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Abstract

A rectangular matrix is called totally positive, (according to F.R.Gantmacher
and M.G.Krein) if all its minors are positive. A point of a real Grassma-
nian manifold Gl,m of l-dimensional subspaces in Rm is called strictly to-
tally positive (according to A.E.Postnikov) if one can normalize its Plücker
coordinates to make all of them positive. Clearly if a k × m-matrix,
k < m, is totally positive, then each collection of its l ≤ k raws gen-
erates an l-subspace represented by a strictly totally positive point of
the Grassmanian manifold Gl,m. The totally positive matrices and the
strictly totally positive Grassmanians, that is, the subsets of strictly to-
tally positive points in Grassmanian manifolds arise in many domains of
mathematics, mechanics and physics. F.R.Gantmacher and M.G.Krein
considered totally positive matrices in the context of classical mechanics.
S.Karlin considered them in a wide context of analysis, differential equa-
tions and probability theory. As it was shown in a joint paper by M.Boiti,
F.Pemperini and A.Pogrebkov, each matrix of appropriate dimension with
positive minors of higher dimension generates a multisoliton solution of
the Kadomtsev-Petviashvili (KP) partial differential equation. There ex-
ist several approaches of construction of totally positive matrices due to
F.R. Gantmacher, M.G.Krein, S.Karlin, A.E.Postnikov and ourselves. In
our previous paper we have proved that certain determinants formed by
modified Bessel functions of the first kind are positive on the positive
semi-axis. This yields a one-dimensional family of totally positive points
in all the Grassmanian manifolds.
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In the present paper we provide a construction of multidimensional
families of totally positive points in all the Grassmanian manifolds, again
using modified Bessel functions of the first kind but different from the
above-mentioned construction. These families represent images of ex-
plicit injective mappings of the convex open subset {x = (x1, . . . , xl) ∈
Rl+ | x1 < · · · < xl} ⊂ Rl to the Grassmanian manifolds Gl,m, l < m.

S.Karlin presented in his book examples of totally non-negative matri-
ces given in terms of just one modified Bessel function Iα. We present a
new result that gives totally positive matrices whose columns are defined
by modified Bessel functions with different non-negative integer indices.

1 Introduction

1.1 Brief survey on totally positive matrices. Main result

The following notion was introduced in the classical books [14, 15] in the context
of the classical mechanics.

Definition 1.1 [1, 14, 23], [15, p.289 of the russian edition] A rectangular l ×
m-matrix is called totally positive (nonnegative), if all its minors of all the
dimensions are positive (nonnegative).

Example 1.2 It is known that every generalized Vandermonde matrix

(f(xi, yj))i=1,...,m; j=1,...,n, f(x, y) = xy,

0 < x1 < · · · < xm, 0 ≤ y1 < y2 < · · · < yn

is totally positive, see [11, chapter XIII, section 8].

The study of n × n matrices with positive elements goes back to Perron
[22] who had shown that for such a matrix the eigenvalue that is largest in
the module is simple, real and positive, and the corresponding eigenvector can
be normalized to have all the components positive (1907). Later in 1908 his
result was generalized by G.Frobenius [11, chapter 13, section 2] to irreducible
matrices with non-negative coefficients. For these matrices he had proved that
its complex eigenvalues of maximal module are roots of a polynomial P (λ) =
λh − rh, all of them are simple and at least one of them is real and positive.

In 1935–1937 F.R.Gantmacher and M.G.Krein [12, 13] observed that if the
matrix under question satisfies a stronger condition, that is, total positivity, then
all its eigenvalues are simple, real and positive. Earlier in 1930 I.Schoenberg
[25] studied totally positive matrices in connection with a problem of Pólya.

Many results on characterization and properties of strictly totally positive
matrices and their relations to other domains of mathematics (e.g., combi-
natorics, dynamical systems, geometry and topology, probability theory and
Fourier analysis), mechanics and physics are given in [1, 11, 12, 13, 14, 15,
23, 8, 9, 16, 18, 19, 20, 21] and in [24, 2, 3, 10, 17] (see also references in all
these papers and books). F.R.Gantmacher and M.G.Krein [14, 15] considered
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totally positive matrices in the context of applications to mechanical problems.
S.Karlin [18] considered them in a wide context of analysis, differential equa-
tions and probability theory. In 2008 G.Lusztig suggested an analogue of the
theory of total positivity for the Lie group context [19].

