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ON THE COHOMOLOGY OF THE AFFINE SPACE

by

Pierre Colmez & Wiesława Nizioł

Abstract. — We compute the p-adic geometric pro-étale cohomology of the rigid
analytic affine space (in any dimension). This cohomology is non-zero, contrary to
the étale cohomology, and can be described by means of differential forms.

Introduction

Let K be a complete discrete valuation field of characteristic 0 with perfect residue
field of positive characteristic p. Let C be the completion of an algebraic closure
K of K. We denote by GK the absolute Galois group of K (it is also the group of
continuous automorphisms of C that fix K).

For n ≥ 1, let An
K be the rigid analytic affine space over K of dimension n and An

be its scalar extension to C. Our main result is the following theorem.

Theorem 1. — For r ≥ 1, we have isomorphisms of GK-Fréchet spaces

Hr
proét(A

n,Qp(r)) ' Ωr−1(An)/Ker d ' Ωr(An)d=0,

where Ω denotes the sheaf of differentials.

Remark 2. — (i) The p-adic pro-étale cohomology behaves in a remarkably different
way from other (more classical) cohomologies. For example, for i ≥ 1, we have :
• Hi

dR(An) = Hi
HK(An) = 0, where H•

HK is Hyodo-Kato cohomology (see [5] for
its definition),
• Hi

ét(A
n,Q`) = Hi

proét(A
n,Q`) = 0, if ` 6= p,

• Hi
ét(A

n,Qp) = 0. (Cf. [1] or Remark 12.)
We listed the ` 6= p and ` = p cases of étale cohomology separately because, if
` 6= p, the triviality of the cohomology of An is a consequence of the triviality of the
cohomology of the closed ball (which explains why the pro-étale cohomology is also
trivial), but the p-adic étale cohomology of the ball is highly nontrivial.
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(ii) Using overconvergent syntomic cohomology allows to prove a more general
result [2, Th. 1.8]: if X is a Stein space over K admitting a semistable model over the
ring of integers of K, there exists an exact sequence

0→ Ωr−1(X)/Ker d→ Hr
proét(X,Qp(r))→ (B+

st ⊗̂Hr
HK(X))N=0,ϕ=pr → 0.

However making syntomic cohomology overconvergent is technically demanding and
the simple proof below uses special features of the geometry of the affine space.

(iii) Another possible approach (cf. [6]) is to compute the pro-étale cohomology of
the relative fundamental exact sequence 0→ Qp(r)→ Bϕ=pr

cris → BdR/F
r → 0.

Let
◦
Bn be the open unit ball of dimension n. An adaptation of the proof of

Theorem 1 shows the following result:

Theorem 3. — For r ≥ 1, we have isomorphisms of GK-Fréchet spaces

Hr
proét(

◦
Bn,Qp(r)) ' Ωr−1(

◦
Bn)/Ker d ' Ωr(

◦
Bn)d=0.

Acknowledgements. — We would like to thank the referee for a careful reading of the
manuscript and useful suggestions for improving the exposition.

1. Syntomic variations

If r = 1, one can give an elementary proof of Theorem 1 using Kummer theory,
but it does not seem very easy to extend this kind of methods to treat the case r ≥ 2.
Instead we are going to use syntomic methods.

Recall that the étale-syntomic comparison theorem [7, 3] reduces the computation
of p-adic étale cohomology to that of syntomic cohomology (1). The latter is defined
as a filtered Frobenius eigenspace of absolute crystalline cohomology (see [4] for a
gentle introduction and [7] for a more thorough treatment) and can be thought of as
a higher dimensional version of the Fontaine-Lafaille functor. Its computation reduces
to a computation of cohomology of complexes built from differential forms, and hence
is often doable.

