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We consider a two leg bosonic ladder in a U(1) gauge field with both interleg hopping and
interleg repulsion. As a function of the flux, the interleg interaction converts the commensurate-
incommensurate transition from the Meissner to a Vortex phase, into an Ising-type of transition
towards a density wave phase. A disorder point is also found after which the correlation functions
develop a damped sinusoid behavior signaling a melting of the vortex phase. We discuss the differ-
ences on the phase diagram for attractive and repulsive interleg interaction. In particular, we show
how repulsion favors the Meissner phase at low-flux and a phase with a second incommensuration
in the correlation functions for intermediate flux, leading to a richer phase diagram than in the case
of interleg attraction. The effect of the temperature on the chiral current is also discussed.

I. INTRODUCTION

Trapped ultracold atoms have provided experimental-
ists with a unique ability to realize highly tunable quan-
tum simulators of many-body model Hamiltonians,1–3

including quasi-one dimensional systems.4 Moreover, it
has recently become possible to simulate the effect
of an applied magnetic field using two-photon Ra-
man transitions5–7, spin-orbit coupling8 or optical clock
transitions9. Such situation gives access to a regime
where the interplay of low dimensionality, interaction and
magnetic field generates exotic phases such as bosonic
analogues of the Fractional Quantum Hall Effect.10 The
simplest system to observe nontrivial effects of an arti-
ficial gauge field is the bosonic two-leg ladder.11 Orig-
inally, such systems were considered in the context of
Josephson junction arrays in magnetic field12–14 and a
commensurate-incommensurate (C-IC) phase transition
between a Meissner-like phase with currents along the
legs and a Vortex-like phase with quasi long range or-
dered current loops was predicted. However, in Joseph-
son junction systems, ohmic dissipation15,16 spoiled the
quantum coherence required to observe such transition.
In cold atom systems, the Meissner and Vortex states
have been observed in a non-interacting case.11 Moreover,
recent progress in superconducting qubits17 engineering
offer another promising path18,19 for realization of low
dimensional bosons in artificial flux. Finally, another
relevant quantum platform that can implement artificial
classical magnetic fields is that of trapped ions20.

The availability of experimental systems has thus re-
newed theoretical interest in the two leg bosonic ladder
in a flux21–48. These works have revealed in that decep-
tively simple model a zoo of ground state phases besides
Meissner-like and Vortex-like ones. At commensurate fill-
ing, Mott-Meissner and Mott-Vortex phases30 as well as
chiral Mott insulating phases21–23,48 have been predicted.
Meanwhile, with strong repulsion and a flux Φ = 2πn

with n the number of particles per rung, bosonic analogs
of the Laughlin states49 are expected34,39,41. Interactions
also affect the C-IC transition between the Meissner-like
and the Vortex-like phase50. In a previous work51, we
have considered the effect of attractive interchain interac-
tions on the C-IC transition. Using an analogy with sta-
tistical mechanics of classical elastic systems on periodic
substrates52–56, we have shown that interchain attrac-
tion split the single commensurate-incommensurate (C-
IC) transition point into (a) an Ising transition point be-
tween the Meissner-like phase and a density-wave phase,
(b) a disorder point57,58 where incommensuration devel-
ops inside the density-wave phase, and (c) a Berezinskii-
Kosterlitz-Thouless (BKT) transition59,60 where the den-
sity wave with incommensuration turns into the Vortex-
like phase. The density wave phase with incommensu-
ration can be identified as a melted vortex state while
the transition (c) can be seen as a melting of the vor-
tex phase. The density wave competing with the Meiss-
ner phase at Ising point (a) is induced by interchain
interaction61–63 even in the absence of flux. We have veri-
fied the existence of those phases in DMRG simulations of
hard core bosons.51 Since the analogy with classical elas-
tic systems holds irrespective of the sign of the interchain
interaction, a similar splitting of the C-IC point should
also be present in the repulsive case. Differently from
the attractive case, we will show that repulsive interac-
tions stabilize the Meissner phase and make the splitting
of the C-IC transition occur in a much narrower region.
Moreover, they also favor the appearance of an extra pe-
riodic oscillation of the correlation function at a wavevec-
tor depending on both flux and interchain hopping, even
for fluxes non commensurate with density38. Such pre-
diction could be easily traced in current experiments by
Bragg spectroscopy, that measures the static structure
factor, or by time of flight spectroscopy that measures
momentum distribution.