As it was shown by M.Boiti, F.Pempinelli, A.Pogrebkov [4, section II], each
matrix of appropriate dimension with positive minors of higher dimension gen-
erates a multisoliton solution of the Kadomtsev-Petviashvili (KP) differential
equation. There exist several approaches of construction of totally positive ma-
trices, see [14, 24, 5], [15, p.290 of Russian edition]. In the previous paper [5] we
have constructed a class of explicit one-dimensional families of totally positive
matrices given by a finite collection of double-sided infinite vector functions,
whose components are modified Bessel functions of the first kind. Matrices of
such kind arised in a paper of V.M.Buchstaber and S.I.Tertychnyi in the con-
struction of appropriate solutions on the non-linear differential equations in a
model of overdamped Josephson junction in superconductivity, see [6] and ref-
erences therein. It was shown in [5] that the nature of the modified Bessel
functions as coefficients of appropriate generating function implies that the in-
finite vector formed by appropriate minors of the above-mentioned matrices
satisfy the differential-difference heat equation with positive constant potential.

In the present paper we provide a new construction of explicit multidimen-
sional family of totally positive matrices formed by a finite collection of one-sided
infinite vector functions. This family is parametrized by a domain in Rl. Each
raw of the matrix corresponds to a coordinate xi in Rl, and its elements are
modified Bessel functions of this coordinate.

Recall that the modified Bessel functions Ij(y) of the first kind are Laurent
series coefficients for the family of analytic functions

gy(z) = e
y
2 (z+

1
z ) =

+∞∑
j=−∞

Ij(y)zj .

Equivalently, they are defined by the integral formulas

Ij(y) =
1

π

∫ π

0

ey cosφ cos(jφ)dφ, j ∈ Z.

Example 1.3 The infinite matrix (Akm)k,m∈Z with Akm = Im−k(x) is totally
positive for every x > 0, see [5, theorem 1.3].

Set
Xl = {x = (x1, . . . , xl) ∈ Rl+ | x1 < x2 < · · · < xl};

Km = {k = (k1, . . . , km) ∈ Zm≥0 | k1 < k2 < · · · < km}.
For every x ∈ Xl and k ∈ Km set

Ak,x = (aij)i=1,...,l; j=1,...m, aij = Ikj (xi). (1.1)

In the special case, when l = m, set

fk(x) = detAk,x. (1.2)
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Theorem 1.4 For every m ∈ N, k ∈ Km and x ∈ Xm one has fk(x) > 0.

Theorem 1.4 will be proved in Section 2.

Corollary 1.5 For every x = (x1, . . . , xl) ∈ Xl the one-sided infinite matrix
formed by the values aij = Ij(xi), i = 1, . . . , l, j = 0, 1, 2, . . . is totally positive.

This corollary follows immediately from the theorem.

Remark 1.6 The above square matrices Ak,x belong to a more general class of
matrices given by a function K(x, y) defined on a product of two subsets in R:
the matrices AK = (K(xi, yj))i,j,=1,...,m, where x1 < · · · < xm, y1 < · · · < ym.
A function K is called totally positive (strictly totally positive) kernel, see [18,
chapter 2, definition 1.1, p.46], if all the corresponding above matrices have non-
negative (respectively, positive) determinants. Various necessary and sufficient
conditions on a kernel K to be (strictly) totally positive were stated and proved
in S.Karlin’s book [18, chapter 2]. In the case, when K(x, y) is defined on a
product of two intervals and is smooth enough, a sufficient condition for its strict
total positivity says that appropriate matrix formed by appropriate (higher
order) partial derivatives of the function K is positive everywhere [18, chapter
2, theorem 2.6, p. 55]. (The same condition written in the form of non-strict
inequality is necessary for total positivity.) In [18, chapter 3, p. 109] S.Karlin
presented an example of totally positive kernel coming from one modified Bessel
function of the first kind. Namely, set

κα(x;λ) =

{
e−(x+λ)(xλ )

α
2 Iα(2

√
xλ) for x ≥ 0

0 for x < 0
,

Kα(x, y) = κα(x− y;λ).

It was shown in loc. cit. (just after corollary 2.1) that for every α > 1 every
m×m- matrix AKα with m < α+ 2 has non-negative determinant.

