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On algebraically integrable Birkhoff and angular

billiards

Alexey Glutsyuk∗†‡

September 1, 2017

Abstract

We present a solution of the algebraic version of Birkhoff Conjec-
ture on integrable billiards. Namely we show that every polynomially
integrable real bounded convex planar billiard with smooth boundary
is an ellipse. We also extend this result to the case of piecewise-smooth
and not necessarily convex polynomially integrable billiards: we show
that the boundary is a union of confocal conical arcs and straight-
line segments lying in some special lines defined by the foci. We also
present a complexification of these results. The proof, which is ob-
tained by Mikhail Bialy, Andrey Mironov and the author, is split into
two parts. The first part is the paper by Bialy and Mironov, where
they prove the following theorems: 1) the polar duality transforms a
polynomially integrable planar billiard to a rationally integrable angu-
lar billiard; 2) the singularities and inflection points of each irreducible
component of the complexified curve polar-dual to the billiard bound-
ary lie in the two complex isotropic lines through the origin; 3) the
Hessian Formula: appropriately defined Hessian of the integral of the
angular billiard being restricted to the curve polar-dual to the bound-
ary is a constant multiple of a power (x2 + y2)s. The present paper
provides the second part of the proof. Namely, we prove that each
irreducible component of the polar-dual curve that is not a line is a
conic. This together with a theorem of S.V.Bolotin implies the main
results: solution of the Algebraic Birkhoff Conjecture in both convex
smooth and non-convex piecewise smooth cases.

∗CNRS, France (UMR 5669 (UMPA, ENS de Lyon) and Interdisciplinary Scientific
Center J.-V.Poncelet), Lyon, France. E-mail: aglutsyu@ens-lyon.fr
†National Research University Higher School of Economics (HSE), Moscow, Russia
‡Supported by part by RFBR grants 13-01-00969-a, 16-01-00748, 16-01-00766 and ANR

grant ANR-13-JS01-0010.

1



Contents

1 Introduction 2
1.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Historical remarks . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Polar duality and angular billiards . . . . . . . . . . . . . . . 10
1.4 Complexification . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Rationally integrable complex angular billiards. Plan of the

proof of Theorem 1.31 . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Plan of the proof of Theorem 1.49 . . . . . . . . . . . . . . . 24

2 Preparatory asymptotics of Bialy–Mironov Hessian formula.
Proof of formulas (1.12) and (1.13) 28

3 Relative angular symmetry property and its corollaries. Proof
of Theorems 1.47–1.49 34
3.1 Asymptotics of degenerating conformal involutions . . . . . . 36
3.2 Preliminaries: asymptotics of intersections with the tangent

line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Quadraticity of tangent branches. Proof of Theorem 3.1 . . . 38
3.4 Subquadraticity. Proof of Theorem 3.2 . . . . . . . . . . . . . 40
3.5 Puiseux exponents. Proof of Theorem 3.3 . . . . . . . . . . . 43
3.6 Concentration of intersection. Proof of Theorem 3.4 . . . . . 46
3.7 Quadraticity and regularity. Proof of Theorem 1.49 . . . . . . 48
3.8 Local branches at O: proof of Theorem 1.48 . . . . . . . . . . 49
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1 Introduction

1.1 Main results

The famous Birkhoff Conjecture deals with convex bounded planar billiards
with smooth boundary. Recall that a caustic of a planar billiard Ω ⊂ R2 is
a curve C such that each tangent line to C reflects from the boundary of
the billiard to a line tangent to C. A billiard Ω is called Birkhoff integrable,
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if a neighborhood of its boundary in Ω is foliated by closed caustics. It
is well-known that each elliptic billiard is integrable, see [26, section 4].
The Birkhoff Conjecture states the converse: the only integrable convex
bounded planar billiard with smooth boundary is an ellipse.1

Note that the above-defined integrability of a billiard is equivalent to
the Liouville integrability of the corresponding Hamiltonian flow. Namely,
consider a billiard2 Ω ⊂ R2. The billiard flow Bt on the tangent bundle
TR2|Ω is defined as follows. A point (Q,P ) ∈ TR2|Ω, Q = (x, y) ∈ Ω,
P = (P1, P2) ∈ TQR2 moves with constant speed P , Bt(Q,P ) = (Q+ tP, P )
until its trajectory hits the boundary ∂Ω. Then the trajectory reflects from
the boundary according to the usual reflection law: the angle of incidence
equals the angle of reflection. Then the point moves in the reflected direc-
tion with speed having the same absolute value |P | until the trajectory hits
the boundary again. Then the trajectory is reflected etc. The billiard flow
thus defined, which can be viewed as a geodesic flow with impacts, has obvi-
ous first integral: the absolute value |P | of the speed. A billiard Ω is called
integrable in the Liouville sense, if its flow has an additional first integral in-
dependent with |P | on the intersection with TR2|Ω of a neighborhood of the
unit tangent bundle to the boundary. It is well-known that the Birkhoff and
Liouville integrabilities of a convex planar billiard with smooth boundary
are equivalent.

The particular case of the Birkhoff Conjecture, when the additional first
integral is supposed to be polynomial in the speed components, motivated
the next definition and conjecture.

Definition 1.1 Let Ω ⊂ R2 be a planar billiard with smooth connected
boundary. We say that Ω is polynomially integrable, if the restriction of
the billiard flow to a neighborhood in TR2|Ω of the unit tangent bundle of
the boundary has a first integral that is polynomial in the speed P and its
restriction to the unit energy level {|P | = 1} is non-constant. We say that
Ω is analytically integrable, if there exists an ε > 0 such that there exists a
first integral in a neighborhood in TR2|Ω of the zero section of the tangent
bundle to the boundary that is analytic in P for |P | < ε and that is not a
function of |P |.

The Algebraic Birkhoff Conjecture states that if a bounded convex

1This conjecture, classically attributed to G.Birkhoff, was published in print only in
the paper [23] by H. Poritsky, who worked with Birkhoff as a post-doctoral fellow in late
1920-ths.

2Everywhere in the paper a billiard is a connected domain Ω ⊂ R2.
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billiard with smooth boundary is polynomially integrable, then its boundary
is an ellipse.

Remark 1.2 The Algebraic Birkhoff Conjecture and its extension to bil-
liards with piecewise-smooth and even non-convex boundaries are important
and interesting themselves, independently on a potential solution of the clas-
sical Birkhoff Conjecture. They lie on the crossing of different domains of
mathematics, first of all, dynamical systems, algebraic geometry and singu-
larity theory. They are not implied by the classical Birkhoff Conjecture. For
the general case of piecewise smooth boundaries this is obvious. Even in the
case of smooth convex boundary, while the algebraicity condition is a very
strong restriction, the condition of just non-constance of a polynomial inte-
gral on the unit energy level hypersurface is topologically weaker than the
independence condition in the Liouville integrability, which requires inde-
pendence of the additional integral and the energy on a whole neighborhood
in TR2|Ω of the unit tangent bundle to the boundary. It is known that
analytic integrability implies polynomial integrability (the converse is ob-
vious), and the polynomial integral non-constant on the level hypersurface
{|P | = 1} can be chosen homogeneous in P . Indeed, each homogeneous
part of the Taylor series in P of an analytic (polynomial) integral is a first
integral itself, and one can choose a homogeneous part that is non-constant
on the latter hypersurface, if the initial (non-homogeneous) integral is not a
function of |P |. It is known that for every polynomially integrable billiard
its boundary lies in an algebraic curve and the integral can be chosen to be
a homogeneous polynomial in three variables: σ = xP2 − yP1, P1, P2, see
[9] and also [21, chapter 5, section 3, proposition 5]. This statement is local
and holds for reflection from an arbitrary smooth curve. In particular, the
latter integral is well-defined on the whole bundle TR2, and it is an integral
for the flow defined in the whole billiard domain.

Example 1.3 The billiard in a disk has linear first integral σ. The billiard
in an ellipse (and in any conic) has a quadratic integral: an integral that
is a homogeneous quadratic polynomial in the speed components. It can
be written as a homogeneous quadratic polynomial in (σ, P1, P2), as in the
above remark.

In the present paper we prove the Algebraic Birkhoff Conjecture and
its generalization for billiards with piecewise smooth boundary that may be
non-convex.
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Theorem 1.4 Let a convex planar billiard with C1-smooth boundary be
polynomially integrable. Then the billiard boundary is a conic. (Thus, if
the billiard is bounded, then it is an ellipse.)

Definition 1.5 A domain Ω ⊂ R2 has countably piecewise smooth bound-
ary, if ∂Ω consists of the two following parts:

- the regular part: an open and dense subset ∂Ωreg ⊂ ∂Ω, where each
point X ∈ ∂Ωreg has a neighborhood U = U(X) ⊂ R2 such that the inter-
section U ∩ ∂Ω is a C1-smooth one-dimensional submanifold in U ;

- the singular part: the closed subset ∂Ωsing = ∂Ω \ ∂Ωreg ⊂ ∂Ω.

Remark 1.6 In the above definition the regular part of the boundary is
always a dense and at most countable disjoint union of C1-smooth arcs
(taken without endpoints). The particular case of domains with piecewise
smooth boundaries corresponds to the case, when the above union is finite,
the arcs are smooth up to their endpoints and the singular part of the
boundary is a finite set (which may be empty). For a general planar billiard
with countably piecewise smooth boundary the billiard flow is well-defined
on a residual set for all time values. In the case, when the singular part of
the boundary has zero one-dimensional Hausdorff measure, the billiard flow
is well-defined as a flow of measurable transformations.

Definition 1.7 A billiard Ω with countably piecewise smooth boundary is
polynomially integrable, if its flow has a first integral on TR2|Ω (a function
constant on well-defined billiard orbits) that is polynomial in the speed P
and whose restriction to the level hypersurface {|P | = 1} is non-constant.
It is said to be analytically integrable, if there exists an ε > 0 such that its
flow has a first integral on a neighborhood of the zero section of the bundle
TR2|Ω that is analytic in P for |P | < ε and that is not a function of |P |.

Remark 1.8 Analytic integrability of a billiard with countably piecewise
smooth boundary implies polynomial integrability with an integral being
a homogeneous polynomial in σ, P1, P2, as in Remark 1.2. Thus, in the
particular case, when the boundary ∂Ω is connected and smooth, Definitions
1.1 and 1.7 are equivalent.

Definition 1.9 A billiard with countably piecewise smooth boundary is
called countably confocal, if the regular part of its boundary consists of arcs
of confocal conics and may be some straight-line segments such that

- at least one conical arc is present;
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- in the case, when the common foci of the conics are distinct and finite
(i.e., the conics are ellipses and (or) hyperbolas), the ambient line of each
straight-line segment of the boundary is either the line through the foci, or
the middle orthogonal line to the segment connecting the foci, see Fig. 1a);

- in the case, when the conics are concentric circles, the above ambient
lines may be any lines through their common center, see Fig. 1b);

- in the case, when the conics are confocal parabolas, the ambient line
of each straight-line segment of the boundary is either the common axis of
the parabolas, or the line through the focus that is orthogonal to the axis,
see Fig. 1 c), d).

Proposition 1.10 [10, proposition 1 in section 2; the theorem in section
4] Each countably confocal planar billiard is polynomially integrable: it has
a non-trivial first integral that is either linear, or quadratic, or a degree 4
polynomial in the speed components (it is a homogeneous polynomial of the
same degree in three variables σ, P1, P2) that is non-constant on the unit
speed hypersurface. In the case of a degree 4 integral that cannot be reduced
to a degree 2 integral the billiard boundary contains an arc of parabola and
a straight-line segment lying in a line through the focus that is orthogonal to
the axis of the parabola, see Fig. 1d).

Remark 1.11 Proposition 1.10 was proved in loc.cit. for countably confo-
cal billiards with piecewise smooth boundaries, together with its generaliza-
tion to higher-dimensional spaces of constant curvature. The proof remains
valid for general countably confocal billiards, with boundaries having in-
finitely many smooth pieces. The above-mentioned case of degree 4 integral
was first discovered in [24].

Theorem 1.12 Let a planar billiard with countably piecewise C1-smooth
boundary be polynomially integrable, and let the regular part of its boundary
have at least one non-linear arc. Then the billiard is countably confocal.

Corollary 1.13 Let a planar billiard with C1-smooth connected boundary
be analytically integrable. Then the billiard boundary is a conic (ellipse,
if bounded). If a billiard with countably piecewise C1-smooth boundary is
analytically integrable, then it is countably confocal.

The corollary follows from Theorems 1.4, 1.12 and Remarks 1.2, 1.8.
Theorem 1.4 follows from Theorem 1.12, Remark 1.8 and the fact that every
countably confocal billiard with smooth boundary is bounded by a conic.
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Figure 1: Examples of countably confocal billiards; F1, F2, F are the foci.
All of them have quadratic integrals, except for the billiard depicted at Fig.
1d), which has a degree 4 integral.

The latter fact follows from the statement saying that two tangent confocal
conics coincide: any two intersecting distinct confocal conics are orthogonal.

Theorems 1.4, 1.12 are joint results of M.Bialy, A.E.Mironov and the
author. Their proof consists of the two following parts.

The first part, due to Bialy and Mironov, is written in [6]. They have
introduced a new type of billiard, the angular billiard. They have reduced
the Algebraic Birkhoff Conjecture for billiards with smooth convex bound-
aries to its analogue for the angular billiards via polar duality. They have
studied the dual to the minimal complex algebraic curve containing the
billiard boundary. For the proof of the Algebraic Birkhoff Conjecture it
suffices to show that each irreducible component of the dual curve is a
conic. Bialy and Mironov have proved that all the singularities and in-
flection points of every irreducible component γ of the dual curve lie in the
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union3 I = {x2 + y2 = 0} = Λ1 ∪ Λ2 of two special complex projective lines
Λ1 and Λ2, the isotropic lines through the origin O. They have considered
the polynomial f defining γ and proved a remarkable formula expressing its
Hessian evaluated at its skew gradient in terms of the polynomial integral
and a power (x2 + y2)l, see [6, theorem 6.1] and formula (1.8) below.

The second part of the proof is given in the present paper. We prove that
each above irreducible component γ is a conic (Theorem 1.31 in Subsection
1.3). This together with S.V.Bolotin’s theorem [10, section 4] implies that
the billiard under question is countably confocal and proves Theorems 1.4
and 1.12: the implication will be proved at the end of Subsection 1.3. For
the proof of Theorem 1.31 we study the asymptotics of the local branches
of the curve γ (i.e., irreducible components of its germs) at points of the
intersection γ ∩ I. Each local branch b is a germ of bijectively parametrized
curve t 7→ (tq, ctp(1 + o(1)), 1 ≤ q < p, c 6= 0, in local affine coordinates
(z, w) centered at its base point so that the z-axis is tangent to b: the latter
coordinates will be called adapted. Its projective Puiseux exponent is the
ratio r = rb = p

q . We prove the following theorems:
(i) each local branch of the curve γ at O that is tangent to no line Λj is

quadratic: r = 2;
(ii) each its local branch at a point in Λj \ {O} that is tangent to Λj is

quadratic: r = 2;
(iii) each its local branch at a point in Λj \ {O} that is transverse to Λj

is regular and quadratic: q = 1, p = 2.
Afterwards we prove the following general purely algebro-geometric the-

orem.

Theorem 1.14 Let γ ⊂ CP2 be an irreducible complex algebraic curve. Let
Λ1,Λ2 ⊂ CP2 be two different projective lines, and let O be their intersection
point. Let all the singularities and inflection points (if any) of the curve γ
be contained in the union Λ1∪Λ2. Let each local branch of the curve γ at O
that is tangent to no line Λj be subquadratic: r ≤ 2. Let all its local branches
of types (ii) and (iii) be respectively quadratic (quadratic and regular), see
(ii) and (iii). Then γ is a conic.

Statements (i)–(iii) together with Theorem 1.14 imply that γ is a conic.
The proof of Theorem 1.14 is based on arguments due to E.I.Shustin

on curve singularity invariants and generalized Plücker formula from [15,
section 3].

