Claude-Pierre Jeannerod

Jean-Michel Muller

On the relative error of computing complex square roots in floating-point arithmetic

Keywords: binary floating-point arithmetic, rounding error analysis, relative error, complex square root

We study the accuracy of a classical approach to computing complex square-roots in floating-point arithmetic. Our analyses are done in binary floating-point arithmetic in precision p, and we assume that the (real) arithmetic operations +, -, ×, ÷, √ are rounded to nearest, so the unit roundoff is u = 2 -p . We show that in the absence of underflow and overflow, the componentwise and normwise relative errors of this approach are at most 7 2 u and √ 37 2 u, respectively, and this without having to neglect terms of higher order in u. We then provide some input examples showing that these bounds are reasonably sharp for the three basic binary interchange formats (binary32, binary64, and binary128) of the IEEE 754 standard for floating-point arithmetic.

I. INTRODUCTION

We consider the problem of computing a square root of a complex number a + ib accurately in floating-point arithmetic: given two floating-point numbers a and b, we want to deduce very good floating-point approximations to some reals x and y such that (x + iy) 2 = a + ib.

(

) 1
In exact arithmetic, explicit formulas for x and y are easy to derive: first, by rewriting (1) as x 2 -y 2 = a and 2xy = b, and solving quadratic equations in x 2 0 or y 2 0, we obtain

x = ± h + a 2 , h := a 2 + b 2 , (2)
and

y = ± h -a 2 . (3)
Then it suffices to adjust the signs of x and y in order to ensure that 2xy = b holds and to make the complex square root a single-valued function. For example, one can take x 0 and sign(y) = sign(b) with sign(0) = +1; see [2, §4.2]. (See also [4, p. 201] for a sign function supporting signed zeros.)

In floating-point arithmetic, however, it is in general not recommended to use the above formulas for x and y simultaneously when b 2 a 2 , since then cancellation can occur either when evaluating h + a if a < 0, or when evaluating h -a if a > 0.

To avoid such a possible loss of accuracy, Friedland [START_REF] Friedland | Algorithm 312: Absolute value and square root of a complex number[END_REF] proposed the following approach (which is now classical and can also be seen in [START_REF] Kahan | Branch cuts for complex elementary functions or much ado about nothing's sign bit[END_REF] and [START_REF] Hull | Implementing complex elementary functions using exception handling[END_REF]):

• if a 0, then compute x using (2) and deduce y using y = b 2x ;

• if a < 0, then compute y using (3) and deduce x using

x = b 2y .
Note that in the above expressions division by zero can be avoided by assuming that (a, b) = (0, 0) and by handling the situation where a = b = 0 separately.

Since h -a = h + |a| when a < 0, we see that the two cases in Friedland's approach eventually rely on a single core computation, which can be summarized as follows: given two floating-point numbers a and b such that (a, b) = (0, 0) and a 0,

evaluate h = a 2 + b 2 , x = h + a 2 , y = b 2x .
In radix-2, precision-p floating-point arithmetic with rounding to nearest (RN), this corresponds to Algorithm 1 below.

Algorithm 1 Core computation of √ a + ib, assuming (a, b) = (0, 0) and a 0.

1: s a ← RN(a 2) 2: s b ← RN(b 2) 3: s ← RN(s a + s b) 4: ρ ← RN(√ s) 5: ν ← RN(ρ + a) 6: x ← RN ν/2 7: y ← RN b/(2 x)
A detailed rounding error analysis of Algorithm 1 is given by Hull, Fairgrieve, and Tang in [START_REF] Hull | Implementing complex elementary functions using exception handling[END_REF]: assuming that underflows and overflows do not occur and using the fact that for any real number t, In this paper, we refine the analysis of [START_REF] Hull | Implementing complex elementary functions using exception handling[END_REF] in two ways: we show that the terms O(u 2) in the three bounds above can be removed and, on the other hand, we give examples of inputs in the binary64 and binary128 formats (that is, for p = 53 and p = 113) for which | z -z|/|z| > 3u.

RN(t) = t(1 + δ), |δ| u := 2 -p , (4)
For our analyses it will be useful to exploit the following refinement of (4), which can be found for example in [5, p. 232]:

RN(t) = t(1 + δ), |δ| u 1 + u . (5
)
We shall apply (5) to floating-point additions and multiplications; for floating-point divisions and square roots, we can use the following smaller bounds, introduced in [START_REF] Jeannerod | On relative errors of floating-point operations: optimal bounds and applications[END_REF]. Let a and b be two floating-point numbers. If a 0, then

RN √ a = √ a (1 + δ), |δ| 1 - 1 √ 1 + 2u ; (6) if b = 0, then RN a b = a b (1 + δ), |δ| u -2u 2 . (7)
As we shall see in §II, the bounds in (5-7) are enough to show that | x -x| 5 2 u|x|. However, our analysis for y will use some variants of (6) and (7), which we detail in §III. We conclude in §IV with the derivation of the normwise bound and three numerical examples.