We prove Theorem 1.4 by induction in m. For the proof of the induction
step we consider the sequence of all the determinants fk(x) for all k ∈ Km

as an infinite-dimensional vector function in new variables y = (x1, w), w =
(w2, . . . , wm), wj = xj − x1. We fix w and consider the latter vector function
as a function of one variable x1 ≥ 0. Analogously to the arguments from [5,
section 2], we show that it satisfies an ordinary differential equation given by a
linear bounded vector field on the Hilbert space l2 with coordinates fk, k ∈ Km

such that the positive quadrant {fk ≥ 0 | k ∈ Km} is invariant for its flow. We
show that the initial value of the vector function for x1 = 0 lies in this quadrant
and is non-zero. This will imply positivity of all the functions fk(x1, w) for all
x1 > 0, as in loc. cit.

It is known that the modified Bessel functions Iν(x) of the first kind are
given by the series

Iν(x) = (
1

2
x)ν

∞∑
k=0

( 1
4z

2)k

k!Γ(ν + k + 1)
,
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and the latter series extends them to all the real values of the index ν.
Thus, the modified Bessel functions of the first kind yield examples of to-

tally positive (non-negative) matrices of two following different kinds. Karlin’s
example yields a totally positive kernel Kα(x, y) = κα(x − y;λ) constructed
from just one modified Bessel function Iα with arbitrary given real index α > 1.
Our main result gives other matrices defined by the function K(y, s) = Is(y) in
y ∈ R+ and s ∈ Z≥0, which appears to be a strictly totally positive kernel.

Open Question. Is it true that the determinants fk(x) in (1.2) with x ∈
Xm are all positive for every m ∈ N and every k = (k1, . . . , km) with (may
be non-integer) kj ∈ R+, k1 < · · · < km? In other terms, is it true that
the kernel K(y, s) = Is(y) is strictly totally positive (in the sense of the above
remark) as a function in (y, s) ∈ R2

+?

1.2 A brief survey on total positivity in Grassmanian man-
ifolds and Lie groups

A point L of Grassmanian manifold Gl,m of l-subspaces in Rm, m > l is rep-
resented by an l × m-matrix, whose lines form a basis of the subspace repre-
sented by the point L. Recall that the Plücker coordinates of the point L are
the l-minors of the latter matrix. The Plücker coordinates of the point are
well-defined up to multiplication by a common factor, and they are considered
as homogeneous coordinates representing a point of a projective space RPN ,

N =

(
n
k

)
− 1. The Plücker coordinates induce the Plücker embedding of the

Grassmanian manifold to RPN .

Definition 1.7 A point L ∈ Gl,m is called strictly totally positive, if one can
normalize its Plücker coordinates to make all of them positive. Or equivalently,
if it can be represented by a matrix with all of higher minors positive.

A.E.Postnikov’s paper [24] deals with the matrices l × m, m ≥ l or rank
l satisfying the condition of nonnegativity of just higher rank minors. One of
its main results provides an explicit combinatorial cell decomposition of the
corresponding subset in the Grassmanian Gl,m, called the totally nonnegative
Grassmanian. The cells are coded by combinatorial types of appropriate planar
networks. K.Talaska [26] obtained further development and generalization of
Postnikov’s result. In particular, for a given point of the totally nonnegative
Grassmanian the results of [26] allow to decide what is its ambient cell and
what are its affine coordinates in the cell. S.Fomin and A.Zelevinsky [10] stud-
ied a more general notion of total positivity (nonnegativity) for elements of a
semisimple complex Lie group with a given double Bruhat cell decomposition.
They have proved that the totally positive parts of the double Bruhat cells are
bijectively parametrized by the product of the positive quadrant Rm+ and the
positive subgroup of the maximal torus. For other results on totally positive
(nonnegative) Grassmanians see [17].

Theorem 1.4 of the present paper implies the following corollary.
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Corollary 1.8 For every l,m ∈ N, l < m, and every k ∈ Km the mapping
Hk : Xl → Gl,m sending x to the l-subspace in Rm generated by the vectors

vk(xi) = (Ik1(xi) . . . Ikm(xi)), i = 1, . . . , l

is well-defined and injective. Its image is contained in the open subset of l-
subspaces with positive Plücker coordinates.

Proof The well-definedness and positivity of Plücker coordinates are obvious,
since the l-minors of the matrix Ak,x are positive, by Theorem 1.4. Let us prove
injectivity. Fix some two distinct x, y ∈ Xl. Let us show that Hk(x) 6= Hk(y).
Fix a component yi that is different from every component xj of the vector
x. Then the vectors vk(x1), . . . , vk(xl), vk(yi) are linearly independent: every
(l+1)-minor of the matrix formed by them is non-zero, by Theorem 1.4. Hence,
vk(yi) is not contained in the l-subspaceHk(x), which is generated by the vectors
vk(x1), . . . , vk(xl). Thus, Hk(y) 6= Hk(x). The corollary is proved. 2

Example 1.9 Consider the infinite matrix with elements

Ams = Is−m(x), m, s ∈ Z.