3Recently Bialy and Mironov have proved an analogous result for billiards on sphere
and hyperbolic plane in [8]
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The polynomial integrability of the initial Birkhoff billiard implies that
the corresponding angular billiard has a rational first integral G expressed
in terms of appropriate polynomial integral of the Birkhoff billiard, see [6,
theorem 3]. By analytic extension argument, the latter statement is equiva-
lent to the statement that for every P ∈ γ the restriction G|TP γ is invariant
under a special conformal involution of the tangent line TPγ fixing the point
P : the angular symmetry. Note that it is known that G = const on γ
(see [6, theorem 3] and Theorem 1.22 in Subsection 1.3 below), and we can
normalize G to be identically equal to zero along the curve γ. The angular
symmetry permutes the points of intersection of the line TPγ with the zero
locus of the integral G, which contains the curve γ.

Statements (i) and (ii) are proved via asymptotic analysis of the latter
intersection points and their symmetry. Their proof is based on general
asymptotic formulas dealing with an irreducible germ of analytic curve b and
another irreducible germ a at the same base point. These are asymptotic
formulas for the coordinates of points of the intersection Ttb ∩ a, as t tends
to the base point, see [15, proposition 2.1] and [13, proposition 2.50, p.268].

The main technical part of the paper is the proof of Statement (iii) (The-
orem 1.49), which is based on the above-mentioned Bialy–Mironov Hessian
formula and asymptotic analysis of local branches and symmetry.

Bialy–Mironov angular billiard construction and their reduction of the
Algebraic Birkhoff Conjecture to the analogous Theorem 1.31 on angular
billiards are presented in Subsection 1.3. Their Hessian formula is presented
in Subsection 1.6: formula (1.8). The plans of the proofs of Theorem 1.31
and statement (iii) (Theorem 1.49) will be presented in Subsections 1.5 and
1.6 respectively. A historical survey will be given in the next subsection.

In Subsection 1.4 we present a complexified version of Theorem 1.12.

1.2 Historical remarks

The Birkhoff Conjecture was studied by many mathematicians. In 1950
H.Poritsky [23] proved it under the additional assumption that the billiard
in each closed caustic near the boundary has the same closed caustics, as the
initial billiard. Later in 1988 another proof of the same result was obtained
by E.Amiran [3]. In 1993 M.Bialy [5] proved the Birkhoff Conjecture under
the assumption that the foliation by caustics extends to the whole billiard
domain punctured at one point: he proved that then the billiard boundary is
a circle. In 2013 D.V.Treschev [28] made a numerical experience indicating
that there should exist analytic locally integrable billiards, with the billiard
reflection map having a two-periodic point where the germ of its second iter-
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ate is analytically conjugated to a rigid rotation. Recently Treschev studied
the billiards from [28] in more detail in [29] and their multi-dimensional
versions in [30]. Recently V.Kaloshin and A.Sorrentino have proved a local
version of the Birkhoff Conjecture [19]: an integrable deformation of an el-
lipse is an ellipse. (The case of ellipses with small extentricities was treated
in the previous paper by A.Avila, J. De Simoi and V.Kaloshin [2].)

In 1988 A.P.Veselov proved that every billiard bounded by confocal
quadrics in any dimension has a complete systems of first integrals in involu-
tion that are quadratic in P [31, proposition 4]. In 1990 he studied a billiard
in an ellipsoid in the sphere and in the Lobachevsky (i.e., hyperbolic) space
of any dimension n. He proved its complete integrability and provided an
explicit complete list of first integrals [32, the corollary on p. 95]. In the
same paper he proved that all the sides of a billiard trajectory are tangent
to the same n−1 quadrics confocal to the boundary of the ellipsoid and the
billiard dynamics corresponds to a shift of the Jacobi variety corresponding
to an appropriate hyperelliptic curve [32, theorems 3, 2 on p. 99]. The
Algebraic Birkhoff Conjecture was studied by S.V.Bolotin, who proved in
1990 that in its conditions the billiard boundary lies in an algebraic curve
[9]. In the same paper he proved the conjecture under the assumption that
the complexification of each irreducible component of the ambient algebraic
curve is nonsingular. In 1992 he proved integrability of countably confocal
billiards with piecewise smooth boundaries in two- and higher-dimensional
spaces of constant curvature with integrals of degrees two or four in [10].
Recently M.Bialy and A.E.Mironov proved the Algebraic Birkhoff Conjec-
ture in the case of integrals of degree four [7]. A version of the conjecture
for non-constant continuous families of billiards sharing the same polyno-
mial integral was proved in [1]. Dynamics in countably confocal billiards
with piecewise smooth boundaries in two and higher dimensions was stud-
ied in [12]. For further results on the Algebraic Birkhoff Conjecture see
the above-mentioned paper [6] by M.Bialy and A.E.Mironov and references
therein.

The analogue of the Birkhoff Conjecture for outer billiards was stated by
S.L.Tabachnikov [27] in 2008. Its algebraic version was stated by Tabach-
nikov and proved by himself under genericity assumptions in the same pa-
per and recently solved completely in the joint paper of the author with
E.I.Shustin [15].

1.3 Polar duality and angular billiards

Let us recall the following definitions of polar duality and angular billiard.

10



Definition 1.15 Let C ⊂ CP2 be a regular conic (i.e., not a pair of lines),
L ⊂ CP2 be a line. Let P1, P2 denote the points of intersection L ∩C. The
point L∗ polar-dual to L with respect to the conic C is the intersection point
of the tangent lines TPjC, j = 1, 2. (If L is tangent to C, then L∗ is the

tangency point.) For a holomorphic curve γ ⊂ CP2 its polar-dual curve with
respect to the conic C is the set of points polar-dual to the tangent lines to
γ. For every smooth curve γ ⊂ R2 its polar-dual curve is the set of points
in CP2 ⊃ C2 ⊃ R2 polar-dual to the complexified tangent lines to γ.

Remark 1.16 The polar duality induces a complex projective isomorphism
CP2∗ → CP2 (thus, preserving the incidence relation). In the case, when the
conic C is the complexification of a real conic, the polar duality induces a
real projective isomorphism RP2∗ → RP2, and the curve polar-dual to a real
curve is also real. In what follows C will be a circle. Everywhere below O
denotes the centre of the circle C. Then O is polar-dual to the infinity line.
Thus, a curve γ is tangent to the infinity line, if and only if its polar-dual
passes through O.

Definition 1.17 Let O ∈ R2 ⊂ RP2, A ∈ RP2 be two distinct points. Two
points B,C ∈ RP2 \ OA are called angular-symmetric with respect to the
point A and center O, if the points B, C, A lie on the same line and the lines
OB, OC are symmetric with respect to the line OA. The transformation
permuting angular-symmetric points is called the angular symmetry with
respect to the point A and center O.

Remark 1.18 The angular symmetry and its complexification are projec-
tive involutions RP2 → RP2 (respectively, CP2 → CP2) that fix each line
through A.

Proposition 1.19 [6, subsection 1.3] Let O ∈ R2, γ̃ ⊂ R2 be a smooth
curve, and let γ be its polar-dual with respect to a circle centered at O. Let
Q ∈ γ̃, and let l1 and l2 be two lines through the point Q that are symmetric
with respect to the tangent line l = TQγ̃. Let l∗1, l∗2 and l∗ be the polar-dual
points corresponding to the lines l1, l2 and l respectively. The points l∗1 and
l∗2 are angular-symmetric with respect to the point l∗ and center O.

Remark 1.20 As it was shown in [6, theorem 2], if Ω is convex, then the
polar-dual curve (∂Ω)∗ is also convex and the Birkhoff billiard map acting
on the space of oriented lines intersecting Ω is conjugated on appropriate
open subset by polar duality to the angular billiard map associated to (∂Ω)∗,
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see the next definition and Figure 2. The latter open subset of conjugacy
contains a neighborhood of the family of oriented tangent lines to ∂Ω in the
above space of oriented lines.

Definition 1.21 Let D ⊂ R2 ⊂ RP2 be a convex domain, γ = ∂D, O ∈ D,
U = R2 \D. Let A ∈ U . There are two tangent lines through A to γ. We
choose the right one (if one looks at γ from A). Let P denote the tangency
point. Let B denote the point angular-symmetric to A with respect to the
point P and center O. Then B lies in the projective line AP = TPγ, and
B ∈ RP2 \D, by convexity. The angular billiard map associated to the curve
γ and the center O is the map U → RP2 \D that sends A to B, see Fig. 2.

    

B P A

     O

αα

  
 γ

    

Figure 2: The angular billiard map.

Let now Ω ⊂ R2 be a domain with countably piecewise smooth bound-
ary such that the billiard in Ω is polynomially integrable. Let Q = (x, y)
be Euclidean coordinates on the ambient plane. Then there exists a first
integral of the billiard flow that is a homogeneous polynomial Φ(σ, P1, P2) of
even degree in three variables σ(P ) = xP2 − yP1, P1, P2, whose restriction
to the level hypersurface {(P,Q) | |P | = 1} is non-constant, see [9, 21] and
Remarks 1.2, 1.8. (If the homogeneous polynomial integral in σ, P1, P2 from
the end of Remark 1.2 is of odd degree, we can replace it by its square and
get an integral of even degree.) The next theorem translates polynomial
integrability of the initial Birkhoff billiard in terms of rational integrability
of the corresponding (multivalued) angular billiard map.

Theorem 1.22 Let Ω ⊂ R2 be a domain with countably piecewise smooth
boundary. Let the billiard flow in Ω have a first integral that is a homoge-
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neous polynomial Φ(σ, P1, P2) of even degree degΦ = 2s. Set

G(x, y) =
F (x, y)

(x2 + y2)s
, F (x, y) = Φ(1,−y, x). (1.1)

Let γ̃ be a non-linear C1-smooth arc in ∂Ω, and let γ be its polar-dual. For
every P ∈ γ the restriction to the real (and hence, complex) line TPγ of
the function G is invariant under the angular symmetry with respect to the
point P and center O. The function G is constant along the curve γ; hence
G = const along its complex Zariski closure Γ ⊂ CP2; Γ is an algebraic
curve, if G 6≡ const on R2.

Proof The statement of the theorem on invariance of the function G under
the angular symmetry was stated and proved in [6, theorem 3] for convex
domains with smooth boundary. Its proof is purely local and remains valid in
the general case: a straightforward calculation presented in loc. cit. shows
that if a billiard orbit reflects from a smooth arc γ̃ ⊂ ∂Ω at a point P̃ ,
set P = (T

P̃
∂Ω)∗, then invariance of the integral Φ under the reflection is

translated as invariance of the restriction G|TP γ under the angular symmetry
with respect to the point P and center O. For every P ∈ γ the derivative of
the function G along a vector tangent to γ at P equals zero: the restriction
G|TP γ being invariant under the angular symmetry, it has zero derivative at
its fixed point P , similarly to vanishing of derivative at 0 of an even function.
Therefore, G ≡ const along the curve γ. The theorem is proved. 2

We prove the main theorems by complex methods. To do this, we state
a theorem saying that if a complex angular billiard constructed on an irre-
ducible algebraic curve γ has a rational first integral of type (1.1), then γ is
a conic. To do this, let us recall the following properties of the complexified
Euclidean metric and extend the notion of (rationally integrable) angular
billiard to the complex domain.

In what follows we consider the plane C2 ⊃ R2 equipped with the com-
plexified Euclidean C-bilinear quadratic form dx2 + dy2. Consider the com-
plex projective plane CP2 ⊃ C2 equipped with homogeneous coordinates
(z0 : x : y); C2 being the affine chart {z0 = 1} with coordinates (x, y).

Definition 1.23 ([13, p. 240, definition 1.2]). A complex projective line
L ⊂ CP2 is isotropic, if either the restriction to it of the latter form vanishes,
or it coincides with the infinity line. Or equivalently, if it passes through
some of the two points with homogeneous coordinates (0 : 1 : ±i), which lie
in the infinity line and are called the isotropic points at infinity (also known
as cyclic (or circular) points).
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Definition 1.24 ([13, p. 248, definition 2.1]). The symmetry with respect
to a non-isotropic complex line L ⊂ CP2 is the unique non-trivial involution
C2 → C2 that is an isometry of the complex Euclidean form that fixes the
points of the line L. It extends to a projective transformation CP2 → CP2.

Remark 1.25 The symmetry with respect to a real line is the usual sym-
metry. The symmetry with respect to a non-isotropic line permutes the
isotropic directions: the image of an isotropic line through the given isotropic
point at infinity passes through the other isotropic point at infinity [14, p.
296, proposition 1].

Definition 1.26 Let O ∈ C2, A ∈ CP2 \ {O} be such that the line OA is
not isotropic. The (complex) angular symmetry with respect to the point A
and center O is the transformation σ : CP2 \OA→ CP2 \OA defined by the
following condition: for every B ∈ CP2 \OA the point σ(B) lies in the line
AB and the lines OB, Oσ(B) are symmetric with respect to the line OA,
see Fig. 3.

Remark 1.27 The angular symmetry is a projective involution CP2 → CP2

preserving each line L through A. Its restriction to L will be also called the
angular symmetry of the line L with respect to the point A and center O.
The angular symmetry is completely determined by the points O, A and
the isotropic lines through the point O. Namely, the angular symmetry
of a line L through A is the unique conformal involution L → L fixing A
and permuting the intersection points of the line L with the isotropic lines
through O, see Fig. 3. This follows from definition and the above remark.
In the case, when the line L and the points O, A are real, the complex
angular symmetry is the complexification of the real angular symmetry of
the real line.

Definition 1.28 Let O ∈ C2 ⊂ CP2, and let γ ⊂ CP2 be an irreducible
algebraic curve different from a line. We say that γ generates a rationally
integrable angular billiard, if there exist an s ∈ N and a polynomial F1(x, y)
of degree degF1 ≤ 2s, set

G(x, y) =
F1(x, y)

(x2 + y2)s
, (1.2)

such that G 6≡ const, and for every point P ∈ γ lying outside the isotropic
lines through the point O the angular symmetry with respect to the point
P and center O leaves invariant the restriction G|TP γ . The rational function
G is called a first integral of the angular billiard on γ.
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Figure 3: The angular symmetry. The lines OS and Oσ(S) are isotropic.

Proposition 1.29 Let an irreducible algebraic curve γ ⊂ CP2 generate a
rationally integrable angular billiard with the first integral G. Then G|γ ≡
const.

Proof For every P ∈ γ as above the derivative of the restriction G|TP γ at
the point P equals zero, by invariance of the restriction under the angular
symmetry, hence G|γ ≡ const, as in the proof of Theorem 1.22. 2

Theorem 1.22 implies the following corollary.

Corollary 1.30 Let the billiard flow in a planar billiard Ω with countably
piecewise smooth boundary be polynomially integrable. Let α̃ be a non-linear
C1-smooth arc in ∂Ω, let α be its polar-dual. Let Γ denote the algebraic curve
in CP2 that is the complex Zariski closure of the curve α. Then each non-
linear irreducible component of the curve Γ generates a rationally integrable
angular billiard.

Proof Let Φ(σ, P1, P2) be a homogeneous polynomial integral of the bil-
liard flow of even degree 2s that is not a function of |P |. Let G be the
corresponding rational function in (1.1). Let γ be a nonlinear irreducible
component of the curve Γ. For every point B ∈ α the angular symmetry
with respect to the point B and center O leaves invariant the restriction
to TBα of the function G (Theorem 1.22). Therefore, the same statement
remains valid for the complex angular symmetry of the tangent line TBγ for
every point B ∈ γ, by uniqueness of analytic extension. One has G 6≡ const
on R2. Indeed, if, to the contrary, F (x, y) = Φ(1,−y, x) ≡ c(x2 + y2)s, then
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the homogeneous polynomial Φ(σ, P1, P2) of degree 2s would be identically
equal to c|P |2s, while it is not a function of |P | by assumption. This means
that γ generates a rationally integrable angular billiard, by definition. The
corollary is proved. 2

One of the main results of the present paper is the following theorem

Theorem 1.31 Let an irreducible complex algebraic curve γ ⊂ CP2 differ-
ent from a line generate a rationally integrable angular billiard. Then it is
a conic.