The paper is organized as follows: In Section II we
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introduce the model and its bosonized version, here we
also introduce the observables and their correlation func-
tions. In Section III we discuss the Ising transition and
the disorder point by using a fermionization approach
based on the Majorana fermion representation. Here we
also briefly discuss the effect of the temperature on the
spin current and momentum distribution. In Section IV
we discuss the emergence of the second incommensura-
tion by using a unitary transformation approach and non-
abelian bosonization. Section V presents the numerical
results for the hard-core limit in the legs. In Section VI
we discuss the major results and give some conclusions.

II. MODEL

We consider a model of bosons on a two-leg ladder in
the presence of an artificial U(1) gauge field40,41:

H = −t
∑
j,σ

(b†j,σe
iλσbj+1,σ + b†j+1,σe

−iλσbj,σ)

+
Ω

2

∑
j,α,β

b†j,α(σx)αβbj,β +
∑
j,α,β

Uαβnjαnjβ , (1)

where σ =↑, ↓ represents the leg index or the internal
mode of the atom8,9,64, bj,σ annihilates a boson on leg σ

on the j−th site, njα = b†jαbjα, t is the hopping ampli-
tude along the chain, Ω is the tunneling between the legs
or the laser induced tunneling between internal modes,
λ is the Peierls phase of the effective magnetic field as-
sociated to the gauge field, U↑↑ = U↓↓ is the repulsion
between bosons on the same leg, U↓↑ = U⊥ the inter-
action between bosons on opposite legs. In synthetic
dimensions, the contact interaction between atoms of dif-
ferent internal quantum numbers becomes the interchain
interaction. This model can be mapped to a spin-1/2
bosons with spin-orbit interaction model38, where Ω is
the transverse magnetic field, λ measures the spin-orbit
coupling, U↑↑ = U↓↓ is the repulsion between bosons of
identical spins, U↓↑ = U⊥ the interaction between bosons
of opposite spins.

A. Bosonized description

Let us derive the low-energy effective theory for the
Hamiltonian (1), treating Ω and U⊥ as perturbations,
and using Haldane’s bosonization of interacting bosons.65

Introducing65 the fields φα(x) and Πα(x) satisfying
canonical commutation relations [φα(x),Πβ(y)] = iδ(x−
y) as well as the dual θα(x) = π

∫ x
dyΠα(y) of φα(x), we

can represent the boson annihilation operators as:

bjσ√
a

= ψσ(x) = eiθσ(x)
+∞∑
m=0

A(σ)
m cos(2mφσ(x)−2mπρ(0)

σ x),

(2)

and the density operators65 as:

njσ
a

= ρσ(x) = ρ(0)
σ −

1

π
∂xφσ

+

∞∑
m=1

B(σ)
m cos(2mφσ(x)− 2mπρ(0)

σ x). (3)

Here, we have introduced the lattice spacing a, while
Am and Bm are non-universal coefficients that depend on
the microscopic details of the model. For integrable mod-
els, these coefficients have been determined from Bethe
Ansatz calculations66–68 while for non-integrable mod-
els, they can be determined from numerical calculations
of correlation functions.69,70

Introducing the canonically conjugate linear combina-
tions:

φc =
1√
2

(φ↑ + φ↓) Πc =
1√
2

(Π↑ + Π↓), (4)

φs =
1√
2

(φ↑ − φ↓) Πs =
1√
2

(Π↑ −Π↓), (5)

the bosonized Hamiltonian can be rewritten as H = Hc+
Hs, where

Hc =

∫
dx

2π

[
ucKc(πΠc)

2 +
uc
Kc

(∂xφc)
2

]
(6)

describes the total density fluctuations for incommensu-
rate filling when umklapp terms are irrelevant, and

Hs =

∫
dx

2π

[
usKs

(
πΠs +

λ

a
√

2

)2

+
us
Ks

(∂xφs)
2

]

