On the relative error of computing complex square roots in floating-point arithmetic - ENS de Lyon - École normale supérieure de Lyon
Communication Dans Un Congrès Année : 2017

On the relative error of computing complex square roots in floating-point arithmetic

Résumé

We study the accuracy of a classical approach to computing complex square-roots in floating-point arithmetic. Our analyses are done in binary floating-point arithmetic in precision p, and we assume that the (real) arithmetic operations +, −, ×, ÷, √ are rounded to nearest, so the unit roundoff is u = 2^−p. We show that in the absence of underflow and overflow, the componentwise and normwise relative errors of this approach are at most 7 / 2 u and u √ 37/2, respectively, and this without having to neglect terms of higher order in u. We then provide some input examples showing that these bounds are reasonably sharp for the three basic binary interchange formats (binary32, binary64, and binary128) of the IEEE 754 standard for floating-point arithmetic.
Fichier principal
Vignette du fichier
asilomar17.pdf (231.95 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

ensl-01780265 , version 1 (27-04-2018)

Identifiants

Citer

Claude-Pierre Jeannerod, Jean-Michel Muller. On the relative error of computing complex square roots in floating-point arithmetic. ACSSC 2017 - 51st Asilomar Conference on Signals, Systems, and Computers, Oct 2017, Pacific Grove, United States. pp.737-740, ⟨10.1109/ACSSC.2017.8335442⟩. ⟨ensl-01780265⟩
225 Consultations
269 Téléchargements

Altmetric

Partager

More