N

N

TeMa: an Efficient Tool to find High-Performance
Library Patterns in Source Code
Christophe Alias

» To cite this version:

Christophe Alias. TeMa: an Efficient Tool to find High-Performance Library Patterns in Source
Code. International Workshop on Patterns in High-Performance Computing (PatHPC’05), May 2005,
Urbana Champaign, United States. ensl-01663997

HAL Id: ensl-01663997
https://ens-lyon.hal.science/ensl-01663997
Submitted on 14 Dec 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://ens-lyon.hal.science/ensl-01663997
https://hal.archives-ouvertes.fr

TeMa: an Efficient Tool to Find High-Performance
Library Patterns in Source Code

Christophe Alias

Laboratoire PRiSM, Université de Versailles, France.
Christophe.Alias@prism.uvsq.fr

Abstract. In this paper, we present a linear algorithm to find fastly all
possible instances of a pattern in a program. It has been implemented
in our TeMa tool and connected with a more expensive method already
described to check whether the program slices found are effectively in-
stances of the pattern. In case of success, our exact method provides the
corresponding values of pattern wildcards. Experimental results on SPEC
benchmarking suite show that our method is able to handle much pro-
gram variations than previous approaches, and can be applied to real-life
applications.

1 Introduction

High performance computing applications require obviously a quite optimized
code. Unfortunately, the compiler optimizing pass is not enough, and leads the
programmer to use optimized libraries such as ATLAS [24], FFTW [9] or PhiPAC
[25]. Tt is surprising how little the compiler helps the programmer in this fas-
tidious task. Research effort has been made to provide a convivial and efficient
environment to browse library functions. Several approaches are able to retrieve
a library function given pre- and post-conditions (see for example [11,20, 8]).
But these approaches can only be used at first development time, and are use-
less when the programmer have to rewrite a software that use a performance
library.

A natural solution should be to search naive occurrences of library functions
through the program. Paul and Prakash [19] proposes an extension of grep to
find program patterns in source code. Unfortunately, their approach is purely
syntactic and cannot handle many program variations. Wills [26] represents pro-
grams by a particular kind of dependence graph called flow-graph, and patterns
by flow-graph grammar rules. The recognition is performed by parsing the pro-
gram’s graph according to the grammar rules. We finally obtain a parsing tree
which represents a hierarchical description of a plausible project of the pro-
gram. This approach is a pure bottom-up code-driven analysis based on exact
graph matching. Unfortunately, Wills’ approach use expensive since the flow-
graph recognition problem is NP-complete. Moreover, a pattern data base made
of graph grammar rules seems to be difficult to maintain.

In this paper, we present a linear algorithm to quickly find all possible in-
stances of a pattern in a program. The basic idea is to step simultaneously

the pattern and the program among def-use chains while the arithmetic opera-
tors found are equal. If the stepping reach the last statement if the pattern, all
reached program statements are returned as a potential occurrence of the pat-
tern. It is implemented in the TeMa tool and connected with a more expensive
method already described in [1] to check whether the program slices found are
effectively instances of the pattern. In case of success, our exact method provides
the corresponding values of pattern wild-cards. Experimental results on SPEC
benchmarking suite [10] show that our method is able to handle much program
variations than previous approaches, and can be applied to real-life applications.

The paper is organized as follows. Section 2 introduces the notations and
definitions used in the paper. Section 3 describes our new technique to extract
the program slices similar to a given pattern. We also provide a complexity study,
and a classification of program variations handled. Section 4 presents the TeMa
tool, and its graphical interface. Section 5 provides experimental results. Finally,
section 6 gives a short survey on related works.

2 Background

This paper presents a tool to find all relevant instances of a specific pattern in
source code. A pattern a schema of program with wild-cards values and functions.
For example, figure 1 gives the pattern of a reduction, where wild-cards are
denoted by . The contribution of this paper is the algorithm to quickly find

s =0
doi=1,n

| s = O(s,0)
enddo
return s

Fig. 1. Pattern of a reduction

all possible instances of a pattern in a program. In the TeMa tool presented
thereafter, it is connected with a more expensive method already described in
[1] to check if the program slices found are effectively instances of the pattern.
In case of success, our exact method provides the corresponding values of [I.