It is shown in [5, theorem 1.3] that this matrix is totally positive for every x > 0,
see Example 1.3 and the reference therein: all its minors are positive. Therefore,
the subspace generated by any of its l raws is l-dimensional, and it represents a
strictly totally positive point of the infinite-dimensional Grassmanian manifold
of l-subspaces in the infinite-dimensional vector space. Every submatrix in Ams
given by its l raws and a finite number r > l of columns represents a strictly
totally positive point of the finite-dimensional Grassmanian manifold Glr.

2 Positivity. Proof of Theorem 1.4

In the proof of Theorem 1.4 we use the following classical properties of the
modified Bessel functions Ij of the first kind, see [27, section 3.7].

Ij = I−j ; (2.1)

Ij |y>0 > 0; Ij(0) = 0 for j 6= 0; I0(0) > 0; (2.2)

I ′0 = I1; I ′j =
1

2
(Ij−1 + Ij+1); (2.3)

We prove Theorem 1.4 by induction in m.
Induction base. For m = 1 the statement of the theorem is obvious and

follows from inequality 2.2.
Induction step. Let the statement of the theorem be proved for m = m0.

Let us prove it for m = m0 + 1. To do this, consider the sequence of all the
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determinants fk(x) for all k ∈ Km as an infinite-dimensional vector function in
the new variables

(x1, w), w = (w2, . . . , wm), wj = xj − x1; w ∈ Xm−1.

The next two propositions and corollary together imply that for every fixed
k ∈ Km the vector function (fk(x))k∈Km with fixed w and variable x1 is a
solution of a bounded linear ordinary differential equation in the Hilbert space
l2 of infinite sequences (fk)k∈Km : a phase curve of a bounded linear vector field.
We show that the positive quadrant {fk ≥ 0 | k ∈ Km} ⊂ l2 is invariant under
the positive flow of the latter field, and the initial value (fk(0, w))k∈Km lies
there. This implies that fk(x1, w) ≥ 0 for all x1 ≥ 0, and then we easily deduce
that the latter inequality is strict for x1 > 0.

Let us recall how the discrete Laplacian ∆discr acts on the space of functions
f = f(k) in k ∈ Zm. For every j = 1, . . . ,m let Tj denote the corresponding
shift operator:

(Tjf)(k) = f(k1, . . . , kj−1, kj − 1, kj+1, . . . , kl).

Then

∆discr =

m∑
j=1

(Tj + T−1j − 2). (2.4)

Thus, one has

(∆discrf)(p) =

m∑
s=1

(f(p1, . . . , ps−1, ps − 1, ps+1, . . . , pm)

+f(p1, . . . , ps−1, ps + 1, ps+1, . . . , pm))− 2mf(p). (2.5)

Remark 2.1 We will deal with the class of sequences f(k) with the following
properties:

(i) f(k) = 0, whenever ki = kj for some i 6= j;
(ii) f(k) is an even function in each component ki.
This class includes f(k) = fk(x1, w): statement (i) is obvious; statement (ii)

follows from equality (2.1). In this case the discrete Laplacian is well-defined by
the above formulas (2.4), (2.5) on the restrictions of the latter sequences f(k)
to k ∈ Km, as in [5, remark 2.1]. In more detail, in formula (2.5) written for
p ∈ Km with p1 = 0 the first term in the right-hand side equals f(p1−1,p2,...,pm) =
f(−1,p2,...,pm) = f(1,p2,...,pm), by (ii).

Proposition 2.2 (analogous to [5, proposition 2.2]). For every m ≥ 1 and
w ∈ Rm−1 the vector function (f(x1, k) = fk(x1, w))k∈Km satisfies the following
linear differential-difference equation:

∂f

∂x1
= ∆discrf + 2mf. (2.6)

7



Equation (2.6) follows immediately from definition, equation (2.3) and Re-
mark 2.1, as in [5, section 2].