II. REFINING THE BOUND ON | x -x|/|x|

First, let us apply (5) to steps 1, 2, 3 of Algorithm 1: we have

a 2 1 - u 1 + u s a a 2 1 + u 1 + u
and similarly for s b , so that

(a 2 + b 2) 1 - u 1 + u s a + s b (a 2 + b 2) 1 + u 1 + u and then (a 2 + b 2) 1 - u 1 + u 2 s (a 2 + b 2) 1 + u 1 + u 2 .
By taking square roots and with h = √ a 2 + b 2 , we find

h 1 - u 1 + u √ s h 1 + u 1 + u .
Using (6), we deduce that the value of ρ = RN(√ s) at step 4 of Algorithm 1 satisfies hL ρ hU, where

L := 1 - u 1 + u • 1 √ 1 + 2u = 1 -2u + 7 2 u 2 + O(u 3)
and

U := 1 + u 1 + u 2 - 1 √ 1 + 2u = 1 + 2u - 3 2 u 2 + O(u 3).
Since a 0 and 0 L 1 U , this leads to

(h + a)L ρ + a (h + a)U.
By applying (5), we see that ν = RN(ρ + a) at step 5 satisfies

(h + a) 1 -u 1+u 2 • 1 √ 1+2u ν (h + a) 1 + u 1+u 2 2 -1 √ 1+2u . Recalling that x = (h + a)/2, it follows that ν/2 satisfies x 1 -u 1+u • 1 (1+2u) 1/4 ν/2 x 1 + u 1+u 2 -1 √ 1+2u 1/2
.

By applying (6) once again, we find that the value x = RN ν/2 produced at step 6 satisfies

xL x xU , (8)
where

L := 1 - u 1 + u • 1 (1 + 2u)

they show that the computed floating-point numbers x and y satisfy | x -x| |x| 5 2 u + O(u 2) and | y -y| |y| 7 2 u

 22 + O(u 2); they also show that for z = x + i y and z = x + iy, the associated normwise relative error | z -z|/|z| admits a bound smaller than 7 2 u + O(u 2), namely, | zthe binary32 format (p = 24), they provide two numbers a and b for which | z -z|/|z| ≈ 2.980u.

ACKNOWLEDGMENT

This research was supported in part by the French National Research Agency under grant ANR-13-INSE-0007 (MetaLibm project).

III. REFINING THE BOUND ON | y -y|/|y|

Let us now analyze the relative accuracy of the value y = RN(b/(2 x)) produced by the last step of Algorithm 1.

Recalling that y = b/(2x), we deduce from the bounds on x in (8) that y U b 2 x y L .

(10) Applying (7) then shows that y satisfies

One has

and one can check that this is larger than 1 -7 2 u. However, the upper bound has the form

and is not smaller than 1 + 7 2 u. Thus, at this stage, all we have is

To remove the term O(u 2), we introduce the following two lemmas, which show that the bounds in (6) and (7) can be reduced slightly under suitable assumptions.

Lemma III.1. Let a be a nonnegative floating-point number. If a is not an integral power of 2, then

Proof. The result is clear for a = 0, so we assume that a > 0. Then one can write a = m • 2 k , where k is an even integer and m is an integral multiple of 2u = 2 1-p such that 1 m < 4. We now consider the following three cases:

and the relative error is less than 2u 2 , and thus less than u/ √ 1 + 6u (since in this case we necessarily have p 2);

If we compare with (6), we see that the above lemma gives a slightly smaller bound, since

Lemma III.2. Let a and b be two floating-point numbers, with b nonzero. If b is not equal to 2 -2u times an integral power of 2, then

Proof. Up to scaling by suitable powers of two, we can assume that 1 b < 2 and 1 a/b < 2, so the assumption on b becomes b 2 -4u. If a = b then the division is exact, so it remains to consider the case where a > b, that is, a b + 2u. Consequently,

and three cases can occur:

with the latter quantity being less than u/(1 + 3u) for u > 0;

.

Note that u/(1+3u) = u-3u 2 +O(u 3), which is slightly smaller than the expression u -2u 2 in (7).

We can now exploit these two lemmas as follows, by considering three different cases depending on the shape of the floating-point number x = RN ν/2 produced at step 6 of Algorithm 1:

1) If x is an integral power of 2, then the floatingpoint division at step 7 is exact. Hence y = b/(2 x) and it follows from (10) that

where 1/L has the form

and is less than

(2 -3u) • 2 k and the relative error due to rounding is at most u/(2 -3u) = u/2 + O(u 2). This means that instead of L as in (9), one can take

and replace the upper bound in (11) by

Here (1 + u -2u 2)/L has the form

and is less than 1 + 7 2 u for u 1/8. 3) In all the other cases, Lemmas III.1 and III.2 imply that

Therefore, the upper bound in (11) can be replaced by

where

and is less than 1 + 7 2 u for u 1/8. The three cases above thus show that y y (1 + 7 2 u) if p 3. By combining this upper bound with the lower bound in (12), we conclude that

IV. CONCLUSION

The refined bounds 5 2 u and 7 2 u we have obtained on the relative errors of x and y can also be used to deduce the refined bound √ 37 2 u on the normwise relative error | z -z|/|z|.

To see this, one can proceed exactly as Hull, Fairgrieve, and Tang in [2, p. 230]. The normwise error satisfies

Since (a, b) = (0, 0) and a 0 by assumption, we have x > 0 and 0 y x. On this domain, f (x, y) is largest when x = y, and its maximum equals

To summarize, we have shown the following:

Theorem IV.