−2ΩA2
0

∫
dx cos

√
2θs +

U⊥aB
2
1

2

∫
dx cos

√
8φs (7)

describes the antisymmetric density fluctuations. In
Eq. (7) and (6), us and uc are respectively the veloc-
ity of antisymmetric and total density excitations, A0

and B1 are non universal coefficients71 while Ks and Kc

are the corresponding Tomonaga-Luttinger (TL) expo-
nents, which are perturbative with respect to U⊥. They
can be expressed as a function of the velocity of excita-
tions u, and Tomonaga-Luttinger liquid exponent K of
the isolated chain as:

uc = u

(
1 +

U⊥Ka

πu

)1/2

(8)

us = u

(
1− U⊥Ka

πu

)1/2

(9)

Kc = K

(
1 +

U⊥Ka

πu

)−1/2

(10)

Ks = K

(
1− U⊥Ka

πu

)−1/2

(11)

For an isolated chain of hard core bosons, we have
u = 2t sin(πρ0

σ) and K = 1. Physical observables can
also be represented in bosonization. The rung current,
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or the flow of bosons from the upper leg to the lower leg,
is:

J⊥(j) = −iΩ(b†j,↑bj↓ − b
†
j,↓bj↑).

= 2ΩA2
0 sin

√
2θs + . . . (12)

The chiral current, i.e. the difference between the cur-
rents of upper and lower leg, is defined as

J‖(j, λ) = −it
∑
σ

σ(b†j,σe
iλσbj+1,σ − b†j+1,σe

−iλσbj,σ),(13)

=
usKs

π
√

2

(
∂xθs +

λ

a
√

2

)
. (14)

The density difference between the chains Szj = nj↑−nj↓,
is written in bosonization as:

Szj = −
√

2

π
∂xφs − 2B1 sin(

√
2φc − πρx) sin

√
2φs,(15)

while the density of particles per rung is:

nj = −
√

2

π
∂xφc − 2B1 cos(

√
2φc − πρx) cos

√
2φs.(16)

Let us discuss some simple limits of the Hamilto-
nian (7). When Ω 6= 0, U⊥ = 0, and λ→ 0, the antisym-
metric modes Hamiltonian Eq. (7) reduces to a quantum
sine-Gordon Hamiltonian. For Ks > 1/4, the spectrum
of Hs is gapped and the system is in the so-called Meiss-
ner state12,13 characterized by 〈θs〉 = 0. In such state, the
chiral current increases linearly with the applied flux at
small λ, while the average rung current 〈J⊥〉 = 0 and its
correlations 〈J⊥(j)J⊥(0)〉 decay exponentially with dis-
tance. The antisymmetric density correlations also decay
exponentially with distance, while the symmetric ones
behave as:

〈ninj〉 = − 2Kc

π2(i− j)2
+ e−|i−j|/ξ

cosπn(i− j)
|i− j|Kc

, (17)

where ξ is the correlation length resulting from the spec-
tral gap of Hs. With Ω = 0, U⊥ 6= 0, the antisymmet-
ric density fluctuations Hamiltonian (7) becomes again
a quantum sine-Gordon model that can be related to
the previous one by the duality transformation θs →
2φs, φs → θs/2,Ks → 1/(4Ks). For Ks < 1, the Hamil-
tonian Hs has a gapped spectrum and 〈φs〉 = π√

8
for

U⊥ > 0 yielding a zig-zag density wave ground state and
〈φs〉 = 0 for U⊥ < 0 yielding a rung density wave ground
state.61,63,72–75 In both density wave states, the expec-
tation values of the spin and conversion current vanish,
and their correlations decay exponentially. The Green’s
functions of the bosons also decay exponentially, so that
the momentum distribution only has a Lorentzian shaped
maximum at k = 0. However, in the zig-zag density wave
state (U⊥ > 0), we have:

〈Szj Szk〉 ∼ C1e
−|j−k|/ξ + C2

cosπn(j − k)

|j − k|Kc
, (18)

〈njnk〉 ∼ −
2Kc

π2(j − k)2
+ C3

cosπn(j − k)

|j − k|Kc
e−|j−k|/ξ,(19)

while in the rung density wave (U⊥ < 0),

〈njnk〉 ∼ −
2Kc

π2(j − k)2
+ C ′3

cosπn(j − k)

|j − k|Kc
, (20)

