s (x) =Nan ∗ /
10 i f (r r i . absxhi>=0x7f f00000) {
11 x s p l i t . l =0 xff f8000000000000LL ;
12 return x s p l i t . d − x s p l i t . d ;
13 }
14

15 i f (r r i . absxhi < XMAX TAN CASE2) {
16 i f (r r i . absxhi < XMAX RETURN X FOR TAN) {
17 return x ;
18 }
19 e lse{
20 /∗ F a s t T a y l o r s e r i e s ∗ /
21 x2 = x∗x ;
22 p5 = t5 . d + x2 ∗ (t7 . d + x2 ∗ (t9 . d + x2∗ t11 . d)) ;
23 t t = x2 ∗ (t3h . d + (t 3 l . d +x2∗p5)) ;
24 Add12 (r r i . rh , r r i . r l , x , x∗ t t) ;
25

26 TEST AND RETURN RZ(r r i . rh , r r i . r l , EPS TAN CASE2) ;
27

28 /∗ i f t h e TEST AND RETURN b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
29 return s c s t a n r z (x) ;
30 }
31 }
32 e lse {
33 /∗ Normal c a s e : Range r e d u c t i o n then s t a n d a r d e v a l u a t i o n ∗ /
34 r r i . x=x ;
35 r r i . func t ion=TAN;
36 ComputeTrigWithArgred(& r r i) ;
37 eps i lon=EPS TAN CASE3 ;
38 i f (r r i . changesign) {
39 r r i . rh = −r r i . rh ;
40 r r i . r l = −r r i . r l ;
41 }
42 }
43

44 TEST AND RETURN RZ(r r i . rh , r r i . r l , eps i lon) ;
45

46 /∗ i f t h e p r e v i o u s b l o c k d idn ’ t r e t u r n a va lue , l aunch a c c u r a t e p h a s e ∗ /
47 return s c s t a n r z (x) ;

117

48 }

9.7 Accurate phase

For simplicity, the accurate phase (in file trigo accurate.c) always computes a Payne and Hanek
range reduction to [−π/4, π/4], then a polynomial evaluation using a Taylor formula.

The results of the search for worst cases are the following so far:

Function interval worst-case accuracy
sin(x) |x| < 2−17 2−126

2−17 ≤ |x| ≤ 2 + 4675
8192 2−119

cos(x) 2−25 ≤ |x| ≤ 2−22 2−142

2−22 ≤ |x| ≤ 2−18 2−136

2−18 ≤ |x| ≤ 2−17 2−114

2−17 ≤ |x| ≤ 12867
8192 2−112

tan(x) 2−25 ≤ |x| ≤ 2−18 2−132

2−18 ≤ |x| ≤ arctan(2) 2−111

The polynomials used are Pade approximation computed in maple/trigo.mpl. This maple script
produces the trigo.h file, and also prints out the approximation error, as follows.

• of degree 25 for sine, with an approximation error lower than 2−125 on [−π/4, π/4], and lower
than 2−158 for |x| < 2−17,

• of degree 26 for cosine, with an approximation error lower than 2−132 on [−π/4, π/4], and lower
than 2−168 for |x| < 2−18,

• of degree 69 for the tangent, with an approximation error lower than 2−30 on [−π/4, π/4], and
lower than 2−163 for |x| < 2−18.

The polynomial evaluation is an Horner scheme in SCS, ensuring better than 2−200 accumulated
roundoff errors. Therefore, the overall evaluation error for the accurate phase is lower than the worst
case accuracy for each function on each interval of the previous table.

This Maple script, and crlibm in general, are designed to allow easy increase of the accuracy, should
cases worst than those of this table be found in the future.

9.8 Performance results

Table 9.1 gives performance results for input numbers with random mantissa and exponents uniformely
distributed between -20 and 40, by the command:
tests/crlibm_testperf sin RN 10000.

In this case the second step was taken 3 times out of 10000.
Which input interval should be used to measure the performance of trigonometric functions is an

open question for us. For larger exponents, libultim is faster than crlibm.
Results for the cosine are very similar. The tangent leaves more room for improvement, as Table 9.2

shows. The culprit is the Div22 procedure, which is very expensive.
Directed rounding mode have a penalty of about 50 cycles on a Pentium III, due to the heavy use of

integer 64-bit arithmetic.

118

Pentium III / Linux Debian sarge / gcc 3.3
min time avg time max time

libm 108 118 142
mpfr 16715 67153 186925
libultim 91 300 1294619
crlibm 81 229 13616

Table 9.1: Absolute timings for the sine (arbitrary units)

Pentium III / Linux Debian sarge / gcc 3.3
min time avg time max time

libm 158 167 183
mpfr 22759 80108 222550
libultim 113 428 1357592
crlibm 105 367 33830

Table 9.2: Absolute timings for the tangent (arbitrary units)

119

120

Chapter 10

The arcsine

This chapter is contributed by Ch. Q. Lauter.
WARNING: This chapter is out-of-sync with the code. The function was completely rewritten using

machine-generated polynomials. Gappa proofs were automatically generated, too, and are available in
the gappa/asin directory. This chapter will be updated soon.

10.1 Overview of the algorithm

The arcsine arcsin (x) =
∞
∑

i=0

(2i−1)!!
(2i+1)·(2i)!! · x

2i+1 is defined on the domain x ∈ [−1; 1]. It is a odd function:

arcsin (−x) = − arcsin (x). Its value in 0 is arcsin (0) = 0. Its derivative tends to infinity when x tends
to 1: lim

x→1

(
d

dx arcsin
)
(x) = ∞; the function’s value in 1 is nevertheless finite: arcsin (1) = π

2 . There is

no simple additive or multiplicative decomposition of this function.
A correctly rounded implementation of arcsin must provide an accuracy of at least 126 bits for |x| ≤

2−18 and of at least 118 bits for the rest of the definition domain in the accurate phase [11].
The algorithm chosen principally consists of a piecewise polynomial approximation either of the

function itself or of a asymptotic development of the function. More precisely, the following is done:

• Special cases, such as |x| > 1, x = ±∞, x = NaN, are handled.

• The sign of the argument x is stripped off because arcsin (x) = sgn (x) · arcsin (|x|). We will
suppose in the following, that x stands for a positive argument, x ≥ 0.

• The argument is classified in one of 10 subdomains of [0; 1]. This means an integer i ∈ [0 . . . 9] is
computed such that x ∈ Ii where

9⋃
i=0

Ii = [0; 1]

i 6= j⇒ Ii ∩ Ij = ∅

i < j⇒ ∀xi ∈ Ii, xj ∈ Ij . xi < xj

• If i = 0, arcsin is directly approximated as

arcsin (x) ≈ x + x3 · p0

(
x2
)

• If 1 ≤ i ≤ 8, an interval midpoint value mi ≈
inf Ii+sup Ii

2 is read in a table. The function is then
approximated as

arcsin (x) ≈ arcsin (mi) + (x−mi) · pi (x−mi)

• If i = 9, arcsin is approximated as

arcsin (x) ≈ p9 (1− x) ·
√

2− 2 · x +
π

2

121

The polynomials pi, 1 ≤ i ≤ 8, for the middle intervals are all of the same degree and, loaded from
a table, can be evaluated in the same computation path. The polynomials p0 and p9 are of different
degree. So there are three distinct paths in the code. In the following, they are referred to as the low,
middle and high path.

Concerning the quick and accurate phase of the implementation, it must mentioned that code and
cache size considerations do not allow for using different coefficient tables for the quick phase polyno-
mials pi quick as for the accurate phase polynomials pi accurate that are obviously longer and must contain
more accurately stored coefficients. So the quick phase polynomials are simply the accurate phase
polynomials truncated to some degree and simplified by omitting low significance components of the
coefficients.

The double precision midpoint values mi ∈ F for the middle path intervals Ii, 1 ≤ i ≤ 8, are chosen
such that a double-double approximation asinmih + asinmil of arcsin (mi) is accurate to at least 121 bits.
This allows for saving up memory in the tables used.

The intervals Ii are not uniformly distributed. This has the disadvantage that the computation of
i cannot be done by simple bitmasks on the arcsine’s argument x but that a dichotomy must be per-
formed. On the other hand, this is the only way of using polynomials for the same degree for all
middle intervals without wasting accuracy for the lower ones. In fact, the derivative of arcsin grows
over-polynomially, which means that the polynomial degrees must increase for equally sized reduced
arguments in order to achieve the same approximation error.

The decomposition of the domain [0; 1] into the Iis is relatively ad-hoc. The given implementation
uses:

Ii = [boundi; boundi+1]

with

bound0 = 0
bound1 = 0.184999942779541015625
bound2 = 0.2997171878814697265625
bound3 = 0.40296268463134765625
bound4 = 0.4932067394256591796875
bound5 = 0.5696849822998046875
bound6 = 0.639662265777587890625
bound7 = 0.696256160736083984375
bound8 = 0.741760730743408203125
bound9 = 0.77999973297119140625

bound10 = 1

One remarks that in order to simplify the dichotomy for computing i, the bounds of the intervals are
chosen all such that the low order word of the double precision numbers they are stored in are 0. See
10.2, page 123 for more precise considerations on that subject.

Let be

zi =

 x if i = 0
x−mi if 1 ≤ i ≤ 8
1− x if i = 9

This value zi is the argument to the polynomial pi. With the given interval bounds, it is bounded by

|z1| ≤ 2−2.434403

|z2| ≤ 2−4.123846

|z3| ≤ 2−4.275849

|z4| ≤ 2−4.470024

|z5| ≤ 2−4.708807

|z6| ≤ 2−4.836970

122

|z7| ≤ 2−5.143210

|z8| ≤ 2−5.457845

|z9| ≤ 2−5.708811

|z10| ≤ 2−2.184423

The degrees of the polynomials pi and the number of double (D), double-double (DD) and triple-
double (TD) coefficients stored in the table are listed below. Here the degree of the polynomial is the
highest exponent of the monomial whose coefficient is not equal to 0. We repeat that the pi are such that

arcsin (x) ≈ x + x3 · p0

(
x2
)

arcsin (x) ≈ arcsin (mi) + (x−mi) · pi (x−mi) , 1 ≤ i ≤ 8

arcsin (x) ≈ p9 (1− x) ·
√

2− 2 · x +
π

2

i quick phase accurate phase D quick DD quick D accur. DD accur. TD accur.
0 8 17 5 4 7 6 5
1 . . . 8 13 34 8 6 20 9 6
9 18 28 10 8 12 9 8

Remark that the listing does not account neither for the 8 double-double values representing approxi-
mations to arcsin (mi) nor for the 8 double precision numbers mi.

Taking into account also these values, the overall table size for both quick and accurate phase is
4640 bytes. Some additional values, for example the triple-double PiHal fh + PiHal fm + PiHal fl ≈ π

2 ,
interval bounds or table indices, are directly compiled into the code. Their overall size is 100 bytes.

10.2 Special case handling, interval discrimination and argument re-
duction

As already mentioned, arcsin is only defined on the domain [−1; 1]. For other arguments, including
±∞ and NaN, NaN must be returned. This is implemented in the code as follows: the sign of x is
stripped off by integer computations and stored in variable sign. Than, |x| is compared to 1 by integer
comparisons.

Listing 10.1: Handling special cases - definition domain
1 /∗ Trans form t h e argument i n t o i n t e g e r ∗ /
2 xdb . d = x ;
3

4 /∗ S p e c i a l c a s e h a n d l i n g ∗ /
5

6 /∗ S t r i p o f f t h e s i g n o f argument x ∗ /
7 i f (xdb . i [HI] & 0 x80000000) s ign = −1; e lse s ign = 1 ;
8 xdb . i [HI] &= 0 x 7 f f f f f f f ;
9

10 /∗ a s i n i s d e f i n e d on −1 <= x <= 1 , e l s e w h e r e i t i s NaN ∗ /
11 i f ((xdb . i [HI] > 0 x3f f00000) | | ((xdb . i [HI] == 0 x3f f00000) && (xdb . i [LO] != 0 x00000000))) {
12 return (x−x) / 0 . 0 ; /∗ r e t u r n NaN ∗ /
13 }

Concerning subnormals in argument and in result of the function, the following is to be mentioned.
The Taylor series of arcsin developed in 0 is

arcsin (x) = x ·
(

1 +
1
6
· x2 +

∞

∑
n=2

(2n− 1)!!
(2n)!! · (2n + 1)

· x2n

)

It is easy to check that
∞
∑

n=2

(2n−1)!!
(2n)!!·(2n+1) · x

2n < 1
3 · x2 for |x| < 1

2 . So for |x| ≤ 2−28, one gets arcsin (x) ≤ x ·(
1 + 1

2 · x2
)
≤ x ·

(
1 + 2−57) < x + 1

2 ulp (x). So the rounding can be decided without even computing

123

the cubic term of the Taylor development. Thus subnormals in argument and in result can be avoided

by performing a simple test on the absolute value of x. In particular, since
∞
∑

n=1

(2n−1)!!
(2n)!!·(2n+1) · x

2n is an

even function, the sign of the truncation rest is known, which allows for simplifications in the directed
rounding modes. Here, only some special care is needed for the case where x is exactly equal to 0.

The test and the rounding are implemented as follows. Let us first consider the round-to-nearest
case:

Listing 10.2: Handling special cases - rounding (to nearest)
1 i f (xdb . i [HI] < 0 x3e300000) {
2 return x ;
3 }

In the round-upward case, a correction of x is potentially necessary. We implement:

Listing 10.3: Handling special cases - rounding (upwards)
1 /∗ I f x == 0 then we g o t t h e a l g e b r a i c r e s u l t a r c s i n (0) = 0
2 I f x < 0 then t h e t r u n c a t i o n r e s t i s n e g a t i v e but l e s s than
3 1 ulp ; we round upwards by r e t u r n i n g x
4 ∗ /
5 i f (x <= 0) return x ;
6 /∗ Otherwi s e t h e r e s t i s p o s i t i v e , l e s s than 1 ulp and t h e
7 image i s not a l g e b r a i c
8 We r e t u r n x + 1 ulp
9 ∗ /

10 xdb . l ++;
11 return xdb . d ;

The other directed rounding cases are analogous to the round-upwards case.
For the discrimination of the argument |x| in the 10 possible approximation intervals Ii, the follow-

ing technique is used. The intervals at the definition domain borders I0 and I9 are first filtered out by
tests checking the high order word of x against the corresponding bounds. If x is found to be in one
of these two intervals, the function is approximated in quick and if needed in accurate phase and the
correctly rounded value is returned. In any case, the two intervals have particular properties in com-
parison to the other 8 middle intervals, so this technique should not be considered as a performance
disadvantage. The polynomial coefficients’ indices in the main coefficient table are fixed in this case
and directly compiled into the code via macros.

If x does not fall in one of the both border intervals I0 and I9, the corresponding interval Ii, 1 ≤ i ≤ 8
is computed by a 3-level dichotomy on the bounds bound2 . . . bound8. Its result is not a number i in
1 ≤ i ≤ 8 but an index i to the main coefficient table. Beginning at the point indexed, the table reads
the midpoint value mi and the polynomial coefficients for the corresponding interval Ii.