Remark 2.3 (analogous to [5, remark 23]). For every k ∈ Km the k-th com-
ponent of the right-hand side in (2.6) is a linear combination with strictly
positive coefficients of the components f(x1, k

′) with k′ ∈ Km obtained from
k = (k1, . . . , km) by adding ±1 to some ki. This follows from (2.5), (2.6).

Proposition 2.4 [5, proposition 2.4]. For every constant R > 1 and every
j ≥ R2 one has

|Ij(z)| <
Rj

j!
for every 0 ≤ z ≤ R. (2.7)

Corollary 2.5 (analogous to [5, corollary 2.6]). For every k ∈ Km and x ∈ Rm
one has (fk(x1, w)k∈Km ∈ l2. Moreover, there exists a function C(R) > 0 in
R > 1 such that ∑

k∈Km

|fk(x1, w)|2 < C(R) for every 0 ≤ x ≤ R. (2.8)

Proof The proof of Corollary 2.5 repeats the proof of [5, corollary 2.6] with
minor changes. Fix an R > 1. Set

M = max
j∈Z, 0≤z≤R

|Ij(z)|.

The number M is finite, by (2.7) and [5, remark 2.5]. Recall that 0 ≤ k1 <
· · · < km for every k = (k1, . . . , km) ∈ Km. For every k ∈ Km one has

|fk(x1, w)| < m!
Rkm

km!
Mm−1 whenever |x1|+|w| ≤ R; here |w| = |w1|+· · ·+|wm|.

(2.9)
Indeed, the last column of the matrix Ak,x consists of the values Ikm(xi) =

Ikm(x1 + wi), which are no greater than Rkm

km! , whenever |x1| + |w| ≤ R, by
inequality (2.7). The other matrix elements are no greater that M on the same
set. Therefore, the module |fk,n(x)| of its determinant defined as sum of m!
products of functions Ij satisfies inequality (2.9). This implies that the sum in
(2.8) through k ∈ Km is no greater than

C(R) = m!Mm−1
∑
k∈Km

Rkm

km!
< +∞.

The corollary is proved. 2

Definition 2.6 [5, definition 2.7]. Let Ω be the closure of an open convex
subset in a Banach space. For every x ∈ ∂Ω consider the union of all the rays
issued from x that intersect Ω in at least two distinct points (including x). The
closure of the latter union of rays is a convex cone, which will be here referred
to, as the generating cone K(x).
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Proposition 2.7 [5, proposition 2.8]. Let H be a Banach space, Ω ⊂ H be as
above. Let v be a C1 vector field on a neighborhood of the set Ω in H such that
v(x) ∈ K(x) for every x ∈ ∂Ω. Then the set Ω is invariant under the flow of
the field v: each positive semitrajectory starting at Ω is contained in Ω.

Now the proof of the induction step in Theorem 1.4 is analogous to the argu-
ment from [5, end of section 2]. The right-hand side of differential equation (2.6)
is a bounded linear vector field on the Hilbert space l2 of sequences (fk)k∈Km .
We will denote the latter vector field by v. Let Ω ⊂ l2 denote the “positive
quadrant” defined by the inequalities fk ≥ 0. For every point y ∈ ∂Ω the vector
v(y) lies in its generating cone K(y): the components of the field v are non-
negative on Ω, by Remark 2.3. The vector function (fk(x1) = fk(x1, w))k∈Km
in x1 ≥ 0 is an l2-valued solution of the corresponding differential equation, by
Corollary 2.5. One has (fk(0))k∈Km ∈ Ω:

fk(0) = 0 whenever k1 > 0; f(0,k2,...,km)(0) = I0(0)f(k2,...,km)(w2, . . . wm) > 0.
(2.10)

The latter equality and inequality follow from definition, (2.2) and the induction
hypothesis. This together with Proposition 2.7 implies that

fk(x1, w) ≥ 0 for every k ∈ Km and x1 ≥ 0. (2.11)

Now let us prove that the inequality is strict for all k ∈ Km and x1 > 0. Indeed,
let fp(x0) = 0 for some p = (p1, . . . , pm) ∈ Km and x0 > 0. All the derivatives
of the function fp are non-negative, by (2.6), Remark 2.3 and (2.11). Therefore,
fp ≡ 0 on the segment [0, x0]. This together with (2.6), Remark 2.3 and (2.11)
implies that fp′ ≡ 0 on [0, x0] for every p′ ∈ Km obtained from p by adding
±1 to some component. We then get by induction that f(0,k2,...,km)(0) = 0, – a
contradiction to (2.10). The proof of Theorem 1.4 is complete.
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