Finding instances of a pattern in a program means finding all program slices
equivalent to an instance of the pattern. But what does exactly means «equiva-
lent» ? We will consider a weak version of semantic equivalence called Herbrand-
equivalence. Instead of indicating whether two algorithms compute the same
(mathematical) function, Herbrand-equivalence just indicate if they used the
same mathematical formula, syntactically. In this way, Herbrand-equivalence can
be considered as a true algorithmic equivalence. Even if Herbrand-equivalence
is weak than semantic equivalence, and seems to be easier to check, it has been
unfortunately proved undecidable [2].

Our detection algorithm uses a powerful extension of automata called tree-
automata. A tree automatonis a tuple A = (X, Q, Q¢, A), where X' is a signature,
Q the set of states, @y C @ the set of final states, and A a set of transition rules
of the type f(q1...qn) — ¢, where n >0, f € ¥ and ¢,q1,...,¢, € Q. Tree
automata were introduced by Doner [5,6] and Thatcher and Wright [21,22] in
the context of circuit verification. Most of usual operations on word automata
(determinization, minimization, cartesian product, ...) extend naturally to tree
automata [4].

3 Pattern Detection

In this section, we present our algorithm to detect patterns in source code. We
also provide a complexity study showing that our algorithm is linear in the
program size. Finally, we evaluate the power of detection in terms of program
variations handled.

3.1 Our Algorithm

The aim of our detection algorithm is to provide the parts of the program which
potentially compute the same arithmetic expression than an instance of the pat-
tern. The main idea is to step simultaneously the pattern and the program among
def-use chains while pattern’s and program’s operators are equal. If the stepping
reaches the last statement of the pattern, all reached program statements will
be returned as a candidate slice.

Algorithm Build Automaton

Input: The pattern or the program.
Output: The corresponding tree automaton.

1. Associate a new state to each assignment statement.
2. For each state:

g=[r = f(0(@1)-. $(Qn))]

Add the transitions: f(qi...gqn) — g, for each ¢; € Q;.
3. For each state:

g=|r = D(¢(Q1) - 4(Qn))]

Add the transitions: ¢; — q, for each ¢; € Q; (input transitions).
And: f(q...q) — g, for each operator f used in the pattern and the program,
including constants (0-ary operators) (looping transitions).

Fig. 2. Build_Automaton

The pattern and the program are assumed to be given in scalar SSA-form, and
normalized with one operator by statement. We first associate to the program
and the pattern a tree automaton allowing to step them easily. This is done by
using the algorithm described in figure 2. Basically, each state corresponds to a
statement (step 1), and the transitions to a state are driven by def-use chains,
and labeled by the statement’s operator (step 2). Pattern wild-cards are handled
as Kleene star in word automata. Note that value wild-card is particular case of
function wild-card O(. ..) with arity 0. We loop on the corresponding state with
all operators which can be found in the program (step 3).

Consider the pattern and the program given in figure 3. For sake of clarity,
we have chosen a pattern and a program with unary operators (1+ ., exp ., tan .,
1/.) which will lead to nices word automata given in figure 4. But of course, our

method can handle operators with any arity (more often . 4+ ., . — ., . x ., ./.).
rli =1 zl =1
do 7 =1,n t =0
r2 = O(¢(r1,r3)) a = tan(t)
r3 = 1+r2 do 7 =1,10
enddo z2 = 1/(¢(21,23))
rd = exp(p(rl,r3)) z3 = 1+z2
enddo
r = exp(z3)

Fig. 3. Pattern (left) and Program (right)

The idea is now to step simultaneously the two automata up to pattern’s
final state while operators are equals. The two automata have as many entry
points as constant leafs (1(), 2() here). To be exhaustive, we have thus to start a
comparison from each couple of leafs. It is equivalent to compute the cartesian
product of the pattern’s and the program’s automata. The detected slices can
then be computed by collecting all programs states along the paths from initial
states to each state with a final pattern state (ggy,,1,-)- The detection step is
summarized in the algorithm described in figure 5.