More precisely, if X is a quasi-compact semistable p-adic formal scheme over OK ,
then the Fontaine–Messing period map [4]

(4) αFM : τ≤rRΓsyn(XOC ,Zp(r))→ τ≤rRΓét(XC ,Zp(r))

is a pN -quasi-isomorphism (2) for a constant N = N(r). This generalizes easily to
semistable p-adic formal schemes over OC : the rational étale and pro-étale cohomol-
ogy of such schemes are computed by the syntomic complexes RΓsyn(XOC ,Zp(r))Q

1. The computations in [3] are done over K (or over its finite extensions), but working directly
over C simplifies a lot the local arguments because there is no need to change the Frobenius and the
group Γ of loc. cit. becomes commutative (hence so does its Lie algebra, which makes the arguments
using Koszul complexes a lot simpler).

2. It means that the kernel and cokernel of the induced map on cohomology are annihilated by pN .
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and RΓsyn(XOC ,Qp(r)), respectively, where the latter complex is defined by taking
RΓsyn(XOC ,Zp(r))Q locally and then glueing.

The purpose of this section is to construct a particularly simple complex that,
morally, computes the syntomic, and hence (pro-)étale as well, cohomology of the
(canonical formal model of the) affine space and the open ball, but does not use a
model of the whole space, only of closed balls of increasing radii.

Period rings. — Let C[ be the tilt of C and let Acris ⊂ B+
cris = Acris[

1
p ] ⊂ B+

dR be the
usual Fontaine’s rings.

Let θ : B+
dR → C be the canonical projection (its restriction to Acris induces a

projection Acris → OC), and let F•
θB

+
dR be the filtration by the powers of Ker θ and

F•
θAcris be the induced filtration. For j ∈ Z, let Aj = Acris/F

j
θ (hence Aj = 0 for

j ≤ 0 and A1 = OC).
We choose a morphism of groups α 7→ pα from Q to C∗ compatible with the

analogous morphism on Z. We denote by p̃α the element (pα, pα/p, pα/p
2

, . . . ) of C[

and by [p̃α] its Teichmüller lift in Acris.

Closed balls. — For α ∈ Q+, let

Dα = {z = (z1, . . . , zn), vp(zm) ≥ −α, for 1 ≤ m ≤ n}

be the closed ball of valuation −α in An, and denote by O(Dα) (resp. O+(Dα)) the
ring of analytic functions (resp. analytic functions with integral values) on Dα. We
have

O(Dα) = C〈pαT1, . . . , p
αTn〉 and O+(Dα) = OC〈pαT1, . . . , p

αTn〉.

Consider the lifts

R+
α = Acris〈[p̃α]T1, . . . , [p̃

α]Tn〉 and Rα = R+
α [ 1

p ]

of O+(Dα) and O(Dα), respectively. We extend ϕ on Acris to ϕ : Rα → Rα by setting
ϕ(Tm) = T pm, for 1 ≤ m ≤ n.

Definition 5. — Let r ≥ 0. If α ∈ Q+ and Λ = Rα, R
+
α , we define the complexes

Syn(Λ, r) := [HKr(Λ)→ DRr(Λ)],

where the brackets [· · · ] denote the mapping fiber, and (3)

HKr(Λ) := [Ω•
Λ
ϕ−pr−−→Ω•

Λ],

F rΩ•
Λ := (F rθΛ→ F r−1

θ Ω1
Λ → F r−2

θ Ω2
Λ → · · · ),

DRr(Λ) := Ω•
Λ/F

r = ( · · · → Ar−i ⊗Acris
ΩiΛ

1⊗di // Ar−i−1 ⊗Acris
Ωi+1

Λ → · · · ).

3. The differentials are taken relative to Acris.
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The complex Syn(An, r). — The above complexes for varying α are closely linked:
• The ring morphism R0 → Rα, Tm → [p̃α]Tm, for 1 ≤ m ≤ n, induces an

isomorphism of complexes Syn(R0, r)
∼→ Syn(Rα, r).

• For β ≥ α, the inclusion ιβ,α : Rβ ↪→ Rα induces a morphism of complexes
Syn(Rβ , r)→Syn(Rα, r) thanks to the fact that ϕ([p̃s]) = [p̃s]p, for all s ∈ Q+.
(We have analogous statements replacing Rα by R+

α .)
The first point comes just from the fact that two closed balls are isomorphic, but the

second point, to the effect that we can find liftings of the O(Dα)’s with compatible
Frobenius, is a bit of a miracle, and will simplify greatly the computation of the
syntomic cohomology of An. In particular, it makes it possible to define the complex
Syn(An, r) := holimα Syn(Rα, r) and, similarly, HKr(A

n) and DRr(A
n).