Theorem 1.32 [10, section 4] Let a planar billiard with countably piecewise
smooth boundary be polynomially integrable. Let its boundary contain a non-
linear conical arc. Then the billiard is countably confocal.

Remark 1.33 A theorem implying Theorem 1.32 was stated and proved in
loc. cit. for piecewise smooth boundary, but its proof does not use finiteness
of pieces and remains valid in the countably piecewise smooth case. To make
the paper self-contained, we give a proof of Theorem 1.32. The proof follows
[10, section 4], but here it is done in terms of angular billiards.

Proof of Theorem 1.32. Let Ω be the billiard under consideration, and
let α be a conic whose arc is contained in ∂Ω. Let γ be the conic polar-dual
to α. Let Φ(σ, P1, P2) be a non-trivial polynomial integral of the billiard Ω
of even degree 2s, and let

G(x, y) =
F (x, y)

(x2 + y2)s
, F (x, y) = Φ(1,−y, x), degF ≤ 2s,

be the corresponding rational integral of angular billiard. The complexified
conic γ generates a rationally integrable angular billiard with the integral G,
by Corollary 1.30. On the other hand, it is known that the billiard on a conic
α admits a non-trivial quadratic first integral Φ̃ = Φ̃(σ, P1, P2) (Proposition
1.10). Moreover, for every conic β confocal to α the quadratic integral Φ̃ is
also an integral for the billiard on the conic β. This is well-known and fol-
lows from the explicit formula [10, formula (12)] for the quadratic integral.
Therefore, both dual conics γ = α∗ and β∗ generate rationally integrable an-

gular billiards with a common quadratic rational integral G̃(x, y) = F̃ (x,y)
x2+y2

,

here F̃ (x, y) = Φ̃(1,−y, x), see Corollary 1.30 and its proof. Both G and
G̃ are constant on γ, and G̃ is constant on β∗, by Proposition 1.29. Let us
normalize the integral G̃ by additive constant (or equivalently, the integral
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Φ̃ by addition of c||P ||2, c = const) so that G̃|γ ≡ 0. After this normaliza-

tion one has F̃ |γ ≡ 0: that is, the quadratic polynomial F̃ is the defining
polynomial of the conic γ. Therefore,

G(x, y) = c1 +G1(x, y)G̃(x, y),

G1(x, y) =
f1(x, y)

(x2 + y2)s−1
, degf1 ≤ 2s− 2, c1 = G|γ ≡ const.

Hence, the fraction G1 is also a rational integral of the angular billiard
generated by γ, as are G and G̃. Thus, G1|γ ≡ const, by Proposition 1.29.
Similarly we get that

G1(x, y) = c2 +G2(x, y)G̃(x, y), G2(x, y) =
f2(x, y)

(x2 + y2)s−2
, degf2 ≤ 2s− 4,

and G2 is an integral of the angular billiard generated by γ, as are G1 and
G̃. Continuing this prodecure we get that G is a polynomial in G̃. Hence,
G ≡ const on the level curves of the function G̃. The level curves of the
quadratic rational function G̃ are conics whose dual are confocal to α = γ∗,
since G̃ is constant on these conics, as was mentioned above. Let φ ⊂ Ω
be an arbitrary smooth non-linear arc of the boundary. The function G is
constant on its polar-dual curve φ∗, by Theorem 1.22. Hence, G̃|φ∗ ≡ const,
thus φ lies in a conic confocal to α. Finally, the non-linear smooth part of
the boundary lies in an at most countable union of conics confocal to α. Let
C denote the whole family of conics confocal to α.

Now it remains to show that the linear part of the boundary ∂Ω consists
of segments lying in some of the lines from the definition of countably con-
focal billiard. Note that the latter lines are exactly those lines L for which
the symmetry with respect to the line L leaves the family C invariant. This
follows from definition. Let us fix an arbitrary line L containing a segment
of the boundary ∂Ω, and let us show that it satisfies the latter statement.
Its polar-dual is a point L∗ such that the function G is invariant under the
angular symmetry with respect to the point L∗ and center O: invariance
of the integral Φ under the billiard flow and reflection from the line L is
translated as invariance of the corresponding function G under the angular
symmetry, as in the proof of [6, theorem 3]. This implies that the latter
angular symmetry permutes the level curves of the function G, and hence,
those of the quadratic function G̃. In other terms, it permutes the conics
whose dual lie in the family C. Or equivalently, the symmetry with respect
to the line L permutes the conics from the family C. Theorem 1.32 is proved.

2
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Proof of Theorems 1.4 and 1.12 modulo Theorem 1.31. Consider
a polynomially integrable planar billiard with countably piecewise smooth
boundary that has at least one non-linear smooth piece α. Then the polar-
dual to some smaller arc β ⊂ α lies in a non-linear irreducible complex alge-
braic curve γ generating a rationally integrable angular billiard, by Corollary
1.30. The curve γ is a conic, by Theorem 1.31. Hence, β lies in the conic
polar-dual to γ. This together with Theorem 1.32 implies that the billiard
under question is countably confocal and proves Theorems 1.4 and 1.12. 2

1.4 Complexification

Consider the plane C2 with coordinates Q = (Q1, Q2) equipped with the
complex quadratic Euclidean form dQ2

1 + dQ2
2. Let (Q,P ), P = (P1, P2) be

the standard coordinates on the tangent bundle TC2.

Definition 1.34 A complex billiard is a collection (finite or infinite, count-
able or uncountable) of holomorphic curves Γλ ⊂ C2 distinct from isotropic
lines. A complex billiard is said to be polynomially integrable, if there exists
a function Φ(Q,P ) on TC2 polynomial in P with the following properties:

- the restriction of the function Φ to the tangent bundle of every complex
line is invariant under the translations of the line;

- for every point Q of each curve Γλ such that the line TQΓλ is non-
isotropic the restriction of the function Φ to TQC2 is invariant under the
symmetry with respect to the complex line TQΓλ.

Example 1.35 Consider a polynomially integrable real planar billiard with
countably piecewise smooth boundary. Then the smooth part of the bound-
ary is contained in a union of arcs of conics and straight-line segments (The-
orem 1.12). Their complexifications form a complex billiard having a poly-
nomial integral that is the complexification of the real polynomial integral
of the real billiard: it can be chosen of degree no greater than four, see
Proposition 1.10.

Definition 1.36 [13, p. 260, definition 2.31]. A focus of a complex conic is
an intersection point of some its two distinct isotropic tangent lines.

Example 1.37 A conic has four finite foci, if it is transverse to the infinity
line C∞ in CP2 ⊃ C2 and contains no isotropic point at infinity; two or
one finite foci, if it is transverse to the infinity line and passes through one
(respectively, two) isotropic points at infinity; one finite focus, if it is tangent
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to C∞ at a non-isotropic point; no finite foci, if it is tangent to C∞ an an
isotropic point. A complexified real ellipse has four finite complex foci: two
usual real foci lying in its bigger axis and two additional complex foci lying
in its complexified smaller axis. This observation goes back to Laguerre, see
[20, p. 179] and [4, Section 17.4.3.1, p. 334]

Definition 1.38 [13, p. 259, definition 2.24]. A pair of regular complex
conics is confocal, if it lies in the Zariski closure of the set of confocal pairs
of real conics.

Remark 1.39 Two confocal conics are either both transverse to the infinity
line C∞, or tangent to it at a common point. In the second case the tangency
contact between the two conics is of order two, if the tangency point is non-
isotropic, and of order three if it is isotropic. Any two confocal conics have
common isotropic tangent lines, and hence, common foci, and they contain
the same isotropic points at infinity (if any). The converse is true in the
case, when at least one of the conics under question is transverse to the
infinity line. See [13, p. 261, lemma 2.35].

Definition 1.40 A complex billiard Γλ is said to be confocal, if the set of
its curves different from lines is non-empty, all of them are confocal complex
conics, and the lines from the family Γλ belong to the following lists of
admissible lines:

Case 1): the conics are transverse to the infinity line and contain no
isotropic point at infinity. Any non-isotropic line through a pair of their
common distinct finite foci is admissible.

Case 2): the conics are transverse to the infinity line and pass through
exactly one isotropic point at infinity. The set of admissible lines is empty.

Case 3): the conics are transverse to the infinity line and pass through
both isotropic points at infinity and thus, have one finite focus B. Any
non-isotropic line through B is admissible.

Case 4): the conics are tangent to C∞ at a common non-isotropic point
A and hence, have one common finite focus B. The line AB (called the axis)
and its orthogonal line through B are both admissible.

Case 5): the conics are tangent to C∞ at a common isotropic point. The
set of admissible lines is empty.

Theorem 1.41 Every polynomially integrable complex billiard Γλ contain-
ing at least one curve that is not a line is confocal and has an integral that
is a homogeneous polynomial Φ(σ, P1, P2), σ = Q1P2 − Q2P1, of degree at
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most four. The integral can be chosen quadratic in all the above cases 1)–3),
except for the subcase of case 2), when Γλ contains the line orthogonal to
the axis through the common focus of its conics: in this subcase there is an
integral of degree four.

The fact that each polynomially integrable complex billiard admits a
homogeneous polynomial integral of the form Φ(σ, P1, P2) is proved by a
straightforward complexification of Bolotin’s proof of the same real state-
ment in [9]. This implies that the polar-dual to the curves Γλ generate
angular billiards with a common rational integral, and hence, are algebraic
curves, as in the proofs of [6, theorem 3] and Corollary 1.30. Afterwards
Theorem 1.41 is deduced from Theorem 1.31 in the same way, as at the end
of the previous subsection, by using a straightforward complexification of
Theorem 1.32.

1.5 Rationally integrable complex angular billiards. Plan of
the proof of Theorem 1.31

We will work in complex Euclidean coordinates (x, y) on C2 centered at the
pointO (see the paragraph preceding Definition 1.23). The proof of Theorem
1.31 is based on the following theorem of M.Bialy and A.E.Mironov.

Theorem 1.42 [6, theorem 1]. Let an irreducible complex algebraic curve
γ ⊂ CP2 generate a rationally integrable angular billiard. Then all the sin-
gular and inflection points of the curve γ (if any) lie in its intersection with
the isotropic lines through the origin O; the union I of the latter lines is
given by the equation I = {x2 + y2 = 0}.

Remark 1.43 Theorem 1 in [6] was stated and proved for a curve γ asso-
ciated to a polynomially integrable planar billiard: namely an irreducible
component of the complex Zariski closure of the dual to a smooth arc of its
boundary. (It generates a rationally integrable angular billiard, by Corollary
1.30.) But its proof given in [6, section 6] remains valid for a general irre-
ducible algebraic curve γ generating a rationally integrable angular billiard.

To sketch the proof of Theorem 1.31, let us recall the following defini-
tions.

Definition 1.44 A local branch of a germ α of analytic curve at a point
A ∈ CP2 is an irreducible component of the germ, or equivalently, a germ of
analytic curve contained in α and parametrized holomorphically bijectively
by some local complex parameter.
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Definition 1.45 Consider an irreducible nonlinear germ b of analytic curve
in CP2 at a given point A. Let us choose affine coordinates (z, w) centered at
A so that the tangent line TAb be the z-axis. We will call these coordinates
adapted to the germ b.

In adapted coordinates one can find a local bijective parametrization of the
germ b by a complex parameter t ∈ (C, 0) of the type

t 7→ (tq, cbt
p(1 + o(1))), q = qb, p = pb ∈ N, 1 ≤ q < p, cb 6= 0; (1.3)

q = 1 if and only if b is a regular germ.

Definition 1.46 The projective Puiseux exponent [13, p. 250, definition
2.9] of the germ b is the ratio

r = rb =
p

q
.

The germ b is called quadratic, if rb = 2, and is called subquadratic, if rb ≤ 2.

In what follows we will denote the infinity line in CP2 by C∞. Let Λ1 and
Λ2 denote the isotropic lines through the point O. Set

I = Λ1 ∪ Λ2.

For the proof of Theorem 1.31 we investigate the Puiseux exponents and
regularity of the local branches of the curve γ at its points in I. We prove
the three following theorems on the local branches; in all these theorems
O ∈ C2, and γ ⊂ CP2 is an irreducible algebraic curve that is not a line.

Theorem 1.47 Let γ generate a rationally integrable angular billiard. Let
Λ be an isotropic line through O. Then every local branch of the curve γ
tangent to Λ at a point distinct from the point O is quadratic.

Theorem 1.48 Let γ generate a rationally integrable angular billiard. Then
each its local branch at O (if any) that is transverse to both isotropic lines
through O is quadratic.

Theorem 1.49 Let γ generate a rationally integrable angular billiard. Let
Λ be an isotropic line through O, A ∈ γ ∩ Λ, and let A 6= O. Let b be an
arbitrary local branch at A of the curve γ that is transverse to Λ. Then b is
quadratic and regular.
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The next purely algebro-geometric theorem (reformulating Theorem 1.14
from the introduction) shows that the information about the local branches
given by the three above theorems implies that γ is a conic.

Theorem 1.50 Let γ ⊂ CP2 be an irreducible algebraic curve. Let Λ1,Λ2

be two different complex projective lines, and let O be their intersection
point. Let all the singularities and inflection points (if any) of the curve γ
be contained in the union Λ1 ∪ Λ2. Let the local branches of the curve γ at
points in Λ1 ∪ Λ2 satisfy the following statements:

(i) each local branch of the curve γ at O that is tangent to no line Λj is
subquadratic: r ≤ 2;

(ii) each its local branch at a point in Λj \ {O} that is tangent to Λj is
quadratic: r = 2;

(iii) each its local branch at a point in Λj \ {O} that is transverse to Λj
is regular and quadratic: q = 1, p = 2.

Then γ is a conic.

Proof of Theorem 1.31 modulo Theorems 1.47–1.50. Let an irre-
ducible algebraic curve γ ⊂ CP2 generate a rationally integrable angular bil-
liard. Let Λ1 and Λ2 denote the isotropic lines through O, set I = Λ1 ∪ Λ2.
All the singularities and inflection points of the curve γ (if any) are con-
tained in I, by Theorem 1.42. Each local branch of the curve γ at every
point A ∈ Λj \ {O} that is transverse to Λj is quadratic and regular, by
Theorem 1.49, that is, statement (iii) holds. Statements (i) and (ii) fol-
low from Theorems 1.48 and 1.47 respectively. Finally, γ satisfies all the
conditions of Theorem 1.50. Hence, it is a conic. Theorem 1.31 is proved.

2

Theorems 1.47–1.49 are proved in Section 3. Theorem 1.50 is proved in
Section 4. The plan of the proofs of Theorems 1.47 and 1.48 is presented
below. The proof of Theorem 1.49 is the main technical part of the paper.
Its plan is presented in the next subsection.

The proofs of Theorems 1.47–1.49 consist of the two following ingredi-
ents.

A) Asymptotic analysis of the relative angular symmetry property (see
the next definition), which is a direct consequence of rational integrability
of the angular billiard;

B) Bialy–Mironov formula [6, theorem 6.1] (see formula (1.8) below)
for the Hessian of the polynomial defining the curve γ and its asymptotic
analysis (used only in the proof of Theorem 1.49).

22



Definition 1.51 Let O ∈ C2 ⊂ CP2. Let γ ⊂ CP2 be an irreducible alge-
braic curve different from a line. Consider a divisor ∆ =

∑l
j=1 kjγj , where

γj ⊂ CP2 are distinct irreducible algebraic curves, kj ∈ N, and γj = γ for
some j: thus ∆ contains γ. We say that the curve γ has relative angular
symmetry property with respect to the divisor ∆, if for every P ∈ γ \ I the
intersection ∆ ∩ TPγ, which is a divisor in the line TPγ, is invariant under
the angular symmetry of the line TPγ with respect to the point P and center
O. Similarly, an irreducible germ of analytic curve b at a point A has local
relative angular symmetry property with respect to a finite collection Γ of
irreducible germs of analytic curves at points in TAb (or a finite divisor Γ
in a neighborhood of the line TAb), if Γ contains b and for every P ∈ b the
intersection TP b ∩ Γ (respectively, the divisor TP b ∩ Γ in the line TP b) is
invariant under the above angular symmetry of the line TP b.