Let us summarize our algorithm. Given a pattern and a program, we put them
in SSA-form. We then compute their tree-automata Ar and Ap by applying
the algorithm Build Automaton described in figure 2. The slices of «good»
candidates are then obtained by stepping simultaneously Ar and Ap. This is
done by applying the algorithm Output_Slices described in figure 5.

3.2 Complexity issues

Now, let us study the complexity of our detection algorithm. The significant
operation is the creation of a transition. Consider a program P given in scalar
SSA form, with a statement r = f(¢(Q1)-..#(Qr)). Build Automaton will

1+., exp

0
r2 = O(¢(r1,r3))

r3 =1+ r2

exp

r = exp(z3)
r4 = exp(¢(r1,r3)

Fig. 4. Pattern’s automaton (left), and Program automaton (right)

creates |Q1] X ... x |@Qn| transitions. Thus the total number of transitions can
be written P x d* where d is a average number of sources by reference, and
a denotes the average arity of program’s operators. Experimentations on SPEC
benchmarking suite [| show that d = 4 and @ = 2. Indeed, f is more often
standard arithmetic operators such as +, —, x or /. Thus, the average complexity
of Build_ Automaton can be written 16P = O(P).

Algorithm Output_ Slices

Input: A7 and Ap, pattern’s and program’s automata.
Output: {s1...s,}, the last statements of each candidate slice.

1. Compute the Cartesian product A = Ar x Ap.
2. Mark the nodes with a final state of Ar, and emit the Ap part of marked states.
3. For each marked node ¢:

Compute the set of previous states Prev(q) = {¢’, ¢ —* q}-

Then return the Ap part of Prev(qg).

Fig. 5. Output_ Slices

Consider now a pattern T. In the worst case, the number of transitions of
Ar x Ap is T(Ar x Ap) = T(Ar) x T(Ap) where T (A) denotes the number
of transitions of A. This case occurs when T and P uses only one operator,
which never occurs in real life examples. Thus the worst-case complexity can be

written: (d%)2T x P = 2561 x P = O(P). Therefore, our detection algorithm is
linear in the program size.

3.3 Program variations detected

A common way to evaluate an algorithm recognition system is to provide the
different kinds of pattern variations it can handle [26,12,17,18]. We provide
thereafter a detailed description of each variation. We also state whether our
algorithm is able to detect them.

Organization variations Any permutation of independent statements and in-
troduction of temporary variables. The following example give an organiza-
tion variation with legal permutations (LP), garbage code (GC) and tempo-

raries (T):
s = a(0) s = a(0)
c=0 c=0
doi=1,n GC garbage = 0
s =s + a(i) doi=1,n
c=c+ 1 LP c=c+1
enddo T temp = a(i)
return s + c doj=1,p
GC garbage = garbage + 1
enddo

s = s + temp
GC garbage = garbage + a(i)
enddo
OUTPUT = s + ¢

Our algorithm works on a def-use graph, which avoids the artificial prece-
dence constraints due to the text representation of the program. This allows
our algorithm to handle legal permutations and garbage code. Our method
compares two by two the operators used in the template and the program
without handling variables, this allows to handle temporaries.

Data structure variations The same computation with a different data struc-
ture. The following example gives a data structure variation with arrays and
non-recursive structures:

s(0) = a(0) s.suml = a(0)
do i =1, 2*n doi=1,n
s(i) = s(i-1) + a(i) s.suml = s.suml + a(i)
enddo enddo
OUTPUT = s(2*n) s.sum2 = a(n+1)

do i = nt+2, 2*n

s.sum2 = s.sum2 + a(i)
enddo
OUTPUT = s.suml + s.sum?2

Once again, def-use chains are stepped without take into account of variable
names. This allows to handle data-structure variations. As stated above, it
is also a cause of wrong detections.