〈Szj Szk〉 ∼ C ′1e−|j−k|/ξ + C ′2
cosπn(j − k)

|j − k|Kc
e−|j−k|/ξ(21)

where Kc depends on the interleg interaction, increasing
when it is attractive and decreasing when it is repulsive
as indicated in Eq. (8). The behavior of density correla-
tions in real space is reflected in the corresponding static
structure factors:

Sc(q) =
∑
j

e−iqj〈njn0〉, (22)

Ss(q) =
∑
j

〈Szj Sz0 〉. (23)

In all phases, Sc(q → 0) = 2Kc
π |q| + o(q), while Ss(q) ∼

Ss(0) + Aq2 + o(q2) indicating that symmetric excita-
tions are always gapless while antisymmetric excitations
are always gapped. However, in the rung density wave,
Sc(q → πn) has a power law divergence ∼ |q−πn|Kc−1 (if
Kc < 1) or a cusp ∼ C +C ′|q− πn|Kc−1 (if 1 < Kc < 2)
and Ss(q → πn) has only a Lorentzian-shaped maximum
while in the zig-zag density-wave, Ss(q → πn) shows a
cusp or singularity while Sc(q → πn) has a Lorentzian-
shaped maximum. The case of Uαα = +∞ is peculiar as
Ks → 1. The Hamiltonian (1) can then be mapped to
the Fermi-Hubbard model (see Sec. A 2). Bosonization
of the Fermi-Hubbard model71 shows that the operator
cos
√

8φs is marginal in the renormalization group sense.
On the attractive side,71 it is marginally relevant, and
the density wave exists for all U⊥ < 0. However, on the
repulsive side, cos

√
8φs is marginally irrelevant and the

staggered density wave is absent.

With both Ω and U⊥ nonzero and λ = 0, the Hamil-
tonian Hs becomes the self-dual sine-Gordon model.76,77

When both cosines are relevant (i. e. 1/4 < Ks < 1) the
Meissner phase (stable for |Ω| � |U⊥|) is competing with
the density wave phases (stable in the opposite limit).
The competing phases are separated by an Ising critical
point.76,77 In the case of Uαα = +∞, since the density
wave is absent for U⊥ > 0, one only has the Meissner
state for all U⊥ > 0. By contrast, for U⊥ < 0, the charge
density wave exists at Ω = 0 and an Ising critical point
is present. Thus, phase diagrams for U⊥ > 0 and U⊥ < 0
are very different.

In the presence of flux (λ 6= 0), the density wave
phases are stable. However,for U⊥ = 0, in the Meiss-
ner phase,12,13 when the flux λ exceeds the threshold
λc the commensurate-incommensurate transition takes
place:78–80 the ground state of Hs then presents a non-
zero density of sine-Gordon solitons forming a Tomonaga-
Luttinger liquid.12,13 The low energy properties of the
incommensurate phase are described by the effective
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Hamiltonian:

H∗ =

∫
dx

2π

[
u∗s(λ)K∗s (λ)(πΠ∗s)

2 +
u∗s(λ)

K∗s (λ)
(∂xφ)2

]
,

(24)
where Πs = Π∗s + 〈Πs〉(λ). Near the transition point λc,
〈Πs〉(λ) ∼ C

√
λ− λc. Moreover, as λ → λc + 0, K∗s (λ)

goes to a limiting value K
(0)
s such that80,81 the scaling

dimension of cos
√

2θs becomes 1. Since the scaling di-
mension of cos

√
2θs with a Hamiltonian of the form (24)

is 1/[2K∗s (λ)] one finds K
(0)
s = 1/2. In that incommen-

surate phase, called the Vortex state13 in the ladder lan-
guage, 〈J‖(j)〉 decreases and eventually vanishes for large
flux values. Meanwhile, the conversion current correla-
tions, density correlations and the Green’s functions of
the bosons decay with distance as a power law damped
sinusoids. The effect of the interaction between identi-
cal spins on the commensurate-incommensurate transi-
tion has been largely investigated both numerically and
theoretically.23,27,29,30,38

Since U⊥ can give rise a phase competing with the
Meissner state in the absence of flux, its effect on the
commensurate incommensurate transition induced by λ
needs to be considered. Indeed, near the transition the
scaling dimension of the field cos