Remark 1.52 Let an irreducible algebraic curve γ generate a rationally
integrable angular billiard with the rational first integral G = F1(x,y)

(x2+y2)s
, see

(1.2). Then G|γ ≡ c = const. Without loss of generality we can and will
consider that G|γ ≡ 0. One can achieve this by replacing its denominator
F1(x, y) by F1 − c(x2 + y2)s. The curve γ has relative angular symmetry
property with respect to the zero divisor of the function G. In what follows,
whenever the contrary is not specified, Γ will denote the zero locus4 {G =
0} ⊂ CP2, and ∆ will denote the zero divisor of the function G.

Plan of proofs of Theorems 1.47 and 1.48. Let us briefly sketch the
proof of Theorem 1.47. Fix a local branch b of the curve γ that is tangent
to an isotropic line Λ through O at a point A 6= O. We have to prove that b
is quadratic. To do this, we study the asymptotics of the intersection points
Γ ∩ TP b, as P → A, using general asymptotic formulas for intersections
of a tangent line to an irreducible germ b with another irreducible germ a
of analytic curve at the same base point A, see [15, proposition 2.1] and
[13, proposition 2.50, p.268]. We introduce local affine coordinates (z, w)
adapted to b and consider the so-called intersection points with moderate w-
asymptotics: those points of the intersection TP b ∩ Γ, whose w-coordinates
are asymptotic to w(P ) multiplied by non-zero constant factors, as P → A.
The latter factors will be referred to, as the asymptotic (w-) factors. We
show that the set of the points with moderate w-asymptotics is invariant
under the angular symmetry of the tangent line TP b with respect to the point
P and center O. This follows from the angular symmetry property and an

4Here and in what follows every curve given by an algebraic equation F (x, y) = 0 is
treated as a projective algebraic curve: its closure in CP2.
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elementary asymptotics for the degenerating angular symmetry, as P → A
(Proposition 3.6). The same proposition implies that the angular symmetry
inverses the asymptotic factors of the above intersection points, and hence,
the asymptotic factor collection is symmetric under the involution z 7→ z−1.
We show that the points with moderate w-asymptotics are exactly the points
of intersection of the line TP b with those local branches of the curve Γ at
A that either are transverse to b, or are tangent to b and have Puiseux
exponents no greater than rb. The asymptotic factors corresponding to
the intersection points with the tangent branches having the same Puiseux
exponent rb are appropriate powers of the roots of an explicit collection
of polynomials of one variable; each polynomial is associated to a tangent
branch. The other asymptotic factors are equal to 1− rb. The symmetry of
the asymptotic factor collection implies a relation on the roots of the above
collection of polynomials, which, in its turn, implies that rb = 2, thus, b is
quadratic.

The proof of Theorem 1.48 is analogous to the proof of [15, theorem
1.16], see subsection 2.3 in loc. cit.; both proofs follow arguments similar to
the above ones.

1.6 Plan of the proof of Theorem 1.49

Let γ ⊂ CP2 be an irreducible algebraic curve generating a rationally inte-
grable angular billiard. Let G(x, y) = F1(x,y)

(x2+y2)s
be the corresponding rational

first integral from (1.2). Set Γ = {G = 0}. Recall that we normalize the
function G so that γ ⊂ Γ, see Remark 1.52. Let ∆ denote the zero divisor
of the function G. Its denominator vanishes exactly on the lines Λj with
the same multiplicity s. Without loss of generality we consider that the
function G is an irreducible fraction, that is, F1|Λj 6≡ 0 for every j = 1, 2.
Indeed, if F1|Λj ≡ 0 for some j, then F1 has zero of the same multiplic-
ity along both lines Λ1, Λ2. This follows from the same statement for the
function G, which holds by invariance of the intersections ∆ ∩ TPγ under
the angular symmetries of the lines TPγ (Remark 1.52) and the fact that
the angular symmetry permutes the points of intersection of the line TPγ
with the lines Λj (Remark 1.27). Therefore, if F1|Λj = 0 for some j, then

F1(x, y) = h(x, y)(x2 + y2)l, l ≤ s, where h is a polynomial, h|Λj 6≡ 0 for

every j = 1, 2. Thus, one can cancel (x2 + y2)l in the expression for the
function G and obtain an irreducible fraction, with a nominator that does
not vanish identically on each line Λj . One has l < s: otherwise, if l = s,
then G ≡ const 6= 0, which is impossible, since G|γ ≡ 0.

Recall that degF1 ≤ 2s. Without loss of generality we consider that

24



degF1 = 2s, or equivalently, the curve Γ does not contain the infinity line,
i.e., Γ = {F1 = 0}, and moreover, Γ contains no isotropic point at infinity:
no point of the intersection I ∩ C∞. One can achieve this by applying a
projective transformation Ψ fixing the point O and the isotropic lines Λj
through it that moves the isotropic points at infinity away from the infinity
line. This will not change the rational integrability property: the image
Ψ(γ) will again generate an integrable angular billiard with the rational
first integral G ◦ Ψ−1. The latter integral has pole of the same degree s,
as G, at each line Λj , and hence, has the same type, as G. Finally, in our
assumptions made without loss of generality one has

F1|Λj 6≡ 0 for every j = 1, 2, degF1 = 2s, Γ = {F1 = 0}, (1.4)

∆ is the zero divisor of the polynomial F1,

the intersection Γ∩ I, and hence its subset γ ∩ I and the base point A of the
local branch b ⊂ γ under consideration lie in the finite affine chart C2.

Let f(x, y) be the polynomial defining γ, which is irreducible, as is γ:
γ = {f = 0}, the differential df being non-zero on a Zariski open subset in
γ. Recall that the polynomial F1 vanishes on γ. Therefore,

F1 = fkg1, k ∈ N, g1 is a polynomial coprime with f. (1.5)

Set

g = g
1
k
1 , F = F

1
k

1 = fg, m =
s

k
, D = degF1 = 2s. (1.6)

We consider the Hessian of the function f(x, y) evaluated on appropriately
normalized tangent vector to γ = {f = 0} at the point (x, y), namely, the
skew gradient (fy,−fx):

H(f) = fxxf
2
y − 2fxyfxfy + fyyf

2
x . (1.7)

Theorem 1.53 [6, theorem 6.1] The following formula holds for all (x, y) ∈
γ:

g3(x, y)H(f)(x, y) = c(x2 + y2)3m−3, c ≡ const 6= 0. (1.8)

Remark 1.54 Theorem 6.1 in [6] deals with a polynomially integrable pla-
nar billiard Ω, a curve Γ1 ⊂ R2 that is polar-dual to a non-linear smooth
arc in ∂Ω and the polynomial F1 that is expressed via a homogeneous poly-
nomial integral Φ by formula (1.1). The theorem states that formula (1.8)
holds along the curve Γ1. Then it holds automatically on every irreducible
component γ of its complex Zariski closure. Its proof given in [6] remains
valid for every irreducible algebraic curve γ generating a rationally integrable
angular billiard.
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The idea of the proof of Theorem 1.49 is to study the asymptotics
of the left- and right-hand sides of formula (1.8), as (x, y) → A along the
local branch b under consideration. We prove it by contradiction. Supposing
the contrary, i.e., that the branch b is either not regular, or not quadratic, we
show that the right-hand side should asymptotically dominate the left-hand
side. The contradiction thus obtained to formula (1.8) will prove Theorem
1.49.

We consider new affine coordinates (z, w) on C2 adapted to b where b
is bijectively parametrized by small complex parameter t via the formula
t 7→ (tqb , cbt

pb(1 + o(1)), qb < pb, cb 6= 0. We express the restrictions to the
branch b of the left- and right-hand sides in formula (1.8) as Puiseux series
in the coordinate z = tqb lifted to b:

g3(x, y)H(f)(x, y)|b = O(zη), (x2 +y2)3m−3|b = c2z
µ+o(zµ), c2 6= 0. (1.9)

Our goal is to show that the first asymptotics holds for some η > µ, unless
the branch b is quadratic and regular.

Step 1. Preparatory asymptotics of Bialy–Mironov formula (1.8).
Let b1, b2, . . . , bN denote the local branches at A of the curve Γ = {F1 =

0} ⊃ γ,
b1 = b, J = {j | bj ⊂ γ}; 1 ∈ J.

The germ ∆A of the divisor ∆ at A is a linear combination of the curves bj :

∆A = k
∑
j∈J

bj +
∑
j /∈J

kjbj , kj ∈ N. (1.10)

Let qbj , pbj denote the corresponding exponents from formula (1.3) of the
parametrized curves bj in their adapted coordinates, and let rbj denote their
Puiseux exponents. (For those curves bj that are tangent to b the corre-
sponding qbj , pbj and rbj can be defined in the same adapted coordinates
(z, w), as for the curve b. For the other, transverse branches, the corre-
sponding adapted coordinates defining rbj will be different.) Set

ρj =

{
rbj , if bj is tangent to b

1, if bj is not tangent to b
, r = rb1 = rb = ρ1. (1.11)

We show in Proposition 2.1 by direct calculation that

g3H(f)|b = O(zη),

η = 3(
∑
j∈J

qbj min{ρj , r}+
∑
j /∈J

kj
k
qbj min{ρj , r})− 2(r + 1), (1.12)
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(x2 + y2)3m−3|b ' czµ, µ = 3
D

2k
− 3 = 3m− 3, c = const 6= 0. (1.13)

In the next steps we estimate the above number η from below.
Step 2. We prove that the local branch b is subquadratic: r = rb ≤ 2

(Theorem 3.2). This is deduced from the local relative angular symmetry
property of the branch b in a similar way, as in the proof of Theorem 1.47
described at the end of the previous subsection.

Step 3. We prove that rbj ≤ r for each local branch bj of the zero
locus Γ of the polynomial F1 that is tangent to b (Theorem 3.3). This
implies that in formula (1.12) one can replace the min-signs by ρj . We
prove this inequality by contradiction. Suppose the contrary: there exists a
local branch bj tangent to b with rbj > r. The intersection bj ∩TP b contains

a point Q1 with z(Q1) ' θ1z(P ), θ1 = r−1
r , as P → A, which follows from

[13, proposition 250, p. 268]. Then the point Q̂1 ∈ TP b angular-symmetric
to Q1 with respect to the point P and center O should lie in Γ (by relative
angular symmetry property) and z(Q̂1) ' µ1z(P ), µ1 = θ−1

1 = r
r−1 > 1,

by general Proposition 3.6 implying that a point Q = Q(P ) ∈ TP b with
z(Q) ' θz(P ), θ 6= 0, is angular-symmetric to a point Q̂ = Q̂(P ) ∈ TP b
with z(Q̂) ' θ−1z(P ). It follows from the inclusion Q̂1 ∈ Γ and loc. cit.
that Q̂1 lies in a local branch, say b2 of the curve Γ that is tangent to b and
has the same Puiseux exponent r. For every irreducible germ a of analytic
curve tangent to the curve b and having the same Puiseux exponent r the
points of intersection TP b ∩ a have z-coordinates asymptotic to tjz(P ), as
P → A, where tj 6= 0 are the q-th powers of roots of appropriate polynomial
of the type Rp,q,c(ζ) = cζp−rζq+r−1, r = p

q , c 6= 0, associated to the germ
a. This follows from [13, proposition 250, p. 268]. The key Proposition 3.20
on general polynomials Rp,q,c states that if Rp,q,c has a root µ > 1, then it
has another root θ, 0 < θ < 1, such that θµ > 1. It implies that b2 intersects
the line TP b at another point Q2 with z-coordinate asymptotic to θ2z(P ),
0 < θ2 < 1, such that θ2µ1 > 1. Similarly, the point Q̂2 angular-symmetric
to Q2 should lie in a local branch, say b3 tangent to b with rb3 = r and
z(Q̂2) ' µ2z(P ), µ2 = θ−1

2 < µ1 etc. We get that µ1 > µ2 > · · · > 1, and
thus, we have an infinite sequence of asymptotic factors µj of the points of
intersection Γ∩TP b. Hence, Γ contains an infinite number of local branches
bj , since each bj intersects TP b at a finite number of points that is equal to its
intersection index with the line TAb. But the analytic germ (Γ, A) consists
of a finite number of local branches. The contradiction thus obtained will
prove absence of branches bj tangent to b with rbj > r = rb.

Let (∆, TAb)A = (∆A, TAb) denote the local intersection index of the line
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TAb with the divisor ∆ at A. The result of Step 3 implies that

ρj ≤ r for all j;

η + 2(r + 1) =
3

k
(k

∑
j∈J

qbjρj +
∑
j /∈J

kjqbjρj) =
3

k
(∆, TAb)A; (1.14)

the latter equality is implied by the formula (bj , TAb)A = qbjρj , which follows
from the definition of the numbers ρj .

Step 4. Recall that D = degF1 = (∆, TAb) (Bézout Theorem). We
show that the local intersection index in (1.14) is no less than the half-
degree D

2 plus k (i.e., most of the intersection ∆ ∩ TAb is concentrated at
A), and the latter inequality is strict, unless the branch b is quadratic and
regular (Theorem 3.4). This is also deduced from the local relative angular
symmetry property by the following argument. We show that for every P ∈ b
close to A those points of the intersection ∆∩TP b that do not tend to A, as
P → A, should be angular-symmetric to some intersection points that tend
to A with z-coordinates of order o(z(P )). This follows from Proposition 3.6
mentioned in Step 3. The latter intersection points do not coincide with the
points of intersection b ∩ TP b, which also tend to A but have z-coordinates
asymptotic to z(P ) times non-zero constants. The contribution of the curve
b to the intersection index (∆, TAb)A equals k(b, TAb), since b is contained
in ∆ with multiplicity k. The three last statements together imply that
(∆, TAb)A ≥ D

2 + k
2 (b, TAb) >

D
2 + k, unless b is regular and quadratic.

Step 5. Substituting inequalities proved in Steps 2–4 to formula (1.14)
yields that η ≥ µ. In more detail, formula (1.14) and inequalities 1

k (∆, TAb)A ≥
D
2k + 1 (Step 4) and r ≤ 2 (Step 2) together imply that

η =
3

k
(∆, TAb)A − 2(r + 1) ≥ 3(

D

2k
+ 1)− 2(r + 1) ≥ 3

D

2k
− 3 = µ. (1.15)

The latter inequality is strict, unless the branch b is quadratic and regular,
as in Step 4. This proves Theorem 1.49.

2 Preparatory asymptotics of Bialy–Mironov Hes-
sian formula. Proof of formulas (1.12) and (1.13)

Formulas (1.12) and (1.13) are implied by the following more general propo-
sition.
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Proposition 2.1 Consider the affine plane C2 equipped with complex or-
thogonal coordinates (x, y) with respect to the complex Euclidean form dx2 +
dy2. Let O,A ∈ C2 be two distinct points such that the line OA is isotropic.
Let b1, . . . , bN be irreducible germs of analytic curves at A such that b = b1 is
transverse to OA. Let f1, . . . , fN be irreducible germs of analytic functions
at A defining the germs bj = {fj = 0}. Fix a subset J ⊂ {1, . . . , N} such
that 1 ∈ J , set k1 = 1. Fix arbitrary numbers k2, . . . , kN > 0. Set

f =
∏
j∈J

f
kj
j , g =

∏
j /∈J

f
kj
j , r = rb.

Let qbj be the exponents from the parametrizations (1.3) of the germs bj in
the coordinates adapted to them. Let ρj be the numbers defined in (1.11).
Let (z, w) be local affine coordinates centered at A that are adapted to the
germ b; the line TAb is the z-axis. Then the following asymptotic formulas
hold along the curve b5:

g3H(f)|b = O(zη), η = 3

N∑
j=1

kjqbj min{ρj , r} − 2(r + 1), (2.1)

(x2 + y2)|b ' cz, c = const 6= 0. (2.2)

Proof Asymptotic formula (2.2) is obvious. Indeed, one has x2 + y2 = uv
in appropriate new affine coordinates u and v centered at O, in which OA =
{u = 0}. Then v(A) 6= 0, since A 6= O. One has u(P ) ' cz, c 6= 0, as P ∈ b
tends to A, by transversality. This implies (2.2). Let us prove formula (2.1).
In its proof we use the following property of the Hessian H(f).