Control variations Any control transformation as if-conversion, dead-code sup-
pression and loop transformations as peeling, splitting, skewing, etc. The
following example give a control variation with a simple peeling:

s = a(0) s = a(0)
doi=1,n s =s + a(l)
s =s + a(i) do i = 2,n-1
enddo s =s + a(i)
QUTPUT = s enddo
s = s + a(n)
OUTPUT = s

If the control variation do not change the operators nest in the expression
computed by the program, it is handled.

Each of these variations provide an Herbrand-equivalent slice, which our al-
gorithm is able to detect in a general way. But we are not able to detect non-
Herbrand-equivalent variations, such as semantics variations, which uses seman-
tics properties of operators such as associativity or commutativity. Nevertheless,
experimental results given thereafter shows that our method find a large amount
of correct candidates.

4 The TeMa tool

TeMa (Template Matcher) is the implementation of our detection algorithm. Op-
tions allow to apply the exact instantiation test described in [1] to check whether
the program slices are effectively instances of pattern. In case of success, it
provides the corresponding values of pattern wild-cards. TeMa has been imple-
mented in Objective Caml, and represents 10388 lines of code. TeMa is declined
in two versions: a batch version for automatic usage such as benchmarking, or
systematic discovery of patterns in a large application ; and a visual version with
a graphical interface for human usage such as re-engineering, program compre-
hension or software maintenance.

Schema given figure 6 summarizes the main steps of TeMa . We first ana-
lyze the source code of the pattern and the program, in order to put them in
SSA-form. This step will outputs a graph representation called SSA-graph. Our
front-end is able to handle C and Fortran 90 programs. C front-end use the
LLVM compiler infrastructure [15], which is based on gcc front-end. Thus TeMa
is able to handle any C real-life application. We have also implemented our own
Fortran 90 front-end. Most Fortran 90 programs are correctly handled, but some
syntactic constructions are not yet accepted, and need to be modified by hand.
Our front-end has handled with success all Fortran programs of SPEC bench-
marking suite. The two front-ends represent 701 lines of C++ for the C/C++
part, and 3463 lines of Objective Caml for the Fortran 90 part.

SSA-graph generation

Pattern detection

Fig. 6. The main steps of TeMa

Next, we apply our detection algorithm to the pattern’s and program’s SSA-
graphs. As stated above, it output all the program slices which potentially match
with the pattern. The experimental results presented in the next section shows
that the wrong detections are low, thus candidate slices can be keep as a final
results. Our detection algorithm represents 3378 lines of Objective Caml.

The user can nevertheless asking for a confirmation that program slices are
effectively instances of pattern. Our exact instantiation test is then applied and
gives the corresponding values of wild-cards in case of success. Our exact instan-
tiation test represents 2846 lines of Objective Caml.

Figure 7 gives the interface of TeMa . The pattern and the program can be
loaded in the appropriate panel. Pattern wild-cards are denoted by X. Options
button allows the user to customize the matching, by choosing for example to
apply or not the exact instantiation test after the detection. Match button apply
the whole algorithm. The user can then inspect the different occurrences found
in the program by using the buttons < and >.

5 Experimental results

We have applied our pattern detection algorithm to detect potential calls to the
BLAS library [16] in LINPACK [7] and four programs involved in the SPEC bench-
marking suite [10]. Our pattern base is constituted of direct implementations of
BLAS functions from the mathematical description. After having applied our al-

=« tema B EE

File Edit Options Match Help

i (=] Open] Save ‘Options] Match!] < J > 1
Template Frogram o
program =trmy doi=1,n-k]
C afk+1,1,iy) = alk+1,j,iv) + tfak+1 kix)
L =i+ 1
B !
integer i,j,n
real af1,13, =(13, (1)
doi=1,n
¥ = X0
doj=1.n
alj) = %0

=0
Y} = a.)=0) + v{i)
enddo
enddo
end

if (job .eq. 0) then =]

Fig. 7. TeMa’s graphical interface

gorithm to each pair of pattern and program, we have checked by hand whether
the substitution by a call to BLAS is possible. Table 8 shows the results.