The correponding code is the following:

Listing 10.4: Interval discrimination
1 /∗ R e c a s t x ∗ /
2 x = xdb . d ;
3

4 /∗ Find c o r r e s p o n d a n t i n t e r v a l and compute i n d e x t o t h e t a b l e
5 We s t a r t by f i l t e r i n g t h e two s p e c i a l c a s e s around 0 and 1
6 ∗ /
7

8 i f (xdb . i [HI] < BOUND1) {
9

10 – Compute quick and potentially accurate phase polynomial approximation p0 and return –
11

12 }
13

14 i f (xdb . i [HI] > BOUND9) {
15

16 – Reduce the argument, compute quick and potentially accuratephase approximation using p9, reconstruct and return –
17 }
18

19 /∗ G e n e r a l 8 main i n t e r v a l s
20 We can a l r e a d y s u p p o s e t h a t BOUND1 <= x <= BOUND9
21 ∗ /
22

23 i f (xdb . i [HI] < BOUND5) {

124

24 i f (xdb . i [HI] < BOUND3) {
25 i f (xdb . i [HI] < BOUND2) i = TBLIDX2 ; e lse i = TBLIDX3 ;
26 } e lse {
27 i f (xdb . i [HI] < BOUND4) i = TBLIDX4 ; e lse i = TBLIDX5 ;
28 }
29 } e lse {
30 i f (xdb . i [HI] < BOUND7) {
31 i f (xdb . i [HI] < BOUND6) i = TBLIDX6 ; e lse i = TBLIDX7 ;
32 } e lse {
33 i f (xdb . i [HI] < BOUND8) i = TBLIDX8 ; e lse i = TBLIDX9 ;
34 }
35 }
36

37 – Reduce the argument, compute quick and potentially accurate phase polynomial approximation pi and return –

In the case of x being classified in either the middle or the higher intervals Ii, 1 ≤ i ≤ 9, an argument
reduction is to be performed. Let us consider it first for the high path interval I9 and then for the middle
path intervals Ii, 1 ≤ i ≤ 8. In both cases, we will show that the argument reduction is mathematically
exact and that it may not produce a subnormal different from 0.

In the high path, we know that 1 ≥ x > bound9 > 0.77. The argument reduction to be performed
is z = 1 − x. Since 1

2 ≤ x ≤ 2 is verified, we can implement it exactly thanks to Sterbenz’ lemma.
If x is exactly equal to 1 is produces exactly 0. Otherwise, it may not produce a subnormal, because
x ≤ 1− 1

2 · ulp (1) ≤ 1− 2−53. Thus z = 1− x > 2−53 > 2−1021.
In the middle path intervals, the argument reduction to be performed is zi = x − mi. Since |z| ≤

0.058 and x ≥ 0.18, Sterbenz’ lemma is verified in each interval Ii and we can still implement the
argument reduction exactly in double precision arithmetic. Since, x > 0.18 > 1

8 , a similar argument as
the one given above shows that the result of the reduction is either exactly 0 or a non-subnormal double
precision number.

The value mi is read in the main table at the index i computed by the interval discrimination phase.
We implement thus:

Listing 10.5: Argument reduction
1 /∗ Argument r e d u c t i o n
2 i p o i n t s t o t h e i n t e r v a l m i d p o i n t v a l u e in t h e t a b l e
3 ∗ /
4 z = x − t b l [i] ;

Concerning the higher path interval I9 where arcsin is approximated as

arcsin (x) ≈ p9 (1− x) ·
√

2− 2 · x +
π

2

let us remark that 2− 2 · x = 2 · z can also be computed exactly. Trivially, since z less than 21023, the
multiplication by a positive integer power of 2 is errorfree. If z is not exactly 0, its result may not be
subnormal because z cannot.

Since the argument reduction has been shown to be exact, its result can clearly be reused in the
accurate phase.

10.3 Polynomial approximation and reconstruction

10.3.1 Quick phase polynomial approximation and reconstruction

As already mentioned, the quick phase polynomials pi quick are truncated versions of the accurate phase
polynomials pi accurate with coefficients rounded from triple-double to double-double or from double-
double to double. This means simply that not all coefficients are read and used.

Low path - interval I0

The polynomial p0 quick approximates arcsin in the interval I0 as follows:

arcsin (x) ≈ x + x3 · p0 quick

(
x2
)

125

It is of degree 8 with 5 double-double and 4 double precision coefficients.
For arguments |x| ≤ 2−10, the polynomial needs not be evaluated fully to provide enough accuracy.

Here, only its constant and linear term are evaluated. So we get in this case

arcsin (x) ≈ x + x3 ·
(
(c0h + c0l) + x2 · (c1h + c1l)

)
This special path yields to a significant performance gain on average. In fact, since floating point num-
bers are not equispaced but distributed logarithmatically around 0, speeding up a function for low
arguments is worth it.

The square of x, x2 can be computed exactly by use of a Mul12 sequence, which will produce
a double-double xSqh + xSql = x2. The polynomial p0 quick (xSqh + xSql) is evaluated using Horner’s
scheme and neglecting xSql for the 8 higher degree coefficients if these need to be evaluated.

The double-double precision Horner steps are implemented the double-double multiply-and-add
macros MulAdd22 and MulAdd212 (see section 2.3.6, page 24). It is easy to check that the precon-
ditions on the arguments of these macros are verified: x2 is bounded by x2 ≤

(
2−2.434403)2 ≤ 2−4 in

this path. Further, in the order of the Horner evaluation, the coefficients ci of the polynomial are stricly
increasing in magnitude and all less than 1. Concerning the accuracy of this operations, see section
10.4.1, page 132.

Including the test |x|
?
≤ 2−10, the code computing an approximation t5h + t5l ≈ p0 quick

(
x2) reads:

Listing 10.6: Low path quick phase polynomial approximation (higher degrees)
1 Mul12(&xSqh ,& xSql , x , x) ;
2

3 tmp4 = t b l [3] ;
4 tmp5 = t b l [4] ;
5 t4h = tmp4 ;
6 t 4 l = tmp5 ;
7 i f (xdb . i [HI] > EXTRABOUND) {
8 /∗ Double p r e c i s i o n e v a l u a t i o n ∗ /
9 highPoly = t b l [1 5] + xSqh ∗ (t b l [1 7] + xSqh ∗ (t b l [1 9] + xSqh ∗ (t b l [2 1] + xSqh ∗ t b l [2 3])))

;
10

11 /∗ Double−d o u b l e p r e c i s i o n e v a l u a t i o n ∗ /
12 Mul12(& tt1h ,& t t 1 l , xSqh , highPoly) ;
13 Add22(&t1h ,& t 1 l , t b l [1 2] , t b l [1 3] , t t1h , t t 1 l) ;
14

15 MulAdd212(&t2h ,& t 2 l , t b l [9] , t b l [1 0] , xSqh , t1h , t 1 l) ;
16 MulAdd212(&t3h ,& t 3 l , t b l [6] , t b l [7] , xSqh , t2h , t 2 l) ;
17 MulAdd22(&t4h ,& t 4 l , tmp4 , tmp5 , xSqh , xSql , t3h , t 3 l) ;
18 }
19

20 MulAdd22(&t5h ,& t 5 l , t b l [0] , t b l [1] , xSqh , xSql , t4h , t 4 l) ;

Once t5h + t5l are computed, they must be multiplied by x3 and the result must be added to x. The value
x3 is computed approximatively as a double-double xCubeh + xCubel by multiplying x by xSqh + xSql =
x2. This value xCubeh + xCubel is than multiplied by t5h + t5l, yielding to tt6h + tt6l. The last addition
implying x and tt6h + tt6l is implemented in an ad-hoc way by means of two exact additions and a
double precision addition on the lower part of the addition of the higher significant parts. The code
reads:

Listing 10.7: Low path quick phase polynomial approximation (lower degrees)
1 Mul122(&xCubeh,&xCubel , x , xSqh , xSql) ;
2 Mul22(& tt6h ,& t t 6 l , xCubeh , xCubel , t5h , t 5 l) ;
3

4 Add12 (tmp1 , tmp2 , x , t t 6 h) ;
5 tmp3 = tmp2 + t t 6 l ;
6 Add12 (polyh , polyl , tmp1 , tmp3) ;

The obtained polynomial approximation value is then multiplied by the sign of x the argument reduc-
tion had stripped off and the rounding test is performed. If it fails, the accurate phase is launched; see
section 10.3.2, page 129, for its implementation. The code for the last steps in round-to-nearest mode is
given below. The code for the direct rounding modes is analogous. One remarks that the rounding test
constants, computed by the corresponding Maple scripts in function of the relative error bounds to be
shown in section 10.4.1, page 132, are stored also in double precision and also read from the main table.

126

Listing 10.8: Low path quick phase rounding test
1 /∗ M u l t ip l y by s i g n ∗ /
2 asinh = sign ∗ polyh ;
3 asinm = sign ∗ poly l ;
4

5 /∗ Rounding t e s t
6 The RN rounding c o n s t a n t i s a t t b l [3 4]
7 ∗ /
8 i f (asinh == (asinh + (asinm ∗ t b l [3 4])))
9 return asinh ;

10

11 /∗ Launch a c c u r a t e p h a s e ∗ /

Middle path - interval Ii, 1 ≤ i ≤ 8

In the quick phase middle path, i.e. for arguments x ∈ Ii, 1 ≤ i ≤ 8, arcsin is approximated by the
polynomial pi quick as follows:

arcsin (x) ≈ arcsin (mi) + zi · pi quick (zi)

where zi = x−mi is a double precision number. Further an approximation asmih + asmil to arcsin (mi)
is used. It is read in the main table at tbl[i+1] and tbl[i+2] where i is the index computed at the
interval discrimination phase. The polynomial pi quick is of degree 13 with 6 double-double and 8 double
coefficients. It is always evaluated completely by means of Horner’s scheme. Once again, the Mu-
lAdd212 operator allows for evaluating the 5 last double-double steps. The first double-double step
is evaluated in a more ad-hoc way because of the entering only double precision current intermediate
result. The preconditions for the MulAdd212 operator can again be checked easily: zi is bounded in
magnitude by 2−4.123846, the coefficients increase in the order of Horner’s scheme evaluation and are all
less than 1. So in each step, the product of zi and the current value is less than 1

4 the next coefficient
as asked for by the precondition. The multiplication of the result of the polynomial pi quick by zi and the
addition of asmih + asmil can also be considered as a Horner step and are therefore implemented using
the MulAdd212 macro, too.

The corresponding evaluation code reads thus:

Listing 10.9: Middle path quick phase polynomial approximation
1 highPoly = t b l [i +21] + z ∗ (t b l [i +23] + z ∗ (t b l [i +25] + z ∗ (
2 t b l [i +27] + z ∗ (t b l [i +29] + z ∗ (t b l [i +31] + z ∗ (
3 t b l [i +33] + z ∗ t b l [i +35])))))) ;
4

5 Mul12(& tt1h ,& t t 1 l , z , highPoly) ;
6 Add22(&t1h ,& t 1 l , t b l [i +18] , t b l [i +19] , t t1h , t t 1 l) ;
7

8 MulAdd212(&t2h ,& t 2 l , t b l [i +15] , t b l [i +16] , z , t1h , t 1 l) ;
9 MulAdd212(&t3h ,& t 3 l , t b l [i +12] , t b l [i +13] , z , t2h , t 2 l) ;

10 MulAdd212(&t4h ,& t 4 l , t b l [i +9] , t b l [i +10] , z , t3h , t 3 l) ;
11 MulAdd212(&t5h ,& t 5 l , t b l [i +6] , t b l [i +7] , z , t4h , t 4 l) ;
12 MulAdd212(&t6h ,& t 6 l , t b l [i +3] , t b l [i +4] , z , t5h , t 5 l) ;
13 MulAdd212(&polyh ,& polyl , t b l [i +1] , t b l [i +2] , z , t6h , t 6 l) ;

One remarks that in this case, since the polynomial evaluation code is the same for all intervals Ii,
1 ≤ i ≤ 8, the coefficients read in the table are not at fixed indices but indexed by i, value computed in
the interval discrimination phase.

The result of this approximation whose accuracy will be analysed in section 10.4.1, page 132, is then
multiplied by the sign of the the original argument and submitted to the rounding test whose rounding
constant is read in the main table dependingly on the interval Ii. The corresponding code for round-to-
nearest is given below. The directed rounding cases are analogous.

Listing 10.10: Middle path quick phase rounding test
1 asinh = sign ∗ polyh ;
2 asinm = sign ∗ poly l ;
3

4 /∗ Rounding t e s t
5 The RN rounding c o n s t a n t i s a t t b l [i +59]
6 ∗ /
7 i f (asinh == (asinh + (asinm ∗ t b l [i +59])))

127

8 return asinh ;
9

10 /∗ Launch a c c u r a t e p h a s e ∗ /

High path - interval I9

In the high path arcsin is approximated as

arcsin (x) ≈ p9 quick (z) ·
√

2 · z + π

2

Herein, z = 1 − x is the exactly computed double precision reduced argument. The constant π
2 is

approximated by the double-double number PiHal fh + PiHal fm = π
2 · (1 + ε) with |ε| ≤ 2−109. It

has already been shown that z and twoZ = 2 · z can be computed exactly. The square root
√

2 · z is
approximated in double-double precision using the sqrt12 macro operator described in section 2.6.1,
page 35.

The polynomial p9 quick has degree 18 with 9 double-double and 10 double precision coefficients.
Its constant term is exactly −1, so this coefficient is not stored in the table. It is always evaluated
completely. Horner’s scheme is used and implemented by means of the MulAdd212 operator whose
precodnitions can once again easily be verified by an analogous argument as the one given above for
low and middle paths.

The corresponding code reads:

Listing 10.11: High path quick phase polynomial approximation
1 highPoly = t b l [TBLIDX10+24] + z ∗ (t b l [TBLIDX10+26] + z ∗ (t b l [TBLIDX10+28] + z ∗ (
2 t b l [TBLIDX10+30] + z ∗ (t b l [TBLIDX10+32] + z ∗ (t b l [TBLIDX10+34] + z ∗ (
3 t b l [TBLIDX10+36] + z ∗ (t b l [TBLIDX10+38] + z ∗ (t b l [TBLIDX10+40] + z ∗
4 t b l [TBLIDX10 +42])))))))) ;
5

6 Mul12(& tt1h ,& t t 1 l , z , highPoly) ;
7 Add22(&t1h ,& t 1 l , t b l [TBLIDX10 +21] , t b l [TBLIDX10 +22] , t t1h , t t 1 l) ;
8

9 MulAdd212(&t2h ,& t 2 l , t b l [TBLIDX10 +18] , t b l [TBLIDX10 +19] , z , t1h , t 1 l) ;
10 MulAdd212(&t3h ,& t 3 l , t b l [TBLIDX10 +15] , t b l [TBLIDX10 +16] , z , t2h , t 2 l) ;
11 MulAdd212(&t4h ,& t 4 l , t b l [TBLIDX10 +12] , t b l [TBLIDX10 +13] , z , t3h , t 3 l) ;
12 MulAdd212(&t5h ,& t 5 l , t b l [TBLIDX10 +9] , t b l [TBLIDX10 +10] , z , t4h , t 4 l) ;
13 MulAdd212(&t6h ,& t 6 l , t b l [TBLIDX10 +6] , t b l [TBLIDX10 +7] , z , t5h , t 5 l) ;
14 MulAdd212(&t7h ,& t 7 l , t b l [TBLIDX10 +3] , t b l [TBLIDX10 +4] , z , t6h , t 6 l) ;
15 MulAdd212(&t8h ,& t 8 l , t b l [TBLIDX10 +0] , t b l [TBLIDX10 +1] , z , t7h , t 7 l) ;
16 MulAdd212(&polyh ,& polyl ,−1 ,0 , z , t8h , t 8 l) ;

The result polyh + polyl of the polynomial approximation is multiplied by sqrtzh + sqrtzl, the double-
double approximation of

√
2 · z by the double-double multiplication operator Mul22 and then added

to PiHal fh + PiHal fm using the double-double addition operator Add22. In this addition no catas-
trophic cancellation can occur: since x > 0.78 >

√
2

2 in this interval, the result of the addition, a
good approximation to arcsin (x) will always be greater than π

4 as per the monotony of arcsine. So
pTimesSh + pTimesSl ≈ p9 quick (z) ·

√
2 · z will always be less than 1

2 · (PiHal fh + PiHal fm). In this argu-
mentation, approximation errors can be neglected since the bound to be shown is not tight at all.