√
8φs is 2K∗s (λ) ' 1,

thus the cos
√

8φs term in Eq. (7) is relevant and causes
a gap opening.54,56 A fermionization approach52,53 allows
to show that the flux induced transition remains in the
Ising universality class. Moreover, this approach also pre-
dicts the existence of a disorder point57,58 where incom-

mensuration develops in some correlation functions even
though the gap and the density wave phase persist. For
instance, the bosonic Green function reads:

〈bj,σb†k,σ〉 = 〈ei
θc(ja)√

2 e
−i θc(ka)√

2 〉〈eiσ
θ∗s (ja)
√

2 e
−iσ θ

∗
s (ka)
√

2 〉

∼
(

1

|j − k|

) 1
4Kc

eiσq(λ)(j−k)e−|j−k|/ξ, (25)

where q = π〈Πs〉/(a
√

2) and consequently the momen-
tum distribution

nσ(k) =
∑
j

〈b†j,σb0,σ〉e
−ikj , (26)

instead of showing power-law divergences37 at momen-
tum ±q as in the vortex state, presents Lorentzian-
shaped maximas. In the bosonization picture, the disor-
der point can be understood as the superposition of the
incommensuration induced by λΠs and the gap opened
by cos

√
8φs. As λ further increases, the dimensionK∗s (λ)

recovers the value Ks. In the case of Ks > 1, there is a
second critical point, λ = λBKT where K∗s (λBKT ) =

1 and the cos
√

8φs operator becomes marginal. At
that point, a Berezinskii-Kosterlitz-Thouless59,60 takes
place,54 from the density wave phase to the gapless vortex
state.82 This allows to interpret the density wave state
with incommensuration as a melted vortex state. By con-
trast, if Ks < 1, the ground state remains in a gapped
density wave for all values of λ > λc.

Thus from simple low-energy description, we can derive
the phases listed in the Table I at increasing λ:

zig-zag CDW zig-zag CDW
Phase momentum distribution rung current structure factor structure factor structure factor

n(k) C(k) Ss(k ∼ 0) Ss(k ∼ πn)

Meissner power law |k|
1

4Kc
−1

Lorentzian peak at k = 0 Quadratic Lorentzian peak at k = πn

Meissner-DW single Lorentzian peak at k = 0 Lorentzian peak at k = 0 Quadratic ∼ |k − πn|Kc−1

Melted vortex two Lorentzian peaks at ±q(λ) two Lorentzian peaks at ±2q(λ) Quadratic ∼ |k − πn|Kc−1

Vortex power law peaks ∼ |k − q(λ)|1/4Kc+1/4K∗s−1 power law peaks ∼ |k − 2q(λ)|1/K
∗
s−1 Linear ∼ |k − πn|Kc+K∗s−1

TABLE I. Fourier transform of the correlation functions of the different observables in the phases as predicted in bosonization.
When a power law behavior is indicated, if the exponent is negative the singularity is a divergence. When the exponent is
positive, the singularity is a cusp and the power law is simply a leading correction to a constant value. Lorentzian at kmax
indicates that in the vicinity of its maximum kmax, the correlation function behaves as 1/(a+ b(k − kmax)2) with kmax = πn.
In the fourth column, “Quadratic” indicates that Ss(k) = Ss(0) + Ss”(0)k2/2 + o(k2) while “Linear” indicates a behavior
Ss(k) = K∗s |k|/π + o(k),

III. ISING TRANSITION AND DISORDER
POINT

As discussed above in Sec. II A the application of the
flux gives rise to an Ising transition point followed by a
disorder point both of which can be described using a
Majorana fermion representation.

A. Majorana Fermions representation and
Quantum Ising transition

Let us now consider a value of the flux close at the
commensurate-incommensurate transition, when Ks =
1/2, fermionization52,53 leads to a a detailed picture of
the transition between the Meissner state and the density
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wave states. The fermionized Hamiltonian reads51:

H = −ius
2

∫
dx

2∑
j=1

(ζR,j∂xζR,j − ζL,j∂xζL,j)

−i
∑
j=1,2

mj

∫
dxζR,jζL,j

−ih
∫
dx(ζR,1ζR,2 + ζL,1ζL,2) +

∫
dx

h2

2πus
(27)

where mj = m+ (−)j−1∆ with,

h = −λusKs

a
, (28)

m = 2πΩA2
0a, (29)

∆ =
π

2
U⊥(B1a)2, (30)

and {ζν,j(x), ζν′,j′(x
′)} = δnu,ν′δj,j′δ(x − x′) are Majo-

rana fermion field operators.