Proposition 2.2 Let F be a germ of analytic function at a point A ∈ C2,
F (A) = 0. For every germ of analytic function g at A one has

H(gF )|{F=0} = g3H(F ). (2.3)

Proof For every function h(x, y) let us consider its skew gradient

∇skewh = (−∂h
∂y
,
∂h

∂x
)

in the coordinates (x, y). It is tangent to the level curves of the function
h, by definition. Consider an irreducible component b of the germ at A of

5Here and in the proof of Proposition 2.1 all the functions are evaluated at a point
P ∈ b tending to A, and all the written asymptotics are asymptotics of values of functions
at P ∈ b, as P → A
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the analytic curve {F = 0}. Let P ∈ b. Let us extend the skew gradient
vectors ∇skewF (P ) and ∇skew(Fg)(P ) to constant vector fields vF = vF,P
and vFg = vFg,P respectively on the line TP b. Then the values H(F )(P )
and H(Fg)(P ) coincide with the second derivative at P of the restriction of
the function F (Fg) to the line TP b along the field vF (respectively, vFg).
One has

∇skew(Fg)|b = g∇skewF, vFg = g(P )vF , (2.4)

by Leibnitz rule and since F ≡ 0 on b. One has

H(Fg)(P ) =
d2(Fg)

dv2
Fg

(P ) = g2d
2(Fg)

dv2
F

(P ), (2.5)

by (2.4). The latter second derivative equals gF ′′vF + 2F ′vF g
′
vF

+ Fg′′vF , by
Leibnitz rule. The second and third terms in the latter sum vanish at P ,
since F (P ) = 0 and dF

dvF
(P ) = 0: the vector vF (P ) = ∇skewF (P ) is tangent

to the curve b. The first term equals gH(F ), by definition. This together
with (2.5) implies that H(Fg)(P ) = g3H(F )(P ) and proves the proposition.

2

One has
g3H(f)|b = (

∏
j 6=1

f
kj
j )3H(f1), (2.6)

by the above proposition and since b = b1 = {f1 = 0}. In what follows we
estimate the asymptotics of the functions fj and H(f1) along the curve b.

Proposition 2.3 Let b be an irreducible germ of analytic curve at 0, and
let (z, w) be local affine coordinates adapted to it. Let t 7→ (tq, ctp(1+o(1)) be
it local parametrization: 1 ≤ q < p, c 6= 0, see (1.3). Let f be an irreducible
germ of analytic function at 0 defining b: b = {f = 0}. The Newton diagram
of the function f consists of one edge: the segment connecting the points
(p, 0) and (0, q). More precisely, the Taylor series of the function f(z, w)
consists of monomials wαzβ such that

ναβ = qβ + pα ≥ qp; (2.7)

the latter inequality is strict except for (α, β) ∈ {(p, 0), (0, q)}.

Proof Without loss of generality we can and will consider that f is a
Weierstrass polynomial:

f(z, w) = φz(w) = wd + h1(z)wd−1 + · · ·+ hd(z), hd(0) = 0, (2.8)
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since each germ of holomorphic function at 0 that vanishes at 0 and does
not vanish identically on the w-axis is the product of a unique polynomial as
above (called Weierstrass polynomial) and a non-zero holomorphic function,
by Weierstrass Preparatory Theorem [17, chapter 0, section 1]. For every z
small enough the polynomial φz(w) = f(z, w) has q roots ζl(z), l = 1, . . . , q:
ζl(z) = ctpl (1 + o(1)), tql = z, as z → 0. The roots can be written as

Puiseux series in z of the type ζl(z) = cz
p
q (1 + o(1)). This implies that

the Weierstrass polynomial (2.8) is the product of q factors w − ζl(z) with

ζl(z) ' θl = ctpl = cz
p
q , as z → 0. Here for every z the points θ1, . . . , θq

are obtained one from the other by multiplication by q-th roots of unity, or
equivalently, form a regular q-gon centered at 0. Hence, in formula (2.8) one
has d = q, hq(z) = (−1)q

∏q
l=1 ζl(z) = (−1)qcqzp(1 + o(1)),

hs(z) = o(z
p
q
s
) for 1 ≤ s < q, as z → 0. (2.9)

Indeed, for 1 ≤ s < q the s-th elementary symmetric polynomial σs in
the roots ζl(z) has asymptotics smaller than their s-th powers. Namely, the

asymptotic terms of order z
p
q
s

cancel out, since ζl(z) ' θl and σs(θ1, . . . , θq) =
0: θl form a regular q-gon centered at zero. Formula (2.9) implies that the
Weierstrass polynomial (2.8) contains only those Taylor monomials wαzβ

with 1 ≤ α < q, set s = q−α, for which β > p
q s = p

q (q−α), i.e., qβ+pα > pq.
This proves the proposition. 2

Claim 1. One has

fj |b = O(z
qbj min{ρj ,r}). (2.10)

Proof Case 1): the curve bj is transverse to b. Then ρj = 1 < r, and we
have to show that fj |b = O(z

qbj ). To do this, let us take the coordinates
(zj , wj) adapted to bj so that the wj-axis coincides with the z-axis TAb,
wj = z on TAb and zj = w: one can do this by transversality. One has

wj ' z, zj = w ' cbzr, r =
pb
qb
, along the curve b. (2.11)

Hence, each Taylor monomial wαj z
β
j of the function fj has asymptotics

O(zα+βr) along the curve b. Now it suffices to show that α + βr ≥ qbj .
Recall that αpbj + βqbj ≥ pbjqbj , by (2.7). Dividing the latter inequality by

pbj yields ν = α+ βr−1
bj
≥ qbj . Hence, α+ βr ≥ ν ≥ qbj , since rbj > 1. This

proves the claim.
Case 2): the curve bj is tangent to b, thus ρj = rbj . Then the coordinates

(z, w) are adapted for both curves b and bj . Each Taylor monomial wαzβ of
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the function fj(z, w) is asymptotic to czν , ν = αr + β, c = const, along the
curve b, since w ' cbzr.

Subcase 2a): rbj ≤ r. Thus, min{ρj , r} = rbj , and it suffices to show that
in the above notations αr+β ≥ qbjrbj = pbj . Indeed, αr+β ≥ αrbj +β ≥ pbj ,
by inequality (2.7) divided by q.

Subcase 2b): rbj > r. Thus, min{ρj , r} = r, and it suffices to show that
αr + β ≥ qbjr. Indeed,

rbj
r

(αr + β) = αrbj + β
rbj
r
≥ αrbj + β ≥ pbj = qbjrbj ,

by (2.7). Multiplying the latter inequality by r
rbj

yields αr + β ≥ qbjr. The

claim is proved. 2

Claim 2. One has

H(f1)(P ) = O(z3rqb−2(r+1)), as P → A along the curve b; r = rb. (2.12)

Proof The norm of the skew gradient of the function f1 written in the
coordinates (x, y) has the same asymptotics (up to nonzero constant factor),
as the norm of its skew gradient written in the coordinates (z, w) adapted
to the curve b, since applying the local coordinate change (x, y) 7→ (z, w)
to the function f1 multiplies its gradient by a holomorphic matrix function
with non-zero determinant. Note that both skew gradients are tangent to
the level curves of the function f1, including its zero locus b. Everywhere
below by ∇skewf1 we denote the skew gradient in the coordinates (z, w).
Let v denote the extension of the vector ∇skewf1(P ) to a constant vector
field on the line TP b. It suffices to prove formula (2.12) for the left-hand

side replaced by the second derivative d2f1
dv2

(P ): the ratio of the absolute
values of the latter second derivative and the expression H(f1)(P ) equals
the ratio of squared norms of the skew gradients of the function f1 at P in
the coordinate systems (x, y) and (z, w); the latter ratio is bounded from
above and below, as was mentioned above.

We consider the Taylor series for both the function f1 and its skew
gradient and calculate the Hessian form of each Taylor monomial of the
function f1 evaluated on each Taylor monomial of its skew gradient. We
show that the expression thus obtained has asymptotics given by the right-
hand side in (2.12). This will prove the claim.

Let wαzβ be the Taylor monomials of the function f1. The skew gradient
(∇skewf1)|b is a linear combination of the monomials

uα,β = wαzβ−1 ∂

∂w
' czαr+β−1 ∂

∂w
,
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vα,β = wα−1zβ
∂

∂z
' c′zαr+β−r ∂

∂z
, c, c′ 6= 0;

both above asymptotics are written along the curve b. The restrictions to
the curve b of the second derivatives of a monomial wαzβ are asymptotic to

∂2(wαzβ)

∂w2
= α(α− 1)wα−2zβ ' c1z

αr+β−2r;

∂2(wαzβ)

∂z2
= β(β − 1)wαzβ−2 ' c2z

αr+β−2;

∂2(wαzβ)

∂z∂w
= αβwα−1zβ−1 ' c3z

αr+β−r−1, c1, c2, c3 6= 0.

Therefore, applying the Hessian form of each monomial wαzβ to a linear
combination of the vectors uα′,β′ and vα′,β′ (e.g., to the skew gradient of
the monomial wα

′
zβ
′
) yields a linear combination of expressions of the three

following types:

d2(wαzβ)

∂u2
α′,β′

= O(zν), ν = 2(α′r + β′ − 1) + αr + β − 2r

= 2(α′r + β′) + (αr + β)− 2(r + 1); (2.13)

d2(wαzβ)

∂v2
α′,β′

= O(zν2), ν2 = 2(α′r + β′ − r) + αr + β − 2 = ν;

d2(wαzβ)

∂uα′,β′∂vα′,β′
= O(zν3), ν3 = 2(α′r + β′)− r − 1 + αr + β − r − 1 = ν.

Let us now estimate ν from below. Recall that for every Taylor monomial
wαzβ of the function f1 one has

αr + β =
1

qb
(αpb + βqb) ≥ pb = qbr,

by (2.7), and hence, the same inequality holds for α′ and β′. This together
with formula (2.13) for the number ν implies that ν ≥ 3qbr− 2(r+ 1). This
together with the above discussion proves formula (2.12). 2

Substituting asymptotics (2.10) and (2.12) to formula (2.6) yields for-
mula (2.1). Proposition 2.1 is proved. 2

Proof of formulas (1.13) and (1.12). Formula (1.13) follows from
formula (2.2). Formula (1.12) follows from formula (2.1) applied to kj = 1

for j ∈ J and kj replaced by
kj
k for j /∈ J . This finishes Step 1 of the proof

of Theorem 1.49. 2
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3 Relative angular symmetry property and its corol-
laries. Proof of Theorems 1.47–1.49

In this section we discuss the relative angular symmetry property in detail
and prove its corollaries: Theorems 1.47 and steps 2, 3, 4 of the proof of
Theorem 1.49 (see Subsection 1.6). They are stated and proved below in
generalized forms as Theorems 3.1–3.4. In Subsection 3.7 we finish the proof
of Theorem 1.49. In Subsection 3.8 we prove Theorem 1.48.

Assumptions in Theorems 3.1–3.4 below. These theorems deal
with a point O ∈ C2 ⊂ CP2, a nonlinear irreducible germ b of analytic curve
at a point A ∈ (I\{O})∩C2, where I = Λ1∪Λ2 is the union of the isotropic
lines through O. We assume that b has local relative angular symmetry
property with respect to a bigger finite collection Γ ⊃ b of irreducible germs
of analytic curves at points in TAb. In Theorem 3.4 the collection Γ will
be treated as a divisor in a neighborhood of the line TAb: a finite linear
combination of irreducible germs of analytic curves at points in TAb with
positive integer coefficients.

Theorem 3.1 Let b be tangent to the isotropic line OA = Λj. Then b is
quadratic.

Theorem 3.1 implies Theorem 1.47. It will be proved in Subsection 3.3.

Theorem 3.2 Let b be transverse to the isotropic line OA. Then b is sub-
quadratic.

Theorem 3.3 Let b be transverse to the isotropic line OA. Then each germ
at A from the collection Γ that is tangent to b has Puiseux exponent no
greater than r = rb.

Theorem 3.4 Let b be transverse to the isotropic line OA. Let the divisor Γ
include the germ b k times, k ∈ N. Let D denote its degree: the intersection
index (Γ, TAb). The local intersection index of the tangent line TAb with Γ
at A is no less than D

2 + k. The equality may take place only in the case,
when the germ b is quadratic and regular, and Γ contains no other germs
tangent to b at A with the same Puiseux exponent, as b.

Remark 3.5 In fact, one can slightly strengthen the last statement of the
theorem, with “no other germs in Γ tangent to b,” without requiring any-
thing on their Puiseux exponents. This can be obtained via adding a small
extra argument to its proof, which is omitted to save the space.
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Theorems 3.2–3.4 imply steps 2–4 of the proof of Theorem 1.49. They
will be proved in Subsections 3.4–3.6.

The proofs of Theorems 3.1–3.4 and 1.48 are done by similar methods
and consist of the two following ingredients:

1) Studying the asymptotics of the family of angular symmetries of the
lines TP b, as P → A. Let t = t(P ) denote the coordinate of the point P in the
local parameter of the germ b: t(A) = 0, t(P )→ 0, as P → A. We identify
the projective lines TP b with C via appropriate family of affine coordinates
(e.g., z in the proof of Theorem 3.2), which will be here also denoted by
z. Set z(t) = z(P ). In the coordinate z the angular symmetry family
becomes a family of conformal involutions σt : C → C with the following
properties: σt(z(t)) = z(t); z(t)→ 0, and σt(0) tends to a non-zero limit, as
t → 0. Proposition 3.6 stated and proved in the next subsection says that
the mappings σt converge to the constant mapping C 7→ 0 uniformly on
compact subsets in C \ {0} and each family of points zt ∈ C with moderate
asymptotics zt ' cz(t), c 6= 0, is sent by σt to a family asymptotic to c−1z(t).

2) The asymptotic analysis of the relative angular symmetry property.
We consider those points of the intersection TP b ∩ Γ that have moderate
asymptotics in the above sense. Their collection is angular-symmetric,
and the angular symmetry inverses the corresponding asymptotic factors:
c 7→ c−1, by Proposition 3.6. The following description of the asymptotic
factors of the intersection points with moderate asymptotics is implied by
[15, proposition 2.1] and [13, proposition 2.50, p.268], which are recalled in
Subsection 3.2. We consider the local branches b1 = b, b2, b3, . . . , bN ∈ Γ
at the point A that are tangent to b and have the same Puiseux exponent
rbi = r = rb. The points of intersections bi ∩ TP b all have moderate asymp-
totics, and the corresponding asymptotic factors are appropriate powers of
roots of appropriate polynomials Wi associated to bi. The other points of
intersection TP b ∩ Γ with moderate asymptotics have known asymptotic
factors: all of them are equal to the same number depending on r. The
symmetry of the asymptotic factor collection under taking the inverse im-
plies a relation on the collection of polynomials Wi. We show that the latter
relation implies the statement of the theorem under question.

The proof of Theorem 3.4 is based on the statement saying that those
points of intersection TP b∩Γ that do not tend to A, as P → A, are angular-
symmetric to points tending to A. The latter statement follows from the
uniform convergence statement of Proposition 3.6.

The proof of Theorem 3.3 is more technical. For a detailed sketch of
its proof see Subsection 1.6, the description of the step 3 of the proof of
Theorem 1.49.
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3.1 Asymptotics of degenerating conformal involutions

Here we prove the next proposition on asymptotics of a degenerating family
of conformal involutions C→ C, which will be applied to families of angular
symmetries of the lines TP b.

Proposition 3.6 Consider a family of conformal involutions σt : C → C
of the Riemann sphere with coordinate z, set yt = σt(0). Let there exist a
family z(t) of their fixed points, σt(z(t)) = z(t), such that z(t)→ 0, and let
yt → y 6= 0, as t→ 0. Then the following statements hold.

(a) The involutions σt converge to the constant mapping C 7→ 0 uni-
formly on compact subsets in C \ {0}.