The corresponding implementation is the following:

Listing 10.12: High path: square root extraction and reconstruction
1 twoZ = 2 ∗ z ;
2 s q r t 1 2 (& sqrtzh ,& s q r t z l , twoZ) ;
3

4 /∗ M u l t ip l y p (z) by s q r t (2∗ z) and add Pi / 2 ∗ /
5

6 Mul22(&pTimesSh ,& pTimesSl , polyh , polyl , sqrtzh , s q r t z l) ;
7 Add22(& al lh ,& a l l l , PIHALFH,PIHALFM, pTimesSh , pTimesSl) ;

In this path, too, the obtained result is multiplied by the sign which had stripped off from the func-
tion’s argument x and submitted to the rounding test using a rounding constant read in the main table.
The code reads for round-to-nearest mode:

128

Listing 10.13: Multiplication of the function’s sign, rounding test (round-to-nearest)
1 asinh = sign ∗ a l l h ;
2 asinm = sign ∗ a l l l ;
3

4 /∗ Rounding t e s t
5 The RN rounding c o n s t a n t i s a t t b l [TBLIDX10+54]
6 ∗ /
7 i f (asinh == (asinh + (asinm ∗ t b l [TBLIDX10 +54])))
8 return asinh ;
9

10 /∗ Launch a c c u r a t e p h a s e ∗ /

10.3.2 Accurate phase polynomial approximation and reconstruction

As already mentioned, in the accurate phase, the polynomials pi accurate for the different intervals Ii whose
coefficient are stored in the main table, are evaluated completely. This evaluation is done in double,
double-double and triple-double precision using mainly Horner’s scheme.

The accurate phase is implemented in three different C functions corresponding to the low, middle
and high paths. These functions return a triple-double approximate asinh + asinm + asinl to arcsin
which is accurate enough that the correct rounded result for arcsin is obtained when rounding the
approximate. The final rounding for itself is implemented in the four functions containing the quick
phase code and the call to the accurate phase for the four possible rounding modes. In round-to-nearest
mode, for the high path the code reads:

Listing 10.14: Final rounding of the accurate phase result (RN)
1 /∗ Launch a c c u r a t e p h a s e ∗ /
2

3 a s i n a c c u r a t e h i g h e r (&asinh ,&asinm ,& a s i n l , z , s ign) ;
4

5 ReturnRoundToNearest3 (asinh , asinm , a s i n l) ;

For the other rounding modes and evaluation paths the code is completely analogous.

Low path - interval I0

For the low path, the polynomial p0 accurate approximates arcsin as follows:

arcsin (x) ≈ x + x3 · p0 accurate

(
x2
)

is of degree 17 with 7 double precision coefficients and Horner steps, 6 double-double coefficients and
steps and 5 triple-double coefficients and steps. It reuses the value xSqh + xSql = x2 which has already
been computed in the quick phase. The lower significant term xSql is neglected for the first 8 double
precision (and early double-double precision) steps. The double-double Horner steps are implemented
using the MulAdd22 sequence. The triple-double steps used separate Add33 and Mul33 macros.
The value x3 is computed out of x and x2 in triple-double precision using the Mul123 operator. It is
multiplied by the polynomial’s result in triple-double by a Mul33. The resulting triple-double is added
to x using the Add133 macro.

In addition to the final renormalization which is needed before correct rounding to double precision
is performed, one intermediate renormalization is necessary. Otherwise overlap in the triple-double
intermediate values would deteriorate the accuracy to much. See section 10.4.2, page 132 for the overlap
bounding.

The code of the low path accurate phase polynomial approximation is the following:

Listing 10.15: Low path accurate phase polynomial approximation
1 highPoly = t b l [2 8] + xSqh ∗ (t b l [2 9] + xSqh ∗ (t b l [3 0] + xSqh ∗ (t b l [3 1] + xSqh ∗ (t b l [3 2] +

xSqh ∗ t b l [3 3])))) ;
2

3 /∗ Double−d o u b l e c o m p u t a t i o n s ∗ /
4

5 Mul12(& tt1h ,& t t 1 l , xSqh , highPoly) ;
6 Add22(&t1h ,& t 1 l , t b l [2 7] , 0 , t t1h , t t 1 l) ;
7

129

8 MulAdd22(&t2h ,& t 2 l , t b l [2 5] , t b l [2 6] , xSqh , xSql , t1h , t 1 l) ;
9 MulAdd22(&t3h ,& t 3 l , t b l [2 3] , t b l [2 4] , xSqh , xSql , t2h , t 2 l) ;

10 MulAdd22(&t4h ,& t 4 l , t b l [2 1] , t b l [2 2] , xSqh , xSql , t3h , t 3 l) ;
11 MulAdd22(&t5h ,& t 5 l , t b l [1 9] , t b l [2 0] , xSqh , xSql , t4h , t 4 l) ;
12 MulAdd22(&t6h ,& t 6 l , t b l [1 7] , t b l [1 8] , xSqh , xSql , t5h , t 5 l) ;
13 MulAdd22(&t7h ,& t 7 l , t b l [1 5] , t b l [1 6] , xSqh , xSql , t6h , t 6 l) ;
14

15 /∗ T r i p l e−d o u b l e c o m p u t a t i o n s ∗ /
16

17 Mul23(& tt8h ,&tt8m ,& t t 8 l , xSqh , xSql , t7h , t 7 l) ;
18 Add33(&t8h ,&t8m,& t 8 l , t b l [1 2] , t b l [1 3] , t b l [1 4] , t t8h , tt8m , t t 8 l) ;
19 Mul233(& tt9h ,&tt9m ,& t t 9 l , xSqh , xSql , t8h , t8m , t 8 l) ;
20 Add33(&t9h ,&t9m,& t 9 l , t b l [9] , t b l [1 0] , t b l [1 1] , t t9h , tt9m , t t 9 l) ;
21 Mul233(& tt10h ,&tt10m ,& t t 1 0 l , xSqh , xSql , t9h , t9m , t 9 l) ;
22 Add33(&t10h ,&t10m,& t 1 0 l , t b l [6] , t b l [7] , t b l [8] , t t10h , tt10m , t t 1 0 l) ;
23 Mul233(& tt11hover ,& tt11mover ,& t t 1 1 l o v e r , xSqh , xSql , t10h , t10m , t 1 0 l) ;
24

25 Renormalize3(& tt11h ,&tt11m ,& t t 1 1 l , t t11hover , tt11mover , t t 1 1 l o v e r) ;
26

27 Add33(&t11h ,&t11m,& t 1 1 l , t b l [3] , t b l [4] , t b l [5] , t t11h , tt11m , t t 1 1 l) ;
28 Mul233(& tt12h ,&tt12m ,& t t 1 2 l , xSqh , xSql , t11h , t11m , t 1 1 l) ;
29 Add33(&t12h ,&t12m,& t 1 2 l , t b l [0] , t b l [1] , t b l [2] , t t12h , tt12m , t t 1 2 l) ;
30

31 Mul123(&xCubeh,&xCubem,&xCubel , x , xSqh , xSql) ;
32

33 Mul33(& tt13h ,&tt13m ,& t t 1 3 l , xCubeh , xCubem , xCubel , t12h , t12m , t 1 2 l) ;
34 Add133(&t13h ,&t13m,& t 1 3 l , x , t t13h , tt13m , t t 1 3 l) ;
35

36 Renormalize3(&polyh ,&polym,& polyl , t13h , t13m , t 1 3 l) ;
37 ∗asinh = sign ∗ polyh ;
38 ∗asinm = sign ∗ polym ;
39 ∗ a s i n l = sign ∗ poly l ;

Middle path - interval Ii, 1 ≤ i ≤ 8

For the middle path for x ∈ Ii, 1 ≤ i ≤ 8, we use the following polynomial approximation by pi accurate:

arcsin (x) ≈ (asmih + asmil) + zi · pi accurate (zi)

where zi = x−mi and asmih + asmil = arcsin (mi) · (1 + ε) with |ε| ≤ 2−121 by construction of mi.
The polynomial pi accurate is of degree 34. In order of decreasing monomial degrees, its coefficients

are stored on 20 double precision numbers, 9 double-double precision numbers and 6 triple-double
precision numbers. It is completely evaluated using Horner’s scheme using the same intermediate
precision for the computation as the one used for the coefficients. The last multiplication by z and the
addition of asmih + asmil can be considered as an additional Horner step and is of course performed in
triple-double precision.

The double-double precision steps are implemented using the MulAdd212 macro. The triple-
double steps use separate addition and multiplication operators. In particular, Add33 and Mul133 come
at hand. Overall, two triple-double renormalizations are necessary: one before final rounding can be
performed and one other for avoiding a too great overlap in the components of the intermediate triple-
double values. See section 10.4.2, page 132 for the overlap bounding.

The coefficients of the polynomial pi accurate and the value asmih + asmil are read in the main table using
the index i computated at the interval discrimination phase. The reduced argument zi has already been
computed exactly at the quick phase and can be reused.

The implementation of the accurate phase middle path polynomial approximation reads:

Listing 10.16: Middle path accurate phase polynomial approximation
1 highPoly = t b l [i +39] + z ∗ (t b l [i +40] + z ∗ (t b l [i +41] + z ∗ (t b l [i +42] + z ∗ (
2 t b l [i +43] + z ∗ (t b l [i +44] + z ∗ (t b l [i +45] + z ∗ (t b l [i +46] + z ∗ (
3 t b l [i +47] + z ∗ (t b l [i +48] + z ∗ (t b l [i +49] + z ∗ (t b l [i +50] + z ∗ (
4 t b l [i +51] + z ∗ (t b l [i +52] + z ∗ (t b l [i +53] + z ∗ (t b l [i +54] + z ∗ (
5 t b l [i +55] + z ∗ (t b l [i +56] + z ∗ (t b l [i +57] + z ∗ t b l [i +58])))))))))))))))))) ;
6

7

8 /∗ Double−d o u b l e c o m p u t a t i o n s ∗ /
9

10 Mul12(& tt1h ,& t t 1 l , z , highPoly) ;
11 Add22(&t1h ,& t 1 l , t b l [i +37] , t b l [i +38] , t t1h , t t 1 l) ;

130

12

13 MulAdd212(&t2h ,& t 2 l , t b l [i +35] , t b l [i +36] , z , t1h , t 1 l) ;
14 MulAdd212(&t3h ,& t 3 l , t b l [i +33] , t b l [i +34] , z , t2h , t 2 l) ;
15 MulAdd212(&t4h ,& t 4 l , t b l [i +31] , t b l [i +32] , z , t3h , t 3 l) ;
16 MulAdd212(&t5h ,& t 5 l , t b l [i +29] , t b l [i +30] , z , t4h , t 4 l) ;
17 MulAdd212(&t6h ,& t 6 l , t b l [i +27] , t b l [i +28] , z , t5h , t 5 l) ;
18 MulAdd212(&t7h ,& t 7 l , t b l [i +25] , t b l [i +26] , z , t6h , t 6 l) ;
19 MulAdd212(&t8h ,& t 8 l , t b l [i +23] , t b l [i +24] , z , t7h , t 7 l) ;
20 MulAdd212(&t9h ,& t 9 l , t b l [i +21] , t b l [i +22] , z , t8h , t 8 l) ;
21

22 /∗ T r i p l e−d o u b l e c o m p u t a t i o n s ∗ /
23

24 Mul123(& tt10h ,&tt10m ,& t t 1 0 l , z , t9h , t 9 l) ;
25 Add33(&t10h ,&t10m,& t 1 0 l , t b l [i +18] , t b l [i +19] , t b l [i +20] , t t10h , tt10m , t t 1 0 l) ;
26 Mul133(& tt11h ,&tt11m ,& t t 1 1 l , z , t10h , t10m , t 1 0 l) ;
27 Add33(&t11h ,&t11m,& t 1 1 l , t b l [i +15] , t b l [i +16] , t b l [i +17] , t t11h , tt11m , t t 1 1 l) ;
28 Mul133(& tt12h ,&tt12m ,& t t 1 2 l , z , t11h , t11m , t 1 1 l) ;
29 Add33(&t12h ,&t12m,& t 1 2 l , t b l [i +12] , t b l [i +13] , t b l [i +14] , t t12h , tt12m , t t 1 2 l) ;
30 Mul133(& tt13hover ,& tt13mover ,& t t 1 3 l o v e r , z , t12h , t12m , t 1 2 l) ;
31

32 Renormalize3(& tt13h ,&tt13m ,& t t 1 3 l , t t13hover , tt13mover , t t 1 3 l o v e r) ;
33

34 Add33(&t13h ,&t13m,& t 1 3 l , t b l [i +9] , t b l [i +10] , t b l [i +11] , t t13h , tt13m , t t 1 3 l) ;
35 Mul133(& tt14h ,&tt14m ,& t t 1 4 l , z , t13h , t13m , t 1 3 l) ;
36 Add33(&t14h ,&t14m,& t 1 4 l , t b l [i +6] , t b l [i +7] , t b l [i +8] , t t14h , tt14m , t t 1 4 l) ;
37 Mul133(& tt15h ,&tt15m ,& t t 1 5 l , z , t14h , t14m , t 1 4 l) ;
38 Add33(&t15h ,&t15m,& t 1 5 l , t b l [i +3] , t b l [i +4] , t b l [i +5] , t t15h , tt15m , t t 1 5 l) ;
39 Mul133(& tt16h ,&tt16m ,& t t 1 6 l , z , t15h , t15m , t 1 5 l) ;
40 Add233(&t16h ,&t16m,& t 1 6 l , t b l [i +1] , t b l [i +2] , t t16h , tt16m , t t 1 6 l) ;
41

42 Renormalize3(&polyh ,&polym,& polyl , t16h , t16m , t 1 6 l) ;
43 ∗asinh = sign ∗ polyh ;
44 ∗asinm = sign ∗ polym ;
45 ∗ a s i n l = sign ∗ poly l ;

High path - interval I9

On the high path interval I9, computing the approximation for arcsin means evaluating the polynomial
p9 accurate (z) and calculating a triple-double approximation to

√
2 · z where z is the reduced argument.

The function can then be reconstructed as follows:

arcsin (x) ≈ p9 accurate (z) ·
√

2 · z + (PiHal fh + PiHal fm + PiHal fl)

where PiHal fh + PiHal fm + PiHal fl =
π
2 · (1 + ε), |ε| ≤ 2−164

The polynomial p9 accurate (z) is of degree 28 with 12 double precision, 9 double-double precision and
8 triple-double precision coefficients. The intermediate precisions used correspond to the precision the
coefficients are stored in. The polynomial is completely evaluated in Horner’s scheme. Once again, for
doing so, the MulAdd212 macro is used for the double-double steps whilst the triple-double stage is
implemented by means of separate additions and multiplications mainly expressed with Add33 and
Mul133 operators.

The square root extraction yielding to the triple-double approximate sqrtzh + sqrtzm + sqrtzl =√
2 · z · (1 + ε) is implemented using the sqrt13 macro. Unfortunately, this means recomputing some

steps of the square root extraction already computed in the quick phase in the sqrt12 macro. The choice
made is motivated by implementatory reasons.

The multiplication of the polynomial’s value and of the square root is performed in triple-double
precision by means of the Mul33 macro. The following addition with the triple-double approximate of
π
2 is implemented using the Add33 operator.

Overall, three renormalizations are needed. One of them renormalizes the final result, two allow for
sufficient overlap bounding. Remark that the square root extraction by sqrt13 comprises an additional
renormalization; see section 2.6.1, page 35 for further details. The overlap bounds will be given in
section 10.4.2, page 132.