For i ≥ 0 and X = An, Rα, R
+
α , denote by HKi

r(X), DRi
r(X), and Syni(X, r) the

cohomology groups of the corresponding complexes. We have a long exact sequence:

· · · → DRi−1
r (X)→ Syni(X, r)→ HKi

r(X)→ DRi
r(X)→ · · ·

Proposition 6. — If i ≤ r, we have natural isomorphisms:
• Hi

ét(Dα,Qp(r)) ∼= Syni(Rα, r), if α ∈ Q+.
• Hi

proét(A
n,Qp(r)) ∼= Syni(An, r).

Proof. — Take α ∈ Q+. By the comparison isomorphism (4), to prove the first claim,
it suffices to show that the complex Syn(Rα, r) computes the rational geometric log-
syntomic cohomology of Dα := Spf O+(Dα), the formal affine space over OC , that
is a smooth formal model of Dα. To do this, recall that the latter cohomology is
computed by the complex

RΓsyn(Dα,Zp(r))Q = [RΓcr(Dα/Acris)
ϕ=pr

Q → RΓcr(Dα/Acris)Q/F
r],

where Acris is equipped with the unique log-structure extending the canonical log-
structure on OC/p. It suffices thus to show that there exists a quasi-isomorphism
RΓcr(Dα/Acris)Q ' Ω•

Rα
that is compatible with the Frobenius (4) and the filtration.

But this is clear since Spf R+
α is a log-smooth lifting of Dα from Spf OC to Spf Acris

that is compatible with the Frobenius on Acris and O+(Dα)/p.
To show the second claim, we note that, for β ≥ α, there is a natural map (an

injection) of liftings (R+
β → O+(Dβ))→ (R+

α → O+(Dα)). This allows us to use the
comparison isomorphism (4) to define the second quasi-isomorphism in the sequence
of maps

τ≤rRΓproét(A
n,Qp(r)) ' τ≤r holimk RΓét(Dk,Qp(r)) ' τ≤r holimk RΓsyn(Dk,Zp(r))Q

' τ≤r holimk Syn(Rk, r) = τ≤rSyn(An, r).

4. Recall that the Frobenius on crystalline cohomology is defined via the isomorphism
RΓcr(Dα/Acris)Q

∼→ RΓcr((Dα,/p)/Acris)Q from the canonical Frobenius on the second term.
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Here, the first quasi-isomorphism follows from the fact that {Dk}k∈N is an admissible
affinoid covering of An and the third one follows from the first claim. This finishes
the proof.

2. Computation of HKi
r(A

n)

The group HKi
r(A

n) is, by construction, obtained from the HKi
r(Rα)’s, but the

latter are, individually, hard to compute and quite nasty: for example, HK1
1(Rα) is

isomorphic to the quotient of Qp⊗̂O(Dα)∗ by the sub Qp-vector space generated by
O(Dα)∗; hence it is an infinite dimensionnal topological Qp-vector space in which
0 is dense. Fortunately Lemma 8 below shows that this is not a problem for the
computation of HKi

r(A
n).

For k = (k1, . . . , kn) ∈ Nn, we set |k| = k1 + · · · + kn and Tk = T k11 · · ·T knn . For
1 ≤ j ≤ n, let ωj be the differential form dTj

Tj
, and let ∂j be differential operator

defined by df =
∑n
j=1 ∂jf ωj . For j = {j1, . . . , ji}, with j1 ≤ j2 ≤ · · · ≤ ji, we set

ωj = ωj1 ∧ · · · ∧ ωji . All elements η of ΩiRα can be written, in a unique way, in the
form

∑
|j|=i ajωj, where aj ∈

(∏
j∈j Tj

)
Rα.

Lemma 7. — Let M be a sub-Zp-module of Acris or OC . Let i ≥ 1 and k ∈ Nn. For
ω = Tk

∑
|j|=i ajωj, with aj ∈M , such that dω = 0, there exists η = Tk

∑
|j|=i−1 bjωj,

such that dη = ω and bj ∈ p−N(k)M , with N(k) = infj∈j vp(kj).