(b) Fix a c ∈ C∗ and a family of points zt ∈ C with the asymptotics
zt = cz(t)(1 + o(1)), as t→ 0. Then

σt(zt) = c−1z(t)(1 + o(1)), as t→ 0. (3.1)

Proof The transformations σt are written in the coordinate z as follows:

σt(z) =
yt − z

1− λtz
, λt =

2z(t)− yt
z2(t)

: (3.2)

the number λt is found from the equation σt(z(t)) = z(t). One has λt →
∞, since its denominator tends to zero, while the nominator tends to y 6=
0. Therefore, the denominator in the formula (3.2) for the involution σt
is asymptotic to λtz uniformly on compact subsets in C \ {0}, while the
nominator is O(z) = o(λtz) uniformly on compact subsets. This implies
statement (a). Substituting zt = cz(t)(1 + o(1)) to the same formula yields

σt(zt) '
y

(cy)/z(t)
= c−1z(t).

This proves statement (b) and finishes the proof of the proposition. 2

3.2 Preliminaries: asymptotics of intersections with the tan-
gent line

Let a, b be irreducible germs of planar complex analytic curves at the origin
in C2. Let pg, qg, cg, g = a, b be respectively the corresponding exponents
and constants from their parametrizations (1.3) in their adapted coordinates.
Let t be the corresponding local parameter of the germ b. We identify points
of the curve b with the corresponding local parameter values t. We use the
following statements on the asymptotics of the points of intersection Ttb∩a.
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Proposition 3.7 [15, proposition 2.1] Let a, b be transverse irreducible
germs of holomorphic curves at the origin in C2. Let (z, w) be affine co-
ordinates centered at 0 and adapted to b: the germ b is tangent to the z-axis.
Then for every t small enough the intersection Ttb ∩ a consists of qa points
ξ1, . . . , ξqa whose coordinates have the following asymptotics, as t→ 0:

z(ξj) = O(tpb) = O(w(t)) = o(z(t)) = o(tqb),

w(ξj) = (1− rb)w(t)(1 + o(1)) = (1− rb)cbtpb(1 + o(1)). (3.3)

Proposition 3.8 ([13, p. 268, proposition 2.50], [15, proposition 2.3]) Let
a, b be irreducible tangent germs of holomorphic curves at the origin in
the plane C2. Consider their parametrizations (1.3) in common adapted
coordinates (z, w). Let ca and cb be the corresponding constants from (1.3).
Then for every t small enough the intersection Ttb ∩ a consists of pa points
ξ1, . . . , ξpa whose coordinates have the following asymptotics, as t→ 0.

Case 1): ra > rb. One has two types of intersection points ξj:

for j ≤ qa : z(ξj) =
rb − 1

rb
z(t)(1 + o(1)) =

rb − 1

rb
tqb(1 + o(1)), (3.4)

w(ξj) = O(tqbra) = o(tpb) = o(w(t));

for j > qa : z(t) = O((z(ξj))
ra−1
rb−1 ) = o(z(ξj)), (3.5)

w(t) = O(zrb(t)) = O((z(ξj))
rb(ra−1)

rb−1 ) = o(zra(ξj)) = o(w(ξj)).

Case 2): ra = rb = r. One has

z(ξj) = ζqaj z(t)(1 + o(1)) = ζqaj t
qb(1 + o(1)), (3.6)

w(ξj) = caζ
pa
j t

pb(1 + o(1)) = cζpaj w(t)(1 + o(1)),

where ζj are the roots of the polynomial

Rpa,qa,c(ζ) = cζpa − rζqa + r − 1; r =
pa
qa
, c =

ca
cb
. (3.7)

(In the case, when b = a, one has c = 1, and the above polynomial has
double root 1 corresponding to the tangency point t.)

Case 3): ra < rb. One has

z(ξj) = O((z(t))
rb
ra ) = o(z(t)), (3.8)

w(ξj) = (1− rb)w(t)(1 + o(1)) = (1− rb)cbtpb(1 + o(1)).
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3.3 Quadraticity of tangent branches. Proof of Theorem 3.1

The line OA coincides with some of the isotropic lines Λj , j = 1, 2, say,
OA = Λ1. Let us introduce affine coordinates (z, w) on C2 adapted to b:
they are centered at A and Λ1 = OA is the z-axis. In addition, we choose
them so that the w-axis be parallel to the other isotropic line Λ2. One has
w(O) = 0, z(O) 6= 0, since z(A) = 0 and A 6= O. Let P ∈ b be a point close
to A. Let Qj = Qj(P ) denote the intersection point of the line TP b with the
line Λj . In what follows we use the asymptotic relation

w(P ) = o(w(Q2)), as P → A. (3.9)

Indeed, the points P , Q1, Q2 lie in the same line TP b, and

P,Q1 → A, as P → A. (3.10)

Let T = T (P ) denote the projection of the point P to the z-axis OA:
z(T ) = z(P ). Consider the triangles TQ1P and OQ1Q2. They are similar
in the following complex sense. Their edges TP and Q2O lie in complex
lines parallel to the w-axis: we measure them by the w-coordinate. Their
edges TQ1, Q1O lie in the complex z-axis: we measure them by the z-
coordinate. Their edges PQ1 and Q1Q2 lie in the same complex line Q1Q2.
The parallelness of complexified edges of the above triangles implies that

w(P )− w(T )

w(Q2)− w(O)
=
z(T )− z(Q1)

z(O)− z(Q1)
.

Substituting the equalities and asymptotics w(T ) = w(O) = 0, z(Q1), z(P )→
0, see (3.10), z(T )−z(Q1) = z(P )−z(Q1)→ 0, and z(O)−z(Q1)→ z(O) 6= 0

to the latter formula yields w(P )
w(Q2) → 0 and proves (3.9).

In what follows we consider the subset M = M(P ) ⊂ TP b ∩ Γ of points
with moderate w-asymptotics: those points of the latter intersection, whose
w-coordinates are asymptotic to tjw(P )(1 + o(1)), as P → A, with some
constants tj 6= 0 called their asymptotic w-factors. The intersection being
finite, as is Γ, the setM is also finite. Note that the whole intersection TP b∩Γ
is invariant under the angular symmetry of the line TP b with respect to the
point P and center O, by the relative angular symmetry property.

Proposition 3.9 The set M is invariant under the angular symmetry of
the line TP b with respect to the point P and center O. Each point of the set
M with asymptotic w-factor s is sent to a point with the inverse factor s−1.
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Proof Let us equip the line TP b with the rescaled affine coordinate

w̃ =
w

w(Q2(P ))
.

One has w̃(Q1(P )) = 0, w̃(Q2(P )) = 1, w̃(P ) → 0, by (3.9). The angular
symmetry of the projective line TP b is its conformal involution fixing P and
permuting the points Q1(P ) and Q2(P ). The two last statements together
imply that the family of angular symmetries of the lines TP b written in the
coordinate w̃ yields a family of conformal involutions of the Riemann sphere
satisfying the conditions of Proposition 3.6. This implies that a family of
points in TP b whose w̃-coordinates are asymptotic to sw̃(P )(1+o(1)), s 6= 0
(or equivalently, whose w-coordinates are asymptotic to sw(P )(1 + o(1)))
is sent by the angular symmetry to a family of points with w̃-coordinates
asymptotic to s−1w̃(P )(1 + o(1)) (equivalently, with w-coordinates asymp-
totic to s−1w(P )(1 + o(1))). This implies the statement of the proposition.

2

Corollary 3.10 The product of the asymptotic w-factors of the points from
the set M equals one.

In what follows we calculate the w-factors of the points of the set M
(the two next propositions) and show that their product can be equal to one
only if r = 2. This will prove Theorem 3.1.

Proposition 3.11 Let N ⊂ Γ denote the union of those irreducible germs
a (i.e., local branches) of the collection Γ at A that satisfy some of the two
following conditions: either a is tangent to b and ra < rb; or a is transverse
to b. Let R ⊂ Γ denote the union of those local branches at A of the collection
Γ that are tangent to b and have the same Puiseux exponent rb. One has

M = (MN tMR), MN = TP b ∩N , MR = TP b ∩R. (3.11)

The asymptotic w-factors of points of the set MN are equal to 1− rb.

Proposition 3.12 Let a be a local branch at A of the collection Γ that is
tangent to b, and let ra = rb = r. Let pa, qa, ca, cb be the corresponding
exponents and coefficients in the parametrization (1.3) of the curves a and b
in their common adapted coordinates (z, w). Let ζ1, . . . , ζpa denote the roots
of the polynomial

Rpa,qa.c(ζ) = cζpa − rζqa + r − 1, c =
ca
cb
.
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The asymptotic w-factors of the points of intersection TP b ∩ a are equal to
cζpaj .

Both propositions follow immediately from definition and Propositions
3.7 and 3.8.

Remark 3.13 The product of the above w-factors cζpaj through j = 1, . . . , pa
equals (1 − r)pa . Indeed, the product of roots ζj equals c−1(−1)pa(r − 1).
Taking its pa-th power yields c−pa(1 − r)pa . The product of the w-factors
we are looking for is obtained from the latter product by multiplication by
cpa , and thus, c cancels out.

The product of the w-factors of points of the set M should be equal
to one (Corollary 3.10). On the other hand, it is equal (up to sign) to a
natural power of the number 1− r, r = rb. This follows from the two above
propositions, Remark 3.13 and the fact that the collection of the germs a
from Proposition 3.12 is non-empty: it contains b. Therefore, |1 − r| = 1,
hence r = 2. Theorems 3.1 and 1.47 are proved.

3.4 Subquadraticity. Proof of Theorem 3.2

LetO ∈ C2, b be an irreducible germ of analytic curve at a point A ∈ C2\{O}
such that the line OA is isotropic, say, OA = Λ1, and let b be transverse
to OA. Let b have relative angular symmetry property with respect to a
bigger finite collection Γ ⊃ b of irreducible germs of analytic curves with
base points in TAb. Let (z, w) be affine coordinates centered at A and
adapted to b. For every P ∈ b we equip the tangent line TP b with the
coordinate z. The intersection Γ ∩ TP b is finite for every P close to A,
and the intersection points are multivalued analytic functions of P : their
z-coordinates are Puiseux series in z(P ).

Definition 3.14 In the above conditions for every P ∈ b close to A we
consider the subset ΨP ⊂ TP b ∩ Γ of points with moderate z-asymptotics:
those points of the intersection TP b∩Γ, whose z-coordinates are asymptotic
to tjz(P )(1 + o(1)), tj = const 6= 0, as P → A. The corresponding constant
factors tj will be called the asymptotic z-factors. Some of them may coincide,
and we take each asymptotic factor tj with its multiplicity nj : the quantity
of the corresponding intersection points (taken with their own multiplicities).
In other words, we consider the asymptotic z-factor collection as a divisor
D =

∑
j nj [tj ] in C: a formal finite linear combination of points tj ∈ C with

natural coefficients nj . The divisor D will be called the asymptotic z-divisor.
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Definition 3.15 The sum of a divisor D =
∑

j nj [tj ] in C is the sum
Σ(D) =

∑
j njtj ∈ C of its points. Its pointwise inverse is the divisor

of inverses: D−1 =
∑

j nj [t
−1
j ] (provided that tj 6= 0).

Remark 3.16 The angular symmetry family of the lines TP b (with respect
to the points P and center O) written in the coordinate z is a family of
conformal involutions C→ C satisfying the conditions of Proposition 3.6, as
in the proof of Proposition 3.9. Indeed, the fixed point z(P ) tends to 0, as
P → A. The point of the line TP b with zero z-coordinate is its intersection
point with the line Λ1, and its image under the angular symmetry is the point
of intersection TP b ∩ Λ2, which tends to the point of intersection TAb ∩ Λ2

with non-zero z-coordinate.

Corollary 3.17 The above angular symmetries of the lines TP b written in
the coordinate z converge to the constant mapping C 7→ 0 uniformly on com-
pact subsets in C\{0}. The subset ΨP ⊂ TP b is invariant under the angular
symmetry. The asymptotic z-divisor D is invariant under the involution
C→ C of taking inverse z 7→ z−1:

D−1 = D, Σ(D) = Σ(D−1). (3.12)

The corollary follows immediately from Remark 3.16 and Proposition
3.6.

We prove Theorem 3.2 by contradiction. Suppose the contrary: r > 2.
We show that Σ(D−1) 6= Σ(D). The contradiction thus obtained to (3.12)
will prove the theorem.

Let b1 = b, b2, . . . , bN denote all the germs from the collection Γ that are
tangent to b and have the same Puiseux exponent rbi = rb = r. Let pbi , qbi ,
cbi denote the corresponding numbers in asymptotics (1.3) written in the
coordinates (z, w). Let us represent r as an irreducible fraction r = p

q . For
every a = b1, . . . , bN set

sa := G.C.D(pa, qa) : pa = sap, qa = saq. (3.13)

Proposition 3.18 Consider the collection of the polynomials

Wi(ζ) = Rp,q,c(i)(ζ) = c(i)ζp − rζq + r − 1, c(i) =
cbi
cb
, i = 1, . . . , N.

For every polynomial Wi let Ri denote the collection of q-th powers of its
roots considered as a divisor in C: each q-th power being taken with its

41



multiplicity, the quantity of the corresponding roots. Consider the divisor

R =
N∑
i=1

sbiRi.

Let NP ⊂ ΨP denote the subset lying in the intersection of the line TP b with
those local branches φ ∈ Γ that are tangent to b and have bigger Puiseux
exponents rφ > r. Let n denote the cardinality of the set NP for P close
enough to A. One has

D = R+ n[zr], zr =
r − 1

r
. (3.14)

Proof The asymptotic z-factor of each point of the set NP equals r−1
r , by

Proposition 3.8. The complement ΨP \NP consists of the intersection points
of the line TP b with the local branches bi, and the divisor of its asymptotic z-
factors coincides withR. This follows from Propositions 3.7, 3.8 and the fact
that the collection of the qa-th powers of roots of each polynomial Rpa,qa,c
coincides with the collection of the q-th powers of roots of the polynomial
Rp,q,c, where each one of the latter powers is taken with multiplicity sa. The
latter statement follows from the equality Rpa,qa,c(ζ) = Rp,q,c(ζ

sa). This
proves Proposition 3.18. 2

One has p = rq > 2q, by assumption. For every i = 1, . . . , N set

Σ1i = Σ(Ri), Σ2i = Σ(R−1
i ) :

Σ(D) =

N∑
i=1

sbiΣ1i + n
r − 1

r
= Σ(D−1) =

N∑
i=1

sbiΣ2i + n
r

r − 1
, (3.15)

by (3.12) and (3.14). Let us show that

Σ1i = 0, Σ2i =
p

r − 1
. (3.16)

The first equality in (3.16) follows from the inequality p − q > q (which
holds by assumption) and the fact that Σ1i is the sum of q-th powers of
roots of the polynomial Wi; hence, it is a polynomial in elementary sym-
metric polynomials of degrees at most q in its roots. The latter symmetric
polynomials vanish, as do the corresponding coefficients in Wi at the mono-
mials of degrees p − 1, . . . , p − q > q. Let us prove the second equality in
(3.16). The inverse to the roots of the polynomial Rp,q,c(i) are the roots of
the polynomial Hp,q,c(i), where

Hp,q,c(ζ) = (r − 1)ζp − rζp−q + c.
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Proposition 3.19 (cf. [15, formula (2.16)]). The sum of q-th powers of
roots of each polynomial Hp,q,c with r 6= 1 equals qr

r−1 .

Proof The above sum is independent on c, since it is expressed in terms of
the elementary symmetric polynomials corresponding to the coefficients in
Hp,q,c at powers no less than p − q. Therefore, it suffices to calculate it for
c = 0, when zero is a root of multiplicity p − q and the q-th powers of the
other q roots are equal to r

r−1 : it equals qr
r−1 . The proposition is proved. 2

The sum Σ2i is the sum of the q-th powers of roots of the polynomial
Hp,q,c(i), and hence, equals qr

r−1 = p
r−1 , by the proposition.

Formulas (3.15) and (3.16) together imply that

p

r − 1

∑
i

sbi = n(
r − 1

r
− r

r − 1
) ≤ 0.