It appears that 1/2 of candidates do not match, 1/4 are instances of patterns
for vectors of size 1, and 1/4 of candidates are correct and can be replaced by
a call to BLAS. We present the different kind of candidates involved in these
categories.

Most of the incorrect detections are due to the approximation of the de-
pendences with ¢-functions. Nor loop iteration count, nor if conditions, nor
complex dependences due to array index functions are handled. In addition, our
method handles arrays as scalar variables, which can lead to detect a BLAS1
xaxpy y(i) = y(i) + a*x(i) when there is a reduction s = s + a(i)*a(i).
Likewise, the method detects the same number of matrix-matrix multiplication
than of matrix-vector multiplication. Note that the detection is correct since a
vector is a particular case of matrix, but the code should not be substituted by
a BLAS 3.

1/4 of the slice is constituted of interesting candidates whose substitution
can potentially increase the program performance. Our algorithm seems to have
discovered all of them, and particularly hidden candidates. Indeed, most slices
found are interleaved with the source code, and deeply destructured. Our method
has been able to detect a dot product in presence of a splitting and a loop unroll,
which constitute important program variations that a grep method would not
catch. The same remark applies on equake program. Two versions of matrix-
vector product appear, one hand optimized and the other not. Both are detected
whereas a method based on regular expressions fits only the second. In addition,

10

120

110

100 -

a0

&0

70

e [CJ#Substitted
L | D#Trivial
s | B i W#Wweng
40 i B f
[] L -
30+ I ; ; i L
20 | |

CDFGHL CDFH CDEFHL CDFH CDFHIKL

LINPACK 171.swim 172.mgrid 177.mesa 183.equake
43.85 s 11.99s 20.12s 1696s 644 s

Alixamax||C|xaxpy||E[xnrm2||G|xxdot ||| |xger |[K|xsyr
B|xasum [|D|xdot |[|F|xscal ||H|[xgemv||J|xspr2|[L|xtrmv

Fig. 8. For each kernel, we provide each BLAS function found, the number of non-
equivalent slices (# Wrong), the number of detections with one statement (# Trivial),
and the number of candidates interesting to replace (# Substituted). The execution
times are given for a Pentium 4 1,8 GHz with 256 Mo RAM.

execution times confirms that our algorithm is linear in the program size. Thus,
our detection method is scalable and can be applied to real-life applications.

6 Related Works

We first present related works about program slicing as a tool to help software
maintenance, then we present some methods for pattern detection, and more
specifically algorithm recognition.

Program slicing was first introduced by Mark Weiser [23], to help program-
mers to debug their code. He defined a slicing criterion as a pair (p, V'), where
p is a program point and V' a subset a program variables. A program slice on
the slicing criterion (p, V) is a subset of program statements that preserves the
behavior of the original program at the program point p with respect to the
program variables in V. Weiser has shown that computing the minimal subset
of statements that satisfies this requirement is undecidable [23]. However an ap-
proximation can be found by computing consecutive sets of indirectly relevant
statements, according to data-flow and control-flow dependences.

Lanubile and Visaggio [14] added the set of input variables to the slice crite-
rion. They introduced the notion of transform slice, as the slice that computes

11

the values of the output variables at a given point, from the values of the input
variables. Basically, the computation of the slice stops as soon as statement that
defines values for the input variables are included in the slice.

Cimetile et al. [3] defined a method to identify slices verifying given pre-
conditions and post-conditions. They first compute a symbolic execution of the
program, which assign to each statement its pre-condition, then they use a the-
orem prover to extract the slices. They need user interaction to associate post-
condition variables to program variables. Moreover, as the problem of finding
invariant assertions is in general undecidable, symbolic execution can require
user interaction in order to prove some assertions and assert some invariants. No
practical evaluation of their method, or theoretic study of complexity is given,
but their method seems to be costly. Moreover, the need of user interaction
makes the method inappropriate in a fully automatic framework.