Hamiltonians of the form (27) have previously been
studied in the context of spin-1 chains in mag-
netic field83–85 or spin-1/2 ladders86,87 with anisotropic
interactions.88

The eigenvalues of (27) are:

E±(k)2 = (usk)2 +m2 + h2 + ∆2

±2
√
h2(usk)2 + h2m2 + ∆2m2. (31)

For m =
√
h2 + ∆2, E−(k) = u∆

m |k| + O(k2), and a
single Majorana fermion mode becomes massless at the
transition52 between the Meissner and the density wave
state as expected at an Ising89 transition. As a con-
sequence, at the transition, the Von Neumann entangle-
ment entropy SvN = 1

3 (cc+cIsing) lnL = 1
2 (1+1/2) lnL,

while away from the transition it is SvN = 1
3cc lnL =

1
3 lnL since the total density modes φc are always gap-
less. A more detailed discussion of finite size scaling of
entanglement entropies is found in Ref. 90.

B. Ising order and disorder parameters

At the point Ks = 1/2, the bosonization operators

cos θs/
√

2, sin θs/
√

2, cos
√

2φs and sin
√

2φs can be ex-
pressed in terms of the Ising order and disorder opera-
tors associated with the Majorana fermions operators of
Eq. (27) as:91–94

cos
θs√

2
= µ1µ2 sin

θs√
2

= σ1σ2, (32)

cos
√

2φs = σ1µ2 sin
√

2φs = µ1σ2. (33)

With our conventions, for mj > 0 we have 〈µj〉 6=
0, 〈σj〉 = 0 while mj < 0 we have 〈µj〉 = 0, 〈σj〉 6= 0.

In terms of the Ising order and disorder fields,

bj,σ = e
i θc√

2 (µ1µ2 + isign(σ)σ1σ2) (34)

Szj = i(ζR,1ζR,2 − ζL,1ζL,2)

−2B1 sin(
√

2φc − πρx)µ1σ2, (35)

nj = −
√

2

π
∂xφc − 2B1 sin(

√
2φc − πρx)µ2σ1, (36)

Let’s consider first the case of h = 0, Ω > 0. For U⊥ =
0 the system is in the Meissner phase with 〈µ1〉〈µ2〉 6= 0.
As U⊥ > 0 increases, m2 = m−∆ changes sign, so that
〈σ2〉 6= 0 while m1 remains positive and µ1 6= 0. As a

result, 〈sin
√

2φs〉 6= 0, and we recover the zig-zag density
wave phase.50 With U⊥ < 0, m2 remains positive, while
m1 is changing sign. As a result, for large |U⊥|, 〈σ1〉 6= 0

giving a nonzero 〈cos
√

2φs〉 and a rung density wave sets
in.

Instead as a function of h, we stress that in case of
fixed U⊥,Ω and variable h, a phase transition is possible
only if m2 −∆2 > 0, i. e. only when for h = 0 we have
〈µ1〉〈µ2〉 6= 0. Then, for h >

√
m2 −∆2, we will have

〈µ1〉〈σ2〉 6= 0 (for U⊥ > 0) or 〈µ2〉〈σ1〉 6= 0 (for U⊥ < 0).
Therefore, as in the case of the transition as a function
of U⊥, one of the pairs of dual Ising variable is becoming
critical at the transition while the other remains specta-
tor.

C. Disorder point

The correlators of the Majorana fermion opera-
tors 〈ζν,j(x)ζν′,j′(x

′)〉 can be obtained from just two
integrals51:

I1(x) =

∫
dk

2π

eikx

E+(k)E−(k)(E+(k) + E−(k))
, (37)

I2(x) =

∫
dk

2π

eikx

(E+(k) + E−(k))
(38)

by taking the appropriate number of derivatives with re-
spect to x.