The code implementing this accurate phase path is the following:

Listing 10.17: High path accurate phase polynomial approximation
1 highPoly = t b l [TBLIDX10+42] + z ∗ (t b l [TBLIDX10+43] + z ∗ (t b l [TBLIDX10+44] + z ∗ (
2 t b l [TBLIDX10+45] + z ∗ (t b l [TBLIDX10+46] + z ∗ (t b l [TBLIDX10+47] + z ∗ (

131

3 t b l [TBLIDX10+48] + z ∗ (t b l [TBLIDX10+49] + z ∗ (t b l [TBLIDX10+50] + z ∗ (
4 t b l [TBLIDX10+51] + z ∗ (t b l [TBLIDX10+52] + z ∗ t b l [TBLIDX10 +53])))))))))) ;
5

6 /∗ Double−d o u b l e c o m p u t a t i o n s ∗ /
7

8 Mul12(& tt1h ,& t t 1 l , z , highPoly) ;
9 Add22(&t1h ,& t 1 l , t b l [TBLIDX10 +40] , t b l [TBLIDX10 +41] , t t1h , t t 1 l) ;

10

11 MulAdd212(&t2h ,& t 2 l , t b l [TBLIDX10 +38] , t b l [TBLIDX10 +39] , z , t1h , t 1 l) ;
12 MulAdd212(&t3h ,& t 3 l , t b l [TBLIDX10 +36] , t b l [TBLIDX10 +37] , z , t2h , t 2 l) ;
13 MulAdd212(&t4h ,& t 4 l , t b l [TBLIDX10 +34] , t b l [TBLIDX10 +35] , z , t3h , t 3 l) ;
14 MulAdd212(&t5h ,& t 5 l , t b l [TBLIDX10 +32] , t b l [TBLIDX10 +33] , z , t4h , t 4 l) ;
15 MulAdd212(&t6h ,& t 6 l , t b l [TBLIDX10 +30] , t b l [TBLIDX10 +31] , z , t5h , t 5 l) ;
16 MulAdd212(&t7h ,& t 7 l , t b l [TBLIDX10 +28] , t b l [TBLIDX10 +29] , z , t6h , t 6 l) ;
17 MulAdd212(&t8h ,& t 8 l , t b l [TBLIDX10 +26] , t b l [TBLIDX10 +27] , z , t7h , t 7 l) ;
18 MulAdd212(&t9h ,& t 9 l , t b l [TBLIDX10 +24] , t b l [TBLIDX10 +25] , z , t8h , t 8 l) ;
19

20 /∗ T r i p l e−d o u b l e c o m p u t a t i o n s ∗ /
21

22 Mul123(& tt10h ,&tt10m ,& t t 1 0 l , z , t9h , t 9 l) ;
23 Add33(&t10h ,&t10m,& t 1 0 l , t b l [TBLIDX10 +21] , t b l [TBLIDX10 +22] , t b l [TBLIDX10 +23] , t t10h , tt10m , t t 1 0 l) ;
24 Mul133(& tt11h ,&tt11m ,& t t 1 1 l , z , t10h , t10m , t 1 0 l) ;
25 Add33(&t11h ,&t11m,& t 1 1 l , t b l [TBLIDX10 +18] , t b l [TBLIDX10 +19] , t b l [TBLIDX10 +20] , t t11h , tt11m , t t 1 1 l) ;
26 Mul133(& tt12h ,&tt12m ,& t t 1 2 l , z , t11h , t11m , t 1 1 l) ;
27 Add33(&t12h ,&t12m,& t 1 2 l , t b l [TBLIDX10 +15] , t b l [TBLIDX10 +16] , t b l [TBLIDX10 +17] , t t12h , tt12m , t t 1 2 l) ;
28 Mul133(& tt13h ,&tt13m ,& t t 1 3 l , z , t12h , t12m , t 1 2 l) ;
29 Add33(&t13hover ,&t13mover ,& t13 lover ,
30 t b l [TBLIDX10 +12] , t b l [TBLIDX10 +13] , t b l [TBLIDX10 +14] , t t13h , tt13m , t t 1 3 l) ;
31

32 Renormalize3(&t13h ,&t13m,& t 1 3 l , t13hover , t13mover , t 1 3 l o v e r) ;
33

34 Mul133(& tt14h ,&tt14m ,& t t 1 4 l , z , t13h , t13m , t 1 3 l) ;
35 Add33(&t14h ,&t14m,& t 1 4 l , t b l [TBLIDX10 +9] , t b l [TBLIDX10 +10] , t b l [TBLIDX10 +11] , t t14h , tt14m , t t 1 4 l) ;
36 Mul133(& tt15h ,&tt15m ,& t t 1 5 l , z , t14h , t14m , t 1 4 l) ;
37 Add33(&t15h ,&t15m,& t 1 5 l , t b l [TBLIDX10 +6] , t b l [TBLIDX10 +7] , t b l [TBLIDX10 +8] , t t15h , tt15m , t t 1 5 l) ;
38 Mul133(& tt16h ,&tt16m ,& t t 1 6 l , z , t15h , t15m , t 1 5 l) ;
39 Add33(&t16h ,&t16m,& t 1 6 l , t b l [TBLIDX10 +3] , t b l [TBLIDX10 +4] , t b l [TBLIDX10 +5] , t t16h , tt16m , t t 1 6 l) ;
40 Mul133(& tt17hover ,& tt17mover ,& t t 1 7 l o v e r , z , t16h , t16m , t 1 6 l) ;
41

42 Renormalize3(& tt17h ,&tt17m ,& t t 1 7 l , t t17hover , tt17mover , t t 1 7 l o v e r) ;
43

44 Add33(&t17h ,&t17m,& t 1 7 l , t b l [TBLIDX10 +0] , t b l [TBLIDX10 +1] , t b l [TBLIDX10 +2] , t t17h , tt17m , t t 1 7 l) ;
45

46 Mul133(& tt18h ,&tt18m ,& t t 1 8 l , z , t17h , t17m , t 1 7 l) ;
47 Add133(&polyh ,&polym,& polyl ,−1 , t t18h , tt18m , t t 1 8 l) ;
48

49 /∗ Compute s q r t (2∗ z) a s a t r i p l e −d o u b l e ∗ /
50

51 twoZ = 2 ∗ z ;
52 s q r t 1 3 (& sqrtzh ,&sqrtzm ,& s q r t z l , twoZ) ;
53

54 /∗ M u l t ip l y p (z) by s q r t (2∗ z) and add Pi / 2 ∗ /
55

56 Mul33(&pTimesSh ,&pTimesSm,& pTimesSl , polyh , polym , polyl , sqrtzh , sqrtzm , s q r t z l) ;
57 Add33(& al lhover ,& allmover ,& a l l l o v e r , PIHALFH,PIHALFM, PIHALFL , pTimesSh , pTimesSm , pTimesSl) ;
58

59 /∗ R e n o r m a l i z e and m u l t i p l y by s i g n ∗ /
60 Renormalize3(& al lh ,& allm ,& a l l l , a l lhover , allmover , a l l l o v e r) ;
61 ∗asinh = sign ∗ a l l h ;
62 ∗asinm = sign ∗ allm ;
63 ∗ a s i n l = sign ∗ a l l l ;

10.4 Accuracy bounds

10.4.1 Quick phase accuracy

TODO: see possibly available Gappa files meanwhile

10.4.2 Accurate phase accuracy

TODO: see possibly available Gappa files meanwhile

132

10.5 Timings and memory consumption

The given implementation of the arcsine uses tables and constants that consume 4740 bytes of memory.
This values are fully shared between quick and accurate phase. The code size, including the tables, is
about 22 kbytes when compiled to PowerPC machine code. The quick phase code for one rounding
mode needs about 1.5 kbytes without the table. This means that there are about 12 kbytes of code for
the accurate phase, which is shared between all rounding modes.

Concerning the timing, we compare our implementation to IBM’s libultim and to MPFR. The val-
ues are given in arbitrary units and obtained on a IBM Power 5 processor with gcc 3.3.3 on a Linux
Kernel 2.6.5. The timings on other systems are comparable.

Library avg time max time
MPFR 6322 83415
crlibm portable using triple-double 45 300
default libm (IBM’s libultim) 23 206239

It is worth mentioning that IBM’s library uses about 20 kbytes of tables for its mere quick phase.

133

134

Chapter 11

The arccosine

TODO. This function was completely rewritten using machine-generated polynomials. Gappa proofs
were automatically generated, too, and are available in the gappa/asin directory. This chapter will be
updated soon.

135

136

Chapter 12

The arctangent

This chapter is contributed by Nicolas Gast under the supervision of F. de Dinechin.

12.1 Overview

For the arctangent, the quick phase has a precision of 64 bits, and the accurate phase computes to a
precision of 136 bits.

Definition interval and exceptional cases

The inverse tangent is defined over all real numbers.

• If x = NaN , then arctan(x) should return NaN

• If x = ±∞ , then arctan(x) should return ± ◦ (π/2) = ± 5 (π/2) in rounding to nearest
mode. In directed rounding modes, we may return ±4 (π/2) which invalidates the inequation
| arctan(x)| < π

2 but respects the rounding.

• For 254 < |x| < +∞ we choose to return ± ◦ (π/2) in all rounding modes.

• For |x| < 2−27 we have | arctan(x)− x| < 2−53x and | arctan(x)| < |x|, which allows to decide to
return either x or the FP number next to x towards zero.

12.2 Quick phase

The code of the quick phase is organized in five functions. The function (atan quick) returns two dou-
bles (atanhi and atanlo) that represent arctan(x) with a precision of about 64 bits. Four other functions
compute the correct rounding : atan rn, atan ru, atan rd and atan rz.

12.2.1 Overview of the algorithm for the quick phase.

This phase is computed in double or double-double. There are two steps in the algorithm: an argument
reduction and a polynomial approximation with a polynomial of degree 9.

We compute arctan(x) as

arctan(x) = arctan(bi) + arctan(
x− bi

1 + x.bi
) (12.1)

The bi are exact doubles and the arctan(bi) are stored in double-double.

We define Xred =
x− bi

1 + x.bi
for the rest of this chapter.

137

We tabulate intervals bounds ai and values bi such that

x ∈ [ai; ai+1]⇒
x− bi

1 + x.bi
< e . (12.2)

The i such that x ∈ [ai; ai+1] will be found by dichotomy. Therefore we choose a power of two for
the number of intervals: 64 intervals ensure e = 2−6.3.

Then we use a polynomial of degree 9 for the approximation of arctan(Xred) which ensures 66 bits
of precision:

arctan(x) ≈ x− 1
3

.x3 +
1
5

.x5 − 1
7

.x7 +
1
9

.x9

≈ x. + x.Q(x2)

Q is evaluated thanks to a Horner scheme: Q(z) = z.(− 1
3 + z.(1

5 + z.(− 1
7 + z. 1

9))) where each oper-
ation is computed in double.

As |z| ≤ e, Q(z) ≤ e2

At the end, the reconstruction implements equation (12.3) and (12.1) in double-double arithmetic.

12.2.2 Error analysis on atan quick

We choose four rounding constant: two when there is a argument reduction, two in the other case. For
each case, we use two constants on order to improve performances.

The error analysis presented here is implemented in maple/atan.mpl

Notes on bi, ai and arctan(bi) The bi and ai are computed thanks to the allbi maple procedure (see
maple/atan.mpl). There is no approximation error on the bi since we chose them to be FP numbers.
The arctan(bi) are stored in double-double so there is an approximation of 2−105 on them. The value of
e is fixed, then the ai are also chosen as FP numbers such that inequation (12.2) is true.

Argument reduction

Listing 12.1: Reduction part 1
1 i f (x > MIN REDUCTION NEEDED) /∗ t e s t i f r e d u c t i o n i s n e c e s s a r y : ∗ /
2 {
3 double xmBIhi , xmBIlo ;
4

5 i f (x > a r c t a n t a b l e [6 1] [B] . d) {
6 i =61;
7 Add12 (xmBihi , xmBilo , x , −a r c t a n t a b l e [6 1] [B] . d) ;
8 }
9 e lse

10 {
11 /∗ compute i s o t h a t a [i] < x < a [i +1] ∗ /
12 i =31;
13 i f (x < a r c t a n t a b l e [i] [A] . d) i−= 1 6 ;
14 e lse i +=16;
15 i f (x < a r c t a n t a b l e [i] [A] . d) i−= 8 ;
16 e lse i += 8 ;
17 i f (x < a r c t a n t a b l e [i] [A] . d) i−= 4 ;
18 e lse i += 4 ;
19 i f (x < a r c t a n t a b l e [i] [A] . d) i−= 2 ;
20 e lse i += 2 ;
21 i f (x < a r c t a n t a b l e [i] [A] . d) i−= 1 ;
22 e lse i += 1 ;
23 i f (x < a r c t a n t a b l e [i] [A] . d) i−= 1
24 xmBihi = x−a r c t a n t a b l e [i] [B] . d ;
25 xmBilo = 0 . 0 ;
26 }

138

Lines 1 test if x > 2−6.3 and so need to be reduced
Line 5 test if x > b[61] because when i ∈ [0; 60] : bi/2 < x < bi (or x/2 < bi < x) and then

x− bi is computed exactly thanks to Sterbenz lemma.
Line 10...21 compute i so that x−bi

1+x.bi
< 2−6.3

Line 7 and 23 compute xmBIhi + xmBIlo = x− bi
We have no rounding error in the computation of x− bi.

Listing 12.2: Reduction part 2
1 Mul12(&tmphi ,&tmplo , x , a r c t a n t a b l e [i] [B] . d) ;
2

3 i f (x > 1)
4 Add22(&x0hi ,& x0lo , tmphi , tmplo , 1 . 0 , 0 . 0) ;
5 e lse {Add22 (&x0hi , &x0lo , 1 . 0 , 0 . 0 , tmphi , tmplo) ;}
6

7 Div22 (&Xredhi , &Xredlo , xmBihi , xmBilo , x0hi , x0lo) ;

Line 1 compute x.bi exactly as a double-double
Line 3-5 We need to have a Add22Comp but as we know that x.bi > 0 (so tmphi > 0), we test if

tmphi is greater than 1 in order to be faster. The Add22 makes an error of εAdd22 = ε103

Line 7 We compute Xred =
x− bi

1 + x.bi
. The Div22 makes ε104 (according to Ziv [40]) error so we have :

◦
(
Xred

)
=

(x− bi).(1 + ε105)

(1 + x.bi).(1 + ε105).(1 + ε105))
.(1 + ε105)

=
x− bi

1 + x.bi
.(1 + ε105)(1 + ε105 + ε105 + ε104)

= Xred.(1 + ε101.9)

So:
εXred = ε102.6 (12.3)

Polynomial evaluation

The error due to the polynomial approximation is δapprox = ||arctan(x)− x.(1 + q)||∞ = δ72.38

Listing 12.3: Polynomial Evaluation
1 Xred2 = Xredhi∗Xredhi ;
2

3 q = Xred2 ∗ (coe f po ly [3] + Xred2∗
4 (coe f po ly [2] + Xred2∗
5 (coe f po ly [1] + Xred2∗
6 coe f po ly [0]))) ;

Line 1 The error between Xred2 and the ideal value of X2
red comes from

• the error εXred on Xredhi + Xredlo
• the truncation of Xredlo adds ε53
• then the FP multiplication squares this term and adds a rounding error of ε53
which sum up to εXred2 = ((1 + 2−53 + 2−105)2)(1 + 2−53) ≈ ε51.4

Line 3 Horner approximation with error on Xred2: Maple computes an error around ε50.7
or δq = δ63.3

Reconstruction

The reconstruction adds arctan(bi) (read as a double-double from a table) to arctan(Xred) (approximated
by (Xredhi+Xredlo)(1+ q)). The terms of this developed product are depicted in the following figure.