Paul and Prakash [19] proposes an extension of grep to find program patterns
in source code. They use a pattern language with wild-cards on syntactics entities
e.g. declaration, type, variable, function, expression, statement, ... which allow
to find patterns with specific sequences and imbrications of control structures.
For example, here is pattern used to find the maximum in an array of integers:

{*
@[while|dowhile|for] {*
if($v_1[#] > $v_2) {*
$v_2 = $v_1[#]
*}
*}
*}

The wild-card {* *} means a statement with an arbitrary nesting depth. @[while
| dowhile | for] means either while, dowhile or for. $v_{name} means a
variable labeled by name and # means an expression. Their algorithm produces
and interprets a Code Pattern Automaton (CPA), which traverse the program’s
AST according to the pattern, and decides if it is an instance or not. They argue
the complexity of their algorithm is O(n?) with n the number of AST nodes.
Obviously, their approach is limited to one programming language, and forces
the user to make strong assumptions in the implementation of patterns. It seems
this approach cannot handle many other program variations than variable re-
naming ($v_{name}) and garbage code ({* *}). Thus candidate slices should be
quite limited. Moreover, their algorithm is more expensive than ours.

Several approaches encode the knowledge about the functions to be identified
in the form of programming plans, and can be classified as either top-down or
bottom-up methods. Top-down methods [12,13] use the knowledge about the
goals the program is assumed to achieve and some heuristics to locate both
the program slice and the plan from the library that can achieve these goals.
Bottom-up methods [17,26] start from the program statements and try to find
the corresponding plans. Wills [26] represents programs by a particular kind of
dependence graph called flow-graph, and patterns by flow-graph grammar rules.
The recognition is performed by parsing the program’s graph according to the

12

grammar rules. We finally obtain a parsing tree which represents a hierarchi-
cal description of a plausible project of the program. This approach is a pure
bottom-up code-driven analysis based on exact graph matching. Patterns are
represented by grammars rules, encoding a hierarchy among them, but making
the pattern base difficult to maintain. Organization variation is partially sup-
ported. Temporary variables can be handled by adding specific rules. All others
algorithmic variations can be handled only if they are explicitly described in the
pattern base.

Metzger and Wen [18] have built a complete environment to recognize and
replace algorithms. They first normalize the program and pattern AST by apply-
ing classical program transformations (if-conversion, loop-splitting, scalar expan-
sion...). Then they search the program for good candidate slices. The candidate
slices are SCCs of the dependence graph, containing at least one for statement.
Their equivalence test is based on an isomorphism between the slice and pattern
AST. Obviously, this approach is low cost, and scalable. One may point out the
large amount of candidate slices given by their method, but it is not a real prob-
lem due to the low complexity of their equivalence test. Organization variations,
resulting from the permutation of independent statements or the introduction
of temporaries are not handled by the algorithm itself, but by pre-treatments
applied to the program. Reuse of temporaries across loop iterations for instance
is not handled. In the same way, the control variations supported are bounded
to pre-treatments.

7 Conclusion

In this paper, we have presented a new and efficient pattern detection algorithm,
implemented in the tool TeMa. Given a pattern and a program, TeMa allows the
user to browse to different occurrences of the pattern in the program. Our detec-
tion method is linear in the program size, and has been validated by searching
immediate mathematical descriptions of BLAS functions in different kernels of
the SPEC benchmarking suite. Our method is able to detect a large amount of
program variations such as loop transformations (unroll, splitting, tiling, etc...),
and appears to be scalable, and thus applicable to real-life applications. In ad-
dition, the exact method already described in [1] can applied by TeMa to check
whether the program slices found are effectively instances of the pattern.

In a future work, we would like to automatize the replacement of relevant
program slices by a call to the corresponding library function. Such a method
will fully automatize the software rewriting w.r.t. a high performance library.
Apart from high-performance, it will also ensure a better portability of software
in a fully automatic manner.

Acknowledgments

The author would like to thank Denis Barthou and Paul Feautrier for their
valuable help and suggestions.