But the latter left-hand side is obviously positive. The contradiction thus
obtained proves Theorem 3.2.

3.5 Puiseux exponents. Proof of Theorem 3.3

Let (z, w) be affine coordinates centered at A and adapted to the local
branch b under consideration: the z-axis is TAb. Let ΨP ⊂ TP b ∩ Γ denote
the family of subsets of intersection points with moderate z-asymptotics,
and let D ⊂ C \ {0} denote the collection of the corresponding asymptotic
z-factors (now treated as a finite subset in C, not as a divisor), see Definition
3.14. Let r = p

q be the irreducible fraction presenting the rational number
r = rb. Let b1, . . . , bN be the local branches of the collection Γ that are
tangent to b and have the same Puiseux exponent: rbi = r = rb; b1 = b. Let
Wk = Rp,q,c(k)(ζ) be the corresponding polynomials from Proposition 3.18.

We prove Theorem 3.3 by contradiction. Suppose the contrary: there
exists a local branch φ ∈ Γ tangent to b such that rφ > r. Then the collection
D contains the point zr = r−1

r < 1. Its other points are q-th powers of roots
of the polynomials Wk, and

the q − th power of each root of every polynomial Wk lies in D. (3.17)

Both latter statements follow from Proposition 3.18. The collection D con-
tains the point µ1 = z−1

r > 1, by its invariance under taking inverse. There-
fore, µ1 is a q-th power of root of a polynomial Wk. We show (using the
next proposition and corollary) that Wk has another root, with a real q-th
power θ2 ∈ (0, 1) such that µ2 = θ−1

2 < µ1; µ2 ∈ D, by (3.17) and invari-
ance. Continuing this procedure will yield an infinite sequence of elements
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µ1 > µ2 > · · · > 1 of the finite set D. The contradiction thus obtained will
prove Theorem 3.3.

Proposition 3.20 Let p, q ∈ N, 1 ≤ q < p, r = p
q . A polynomial W (z) =

Rp,q,c(z) = czp − rzq + r − 1 has a root z1 > 1, if and only if 0 < c < 1. In
this case it has exactly two real positive roots z0 and z1, 0 < z0 < 1 < z1,
and their product is greater than one.

Proof For c /∈ R+ one has W |{z≥1} 6= 0, since −rzq + r − 1 < 0 for
every z ≥ 1. Therefore, we consider that c > 0. The derivative equals

W ′(z) = cpzp−1 − rqzq−1 = pzq−1(czp−q − 1). Therefore, c
− 1

p−q is the
unique local extremum of the polynomial W in the positive semiaxis, and
it is obviously a local minimum. For c = 1 one has W (1) = 0, and z = 1 is
exactly the minimum. Therefore, as c increases, the graph of the polynomial
W becomes disjoint from the positive coordinate semiaxis, and it has no
positive root, if c > 1. As c decreases remaining positive, the graph intersects
the coordinate axis on both sides from 1. Thus, for 0 < c < 1 the polynomial
W gets exactly two real positive roots z0 and z1, 0 < z0 < 1 < z1, and the
minimum is between them; W (z) > 0 for z > z1. Let us prove that z0z1 > 1,
or equivalently, z−1

0 < z1. The latter inequality would follow from positivity
of the polynomial W on the interval (z1,+∞) and the inequality

W (z−1
0 ) < 0. (3.18)

Let us prove (3.18). By definition, czp0 − rz
q
0 + r − 1 = 0, hence,

c =
rzq0 − r + 1

zp0
.

Substituting the latter right-hand side into the polynomial W (z−1
0 ) instead

of the coefficient c yields

W (z−1
0 ) = z−p0 (r(zq−p0 − zp−q0 )− (r − 1)(z−p0 − zp0)).

Multiplying this expression by qzp0 and denoting m = p− q yields

p(z−m0 − zm0 )−m(z−p0 − zp0).

Let us show that the latter expression is negative. We prove the following
stronger inequality:

z−p0 − zp0
z−m0 − zm0

>
p

m
whenever z0 ∈ R+ \ {1} and p > m, p,m ∈ N. (3.19)
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Canceling the common divisor z−1
0 − z0 in the left fraction transforms in-

equality (3.19) to

z1−p
0 + z3−p

0 + · · ·+ zp−1
0

z1−m
0 + z3−m

0 + · · ·+ zm−1
0

>
p

m
. (3.20)

Case 1): p and m are of the same parity. Then the difference of the nomi-
nator and the denominator in (3.20) is positive and equal to the sum

(z1−p
0 + zp−1

0 ) + (z3−p
0 + zm−3

0 ) + · · ·+ (z−1−m
0 + zm+1

0 ). (3.21)

Each sum of inverses in (3.21) is greater than any analogous sum of inverses
z−j0 + zj0, j ≤ m− 1, in the above denominator, since the function

fz(s) = z−s + zs

in s > 0 with fixed z > 0, z 6= 1 increases. This implies that the average
sum of inverses in (3.21) is greater than that in the denominator. Hence, the
ratio of expression (3.21) and the denominator is greater than the ratio of the
quantities of sums of inverses in them. (If m is odd, then the denominator

contains the half-sum 1 =
fz0 (0)

2 ; here fz0(0) is counted with weight 1
2 .) This

together with the above discussion implies inequality (3.20).
Case 2): p and m are of different parities. Then the nominator in (3.20)

equals

νm = fz0(p−1)+· · ·+fz0(m+2)+σm, σm = fz0(m)+fz0(m−2)+. . . . (3.22)

The denominator equals

ηm = fz0(m− 1) + fz0(m− 3) + . . . .

Here each one of the sums σm and ηm ends with either fz0(1), or 1 =
fz0 (0)

2 .
Note that fz0(s) ≤ 1

2(fz0(s− 1) + fz0(s+ 1)) for all s ≥ 0, since the function
fz(s) is convex in s > 0 for z > 0, z 6= 1: f ′′z (s) = (ln z)2fz(s) > 0. Writing
the latter mean inequalities for s = m− 1,m− 3, . . . and summing them up
yields

σm ≥ ηm +
1

2
fz0(m).

Substituting this inequality to (3.22) yields

νm ≥ ψpm + ηm, ψpm = fz0(p− 1) + fz0(p− 3) + · · ·+ fz0(m+ 2) +
1

2
fz0(m).
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Note that the sum ψpm contains only terms fz0(j) with j ≥ m, while ηm
contains only terms fz0(j) with j < m. Thus, each term fz0(j) in ψpm is
greater than each term in ηm, as in the previous case (increasing of the

function fz(s)). This implies that the ratio
ψpm

ηm
is greater than the ratio

of the numbers of terms in ψpm and ηm respectively. (Here 1
2fz0(m) and

a possible free term 1 = 1
2fz0(0) are counted as half-terms, that is, with

weight 1
2 .) Therefore, the same statement holds for the ratio

ψpm+ηm
ηm

, and
hence, for the ratio νm

ηm
, since νm ≥ ψpm + ηm and the number of terms in

the expression (3.22) for the value νm equals the number of terms in the
sum ψpm + ηm. This proves (3.20) and the proposition. 2

Corollary 3.21 Let p, q ∈ N, 1 ≤ q < p, r = p
q . Let a polynomial Rp,q,c

have a root with q-th power µ > 1. Then it has another root with q-th power
θ ∈ (0, 1) such that θµ > 1.

Proof Without loss of generality we consider that the polynomial W (z) =

Rp,q,c(z) has a real root µ
1
q > 1. One can achieve this rescaling the variable

z by multiplication by q-th root of unity: the collection of q-th powers of
roots remains unchanged. Then W (z) satisfies the condition of Proposition
3.20, which in its turn immediately implies the statement of the corollary.

2

As was already noticed above, the set D contains the point µ1 = z−1
r =

r
r−1 > 1. Hence, the latter is a q-th power of root of a polynomial Wk, say
W2. Then W2 has a root with q-th power θ2 ∈ (0, 1) such that θ2µ1 > 1,
by Corollary 3.21. Set µ2 = θ−1

2 . Thus, µ1 > µ2 > 1, by definition and the
previous inequality. One has µ2 ∈ D, by statement (3.17) and invariance
of the set D under taking inverse. Hence, µ2 is again a q-th power of root
of some polynomial Wk, say W3. Similarly, W3 has another root with q-th
power θ3 ∈ (0, 1) such that θ3µ2 > 1. Then µ3 = θ−1

3 ∈ D is again a q-th
power of root of a polynomial Wk, say W4, and µ1 > µ2 > µ3 > 1 etc.
Finally we get an infinite sequence µ1 > µ2 > µ3 > . . . of points of a finite
set D. The contradiction thus obtained proves Theorem 3.3.

3.6 Concentration of intersection. Proof of Theorem 3.4

The points of intersection TP b∩Γ tend to some limits: points of the intersec-
tion TAb∩Γ, as P → A, by analyticity. Let XP denote the divisor in TP b of
those points in TP b∩Γ whose limits are distinct from the point A. Consider
the divisor ΨP formed by the points in TP b∩Γ with moderate z-asymptotics,
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which tend to A by definition. Let ZP denote the divisor of the points in
TP b ∩ Γ that converge to A but do not have moderate z-asymptotics. The
divisor TP b ∩ Γ is the sum XP + ΨP + ZP , and the sets of points in the
three latter divisors are disjoint. Recall that the degree of a divisor D in
TP b, which we will denote by |D|, is the total number of its points with
multiplicities. The local intersection index (TAb,Γ)A under question equals
|ΨP |+ |ZP |. To estimate the contributions of the latter degrees, we use the
following claim.

Claim 1. The points of the divisor XP are angular-symmetric to some
points of the divisor ZP , and |ZP | ≥ |XP |.
Proof A point s of the divisor TP b∩Γ whose limit is distinct from the point
A is angular-symmetric to a point s∗ of the same divisor whose limit is A,
and the multiplicities of both points are equal. This follows from angular
symmetry of the divisor TP b ∩ Γ and uniform convergence of the angular
symmetries of the lines TP b written in the coordinate z to the constant
mapping C 7→ 0 on compact subsets in C \ {0}, see Corollary 3.17. The
point s∗ is not contained in the divisor ΨP , by its invariance under the
angular symmetry, see Corollary 3.17, and since its points tend to A, as
P → A. Hence, s∗ is contained in ZP . This proves the claim. 2

For every P ∈ b close enough to A one has

D = (TAb,Γ) = |TP b ∩ Γ| = |ΨP |+ |ZP |+ |XP | ≤ |ΨP |+ 2|ZP |

= 2(|ΨP |+ |ZP |)− |ΨP | = 2(TAb,Γ)A − |ΨP |,

by definition and Claim 1. Therefore,

(TAb,Γ)A ≥
D

2
+

1

2
|ΨP |. (3.23)

Claim 2. One has |ΨP | ≥ 2k. The equality may take place only if the
germ b is quadratic and regular and there are no local branches a ∈ Γ, a 6= b,
that are tangent to b and have the same Puiseux exponent, as b.
Proof Recall that the curve Γ includes the germ b with multiplicity k.
The intersection points of the line TP b with b and with the above branches
a ∈ Γ (if any) have moderate z-asymptotics (Proposition 3.8), and hence,
are contained in the divisor ΨP . For every P close to A the intersection
index of the curve b with the line TP b equals its intersection index with TAb.
The latter index is greater or equal to 2, and the equality holds if and only
if the germ b is quadratic and regular. Therefore, the total contribution of
the germ b and the above branches a to the degree of the ambient divisor
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ΨP is no less than 2k, and the equality takes place only if b is quadratic and
regular and there are no other branches a ∈ Γ tangent to b with the same
Puiseux exponent. This implies the statement of the claim. 2

Claim 2 together with (3.23) implies the statement of Theorem 3.4.

3.7 Quadraticity and regularity. Proof of Theorem 1.49

Let f , k, F1 = fkg1, g = g
1
k
1 , H(f), s, m, D be the same, as at the

beginning of Subsection 1.6. Recall that γ = {f = 0}. Let b1, b2, . . . , bN
be the irreducible components of the germ at A of the zero locus of the
polynomial F1, b = b1,

J = {j |bj ⊂ γ} ⊂ {1, . . . , N}, 1 ∈ J,

ρj =

{
rbj , if bj is tangent to b

1, if bj is not tangent to b
, r = rb1 = rb = ρ1. (3.24)

Let ∆ denote the zero divisor of the polynomial F1 = fkg1. For every j let
kj denote the multiplicity of the curve bj in the divisor ∆: kj = k for j ∈ J .
Let (z, w) be adapted affine coordinates to b. Recall that

g3(x, y)H(f)(x, y) = c(x2 + y2)3m−3, c = const 6= 0, (3.25)

and the values of the latter right- and left-hand sides at P ∈ b have the
following asymptotics, as P → A along the curve b:

(x2 + y2)3m−3|b ' c′zµ, µ = 3
D

2k
− 3, c′ = const 6= 0, (3.26)

g3H(f)|b = O(zη),

η = 3(
∑
j∈J

qbj min{ρj , r}+
∑
j /∈J

kj
k
qbj min{ρj , r})− 2(r + 1), (3.27)

see (1.8) and already proved formulas (1.13) and (1.12). Let us show that
η > µ, unless b is quadratic and regular. This together with (3.26) and
(3.27) will yield a contradiction to (3.25) and prove Theorem 1.49.

We already know that
r ≤ 2, ρj ≤ r. (3.28)

The first inequality follows from Theorems 3.2. The second one follows from
the inequality ρj = 1 < r for branches bj transverse to b and the inequality

48



ρj = rbj ≤ r for branches bj tangent to b (Theorem 3.3). Substituting
inequalities (3.28) to formula (3.27) for the number η yields

η ≥ 3(
∑
j∈J

qbjρj +
∑
j /∈J

kj
k
qbjρj)− 6. (3.29)

Let (∆, TAb)A denote the local intersection index of the divisor ∆ with the
line TAb at A. One has

(∆, TAb)A =

N∑
j=1

kjqbjρj , (3.30)

by definition and since the local intersection index of a branch bj with TAb
at A equals respectively qbj , if bj is transverse to TAb, and pbj = qbjrbj , if it
is tangent to b. On the other hand,

(∆, TAb)A ≥
D

2
+ k, D = degF1 = (∆, TAb),

and the equality may take place only if b is quadratic and regular, by The-
orem 3.4. Let b be not quadratic and regular, thus the latter inequality be
strict. Substituting it to (3.30) yields

N∑
j=1

kjqbjρj >
D

2
+ k.

Substituting this inequality to (3.29) yields

η >
3

k
(
D

2
+ k)− 6 =

3D

2k
− 3 = µ.

This together with the above discussion proves Theorem 1.49.

3.8 Local branches at O: proof of Theorem 1.48

Recall that every local branch of the curve γ has local relative angular
symmetry property with respect to a bigger algebraic curve: the zero locus
of the integral of the angular billiard. We prove the following generalization
of Theorem 1.48.

Theorem 3.22 Let b be a nonlinear irreducible germ of analytic curve at
O ∈ C2 ⊂ CP2 that is transverse to both isotropic lines through O. Let b have
local relative angular symmetry property with respect to a finite collection Γ
containing b of irreducible germs of analytic curves at some points of the
projective tangent line TAb. Then the germ b is quadratic.
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Proof The proof of the theorem given below is analogous to the proof of
[15, theorem 1.16], see subsection 2.3 in loc. cit. Let us choose coordinates
(z, w) adapted to b. Let Λ1, Λ2 be the isotropic lines through O. The proof
of the theorem is done into the three following steps.

Step 1. We study the angular symmetries of the projective lines TP b as
a family of conformal involutions C→ C in the coordinate

z̃ =
z(P )

z
(3.31)

on the lines TP b. We prove the following analogue of Proposition 3.6.

Proposition 3.23 The angular symmetry σP : TP b → TP b with respect
to the point P and center O written in the coordinate z̃ as a conformal
involution C→ C converges to the central symmetry with respect to 1, that
is, to σ0 : z̃ 7→ 2− z̃, as P → O.