Proof. — Permuting the Tm’s, we can assume that vp(k1) ≤ vp(k2) ≤ · · · ≤ vp(kn);
in particular, k1 6= 0. Decompose ω as

(
ω1 ∧ Tk

∑
1∈j ajωjK{1}

)
+ ω′, and set η =

1
k1
Tk
∑

1∈j ajωjK{1}; we have ω − dη = Tk
∑

1/∈j cjωj and it has a trivial differential.
But d(Tk

∑
1/∈j cjωj) = k1T

k
∑

1/∈j cjω{1}∪j +
∑

1/∈I c
′
IωI , hence cj = 0 for all j, which

proves that dη = ω and allows us to conclude.

Lemma 8. — Let α ∈ Q+ and let Λα = R+
α ,O

+(Dα). Then H0
dR(Λα) = Acris,OC

and HK0
r(R

+
α ) = Aϕ=pr

cris , the natural maps

Hi
dR(Λα+1)→ Hi

dR(Λα), i ≥ 1; HKi
r(R

+
α+2)→ HKi

r(R
+
α ), i ≥ 2.

are identically zero, and the image of the map HK1
r(R

+
α+2)→ HK1

r(R
+
α ) is annihilated

by pr.

Proof. — The computation of the H0’s is straightforward. The proof for the first
map is similar (but easier) to that of the second one, so we are only going to prove
the latter. Take i ≥ 2. Let (ωi, ωi−1) be a representative of an element of HKi

r(R
+
α+2).

That is to say ωi ∈ Ωi
R+
α+2

, ωi−1 ∈ Ωi−1

R+
α+2

, dωi = 0 and dωi−1 + (ϕ− pr)ωi = 0.

Since dωi = 0, we deduce from Lemma 7 that there exists ηi−1 ∈ Ωi−1

R+
α+1

such that

ια+2,α+1ω
i = dηi−1 (we used here that 1

m [p̃]m ∈ Acris). Let ωi−1
1 = ια+2,α+1ω

i−1 +
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(ϕ − pr)ηi−1. Then dωi−1
1 = ια+2,α+1dω

i−1 + (ϕ − pr)dηi−1 = 0; hence there ex-
ists ηi−2 ∈ Ωi−2

R+
α

such that ια+1,αω
i−1
1 = dηi−2. It follows that ια+2,α(ωi, ωi−1) =

d(ια+1,αη
i−1, ηi−2), as wanted.

Take now i = 1 and use the notation from the above computation. Arguing as
above we show that (ω1, ω0) is in the same class as (0, ω0), with ω0 ∈ Acris. But the
map ϕ − pr : Acris → Acris is pr-surjective. This proves the last statement of the
lemma.

Remark 9. — (i) The same arguments would prove that there exists N : Q∗
+ → N

such that, if β > α and i ≥ 1, the images of the natural maps Hi
dR(R+

β )→ Hi
dR(R+

α ),
HKi

r(R
+
β )→ HKi

r(R
+
α ) are killed by pN(β−α). This is sufficient to extend Corollary 10

and Lemma 11 to the unit ball
◦
Bn.

(ii) Note, however, that N(u) → +∞ when u → 0+. This prevents the extension
of Lemma 11 to the integral de Rham cohomology of

◦
Bn which is good since this

integral de Rham cohomology, in degrees 1 ≤ i ≤ n, is far from 0 (but its p-torsion is
dense).

Corollary 10. — If i ≥ 1 then HKi
r(A

n) = 0.