ε

arctan(bi)hi arctan(bi)lo
Xredhi Xredlo

Xredhi.q Xredlo.q

139

Here the ε bar represents the target accuracy of 2−64. One can see that the term Xredlo.q can be
truncated. As Xredlo < Xredhi.2−53 and q < x2 < 2−12.6 this entails an error of εtrunc = ε65.6 relative to
Xred, or an absolute error of δtrunc = e.εtrunc = e3.2−53 ≈ δ71.9.

Listing 12.4: Reconstruction
1 /∗ r e c o n s t r u c t i o n : a t an (x) = a tan (b [i]) + a tan (x) ∗ /
2 double a t a n l o l o = Xredlo+ a r c t a n t a b l e [i] [ATAN BLO] . d + Xredhi∗q ;
3 double tmphi2 , tmplo2 ;
4 Add12 (tmphi2 , tmplo2 , a r c t a n t a b l e [i] [ATAN BHI] . d , Xredhi) ;
5 Add12 (atanhi , atanlo , tmphi2 , (tmplo2+ a t a n l o l o)) ;

Upon entering this code we have:

ε δ71.9

arctan(bi)hi arctan(bi)lo
Xredhi Xredlo

Xredhi.q

Before line 5, the situation is the following:
ε δ71.9

tmphi2 tmplo2
atanlolo

Line 2 The computation of atanlolo causes 3 errors :
ε53.(Xredlo + arctan(bi)lo) < δ105
ε53.Xredhi.q < δ72
ε53.atanlolo < δ72 (again)

Line 4 Add12 adds no error
Line 5 Here we have an FP addition which adds again δ72

Add12 adds no error.
Finally, we get (after accurate computation in Maple)

δreconstr ≈ δ71.8

Final error and rounding constant

We have to add all error :
δ f inal = δapprox + δq + δreconstr = δ70.2 (12.4)

So when i < 10, the relative error is ε63.8 that leads to a rounding constant of 1.001.
And when i > 10 the relative error is ε68.24 that leads to a rounding constant of 1.000068.

Error when there is no reduction

Listing 12.5: No reduction
1

2 x2 = x∗x ;
3 q = x2 ∗ (coe f po ly [3] + x2∗
4 (coe f po ly [2] + x2∗
5 (coe f po ly [1] + x2∗
6 coe f po ly [0]))) ;
7 Add12 (atanhi , atanlo , x , x∗q) ;

The code is very simple so there are few error terms:
Line 1 ε53
Line 2 The Maple procedure to compute Horner approximation gives ε51
Line 3 δno reduction = ε105.x + εq.x3 + εx.q.x3 + |arctan(x)− x.(1 + q)|

When x > 2−10 the relative error is ε62.9. The constant is 1.0024.
When x < 2−10 the relative error is ε70.4. The constant is 1.000005.

140

12.2.3 Exceptional cases and rounding

Rounding to nearest

Listing 12.6: Exceptional cases : rounding to nearest
1

2 db number x db ;
3 x db . d = x ;
4 unsigned i n t hx = x db . i [HI] & 0x7FFFFFFF ;
5

6 /∗ F i l t e r c a s e s ∗ /
7 i f (hx >= 0 x43500000) /∗ x >= 2ˆ54 ∗ /
8 {
9 i f ((hx > 0 x7f f00000) | | ((hx == 0 x7f f00000) && (x db . i [LO] != 0)))

10 return x+x ; /∗ NaN ∗ /
11 e lse
12 return HALFPI . d ; /∗ \ a r c t a n (x) = Pi / 2 ∗ /
13 }
14 e lse
15 i f (hx < 0 x3E400000)
16 { return x ; /∗ x<2ˆ−27 then \ a r c t a n (x) =˜ x ∗ /}

Lines 3 Test if x is greatear than 254, ∞ or NaN.
Line 5,6 return arctan(NaN) = NaN

Line 8 HALFPI is the greatest double smaller than π
2 in order not to have arctan(x) >

pi
2

Line 11 When x < 2−27 : x2 < 2−54 so o(arctan(x)) = x

Proof

we know that arctan(x) =
∞

∑
i=0

x2i+1

2i + 1
(−1)i.

So:

∣∣∣arctan(x)− x
x

∣∣∣ = ∣∣∣∣∣
∞

∑
i=0

(x2i+1

2i + 1
(−1)i

)
− x

x

∣∣∣∣∣
=
∣∣∣ ∞

∑
i=1

x2i

2i + 1
(−1)i

∣∣∣
<

x2

3
< 2−54

Then : arctan(x) ≈ x

Rounding toward −∞

Listing 12.7: Exceptional cases : rounding down
1

2 i f (hx >= 0 x43500000) /∗ x >= 2ˆ54 ∗ /
3 {
4 i f ((hx > 0 x7f f00000) | | ((hx == 0 x7f f00000) && (x db . i [LO] != 0)))
5 return x+x ; /∗ NaN ∗ /
6 e lse
7 i f (x>0)
8 return HALFPI . d ;
9 e lse

10 return −HALFPI TO PLUS INFINITY . d ; /∗ a tan (x) = Pi / 2 ∗ /
11 }
12 e lse
13 i f (hx < 0 x3E400000)
14 { i f (sign >0)
15 { i f (x==0)
16 {x db . i [HI] = 0 x80000000 ;

141

17 x db . i [LO] = 0 ;}
18 e lse
19 x db . l−−;
20 return x db . d ;
21 }
22 e lse
23 return x ;
24 }

The differences with rounding to nearest mode are for f racpi2 for x < 2(− 27).

Listing 12.8: Test for rounding down
1 absyh . d=atanhi ;
2 absyl . d=atan lo ;
3

4 absyh . l = absyh . l & 0 x 7 f f f f f f f f f f f f f f f L L ;
5 absyl . l = absyl . l & 0 x 7 f f f f f f f f f f f f f f f L L ;
6 u53 . l = (absyh . l & 0 x7ff0000000000000LL) + 0 x0010000000000000LL ;
7 u . l = u53 . l − 0 x0350000000000000LL ;
8

9 i f (absyl . d > roundcst∗u53 . d) {
10 i f (atanlo <0.)
11 { atanhi −= u . d ;}
12 return atanhi ;
13 }
14 e lse {
15 return s c s a t a n r d (s ign∗x) ;
16 }

Rounding toward −∞

Listing 12.9: Exceptional cases : rounding up
1

2 i f (hx >= 0 x43500000) /∗ x >= 2ˆ54 ∗ /
3 {
4 i f ((hx > 0 x7f f00000) | | ((hx == 0 x7f f00000) && (x db . i [LO] != 0)))
5 return x+x ; /∗ NaN ∗ /
6 e lse
7 i f (x>0)
8 return HALFPI . d ;
9 e lse

10 return −HALFPI TO PLUS INFINITY . d ; /∗ a tan (x) = Pi / 2 ∗ /
11 }
12 e lse
13 i f (hx < 0 x3E400000)
14 { i f (sign <0)
15 {x db . l−−;
16 return −x db . d ;
17 }
18 e lse
19 i f (x==0)
20 return 0 ;
21 return x ;
22 }

There are the same differences for rounding down.

Rounding to zero

This function is quite simple: it call one of the two function defineded before.

Listing 12.10: Rounding to zero
1

2 extern double a t a n r z (double x) {
3 i f (x>0)
4 return atan rd (x) ;
5 e lse
6 return atan ru (x) ;
7 }

142

Test if rounding is possible

This test use the theorem 21. The code is the same than in the theorem except that we have 4 rounding
constants :

• 1.0047 when i < 10

• 1.000068 when i ≥ 10

• 1.0024 when x > 2−10

• 1.0000132 when x < 2−10

12.3 Accurate phase

The accurate phase is the same as the quick phase, except that number are scs and not double.
The intervals are the same as in quick phase. The only difference is that arctan(bi) as a third double

to improve the precision of arctan(bi) to 150 bits. Then we use less memory, that is why we can use the
same intervals as in the quick phase.

The polynomial degree is 19 in order to have 136 bits of precision.

arctan(x) ≈ x− 1
3

.x3 +
1
5

.x5 − 1
7

.x7 +
1
9

.x9 − 1
11

.x11 +
1

13
.x13 − 1

15
.x15 +

1
17

.x17 − 1
19

.x19 (12.5)

12.4 Analysis of the performance

12.4.1 Speed

Table 12.1 (produced by the crlibm testperf executable) gives absolute timings for a variety of pro-
cessors. The test computed 50000 atan in rounding to nearest mode. The second step of crlibm was
taken 1 time on 50000.

Pentium 4 Xeon / Linux Debian / gcc 2.95
min time max time avg time
min time max time avg time

libm 180 344 231
mpfr 417016 3956992 446362
libultim 48 257616 189
crlibm 36 46428 381

PowerPC G4 / MacOS X / gcc2.95
min time max time avg time

libm 6 11 9
mpfr 35291 303019 37022
libultim 7 13251 14
crlibm 5 1037 19

Table 12.1: Absolute timings for the inverse tangent (arbitrary units)

143

12.4.2 Memory requirements

Table size is

• for the quick phase, 62× (1 + 1 + 2)× 8 = 1984 bytes for the 62 ai, bi, arctan(bi) (hi and lo), plus
another 8 bytes for the rounding constant, plus 4× 8 for the polynomial, 8 bytes for π

2 and 64 for
the rounding constants or 2096 bytes in total.

• for the accurate phase, we just have 10 SCS constants for the polynomial, and 62 other double for
arctan(bi)lolo

. If we add all : 10 ∗ 11 ∗ 8 + 62 ∗ 8 = 1376

If we add the fast phase and the acurate one, we have a total of 3472 bytes.

12.5 Conclusion and perspectives

Our arctan is reasonably fast. Libultim is faster but requires ten times more memory (241 polynomials
of degree 7 and 241 of degree 16 that represents more than 40KB !). Instead, our argument reduction
performs a division, which is an expensive operation.

To improve performances we could inline the code of atan quick, but we prefer to keep it as it is in
order to ease the evolution of the algorithm.

The main problem of our arctan is the worst case time which is about 100 times slower than the aver-
age time. Thus to improve performances we could try to use double-extended. A double-extended has
a mantissa of 64 bits which could transform all double-double operation in double-extended operation.
This format number is present in most of the Intel recent processors.

144

Chapter 13

The trig-of-πx functions

This chapter is contributed by F. de Dinechin.

13.1 Overview

The trigpi functions are defined as follows:

sinpi(x) = sin(πx) (13.1)
cospi(x) = cos(πx) (13.2)
tanpi(x) = tan(πx) (13.3)

These functions are similar to the trigonometric functions, with two main differences:

• Their first argument reduction is exact, and relatively easy: It consists in removing the integer part
of x, as e.g. sinpi(x + n) = ± sinpi(x) for n ∈ N. As an important consequence, their worst-case
critical accuracy is known on F as soon as it is known on the interval [01].

• Their Taylor expansion, on the other hand, has irrational coefficients, which requires more careful
handling around zero.

Apart from these two differences, we use the same secondary argument reduction as for the trigono-
metric functions in chapter 9. Indeed, we even use the same tabulated values: first, decompose the input
value as follows:

πx = k
π

256
+ πy (13.4)

where k is an integer and |y| ≤ 1/512.
Contrary to the usual trig functions, y so defined is an exact double: this second argument reduction

is errorless, too. Actually, it is performed in the same operations that compute the first.
Then, denoting a = kπ/256, we read off a table the following triple-double values:

sah + sam + sal ≈ sin(a)

cah + cam + cal ≈ cos(a)

Only 64 pairs of triple-doubles are tabulated (amounting to 64 × 8 × 6 = 3 Kbytes), the rest is
obtained by periodicity and symmetry, implemented as masks and integer operations on the integer k.
For instance, a mod 2π is implemented by k mod 512, π/2− a is implemented as 128− k, etc.

Then we use the reconstruction steps:

sinpi(x) = sin(a + πy) = cos(a) sinpi(y) + sin(a) cospi(y) (13.5)

cospi(x) = cos(a + πy) = cos(a) cospi(y)− sin(a) sinpi(y) (13.6)

145

tanpi(x) =
sinpi(x)
cospi(x)

(13.7)

13.2 Special cases for cos(πx)

cospi should return a NaN on infinities and NaN.
In all the rounding modes, we have cospi(x) = 1 for all the even integer values of |x|, and cospi(x) =

−1 for all the odd integer values of |x|.
In all the rounding modes, we have cospi(x) = 1 for all the even integer values of |x|, and cospi(x) =

−1 for all the odd integer values of |x|. We have cospi(x) = +0 for all the half-integer values of x. One
could discuss whether having alternate +0 and −0 would not be better, but there will be a conflict
between cos(π + x) = − cos(x) and cos(−x) = cos(x) for e.g. x = 0.5π. Our choice (+0 only) is
inspired by the LIA2 standard.

Concerning small inputs, we have the Taylor expansion:

cos(πx) = 1− (πx)2/2 + O(x4) (13.8)
where O(x4) is positive.

Therefore cos(πx) is rounded to 1 in RN and RU mode if (πx)2 < 2−53. We test this with a constant
C which is defined as the upper 32 bits of

√
(2−53)/4.

In RD and RZ modes, we have cospi(0) = 1 and cospi(x) = 1− 2−53 for 0 < |x| < C.

13.2.1 Worst case accuracy

The worst case accuracy has been computed only for x ∈ [2−24, 1] (the previous discussion shows that
it is enough), with a worst case accuracy of 2−110.

13.3 Special cases for sin(πx)

sinpi should return a NaN on infinities and NaN.
In all the rounding modes, we return sinpi(x) = +0 for all the positive integer values of |x|, and

sinpi(x) = −0 for all the negative integer values of |x|. We have sinpi(x) = ±1 for the half-integer
values of |x|.

For small numbers, the Taylor expansion is

sin(πx) = πx− (πx)3/6 + O(x5) = πx(1− (πx)2/6) + O(x5) (13.9)

where O(x5) has the sign of x.
The situation is therefore more complex than for the radian trigonometrics.

13.3.1 Worst case accuracy

The worst case accuracy has been computed only for x ∈ [2−57, 1], with a worst case accuracy of 2−111.
For smaller arguments, equation (13.9) shows that the worst case arguments will be the same: the worst-
cases (up to a certain limit) become those of πx, and may be deduced for each binade of x < 2−55.

13.3.2 Subnormal numbers

This is no longer true for subnormals, however, as the relative error becomes an absolute error there.
In the subnormal domain, we use the following argument: the worst-case search over the small normal
binades show that πx cannot have more than 58 identical ones or zero after the mantissa. Supposing
that there exist a worst case in the subnormal binade, it may not have more than 53 + 58 identical bits.

As computing with denormals is tricky – and, on some systems, very slow –, we chose in this case
to evaluate πx in SCS, and to use the SCS-to-double functions to manage the subnormal rounding. SCS
accuracy (210 bits) is a large overkill considering the 53+58 required bits. If x is a subnormal number,
then πx is an approximation to sinpi(x) accurate to 2−2000 according to (13.9).

146

13.3.3 Computing πx for small arguments

As π is transcendental, we need a two-step approach even for the small arguments. We therefore want
to ensure that the bound on the error of approximating sin(πx) with sin(πx) is between 2−60 and 2−64.
This bound is given by (13.9): For x < 2−31, we have (πx)2/6 < 2−61.28. We may then use an algorithm
that efficiently computes an approximation to πx with a relative rounding error smaller than 2−74. The
total relative error will be smaller than 2−61.