Proof For every P ∈ b let Qj(P ), j = 1, 2 denote the intersection points
of the projective tangent line TP b with the isotropic lines Λj . The angular
symmetry σP : TP b→ TP b fixes P and permutes the points Qj(P ). One has

z(Qj) = o(z(P )) for j = 1, 2, (3.32)

which follows from Proposition 3.7 applied to a = Λj , see the first asymptotic
formula for the intersection points in (3.3). In the coordinate z̃ one has

z̃(P ) = 1, z̃(Qj(P ))→∞, as P → O,

by (3.32). The involution σP written in the coordinate z̃ fixes 1 and permutes
the points z̃(Qj(P )), which tend to infinity, as P → O. Therefore, σP tends
to a nontrivial conformal involution σ0 : C → C fixing 1 and ∞. The
only involution satisfying the latter conditions is the central symmetry with
respect to the point 1. This proves the proposition. 2

Remark 3.24 The intersection TP b∩Γ is finite, and the z̃-coordinates of its
points tend to some limits in C (finite or infinite), as P → O, by analyticity.
The collection of the latter limits will be treated as a divisor in C, denoted
by Ψ and called the limit divisor. The multiplicity of each its point ζ equals
the total multiplicity of the intersection points whose z̃-coordinates converge
to ζ

Corollary 3.25 The limit divisor Ψ is symmetric with respect to the invo-
lution σ0.
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The corollary follows from definition and angular symmetry of the inter-
section TP b ∩ Γ (relative angular symmetry property).

Step 2. Explicit description of the limit divisor Ψ and corollaries of its
symmetry. It is based on the following proposition.

Proposition 3.26 (cf. [15, proposition 2.5].) Let a and b be irreducible
germs of analytic curves at a point O ∈ C2. Set r = rb. Let (z, w) be
affine coordinates adapted to b, and let z̃ be the coordinate (3.31) on the
lines TP b. The limits of z̃-coordinates of points of the intersection a ∩ TP b
are the following:

Case (i): either a is transverse to b, or a is tangent to b and has smaller
Puiseux exponent ra < r = rb. Each limit is ∞.

Case (ii): a is tangent to b and has bigger Puiseux exponent ra > r. The
limits are r

r−1 and 0.
Case (iii): the germ a is tangent to b and ra = r. Let pa, qa, ca, cb

be respectively the exponents and the constants in the local parametrizations
(1.3) of the germs a and b in their common adapted coordinates (z, w). The
limits are θqa, where θ runs through the roots of the polynomial

Hpa,qa,c = (r − 1)θpa − rθpa−qa + c, c =
ca
cb
. (3.33)

The proposition follows immediately from Propositions 3.7 and 3.8 and
the equality Rpa,qa,c(ζ) = ζpaHpa,qa,c(ζ

−1).

Corollary 3.27 Let a1, . . . , aN denote all the local branches in Γ (including
b) that are tangent to b and have the same Puiseux exponent r = rb. Let
M ⊂ C denote the collection of those qai-th powers of roots of the polynomials
Hpai ,qai ,c(i)

, c(i) =
cai
cb

, i = 1, . . . , N , that are different from 2 and 2− r
r−1 =

r−2
r−1 . We treat M as a divisor: we take each its point with multiplicity that
equals the sum of multiplicities of the corresponding roots. The limit divisor
Ψ equals

Ψ = k∞[∞] + k1([0] + [2]) + k2([
r

r − 1
] + [

r − 2

r − 1
]) +M ; k∞, k1, k2 ≥ 0.

The divisor M is invariant under the symmetry σ0(z) = 2− z.

A version of Corollary 3.27 was proved in [15, proposition 2.6].
Proof The corollary follows immediately from the symmetry of the divisor
Ψ (Corollary 3.25), Proposition 3.26, symmetry of pairs (0, 2) and ( r

r−1 ,
r−2
r−1)

and the fact that 0 and r
r−1 are not q-th powers of roots of polynomials Hp,q,c
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with p
q = r and c 6= 0: that is, Hp,q,c(θ) 6= 0 for θ ∈ {0, ( r

r−1)
1
q }. For θ = 0

this is obvious. For θ = ( r
r−1)

1
q one has

Hp,q,c(θ) = θp−q((r − 1)θq − r) + c = c 6= 0.

2

Lemma 3.28 [15, lemma 2.7]. Let r > 1. Consider a collection Sr =
{(pi, qi, ci)}i=1,...,N with qi, pi ∈ N, pi > qi,

pi
qi

= r, ci ∈ C \ {0}, set

Wi(θ) = (r − 1)θpi − rθpi−qi + ci. Let θij (j = 1, . . . , pi) denote the roots
of the polynomials Wi. Let M denote the divisor of those qi-th powers of
roots θij that are different from 2 and r−2

r−1 : each power being taken with the
total multiplicity of the corresponding roots. Let M be invariant under the
symmetry of the line C with respect to 1. Then r = 2.

Lemma 3.28 together with the previous corollary imply Theorem 3.22
and hence, Theorem 1.48. 2

4 Generalized genus and Plücker formulas. Proof
of Theorem 1.50

The proof of Theorem 1.50 is based on generalized Plücker and genus formu-
las for planar algebraic curves and their corollaries presented in [15, subsec-
tion 3.1]. The main observation is that the assumptions of the theorem on
the projective Puiseux exponents of local branches of the curve and Plücker
formulas yield that the singularity invariants of the considered curve γ must
obey a relatively high lower bound. On the other hand, the contribution of
the points in the union of two lines Λ1 ∪ Λ2 appears to be not sufficient to
fit that lower bound, unless the curve is a conic.

4.1 Invariants of plane curve singularities

The material of the present subsection is contained in [15, subsection 3.1]. It
recalls classical results on invariants of singularities presented in [11, Chapter
III], [22, §10], see also a modern exposition in [16, Section I.3]. Let γ ⊂ CP2

be a non-linear irreducible algebraic curve6. Let d denote its degree. The
intersection index of the curve γ with its Hessian Hγ equals 3d(d − 2),

6Everything stated in the present subsection holds for every algebraic curve in CP2

with no multiple components and no straight-line components, see [25, theorem 1].
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by Bézout Theorem. On the other hand, it is equal to the sum of the
contributions h(γ,A), which are called the Hessians of the germs (γ,A)
through all the singular and inflection points A of the curve γ:

3d(d− 2) =
∑
A∈γ

h(γ,A). (4.1)

An explicit formula for the Hessians h(γ,A) was found in [25, formula (2)
and theorem 1], see also [15, formula (3.4)]. To recall it, let us introduce
the following notations. For every local branch b of the curve γ at A let s(b)
denote its multiplicity: its intersection index with a generic line through A.
Let s∗(b) denote the analogous multiplicity of the dual germ. Note that

s(b) = q, s∗(b) = p− q,

where p and q are the exponents in the parametrization t 7→ (tq, cbt
p(1+o(1))

of the local branch b in adapted coordinates. Thus,

s(b) = s∗(b) if and only if b is quadratic, (4.2)

s(b) ≥ s∗(b) if and only if b is subquadratic. (4.3)

Let bA1, . . . , bAn(A) denote the local branches of the curve γ at A; here
n(A) denotes their number. The above-mentioned formula for h(γ,A) from
both loc. cit. has the form

h(γ,A) = 3κ(γ,A) +

n(A)∑
j=1

(s∗(bAj)− s(bAj)), (4.4)

where κ(A) is the κ-invariant, the class of the singular point, see [15, sub-
section 3.1]. Namely, consider the germ of function f defining the germ
(γ,A); (γ,A) = {f = 0}. Fix a line L through A that is transverse to all
the local branches of the curve γ at A. Fix a small ball U = U(A) centered
at A and consider a level curve γε = {f = ε} ∩ U with small ε 6= 0, which
is non-singular. The number κ(A) is the number of points of the curve γε
where its tangent line is parallel to L. (One has κ(A) = 0 for nonsingular
points A.) It is well-known that

κ(γ,A) = 2δ(γ,A) +

n(A)∑
j=1

(s(bAj)− 1), (4.5)

see, for example, [15, subsection 3.1, formula (3.3)], where δ(A) is the δ-
invariant (whose definition is recalled in the same subsection). Namely,
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consider the curve γε, which is a Riemann surface whose boundary is a
finite number of closed curves: their number equals n(A). Let us take the
2-sphere with n(A) deleted disks. Let us paste it to γε: this yields a compact
surface. By definition, its genus is the δ-invariant δ(A). One has δ(A) ≥ 0,
and δ(A) = 0 whenever A is a non-singular point. Hironaka’s genus formula
[18] implies that ∑

A∈Sing(γ)

δ(γ,A) ≤ (d− 1)(d− 2)

2
. (4.6)

Formulas (4.1), (4.4) and (4.5) together imply that

3d(d− 2) = 6
∑
A

δ(γ,A) + 3
∑
A

n(A)∑
j=1

(s(bAj)− 1) +
∑
A

n(A)∑
j=1

(s∗(bAj)− s(bAj)).

The first term in latter right-hand side is no greater than 3(d − 1)(d − 2),
by inequality (4.6). This implies that

3d(d− 2)− 3(d− 1)(d− 2)

= 3(d− 2) ≤ 3
∑
A

n(A)∑
j=1

(s(bAj)− 1) +
∑
A

n(A)∑
j=1

(s∗(bAj)− s(bAj)). (4.7)

4.2 Proof of Theorem 1.50

The proof of Theorem 1.50 is done by a modified version of Eugenii Shustin’s
arguments from [15, subsection 3.2]. We know that all the singular and
inflection points of the curve γ (if any) lie in I = Λ1 ∪ Λ2. Set

Btan = {the local branches of γ at points A ∈ I \ {O} tangent to OA},

BO,tr = {the branches of the curve γ at O transverse to both Λ1, Λ2},

BO,tan,j = {the branches of the curve γ at O tangent to Λj},

BO,tan = ∪j=1,2BO,tan,j , BO = BO,tr ∪ BO,tan.

All the local branches b /∈ BO,tan of the curve γ at points in γ ∩ I are
subquadratic, by conditions (i)–(iii). Therefore, their contributions s∗(b)−
s(b) to the right-hand side in (4.7) are non-positive, by (4.3). Every local
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branch b /∈ (Btan ∪ BO) is regular, by condition (iii), hence its contribution
s(b)− 1 to (4.7) vanish. This together with (4.7) implies that

d− 2 ≤
∑

b∈Btan∪BO,tr∪BO,tan

(s(b)− 1) +
1

3

∑
b∈BO,tan

(s∗(b)− s(b))

=
∑

b∈Btan∪BO,tr∪BO,tan

s(b)−|Btan|−|BO,tr|−|BO,tan|+
1

3

∑
b∈BO,tan

(s∗(b)−s(b)),

(4.8)
where |Bs|, s ∈ {tan, (O, tr), (O, tan)} denote the cardinalities of the sets
Bs.

Let us estimate the right-hand side in (4.8) from above. To do this, we
use the next inequality, which follows from Bézout Theorem and conditions
(i)–(iii).

In what follows for every j = 1, 2 by Breg,j we denote the collection of
the local branches of the curve γ at points in Λj \ {O} that are transverse
to Λj . Recall that they are regular, by condition (iii). Set

νj = |Breg,j |,

Btan,j = {b ∈ Btan | b is tangent to Λj}, Btan = Btan,1 t Btan,2.

Claim 1. For every j = 1, 2 one has∑
b∈Btan,j

s(b) +
1

2

∑
b∈BO,tan,3−j

s(b) +
1

2

∑
b∈BO,tr

s(b)

+
νj
2

+
1

2

∑
b∈BO,tan,j

(s∗(b) + s(b)) =
d

2
. (4.9)

Proof The intersection index of the curve γ with each line Λj equals d
(Bézout Theorem). It is the sum of the intersection indices of the line Λj
with the branches from the collections Btan,j , BO,tr, BO,tan, Breg,j . Let us
calculate the latter indices. The contribution of each branch from Breg,j
equals one, by regularity (condition (iii)) and transversality. The intersec-
tion index of each branch b ∈ BO,tr with Λj equals s(b). The intersection
index with Λj of each branch b ∈ Btan,j equals pb = 2s(b), by quadraticity
(condition (ii)). The intersection index with Λj of each branch b ∈ BO,tan,j
equals pb = s(b)+s∗(b). The remaining branches b ∈ BO,tan,3−j are transver-
sal to Λj , and their intersection indices with Λj are equal to s(b). Summing
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up the above intersection indices, writing that their sum should be equal to
d and dividing the equality thus obtained by two yields (4.9). 2

Summing up equalities (4.9) for both j = 1, 2 yields∑
b∈Btan∪BO,tr∪BO,tan

s(b) = d− 1

2

∑
b∈BO,tan

s∗(b)− ν1 + ν2

2
. (4.10)

Substituting equality (4.10) to (4.8) together with elementary inequali-
ties yields

d− 2 ≤ d− 1

2

∑
b∈BO,tan

s∗(b)− ν1 + ν2

2
− |Btan| − |BO,tr| − |BO,tan|

+
1

3

∑
b∈BO,tan

(s∗(b)− s(b)) = d− |Btan| − |BO,tr| − |BO,tan|

−ν1 + ν2

2
−

∑
b∈BO,tan

(
1

6
s∗(b) +

1

3
s(b)),

|Btan|+ |BO,tr|+ |BO,tan|+
ν1 + ν2

2
+

∑
b∈BO,tan

(
1

6
s∗(b) +

1

3
s(b)) ≤ 2. (4.11)

Claim 2. The total cardinality of the set of singular and inflection points
of the curve γ is at most two. There are two possible cases:

- either there are no inflection points and each local branch at every
singular point is subquadratic;

- or there is just one special point (singular or inflection point) and one
local branch at it.
Proof Let Φ denote the collection of all the local branches of the curve γ
at points in I. Recall that I contains all the singular and inflection points
of the curve γ.

Case 1): BO,tan = ∅. Then all the local branches in Φ are subquadratic,
by (i)–(iii), and there are no inflection points; |Btan|+ |BO,tr| ≤ 2, by (4.11).

Subcase 1.1): Btan = BO,tr = ∅. Then all the branches in Φ are regular
and quadratic, by (iii), and there are at most four of them: ν1 + ν2 ≤ 4, by
(4.11). Thus, the only possible candidates to be singular points of the curve
γ are intersections of branches. Since the total number of branches under
question is at most four, the number of singular points is at most two.

Subcase 1.2): |Btan| + |BO,tr| = 1. The branches from the complement
Φ\(Btan∪BO,tr) are transverse to the lines Λj , quadratic and regular, by (iii),
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and there are at most two of them: ν1 + ν2 ≤ 2, by (4.11). Thus, Φ consists
of at most three branches, and at most one of them is singular. Thus, the
only possible candidates to be singular points of the curve γ are the base
point of the unique branch from Btan ∪ BO,tr and a point of intersection
of quadratic regular branches (if it is different from the latter base point).
Finally, we have at most two singular points.

Subcase 1.3): |Btan|+ |BO,tr| = 2. Then Φ = Btan ∪BO,tr, by (4.11), the
number of base points of the branches from the collection Φ is at most 2,
and they are the only potential singular points.

Case 2): |BO,tan| ≥ 1. Then |BO,tan| = 1, and Φ = BO,tan. This follows
from inequality (4.11) and positivity of the sum in b ∈ BO,tan in its left-hand
side. Thus, the set Φ consists of just one branch, and we have at most one
singular (or inflection) point. The claim is proved. 2

Theorem 4.1 [15, theorem 1.18]. Let γ ⊂ CP2 be an irreducible algebraic
curve such that there exists a projective line L satisfying the following state-
ments:

- all the singular and inflection points of the curve γ (if any) lie in L;
- each local branch of the curve γ at every point of intersection γ ∩ L

that is transverse to L is subquadratic.
Then γ is a conic.

There exists a line L satisfying the conditions of Theorem 4.1 for the
curve γ under consideration. Namely, in the first case of Claim 2 the line
L is the line passing though (at most two) singular points of the curve γ.
In the second case we choose L to be the tangent line to the unique local
branch at the unique special point. This together with Theorem 4.1 implies
that γ is a conic. Theorem 1.50 is proved.
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