Proof. — Immediate from Lemma 8 and the exact sequence

0→ R1 lim←−
k

HKi−1
r (Rk)→ HKi

r(A
n)→ lim←−

k
HKi

r(Rk)→ 0

3. Computation of DRi
r(A

n)

Lemma 11. — If 1 ≤ i ≤ r−1 then DRi
r(A

n) '
(
Ωi(An)/Ker d

)
(r− i−1), if i ≥ r

then DRi
r(A

n) = 0, and, if r > 0, we have an exact sequence

0→ B+
cris/F

r
θ → DR0

r(A
n)→

(
O(An)/C

)
(r − 1)→ 0

Proof. — We have an exact sequence

0→ R1 lim←−
k

DRi−1
r (Rk)→ DRi

r(A
n)→ lim←−

k
DRi

r(Rk)→ 0

The DRi
r(Rk)’s are the cohomology groups of the complex

. . . // Ar−i ⊗Acris
ΩiRk

1⊗di // Ar−i−1 ⊗Acris
Ωi+1
Rk

// · · ·

In particular, they are trivially 0 if i ≥ r, so assume i ≤ r − 1. The kernel of
1 ⊗ di is F r−i−1

θ Ar−i ⊗Acris ΩiRk + Ar−i ⊗Acris (ΩiRk)d=0 while the image of 1 ⊗ di−1

is Ar−i ⊗Acris dΩi−1
Rk

. Since F r−i−1
θ Ar−i is an OC-module of rank 1 (generated by the

image of (p−[p̃])r−i−1

(r−i−1)! ), we have F r−i−1
θ Ar−i ⊗Acris

ΩiRk ' Ωi(Dk)(r − i − 1), which
gives us the exact sequence

0→ Ar−i ⊗Acris H
i
dR(Rk)→ DRi

r(Rk)→
(
Ωi(Dk)/Ker d

)
(r − i− 1)→ 0.
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For i = 0 this gives the sequence in the lemma.
Assume that i ≥ 1. The natural map Hi

dR(Rk+1) → Hi
dR(Rk) is identically zero

by Lemma 8. Hence

Rj lim←−
k

(Ωi(Dk)/Ker d) ' Rj lim←−
k

DRi
r(Rk), j ≥ 0.

Now, we note that since our systems are indexed by N, Rj lim←−k is trivial for j ≥ 2.
Since R1 lim←−k Ωi(Dk) = 0, we have R1 lim←−k(Ωi(Dk)/Ker d) = 0 (and R1 lim←−k dΩi = 0).
It remains to show that lim←−k(Ωi(Dk)/Ker d) ' Ωi(An)/Ker d. But this amounts to
showing that R1 lim←−k Ωi(Dk)d=0 = 0. This is clear for i = 0 and for i > 0, since
the system {Hi

dR(Rk)}k∈N is trivial (by Lemma 8), this follows from the fact that
R1 lim←−k dΩi−1(Dk) = 0.

4. Proof of Theorem 1 and Theorem 3

4.1. Algebraic isomorphism. — From Proposition 6 we know that τ≤rSyn(An, r) '
τ≤rRΓproét(A

n,Qp(r)). From the long exact sequence

· · · → DRi−1
r (An)→ Syni(An, r)→ HKi

r(An)→ DRi
r(A

n)→ · · ·

and Corollary 10 and Lemma 11, we obtain isomorphisms(
Ωi−1(An)/Ker d

)
(r − i) ∼→ Syni(An, r), r ≥ i ≥ 2,

and the exact sequence

0→ Syn0(An, r)→ B+,ϕ=pr

cris → DR0
r(A

n)→ Syn1(An, r)→ 0,

which, using the fundamental exact sequence

0→ Qp(r)→ B+,ϕ=pr

cris → B+
cris/F

r
θ → 0,

proves the first isomorphism in Theorem 1 (together with Syn0(An, r) ∼= Qp(r)). The
second isomorphism is an immediate consequence of the fact that Hi

dR(An) = 0.
Since an open ball is an increasing union of closed balls, Theorem 3 is proved by

the same argument (see Remark 9).

Remark 12. — (i) Let j ∈ N. We note that, since [p̃]p ∈ pAcris, for every α ∈ Q+,
the maps (5) Ωi(R+

α+m)j → Ωi(R+
α )j , m ≥ pj, are the zero maps for i ≥ 1 and the

projection on the constant term for i = 0. It follows that

holimk HKr(R
+
k )j ' (Acris,j

ϕ−pr−−→Acris,j), holimk DRr(R
+
k )j ' (Acris/F

r
θ )j .