To estimate the asymptotic behavior of the Green’s
functions, one can apply a contour integral method95

as detailed in the Appendix B. The long distance be-
havior is determined by the branch cut singularities of
the denominators in the upper half plane. For I2, the
cut is obtained for uk = ±i

√
m2(1 + ∆2/h2) coshφ, so

I2(x) = O(e−|x|
√
m2(1+∆2/h2)/u). As a result, the long

distance behavior is dominated by I1(x). For h < m,
its branch cut extends along the imaginary axis from
i|∆ −

√
m2 − h2|/u < k < i(∆ +

√
m2 − h2), giving

I1(x) ∼ e−
|∆−
√
m2−h2||x|
u . This recovers the correlation

length diverging as ∼ |m −
√
h2 + ∆2|−1 near the Ising

transition.
For h > m, the denominator in I1 has two branch cuts

that terminate into two branch points. The long distance
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behavior of Ī1 is determined by these two branch points
as:

Ī1(x) ∼ e−
∆|x|
u

[
ei
√
h2−m2|x|

u ϕ1(x) + e−i
√
h2−m2|x|

u ϕ1(x)∗
]
,

(39)
with |ϕ1(x)| = O(x−1/2), so that oscillations of wavevec-

tor
√
h2 −m2/u appear in the real space Majorana

fermion correlators for h > m. The point h = m is
called a disorder point.57,58

If we calculate equal time correlation functions of the
conversion current using Wick’s theorem, the result de-
pends on products of two Green’s functions. The con-
version current thus shows exponentially damped oscil-
lations with wavevector 2

√
h2 −m2/us and correlation

length us/(2∆).
Moreover, the correlation functions of the Ising order

and disorder fields are expressed in terms of Pfaffians of
antisymmetric matrices whose elements are expressed in
terms of the Majorana fermion Green’s functions.89 The
presence of exponentially damped oscillations in the Ma-
jorana fermions Green’s function thus also affects corre-
lation functions of Ising order and disorder operators.84

More precisely, when the large flux ground state is the
CDW, for long distances:

〈σ1(x)µ2(x)σ1(0)µ2(0)〉 ∼ e−
2∆|x|
u

r
, (40)

〈µ1(x)σ2(x)µ1(0)σ2(0)〉 ∼ (〈µ1σ2〉)2 6= 0, (41)

〈µ1(x)µ2(x)µ1(0)µ2(0)〉 ∼ e−
∆|x|
u

√
r
×

× cos

(√
h2 −m2x

u

)
,(42)

and when the ground state is the zig-zag density wave
the long distance correlations of σ2µ1 and σ1µ2 are ex-
changed.

D. Effect of finite temperature

From the eigenenergies (31), we find the free energy
per unit length as:

f =
F

L
=

h2

2πus
− kBT

∑
r=±

∫ Λ

0

dk

π
ln

[
2 cosh

(
Er(k)

2kBT

)]
(43)

The spin current is Js = −usKsa ∂hf with:

∂f

∂h
=

h

πus
−
∑
r=±

∫ Λ

0

dk

2π
tanh

(
Er(k)

2kBT

)
∂Er(k)

∂h
(44)

The integral (44) is convergent in the limit Λ → +∞.
We can split (44) into a ground state contribution and a
thermal contribution:

∂f

∂h
=
∂eGS
∂h

+
∑
r=±

∫ Λ

0

dk

π

2

e
Er(k)
kBT + 1

∂Er(k)

∂h
, (45)

and we see that away from the critical point, the latter
contribution is O(e−E−(0)/(kBT )) when E−(0) � kBT .
For E−(0) � kBT the thermal contribution becomes
O(kBT ). A crossover diagram96,97 is represented on
Fig.1. The region where the corrections are linear in
temperature is the quantum critical region.

 2

 3

 4

 0  0.02  0.04  0.06

n
(k

=
0

,L
)

1/L 

U
⊥
/t=3.0 

U
⊥
/t=2.0 

FIG. 1. Crossover diagram for the current. Below the dashed
line, the low temperature region with h < hc is the “renormal-
ized classical” regime, while the low temperature region with
h > hc is the disordered regime. In both of these regions, the
finite temperature correction to the zero temperature current
is exponentially small. Above the dashed line, in the quantum
critical region, thermal corrections are O(kBT ).