13

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. Alias and D. Barthou. Algorithm recognition based on demand-driven data-
flow analysis. In 10th Working Conference on Reverse Engineering (WCRE). IEEE
Computer Society Press, November 2003.

D. Barthou, P. Feautrier, and X. Redon. On the equivalence of two systems of
affine recurrence equations. In 8th International Euro-Par Conference, page 309.
Springer, LNCS 2400, 2002.

A. Cimetile, A. De Lucia, and M. Munro. A specification driven slicing process
for identifying reusable functions. Journal of Software Maintenance: Research and
Practice, 8(3):145-178, 1996.

. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree automata techniques and applications, 1997. release October,
1rst 2002.

J. E. Doner. Decidability of the weak second-order theory of two successors. Notices
Amer. Math. Soc., 12:365-468, March 1965.

J. E. Doner. Tree acceptors and some of their applications. Journal of Comput.
and Syst. Sci., 4:406-451, 1970.

J. Dongarra. The linpack benchmark: An explanation. In Proceedings of the 1st In-
ternational Conference on Supercomputing, pages 456—474. Springer-Verlag, 1988.
B. Fischer. Specification-based browsing of software component libraries. In Au-
tomated Software Engineering, pages 74-83, 1998.

M. Frigo and S. Johnson. FFTW: An adaptive software architecture for the FFT.
In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing, volume 3,
pages 1381-1384. IEEE, 1998.

J. Henning. Spec cpu2000: Measuring cpu performance in the new millennium.
Computer, 33(7):28-35, 2000.

J.-J. Jeng and B. H. C. Cheng. Using formal methods to construct a software
component library. In Ian Sommerville and Manfred Paul, editors, Proceedings of
the Fourth European Software Engineering Conference, pages 397—417. Springer-
Verlag, 1993.

S.-M. Kim and J. H. Kim. A hybrid approach for program understanding based on
graph-parsing and expectation-driven analysis. Journal of Applied A.I.,12(6):521—
546, September 1998.

W. Kozaczynsky, J. Ning, and A. Engberts. Program concept recognition and
transformation. IEEE Trans. on S.E., 18(12):1065-1075, December 1992.

F. Lanubile and G. Visaggio. Extracting reusable functions by flow graph-based
program slicing. IEEE Trans. on S.E., 23(4):246-259, 1997.

C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of CGO’2004, Palo Alto, California,
Mar 2004.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra
Subprograms for Fortran usage. ACM Transactions on Mathematical Software,
5(3):308-323, September 1979.

B. Di Martino and G. Iannello. PAP recognizer: A tool for automatic recognition
of parallelizable patterns. In IWPC’0/4, pages 164-174. IEEE Computer Society
Press, 1996.

R. Metzger and Z. Wen. Automatic Algorithm Recognition: A New Approach to
Program Optimization. MIT Press, 2000.

14

19

20.

21.

22.

23.

24.

25.

26.

S. Paul and A. Prakash. A framework for source code search using program pat-
terns. IEEE Trans. on S.E., 20(6):463-475, June 1994.

John Penix, Phillip Baraona, and Perry Alexander. Classification and retrieval
of reusable components using semantic features. In Proceedings of the 10th
Knowledge-Based Software Engineering Conference, pages 131-138, 1995.

J.W. Thatcher and J.B. Wright. Generalized finite automata. Notices Amer. Math.
Soc., 1965.

J.W. Thatcher and J.B. Wright. Generalized finite automata with an application
to a decision problem. Mathematical System Theory, 2:57-82, 1968.

M. Weiser. Program slicing. IEEE Transactions on Software Engineering,
10(4):352-357, July 1984.

R. Clint Whaley and Jack Dongarra. Automatically tuned linear algebra software.
In SuperComputing 1998: High Performance Networking and Computing, 1998.
Chee whye Chin, Jeff Bilmes, Jim Demmel, and Krste Asanovic. The PHiPAC
v1.0 matrix-multiply distribution. Technical report, October 23 1998.

L. M. Wills. Automated Program Recognition by Graph Parsing. PhD thesis, MIT,
July 1992.