If the rounding test fails, the accurate computation (of sinpi(x), not of π × x) has to be launched.
There exists an algorithm, due to Brisebarre and Muller, which computes the correctly rounded

value of πx, for any double-precision number x, in two FMA operations. Its proof is a variation of
the Kahan/Douglas algorithm mentionned in Chapter 9. Unfortunately, it is of little use here. A first
problem is that it requires an FMA, however an equivalent algorithm using double-double arithmetic
should be easy to derive. A more important problem is that it is only relevant if one may prove that
the correctly rounded value of πx is also the correctly rounded value of sin(πx). This happens when
the relative difference between πx and sin(πx) is smaller than the worst-case critical accuracy, which
is 2−110 for x < 2−31. We conclude, again from (13.9) that this algorithm is useful for x < 2−55. As we
have a two-step approach anyway, the cost of an additional test is difficult to justify.

However, if an FMA is available, we will use the Brisebarre/Muller sequence of two FMAs to eval-
uate πx using a double-double approximation to π.

In the general case, we will be contented with an approximation to πx accurate to anything much
more than 2−60, as suggested before. Let us start with the straightforward double-double multiplication:
Mul12(&rh,&rl, x,0, PIH, PIL);

where x is completed with a zero and PIH and PIL form a double-double approximation to π. This
would provide much too much accuracy, so the algorithm is adapted to the specific case as follows:

• In the previous algorithm, all the multiplications by zero are of course optimised out;

• The previous algorithm first splits x into xh and xl, and does the same for PIH. An obvious opti-
misation is to pre-split PIH into PIHH and PIHM.

• A last optimisation is to neglect the term xl*PIL.

The final algorithm is therefore :

Listing 13.1: Multiplication by π

1 const double c = 1 3 4 2 1 7 7 2 9 . ; /∗ 2ˆ27 +1 ∗ /
2 double t , xh , x l ;
3 /∗ S p l i t t i n g o f x . Both xh and x l have a t l e a s t 26 c o n s e c u t i v e LSB z e r o e s ∗ /
4 t = x∗c ;
5 xh = (x−t) + t ;
6 x l = x−xh ;
7

8 Add12 (rh , r l , xh∗PIHH, (x l ∗PIHH + xh∗PIHM) + (xh∗PIL + x l ∗PIHM)) ;

The splitting is exact (Dekker). In the Add12, all the multiplications are exact except xh*PIL. The
Add12 itself is also exact. The error is therefore purely due to the three additions, and lead to a conser-
vative majoration of the relative error of 2−53−22 = 2−75.

13.4 tan(πx)

13.4.1 Worst case accuracy

The worst case accuracy has been computed only for x ∈ [2−25, 2−5], with a worst case accuracy of
2−111.

13.4.2 Special cases

tanpi should return a NaN on infinities and NaN.
In all the rounding modes, we return tanpi(x) = 0 with the sign of x for all integer values of |x|. We

have tanpi(x) = ±∞ for the half-integer values of |x|.

147

For small numbers, the Taylor expansion is

tan(πx) = πx + (πx)3/3 + O(x5) = πx(1 + (πx)2/3) + O(x5) (13.10)

where O(x5) has the sign of x.
The handling of special cases will be similar to those of sinpi. The first step for small arguments now

has an overall relative error bounded by 2−60.

13.5 arctan(πx)

13.5.1 Proven correctly-rounded domain

The search for worst cases is not finished yet (work in progress). Correct rounding is currently proven
on [tan(2−25π), tan(2−5π)].

13.5.2 Implementation

This function is the inverse of tanpi and is thus defined as follows:

atanpi(x) =
1
π

arctan(x)

Its implementation is very simply derived from that of arctan by a final multiplication by an approx-
imation to 1/π.

• In the first step, we use a double-double approximation to 1/π (accurate to 2−105) and a Dekker
double-double multiplication (which should actually be sped up, in the absence of FMA, by pre-
splitting the constant as exposed above for sinpi and tanpi). The overall error of this final multi-
plication is below 2−100, and practically doesn’t even change the rounding constants.

• In the second step (currently still SCS) we similarly multiply by an SCS approximation to 1/π
with an error well below 2−200 which barely impacts the overall error (2−136, see chapter 12).

Care has to be taken of the special cases, though. To keep things simple, the SCS accurate phase is
launched for small arguments to avoid problems with subnormals. This should also be improved.

Implementations of asinpi and acospi along the same lines should follow soon.

148

Chapter 14

The hyperbolic sine and cosine

This chapter was initially contributed by Matthieu Gallet under the supervision of F. de Dinechin. The
accurate phase was rewritten by Ch. Q. Lauter and F. de Dinechin.

14.1 Overview

Like the algorithms for others elementary functions, we will compute our hyperbolic cosine and sine in
one or two steps. The first one, which is called ’fast step’ is always executed and provides a precision of
about 63 bits. This is a sufficient precision in most cases, but sometimes more precision is needed, and
then we enter the second step using the SCS library.

14.1.1 Definition interval and exceptional cases

The hyperbolic cosine and the hyperbolic sine are defined for all real numbers, and then for all float-
ing point numbers. These functions are divergent toward +∞ and −∞, so for |x| > 710.47586007,
cosh(x) and sinh(x) should return +∞ or the greatest representable number (depending ot the choosen
rounding mode).

• If x = NaN , then sin(x) and cosh(x) should return NaN

• If x = +∞ , then cosh(x) and sinh(x) should return +∞.

• If x = −∞ , then cosh(x) should return +∞.

• If x = −∞ , then sinh(x) should return −∞.

This is true in all rounding modes.
Concerning subnormals, cosh(x) ≥ 1, so cosh(x) can’t return subnormal numbers, even for subnor-

mal inputs. For small inputs (|x| ≤ 2−26), we have sinh(x) = x with 80 bits of precision, so we can
return a result without any computation on subnormals.

14.1.2 Relation between cosh(x), sinh(x) and ex

The hyperbolic sine and cosine are defined by

sinh(x) =
ex − e−x

2

and

cosh(x) =
ex + e−x

2
respectively.

For large arguments, we will be able to neglect the smaller term.

149

• e−x < 2−65ex as soon as x > 23 (this is the target precision of the first step)

• e−x < 2−115ex as soon as x > 40 (this is the target precision of the second step)

Note that this has been used in the search for worst cases, too: knowing that correct rounding of
exp requires at most 2−113 accuracy for x > 2−30, and the division by 2 being exact, we deduce that the
worst cases for sinh and cosh will be those of the exponential for all the input values greater than 40.

However, due to the division by 2, the domain of sinh and cosh is slightly larger than that of exp, so
there is a little additional search to do (precisely between 709.78 and 710.75). For the same reason, this
additional search gives worst cases for both sinh and cosh.

14.1.3 Worst cases for correct rounding

The search for the worst-case accuracy required for correct rounding the hyperbolic sine and cosine and
their inverses is completed. The cosh function require a relative accuracy of 2−142 in the worst case,
while sinh requires 2−126. However, for x > 2−12, both functions require only 2−111.

14.2 Quick phase

14.2.1 Overview of the algorithm

The algorithm consists of two argument reduction using classical formulae of hyperbolic trigonometry,
followed by a polynomial evaluation using a Taylor polynom of degree 6 (for cosh) and 7 (for sinh).

These formulaes are:

• sinh(x + y) = sinh(x) cosh(y) + sinh(y) cosh(x)

• cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)

• cosh(k ln(2)) = 2k−1 + 2−k−1

• sinh(k ln(2)) = 2k−1 − 2−k−1

After having treated special cases (NaN, +∞, −∞), we do a first range reduction to reduce the
argument between −ln(2)

2 and ln(2)
2 . So, we write x = k ln(2) + y, where k is given by rounding to the

nearest integer x 1
ln(2) . Now, −ln(2)

2 ≤ y ≤ ln(2)
2 , but it is even too large to have a sufficient precision

during polynomial evaluation with small polynoms, and we do a second range reduction, by writing
y = a + b, where a = index.2−8 (index is an integer) and |b| ≤ 2−9.

Mathematically, we have:

sinh(x) = (2k−1 + 2−k−1) sinh(y) + (2k−1 − 2−k−1) cosh(y)

and
cosh(x) = (2k−1 + 2−k−1) cosh(y) + (2k−1 − 2−k−1) sinh(y)

The second range reduction allows to compute sinh(y) and cosh(y) as sinh(y) = sinh(a) cosh(b) +
sinh(b) cosh(a) and cosh(y) = cosh(a) cosh(b)+ sinh(a) sinh(b). In the C code, we have ch hi+ ch lo ≈
cosh(y) and sh hi + sh lo ≈ sinh(y).

A quick computation shows that −89 ≤ index ≤ 89, and we can pre-compute so few values of
sinh(a) and cosh(a) and store them in a table as double-doubles.

The constants 2k−1 and 2−k−1 are constructed by working directly on their binary representation.
cosh(b) and sinh(b) are computed with Taylor polynoms. It’s well-known that

cosh(b) = ∑
n≥0

x2n

(2n)!

and

sinh(b) = ∑
n≥0

x2n+1

(2n + 1)!

150

For our needs, a degree 6 polynom for cosh and a degree 7 polynom for sinh give enough accuracy.
We write cosh(b) = 1 + tcb and sinh(b) = b(1 + tsb), where

tcb = b2(
1
2
+ b2(

1
24

+ b2 1
720

))

tsb = b2(
1
6
+ b2(

1
120

+ b2 1
5040

))

We use the Horner scheme for the evaluation of the polynoms, with all the coefficients being coded on
double-precision numbers.

If the input is very small (i.e. |b| ≤ 2−40), tsb and tcb are not calculated but directly set to 0, to avoid
any problem with subnormal numbers.

At this stage, we have computed all the needed sub-terms before the final reconstruction, which
is done in two steps, corresponding to the two-step range-reduction. The reconstruction is computed
in double-double arithmetic. In the first reconstruction, some sub-terms can be ignored without any
loss of precision, due to their very small relative values. For this step, it exists a particular case, when
index = 0, since it is the only case where | sinh(a)| < 2−9 (sinh(a) = 0). Now we have the definitive
values of cosh(y) and sinh(y).

In the second reconstruction, we begin by computing all needed products before adding their results
(i.e. 2k−1 cosh(y), 2k−1 sinh(y),...). Computations are also done using double double arithmetics, with
the Add22 function.

14.2.2 Error analysis

Many of the previous computations can introduce some error.

• First range reduction We have to consider two different cases:

– |x| ≤ ln(2)
2

We have k = 0, and there is no reduction, and no term of error.

– |x| > ln(2)
2

We have k 6= 0, and we must compute the term of error introduced by the range reduction.
Since k is an integer, we can assume that there is no error on it. ln(2) is a constant which is
stored in the function in double-double, and we have ln(2) = ln2hi + ln2lo + δrepr ln2, where
|δreprln2| ≤ 1.94e− 31. The total absolute error of this reduction is δrange reduc = 3.437e− 27,
so the maximum relative error is εrange reduc = 9.9e − 27 (we have |x| ≥ 0.36), and that
represents about 86.38 bits of precision.

• Second range reduction This range reduction is exact (we only cut y in two parts, with no multi-
plication nor division), so no new term of error is introduced.

• Error in tabulation Since cosh(a) and sinh(a) are stored as double-doubles, and since they are
transcendental numbers (when a 6= 0), some error is done on their approximation. A simple
Maple procedure can compute this error, which is about δca = 6.08e − 33 for cosh and δsa =
1.47e− 33 for sinh. That is large overkill compared to precision on other values.

• Error in polynomial approximations We use the errlist quickphase and compute horner rounding error
Maple procedures to compute thes errors on tcb and tsb, which are δrounding cosh = 6.35e− 22 and
δrounding sinh = 1.94e− 22. Then there is the approximation error. The sum of theses errors gives
δtcb = 6.35e− 22 and δtsb = 1.11e− 21.

• First reconstruction This reconstruction is done by adding all the pre-calculated terms (tcb, tsb,
ca = cosh(a), sa = sinh(a)), in an order which try to minimize the total error.δsh = 2.10e − 25.
Maple scripts are used to compute the error, since there are many terms. There are 2 different
cases:

151

– a = 0
chhi + chlo = ̂cosh(ŷ) + δcosh0, where |δcosh0| ≤ δcosh0 = 6.35e− 22, and sinh(y) = ̂sinh(ŷ) +
δsinh0, where |δsinh0| ≤ δsinh0 = 5.4e− 20.

– a 6= 0

chhi + chlo = ̂cosh(ŷ) + δcosh1, where |δcosh1| ≤ δcosh1 = 2.39e− 20, and sinh(y) = ̂sinh(ŷ) +
δsinh1, where |δsinh1| ≤ δsinh1 = 1.09e− 22.

• Second reconstruction This reconstruction is based on multiplying the obtained results before
adding them. The products are exact since each product has a factor which a power of 2. We have
to leave absolute errors for relative errors, since the range of values returned by cosh is too large.
We will distinguish three different cases:

– |k| ≤ 35 All terms must be computed. We have chhi + chlo = ̂cosh(x̂)(1 + εch), where |εch| ≤
εch = 7.66e− 19

– k > 35 In this case, the terms corresponding to e−x are neglected, with an error smaller than

2−68. We have chhi + chlo = ̂cosh(x̂)(1 + εch), where |εch| ≤ εch = 7.69e− 19

– k < −35 This case is symmetric to the previous one, we just have to remplace k by -k.

14.2.3 Details of computer program

The procedures cosh quick and sinh quick contain the computation respectively shared by the func-
tions cosh rn, cosh ru, cosh rd and cosh rz in one hand, and by the functions sinh rn, sinh ru,
sinh rd and sinh rz in the other hand. The eight functions cosh rX and sinh rX call cosh quick or
sinh quick with an integer which represent the choosen rounding mode. We will begin to prove the
cosh function, and then we will prove the sinh function. Since both functions share a lot a code, only
the different part between cosh and sinh will be proven for the sinh.

Exceptional cases and argument reduction

This part is shown for cosh rn, but it is quite identical for the three other functions.

Listing 14.1: Exceptional cases
1

2 double cosh rn (double x) {
3 db number y ;
4 y . d = x ;
5 y . i [HI] = y . i [HI] & 0x7FFFFFFF ; /∗ t o g e t t h e a b s o l u t e v a l u e o f t h e i n p u t ∗ /
6 i f (y . d > max input ch . d) { /∗ out o f range ∗ /
7 y . i [LO] = 0 ; y . i [HI] = 0 x7FF00000 ; return (y . d) ;
8 }
9 i f ((y . i [HI] & 0 x7FF00000) >= (0 x7FF00000)) { /∗ p a r t i c u l a r c a s e s : QNaN, SNaN, +− oo ∗ /

10 return (y . d) ;
11 }
12 return (cosh quick (x , RN)) ;
13 }

Lines 3 Initialize y
Line 4 Get the absolute value of y by removing the first bit.
Line 5 Test if cosh(|x|) = cosh(x) is representable as a double.
Line 6 If this test is true, we must return ∞.
Line 8 Test if |x| is a special case, like NaN or ∞
Line 9 If this test is true, we must return |x|
Line 11 x is a correct input, we can return cosh quick.

