Total positivity, Grassmannian and modified Bessel functions - ENS de Lyon - École normale supérieure de Lyon Access content directly
Journal Articles Contemporary mathematics Year : 2019

Total positivity, Grassmannian and modified Bessel functions

Abstract

A rectangular matrix is called {\it totally positive} if all its minors are positive. A point of a real Grassmanian manifold $G_{l,m}$ of $l$-dimensional subspaces in $\mathbb R^m$ is called {\it strictly totally positive} if one can normalize its Pl\"ucker coordinates to make all of them positive. Clearly if a $k\times m$-matrix, $k
Fichier principal
Vignette du fichier
bessel-grass.pdf (336.53 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

ensl-01664210 , version 1 (14-12-2017)

Identifiers

Cite

Victor M Buchstaber, Alexey Glutsyuk. Total positivity, Grassmannian and modified Bessel functions. Contemporary mathematics, 2019, 733, pp.97-107. ⟨10.1090/conm/733/14736⟩. ⟨ensl-01664210⟩
246 View
175 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More