Computing as above we get (holimk,` Syn(R+
k , r)j)⊗Q ' Qp(r). Hence, by the com-

parison isomorphism (4), Hi
ét(A

n,Qp(r)) = 0, i ≥ 1, which allows us to recover the
result of Berkovich [1].

5. The subscript j refers to moding out by pj .
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(ii) The above argument does not go through for the open unit ball: the integral
de Rham complex does not reduce to the constants in that case and Hi

ét(
◦
Bn,Qp(r))

is an infinite dimensionnal Qp-vector space if 1 ≤ i ≤ n.

4.2. Topological considerations. — It remains to discuss topology. In what
follows, we write ∼= for an isomorphism of vector spaces and ≡ for an isomorphism of
topological vector spaces.

First, note that all the cohomology groups under consideration are cohomology
groups of complexes of Fréchet spaces (and even of finite sums of countable products
of Banach spaces), since these complexes can be built out of Čech complexes coming
from coverings by affinoids, and the corresponding complexes for affinoids involve
finitely many Banach spaces. It follows that, a priori, all the groups we are dealing
with are cokernels of maps F1 → F2 between Fréchet spaces. If such a group injects
continuously into a Fréchet space, then it is a Fréchet space (it is separated hence the
image of F1 in F2 is closed, and our space is a quotient of a Fréchet space by a closed
subspace), and if this injection is a bijection then it is an isomorphism of Fréchet
spaces by the Open Mapping Theorem.

Now, we have the following commutative diagram:

Hr
proét(A

n,Qp(r)) //

∼=
��

lim←−kH
r
ét(Dk,Qp(r))

≡
��

Synr(An, r)
∼= // lim←−k Synr(Rk, r)

The horizontal maps are the natural maps (and are continuous), the bottom one being
an isomorphism by the earlier computations. The left vertical arrow is an isomorphism
by Proposition 6 and the right vertical arrow is a topological isomorphism because
the period maps (4) are pN -quasi-isomorphisms, with N depending only on r. Thus
proving that lim←−k Synr(Rk, r) is Fréchet would imply that so is Hr

proét(A
n,Qp(r)) and

that Hr
proét(A

n,Qp(r)) ≡ lim←−k Synr(Rk, r).
For that, consider the map of distinguished triangles

Syn(Rk, r) //

α
��

HKr(Rk) //

β
��

DRr(Rk)

γ
��

Ω≥r(Dk)[−r] // Ω•(Dk) // Ω≤r−1(Dk)

in which:
• the top line is the definition of Syn(Rk, r), the bottom one is the obvious one,
• γ is obtained by applying θ to the terms of the complex DRr(Rk),
• β is obtained by composing the natural map HKr(Rk)→ Ω•

Rk
with θ,

• α is obtained by composing the natural map Syn(Rk, r)→ F rΩ•
Rk

with θ.
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All the maps are continuous (including the boundary maps). For r ≥ 2, taking
cohomology and limits we obtain the commutative diagram

lim←−k DRr−1
r (Rk)

∂

∼=
//

∼=
��

lim←−k Synr(Rk, r)

��
Ωr−1(An)/Ker d ≡ lim←−k(Ωr−1(Dk)/Ker d)

d

∼=
// lim←−k Ωr(Dk)d=0 ≡ Ωr(An)d=0

The bottom map is an isomorphism because lim←−kH
r
dR(Dk) ' Hr

dR(An) = 0. The
top map is an isomorphism because, on level k, its kernel and cokernel are controlled
by HKr−1

r (Rk) and HKr
r(Rk) respectively, which die in Rk−2 by Lemma 8, and the

left vertical map is an isomorphism by the proof of Lemma 11. The space Ωr(An) is
Fréchet; it follows that all other spaces are also Fréchet (in particular lim←−k Synr(Rk, r))
and that all the maps are topological isomorphisms. This concludes the proof of
Theorem 1 if r ≥ 2.

For r = 1, the argument is similar, with lim←−k DRr−1
r (Rk) in the above diagram

replaced by (lim←−k DRr−1
r (Rk))/C.

The proof for the open ball is similar.
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