Procedure cosh quick

152

Listing 14.2: Procedure cosh quick - variables

1

2 double cosh quick (double x , i n t rounding mode) {
3

4 /∗ some v a r i a b l e d e c l a r a t i o n s ∗ /
5 i n t k ;
6 db number y ;
7 double r e s h i , r e s l o ;
8 double ch hi , ch lo , sh hi , s h l o ; /∗ c o s h (x) = (c h h i + c h l o) ∗ (c o s h (k∗ ln (2)) + (s h h i +

s h l o) ∗ (s i n h (k∗ ln (2))) ∗ /
9 db number t a b l e i n d e x f l o a t ;

10 i n t t a b l e i n d e x ;
11 double temp hi , temp lo , temp ; /∗ some t emporary v a r i a b l e s ∗ /
12 double b hi , b lo , b ca h i , b c a l o , b s a h i , b s a l o ;
13 double ca hi , ca lo , sa hi , s a l o ; /∗ w i l l be t h e t a b u l a t e d v a l u e s ∗ /
14 double t c b h i , t s b h i ; /∗ r e s u l t s o f p o l y n o m i a l a p p r o x i m a t i o n s ∗ /
15 double square y hi ;
16 double ch 2 pk hi , ch 2 pk lo , ch 2 mk hi , ch 2 mk lo ;
17 double sh 2 pk hi , sh 2 pk lo , sh 2 mk hi , sh 2 mk lo ;
18 db number two p plus k , two p minus k ; /∗ 2 ˆ (k−1) + 2ˆ(−k−1) ∗ /
19 db number absyh , absyl , u53 , u ;

Here there are all the variables which will be used in the code.

First range reduction

Listing 14.3: Procedure cosh quick - first range reduction

19

20 /∗ Now we can do t h e f i r s t range r e d u c t i o n ∗ /
21 DOUBLE2INT(k , x ∗ i n v l n 2 . d)
22 i f (k != 0){ /∗ b h i + b l o = x − (l n 2 h i + l n 2 l o) ∗ k ∗ /
23 temp hi = x − l n 2 h i . d ∗ k ;
24 temp lo = −l n 2 l o . d ∗ k ;
25 Add12Cond (b hi , b lo , temp hi , temp lo) ;
26 }
27 e lse {
28 b hi = x ; b l o = 0 . ;
29 }

153

Line 20 Put in k the closest integer of x * inv ln 2.
We use the property of DOUBLE2INT that convert a floating-point number in rouding to nearest mode.
By its definition, k satisfies the following properties:
bx× inv ln2c ≤ k ≤ dx× inv ln2e
|k| ≤ x

2 × inv ln2
since |x| ≤ 710.475..., we have |k| ≤ 1025, so k is coded on at most 11 bits.

Line 21 First case : k 6= 0
We have by contruction : ln2hi + ln2lo = ln(2) + δrepr ln2, where |δrepr ln2| ≤ δrepr ln2 = 1.95e− 31.
the last 11 bits of lnhi are set to zero by its construction

Line 22 the ln2hik product is exact since k is coded on at most 11 bits and the last 11 bits of ln2hi are zeros
we have to use the properties verified by k: xinv ln2− 1 ≤ k ≤ xinv ln2 + 1
if x ≥ 0
we have k ≥ 1 and then x ≥ ln(2)

2 , so (xinv ln2 + 1)ln2hi ≤ 2x
since |k| ≤ x

2 × inv ln2, we have x
2 ≤ (xinv ln2− 1)ln2hi

and then we have x
2 ≤ kln2hi ≤ 2x

we can apply the Sterbenz theorem to prove that the result of this line is exact
if x ≤ 0
we can use the same reasoning and then apply the Sterbenz theorem
and this line of code is always exact.

Line 23 this product is not exact, we can loose at most 11 bits of precision
there is an error of δround which satisfies |δround| ≤ δround = 3.15e− 30 on ln2lo
so a bound to the maximal absolute error is kmaxδround

Line 24 We do an Add12 to have well-aligned double doubles in bhi and blo
The conditionnal version is used since temp hi can be zero if x is very close to kln(2).
The total absolute error is bounded by δb = 3.43e− 27

Line 27 We have k = 0. We needn’t to do any reduction, so bhi + blo = x exactly.
At this stage, we have bhi + blo = ŷ + δb, where |δb| ≤ δb = 3.43e− 24. Now we will write y = a + b,

where a = 2−8index.

Second range reduction

Listing 14.4: Procedure cosh quick - second range reduction
29

30 /∗we ’ l l c o n s t r u c t 2 c o n s t a n t s f o r t h e l a s t r e c o n s t r u c t i o n ∗ /
31 two p plus k . i [LO] = 0 ;
32 two p plus k . i [HI] = (k−1+1023) << 2 0 ;
33 two p minus k . i [LO] = 0 ;
34 two p minus k . i [HI] = (−k−1+1023) << 2 0 ;
35

36 /∗ a t t h i s s t a g e , we ’ ve done t h e f i r s t range r e d u c t i o n : we have b h i + b l o be tween −ln (2)
/ 2 and ln (2) / 2 ∗ /

37 /∗ now we can do t h e s e c o n d range r e d u c t i o n ∗ /
38 /∗ we ’ l l g e t t h e 8 l e a d i n g b i t s o f b h i ∗ /
39 t a b l e i n d e x f l o a t . d = b hi + two 43 44 . d ;
40 /∗ t h i s add do t h e f l o a t e q u i v a l e n t o f a r o t a t i o n t o t h e r i g h t , s i n c e −0.5 <= b h i <= 0 . 5 ∗ /
41 t a b l e i n d e x = LO(t a b l e i n d e x f l o a t . d) ; /∗ −89 <= t a b l e i n d e x <= 89 ∗ /
42 t a b l e i n d e x f l o a t . d −= two 43 44 . d ;
43 t a b l e i n d e x += b i a s ; /∗ t o have on ly p o s i t i v e v a l u e s ∗ /
44 b hi −= t a b l e i n d e x f l o a t . d ; /∗ t o remove t h e 8 l e a d i n g b i t s ∗ /
45 /∗ s i n c e b h i was be tween −2ˆ−1 and 2 ˆ 1 , we now have b h i be tween −2ˆ−9 and 2ˆ−9 ∗ /

Line 30-33 Put in two p plus k and two p minus k the exact values of 2k−1 and 2−k−1.
Line 38-44 The goal of the second range reduction is to write y as y = index2−8 + b

We have |y| ≤ ln(2)
2 ≤ 1

2
so 244 ≤ 244 + 243 + y ≤ 244 + 243 + 242

since the mantissa counts 53 bits, only the part above 2−8 si kept in table index float
It is easy to show that we have −89 ≤ table index ≤ 89
so we can add bias = 89 to table index to have only positive values.
then we remove this bits of y to obtain the final b = bhi + blo
all these operations are exact, so the final absolute error doesn’t increase

154

Polynomial evaluation - First reconstruction

Listing 14.5: Procedure cosh quick - polynomial evaluation - first reconstruction

45 y . d = b hi ;
46 /∗ f i r s t , y ∗ /
47 square b hi = b hi ∗ b hi ;
48 /∗ e f f e c t i v e c o m p u t a t i o n o f t h e p o l y n o m i a l a p p r o x i m a t i o n ∗ /
49

50 i f (((y . i [HI]) &(0x7FFFFFFF)) < (two minus 30 . i [HI])) {
51 t c b h i = 0 ;
52 t s b h i = 0 ;
53 }
54 e lse {
55 /∗ second , c o s h (b) = b ∗ (1 / 2 + b ∗ (1 / 2 4 + b ∗ 1 / 7 2 0)) ∗ /
56 t c b h i = (square b hi) ∗ (c2 . d + square b hi ∗ (c4 . d + square b hi ∗ c6 . d)) ;
57 t s b h i = square b hi ∗ (s3 . d + square b hi ∗ (s5 . d + square b hi ∗ s7 . d)) ;
58 }
59

60

61 i f (t a b l e i n d e x != b i a s) {
62 /∗ we g e t t h e t a b u l a t e d t h e t a b u l a t e d v a l u e s ∗ /
63 c a h i = c o s h s i n h t a b l e [t a b l e i n d e x] [0] . d ;
64 c a l o = c o s h s i n h t a b l e [t a b l e i n d e x] [1] . d ;
65 s a h i = c o s h s i n h t a b l e [t a b l e i n d e x] [2] . d ;
66 s a l o = c o s h s i n h t a b l e [t a b l e i n d e x] [3] . d ;
67

68 /∗ f i r s t r e c o n s t r u c t i o n o f t h e c o s h (c o r r e s p o n d i n g t o t h e s e c o n d range r e d u c t i o n) ∗ /
69 Mul12(& b s a h i ,& b s a l o , sa hi , b h i) ;
70 temp = ((((((c a l o + (b hi ∗ s a l o)) + b l o ∗ s a h i) + b s a l o) + (b s a h i ∗ t s b h i)) +

c a h i ∗ t c b h i) + b s a h i) ;
71 Add12Cond (ch hi , ch lo , ca hi , temp) ;
72 /∗ f i r s t r e c o n s t r u c t i o n f o r t h e s i n h (c o r r e s p o n d i n g t o t h e s e c o n d range r e d u c t i o n) ∗ /
73 }
74 e lse {
75 Add12Cond (ch hi , ch lo , (double) 1 , t c b h i) ;
76 }

Line 45 Put in y the value of bhi, so we can use its hexadecimal aspect
Line 47 Put b2 in square bhi. We have square bhi = b̂ + δsquare b, where |δsquare b| ≤ δsquare b = 4.23e− 22
Line 50 Match bhi and then b with 2−40

Line 51-52 If |b| ≤ 2−40, we will have |tcb|, [tsb| ≤ δsquare b, so we can directly set tcb and tsb to zero:
converning the mathematical values, we have |t̂cb|, |t̂sb| ≤ 2−24.
We can avoid by this way any problem with subnormal numbers.

Line 55-56 Polynomial evaluation of cosh(x)− 1 and sinh(x)
x − 1, following the Hrner scheme.

A maple procedure is used to compute the error on this computations
There are 2 reasons for the total error :
the effective computations, since all operations are done with 53 bits of precision.
the mathematical approximation, since we use polynoms

finally, we have tcb = ̂cosh(b̂− 1) + δtcb, where |δtcb| ≤ δtcb = 6.35e− 22,

and tsb =
̂

(sinh(b̂)
b̂
− 1) + δtsb, where |δtsb| ≤ δtsb = 1.11e− 21

Line 60 If y is very close to 0, we have the 8 bits of the second range reduction which are null
Line 62-65 We get tabulated values for cosh(a) and sinh(a). They are tabulated as double doubles:

we have cahi + calo = ̂cosh(â) + δca, where |δca| ≤ δca = 6.08e− 33,
and sahi + salo = ̂sinh(â) + δsa, where |δsa| ≤ δsa = 1.47e− 33,

Line 68 b sahi + b salo = sahibhi. This product is exact.
Line 69-70 it is the reconstruction : cosh(y) = cosh(a)(1 + tcb) + sinh(a)b(1 + tsb)

A maple procedure is used to compute the error done in this reconstruction.
We have chhi + chlo = ̂cosh(ŷ) + δcosh1, where |δcosh1| ≤ δcosh1 = 2.39e− 20

Line 75 If y is very close to 0, we have a = 0 and cosh(y) = cosh(b) = 1 + tcb.
This addition is exact, so no error is introduced.
We have chhi + chlo = ̂cosh(ŷ) + δcosh0, where |δcosh0| ≤ δcosh0 = 6.35e− 22

155

Second reconstruction

Listing 14.6: Procedure cosh quick - reconstruction

77 i f (k != 0) {
78 i f (t a b l e i n d e x != b i a s) {
79 /∗ f i r s t r e c o n s t r u c t i o n f o r t h e s i n h (c o r r e s p o n d i n g t o t h e s e c o n d range r e d u c t i o n) ∗ /
80 Mul12(& b c a h i , &b c a l o , ca hi , b h i) ;
81 temp = (((((s a l o + (b l o ∗ c a h i)) + (b hi ∗ c a l o)) + b c a l o) + (s a h i ∗ t c b h i)) + (

b c a h i ∗ t s b h i)) ;
82 Add12 (temp hi , temp lo , b ca hi , temp) ;
83 Add22Cond(& sh hi , &sh lo , sa hi , (double) 0 , temp hi , temp lo) ;
84 }
85 e lse {
86 Add12Cond (sh hi , sh lo , b hi , t s b h i ∗ b hi + b l o) ;
87 }
88 i f ((k < 35) && (k > −35))
89 {
90 ch 2 pk hi = ch hi ∗ two p plus k . d ;
91 c h 2 p k l o = c h l o ∗ two p plus k . d ;
92 ch 2 mk hi = ch hi ∗ two p minus k . d ;
93 ch 2 mk lo = c h l o ∗ two p minus k . d ;
94 s h 2 p k h i = s h h i ∗ two p plus k . d ;
95 s h 2 p k l o = s h l o ∗ two p plus k . d ;
96 sh 2 mk hi = −1 ∗ s h h i ∗ two p minus k . d ;
97 sh 2 mk lo = −1 ∗ s h l o ∗ two p minus k . d ;
98

99 Add22Cond(& r e s h i , &r e s l o , ch 2 mk hi , ch 2 mk lo , sh 2 mk hi , sh 2 mk lo) ;
100 Add22Cond(&ch 2 mk hi , &ch 2 mk lo , sh 2 pk hi , sh 2 pk lo , r e s h i , r e s l o) ;
101 Add22Cond(& r e s h i , &r e s l o , ch 2 pk hi , ch 2 pk lo , ch 2 mk hi , ch 2 mk lo) ;
102 }
103 e lse i f (k >= 35)
104 {
105 ch 2 pk hi = ch hi ∗ two p plus k . d ;
106 c h 2 p k l o = c h l o ∗ two p plus k . d ;
107 s h 2 p k h i = s h h i ∗ two p plus k . d ;
108 s h 2 p k l o = s h l o ∗ two p plus k . d ;
109 Add22Cond(& r e s h i , &r e s l o , ch 2 pk hi , ch 2 pk lo , sh 2 pk hi , s h 2 p k l o) ;
110 }
111 e lse /∗ i f (k <= −35) ∗ /
112 {
113 ch 2 mk hi = ch hi ∗ two p minus k . d ;
114 ch 2 mk lo = c h l o ∗ two p minus k . d ;
115 sh 2 mk hi = −1 ∗ s h h i ∗ two p minus k . d ;
116 sh 2 mk lo = −1 ∗ s h l o ∗ two p minus k . d ;
117 Add22Cond(& r e s h i , &r e s l o , ch 2 mk hi , ch 2 mk lo , sh 2 mk hi , sh 2 mk lo) ;
118 }
119 }
120 e lse {
121 r e s h i = ch hi ;
122 r e s l o = c h l o ;
123 }

156

Line 77 Test if k = 0 or not
Line 78-87 We have k 6= 0, so we must compute sinh(y)

This computation is done like the computation of cosh(h)
We can use an Add12 (instead of Add12Cond) since bhicahi ≥ temp
A maple script gives sinh(y) = ̂sinh(ŷ) + δsinh1, where |δsinh1| ≤ δsinh1 = 1.09e− 22
and |δsinh1| ≤ δsinh0 = 5.4e− 20 (when sinh(a) = 0)

Line 89 We have k 6= 0, and |k| ≤ 35
Line 91-98 we multiply sinh(y) and cosh(y) by powers of 2, so these products are exact
Line 100-102 A maple script is used to compute the error:

We have chhi + chlo = ̂cosh(x̂)(1 + εch), where |εch| ≤ εch = 7.66e− 19
Line 104 k ≥ 35
Line 106-109 we multiply sinh(y) and cosh(y) by powers of 2, so these products are exact

Some terms are not computed, since they are too little
Line 110 A maple script is used to compute the error:

We have chhi + chlo = ̂cosh(x̂)(1 + εch), where |εch| ≤ εch = 7.69e− 19
Line 112 k ≤ −35
Line 114-118 this case is symmetric to the previous one.

We also have chhi + chlo = ̂cosh(x̂)(1 + εch), where |εch| ≤ εch = 7.69e− 19
Line 121 we now have k = 0

Since we have 1 ≤ cosh(x), we have εch ≤ max(δcosh0, δcosh1) = 2.39e− 20

At this, stage, we have chhi + chlo = ̂cosh(x̂)(1 + εch), where |εch| ≤ εch = 7.69e− 19 = 2−60.17 .

14.2.4 Rounding

Rounding to the nearest

The code for rounding is strictly identical to that of Theorem 21. The condition to this theorem that
res hi ≥ 2−1022+53 is ensured by the image domain of the cosh, since cosh(x) ≥ 1. The rounding
constant

14.2.5 Directed rounding

Here again, the code is strictly identical to that of Theorem 22, and the conditions to this theorem are
ensured by the image domain of the cosh.

14.3 Accurate phase

It is reminded that correct rounding requires an intermediate accuracy of 2−142 for cosh and 2−126 for
sinh. The triple-double exponential function in crlibm is sufficiently accurate for computing the cosh,
using the equation

cosh(x) =
ex + e−x

2
.

For sinh, we use the expm1 triple-double implementation: This is more accurate around 0, as the
following equation shows:

sinh(x) =
ex − e−x

2
=

(ex − 1)− (e−x − 1)
2

.

As already noted, the e−x term is optimised out for large arguments. Indeed, for |x| > 40 we have
e−x < 2−115ex, therefore the relative error due to neglecting e−x is much smaller than the worst case
accuracy required to decide rounding, which is smaller than 2−111 for both functions in this range.

157

14.4 Analysis of cosh performance

The input numbers for the performance tests given here are random positive double-precision numbers
with a normal distribution on the exponents. More precisely, we take random 63-bit integers and cast
them into double-precision numbers.

In average, the second step is taken in 0.13% of the calls.

14.4.1 Speed

Table 14.1 (produced by the crlibm testperf executable) gives absolute timings for a variety of pro-
cessors and operating systems.

Pentium III / Linux 2.6 / gcc 4.0

min time avg time max time
default libm 242 272 304
crlibm 212 344 2639

Table 14.1: Absolute timings for the hyperbolic cosine

Contributions to this table for new processors/OS/compiler combinations are welcome.

158

Chapter 15

The power function

This chapter is contributed by Ch. Q. Lauter and F. de Dinechin.

15.1 Work in progress

Here is the status of the current implementation of pow in CRLibm:

• Exact and mid-point cases are handled properly [24]. This is especially important because an exact
case would mean an infinite Ziv iteration.

• Worst cases are not known for the full input range. This is a deep theoretical issue. Recent research
has focussed on xn for integer n. At the time of release, it has been proved computationally that
that an intermediate precision of 2−118 is enough to round correctly xn for all integer n between
-180 and +1338. In addition, specific algorithms have been studied for the computation of xn [23].

• Due to lack of time, only round-to-nearest is implemented. Directed rounding requires additional
work, in particular in subnormal handling and in exact case management. There are more exact
cases in directed rounding modes, therefore the performance should also be inferior.

• The current implementation computes two Ziv iterations, to 2−61 then to 2−120. With current
technology, there is little hope to find all the worst cases for the full range of the power function.
Should an input require more than 2−120 happen (to our knowledge none has been exhibited so
far), current implementation will not necessarily return the correctly rounded result. Options are:

– Ignore silently the problem (this is the current option).

– perform a second rounding test at the end of the accurate step. If the test fails (with a proba-
bility smaller that 2−120),

∗ an arbitrary precision computation could be launched, for example MPFR. This requires
adding a dependency to MPFR only for this highly improbable case.

∗ launch a high, but not arbitrary precision third step (say, accurate to 2−3000. Variations of
the SLZ algorithm [36] could provide, at an acceptable computational cost, a certificate
that there is no worst case requiring a larger precision. This is the only fully satisfactory
solution that seems at reach, but this idea remains to be explored.

∗ (in addition to the previous) a message on the standard error could be written, including
the corresponding inputs, and inviting anyone who reads it to send us a mail. Consider-
ing the probability, we might wait several centuries before getting the first mail.

159

160

Bibliography

[1] Open source from Intel. http://www.intel.com/software/products/opensource/.

[2] SCS, Software Carry-Save multiprecision library.

[3] Sun Freely Distributable LIBM. http://www.netlib.org/fdlibm/.

[4] AMD. AMD athlon processor x86 code optimization guide. Technical report, Advanced Micro
Devices,inc, 2001.

[5] ANSI/IEEE. Standard 754-1985 for binary floating-point arithmetic, 1985.

[6] A. Baker. Transcendental Number Theory. Cambridge University Press, 1975.

[7] S. Boldo and M. Daumas. A mechanically validated technique for extending the available preci-
sion. In 35th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California, 2001.
IEEE Computer Society Press.

[8] M. Cornea, J. Harrison, and P.T.P Tang. Scientific Computing on Itanium-based Systems. Intel Press,
2002.

[9] Marc Daumas and Claire Moreau-Finot. Exponential: implementation trade-offs for hundred bit
precision. In Real Numbers and Computers, pages 61–74, Dagstuhl, Germany, 2000.

[10] F. de Dinechin and D. Defour. Software carry-save: A case study for instruction-level parallelism.
In Seventh International Conference on Parallel Computing Technologies, Nizhny Novgorod, Russia,
September 2003.

[11] F. de Dinechin, D. Defour, and C. Lauter. Fast correct rounding of elementary func-
tions in double precision using double-extended arithmetic. Technical Report 2004-10,
LIP, École Normale Supérieure de Lyon, March 2004. Available at http://www.ens-
lyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-10.pdf.

[12] F. de Dinechin, A. Ershov, and N. Gast. Towards the post-ultimate libm. In 17th Symposium on
Computer Arithmetic, pages 288–295. IEEE Computer Society Press, June 2005.

[13] F. de Dinechin, Ch. Q. Lauter, and G. Melquiond. Assisted verification of elementary functions us-
ing Gappa. In ACM Symposium on Applied Computing, 2006. Extended version available as LIP re-
search report RR2005-43, http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/RR2005-43.
pdf.

[14] D. Defour and F. de Dinechin. Software carry-save for fast multiple-precision algorithms. In 35th
International Congress of Mathematical Software, Beijing, China, 2002. Updated version of LIP re-
search report 2002-08.

[15] D. Defour, G. Hanrot, V. Lefèvre, J.-M. Muller, N. Revol, and P. Zimmermann. Proposal for a
standardization of mathematical function implementations in floating-point arithmetic. Numerical
algorithms, 37(1-4):367–375, January 2004.

[16] Theodorus J. Dekker. A floating point technique for extending the available precision. Numerische
Mathematik, 18(3):224–242, 1971.

161

http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/RR2005-43.pdf
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/RR2005-43.pdf

[17] P. M. Farmwald. High bandwidth evaluation of elementary functions. In K. S. Trivedi and D. E.
Atkins, editors, Proceedings of the 5th IEEE Symposium on Computer Arithmetic. IEEE Computer So-
ciety Press, Los Alamitos, CA, 1981.

[18] S. Gal. Computing elementary functions: A new approach for achieving high accuracy and good
performance. In Accurate Scientific Computations, LNCS 235, pages 1–16. Springer Verlag, 1986.

[19] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys, 23(1):5–47, March 1991.

[20] J. Harrison, T. Kubaska, S. Story, and P.T.P. Tang. The computation of transcendental functions on
the IA-64 architecture. Intel Technology Journal, Q4, 1999.

[21] R. Klatte, U. Kulisch, C. Lawo, M. Rauch, and A. Wiethoff. C-XSC a C++ class library for extended
scientific computing. Springer Verlag, 1993.

[22] D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, Reading, MA, 1973.

[23] P. Kornerup, Ch. Lauter, V. Lefèvre, N. Louvet, and J.-M. Muller. Computing correctly rounded
integer powers in floating-point arithmetic. Technical Report RR 2008-15, SDU, Odense, Denmark
et LIP, CNRS/ENS Lyon/INRIA/Universit de Lyon, Lyon, France, May 2008. To appear in ACM
Transactions on Mathematical Software.

[24] Ch. Lauter and V. Lefèvre. An efficient rounding boundary test for pow(x,y) in double precision.
Technical Report RR-2007-36, Laboratoire de l’Informatique du Parallélisme, 2007. To appear in
IEEE Transactions on Computers.

[25] Ch. Q. Lauter. Basic building blocks for a triple-double intermediate format. Technical Report
RR2005-38, LIP, September 2005.

[26] V. Lefèvre, J.M. Muller, and A. Tisserand. Towards correctly rounded transcendentals. IEEE Trans-
actions on Computers, 47(11):1235–1243, November 1998.

[27] V. Lefvre. Moyens arithmétiques pour un calcul fiable. PhD thesis, École Normale Supérieure de Lyon,
Lyon, France, 2000.

[28] R.-C. Li, P. Markstein, J. P. Okada, and J. W. Thomas. The libm library and floating-point arithmetic
for HP-UX on Itanium. Technical report, Hewlett-Packard company, april 2001.

[29] IBM Accurate Portable Math. Library. http://oss.software.ibm.com/mathlib/.

[30] P. Markstein. IA-64 and Elementary Functions : Speed and Precision. Hewlett-Packard Professional
Books. Prentice Hall, 2000. ISBN: 0130183482.

[31] G. Melquiond. Gappa - génération automatique de preuves de propriétés arithmétiques. Available
at http://lipforge.ens-lyon.fr/www/gappa/.

[32] R.E. Moore. Interval analysis. Prentice Hall, 1966.

[33] MPFR. http://www.mpfr.org/.

[34] J.-M. Muller. Elementary Functions, Algorithms and Implementation. Birkhauser, Boston, 1997.

[35] K. C. Ng. Argument reduction for huge arguments: Good to the last bit. SunPro, July 1992. Work
in progress.

[36] Damien Stehlé. Algorithmique de la rduction de rseaux et application la recherche de pires cas pour
l’arrondi de fonctions mathmatiques. PhD thesis, LORIA, 2006.

[37] P. H. Sterbenz. Floating point computation. Prentice-Hall, Englewood Cliffs, NJ, 1974.

[38] P. T. P. Tang. Table lookup algorithms for elementary functions and their error analysis. In P. Ko-
rnerup and D. W. Matula, editors, Proceedings of the 10th IEEE Symposium on Computer Arithmetic,
pages 232–236, Grenoble, France, June 1991. IEEE Computer Society Press, Los Alamitos, CA.

162

http://lipforge.ens-lyon.fr/www/gappa/

[39] W. F. Wong and E. Goto. Fast hardware-based algorithms for elementary function computations
using rectangular multipliers. IEEE Transactions on Computers, 43(3):278–294, March 1994.

[40] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM
Transactions on Mathematical Software, 17(3):410–423, September 1991.

163

	Getting started with crlibm
	What is crlibm?
	Compilation and installation
	Using crlibm functions in your program
	Currently available functions
	Writing portable floating-point programs

	Introduction: Goals and methods
	Correct rounding and elementary functions
	A methodology for efficient correctly-rounded functions
	The Table Maker's Dilemma
	The onion peeling strategy

	The Correctly Rounded Mathematical Library
	Two steps are enough
	Portable IEEE-754 FP for a fast first step
	Ad-hoc, fast multiple precision for accurate second step
	Relaxing portability
	Proving the correct rounding property
	Error analysis and the accuracy/performance tradeoff

	An overview of other available mathematical libraries
	Various policies in crlibm
	Naming the functions
	Policy concerning IEEE-754 flags
	Policy concerning conflicts between correct rounding and expected mathematical properties

	Organization of the source code

	Common notations, theorems and procedures
	Notations
	Common C procedures for double-precision numbers
	Sterbenz Lemma
	Double-precision numbers in memory
	Conversion from floating-point to integer
	Conversion from floating-point to 64-bit integer
	Methods to raise IEEE-754 flags

	Common C procedures for double-double arithmetic
	Exact sum algorithm Add12
	Exact product algorithm Mul12
	Double-double addition Add22
	Double-double multiplication Mul22
	The multiplication procedure Mul122
	Double-double Horner step procedures
	Multiplication of a double-double by an integer

	Common C procedures for triple-double arithmetic
	The addition operator Add33
	The addition operator Add233
	The addition operator Add133
	The multiplication procedure Mul33
	The multiplication procedure Mul23
	The multiplication procedure Mul233
	The multiplication procedure Mul133
	The multiplication procedure Mul123
	Final rounding to the nearest even
	Final rounding for the directed modes

	Horner polynomial approximations
	Helper functions
	High accuracy square roots

	Test if rounding is possible
	Rounding to the nearest
	Directed rounding modes

	The Software Carry Save library
	The SCS format
	Arithmetic operations

	Common Maple procedures
	Conversions
	Procedures for polynomial approximation
	Accumulated rounding error in Horner evaluation
	Rounding
	Using double-extended

	The natural logarithm
	General outline of the algorithm
	Proof of correctness of the triple-double implementation
	Exactness of the argument reduction
	Accuracy proof of the quick phase
	Accuracy proof of the accurate phase

	Proof of correctness of the double-extended implementation
	Performance results
	Memory requirements
	Timings

	The logarithm in base 2
	The logarithm in base 10
	Main considerations, critical accuracy bounds
	General outline of the algorithm and accuracy estimates
	Timings

	The exponential
	Overview of the algorithm
	Special case handling
	Argument reduction
	Polynomial approximation and reconstruction
	Quick phase polynomial approximation and reconstruction
	Accurate phase polynomial approximation and reconstruction

	Final rounding
	Accuracy bounds
	Timings

	The expm1 function
	The log1p function
	The trigonometric functions
	Overview of the algorithms
	Exceptional cases
	Range reduction
	Polynomial evaluation
	Reconstruction
	Precision of this scheme
	Organisation of the code

	Details of range reduction
	Which accuracy do we need for range reduction?
	Details of the used scheme
	Structure of the range reduction
	Cody and Waite range reduction with two constants
	Cody and Waite range reduction with three constants
	Cody and Waite range reduction in double-double
	Payne and Hanek range reduction
	Maximum error of range reduction
	Maximum value of the reduced argument

	Actual computation of sine and cosine
	DoSinZero
	DoSinNotZero and DoCosNotZero

	Detailed examination of the sine
	Exceptional cases in RN mode
	Exceptional cases in RU mode
	Exceptional cases in RD mode
	Exceptional cases in RZ mode
	Fast approximation of sine for small arguments

	Detailed examination of the cosine
	Round to nearest mode
	RU mode
	RD mode
	RZ mode

	Detailed examination of the tangent
	Total relative error
	RN mode
	RU mode
	RD mode
	RZ mode

	Accurate phase
	Performance results

	The arcsine
	Overview of the algorithm
	Special case handling, interval discrimination and argument reduction
	Polynomial approximation and reconstruction
	Quick phase polynomial approximation and reconstruction
	Accurate phase polynomial approximation and reconstruction

	Accuracy bounds
	Quick phase accuracy
	Accurate phase accuracy

	Timings and memory consumption

	The arccosine
	The arctangent
	Overview
	Quick phase
	Overview of the algorithm for the quick phase.
	Error analysis on atan_quick
	Exceptional cases and rounding

	Accurate phase
	Analysis of the performance
	Speed
	Memory requirements

	Conclusion and perspectives

	The trig-of-x functions
	Overview
	Special cases for cos(x)
	Worst case accuracy

	Special cases for sin(x)
	Worst case accuracy
	Subnormal numbers
	Computing x for small arguments

	tan(x)
	Worst case accuracy
	Special cases

	 arctan(x)
	Proven correctly-rounded domain
	Implementation

	The hyperbolic sine and cosine
	Overview
	Definition interval and exceptional cases
	Relation between cosh(x), sinh(x) and ex
	Worst cases for correct rounding

	Quick phase
	Overview of the algorithm
	Error analysis
	Details of computer program
	Rounding
	Directed rounding

	Accurate phase
	Analysis of cosh performance
	Speed

	The power function
	Work in progress