At fixed temperature, varying the applied flux, two
regimes are possible. For kBT � min(∆,m), only a
narrow region of flux around the critical flux is inside
the quantum critical region, and the current versus flux
curve is barely modified. For kBT � min(∆,m), the cur-
rent versus flux curve is showing a broadened maximum
that shifts progressively to higher flux. This behavior is
shown on Fig. 2.

If we turn to the current susceptibility, which has a
logarithmic divergence at the critical flux in the ground
state, its positive temperature expression is:

∂2f

∂2h
=

1

πu
−
∑
r=±

∫ +∞

0

dk

2π

[
∂2Er(k)

∂h2
tanh

(
Er(k)

2kBT

)
+

(
∂Er(k)

∂h

)2
1

2kBT cosh2
(
Er(k)
2kBT

)
 , (46)

Exactly at the critical point h =
√
m2 −∆2, we find

that:

∂2E−(k)

∂h2
=

h2

2m∆u|k|
+O(|k|), (47)

so that ∂J
∂h ∼

h2

4πm∆u ln(1/T ). In the general case, the
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FIG. 2. The current versus flux curves for ∆ = 0.2m at
varying temperature. For temperatures small (T = 0.01m)
compared with ∆,m the curve is indistinguishable from the
zero temperature curve. As temperature become comparable
with ∆ the maximum of the current becomes broader and
shifts to higher flux. For temperature comparable with m,
the maximum becomes very broad.

divergence of ∂hJ is controlled by the integral:

∫ Λ

0

dk

E−(k)
tanh

(
E−(k)

2kBT

)
. (48)

If we take T = 0, the integral will have a logarithmic
divergence in the limit of h→

√
m2 −∆2, indicating the

Ising transition. However, for any finite T , the hyperbolic
tangent will cutoff the divergence for E−(k)� kBT , and
give instead a maximum scaling as ∼ ln(1/T ). Therefore,

one expects that ∂hJ ∼ − ln[(m−
√
h2 + ∆2)2 +(kBT )2].

Thus, for very low temperature, the slope of the curve J
versus h presents a maximum at h =

√
m2 −∆2 indi-

cating the presence of an inflection point instead of the
vertical tangent obtained at T = 0. If we turn to corre-
lation functions, since our system is one dimensional, at
any nonzero temperature its correlation functions always
decay exponentially.98 However, in the quantum Ising
chain, the correlation length of operators that are long
range ordered at zero temperature has been found99,100

to behave as ∼ us(TM)−1/2eM/T where M is the gap
at zero temperature. By contrast, operators with short-
range ordered correlations in the ground state still have
a correlation length ∼ us/M . The difference between
the two classes of operators thus remain distinguishable
until T ∼ M . Therefore, in the “renormalized classi-
cal” region, the zero temperature power law peaks in
nσ(k → 0) turns into a narrow Lorentzian maximum,
while the Lorentzian maximas in Sc/s(k) and C(k) re-
main broad. The distinction between CDW and Meissner
phase is lost only at a temperature kBT ∼ E−(0).

IV. SECOND INCOMMENSURATION WITH
REPULSIVE INTERACTION

In previous investigations37,38 a second incommensu-
ration (2IC) was obtained when the flux λ = πn for
a two-leg ladder of hard core bosons. The 2IC can be
associated to the interchain hopping and manifests in
the periodic oscillations of the correlation functions at
wavevectors formed by a linear combinations of λ and Ω.
A very simple picture of the second incommensuration
can be obtained in the limit U⊥ � t where one can use
a Jordan-Wigner representation for the bosons.
Using a gauge transformation, the Hamiltonian (1) can
be rewritten:

H = −t
∑
j,σ

(b†j+1,σbj,σ + b†j,σbj+1,σ) + U
∑
j

nj↑nj↓

+
Ω

2

∑
j

(eiλjb†j,↑bj,↓ + e−iλjb†j,↓bj,↑). (49)

In terms of the Jordan-Wigner fermions given in Ap-
pendix (A4) the interchain hopping has, in general, a
complicated non-local expressions:

b†j,↑bj,↓ = c†j,↑ηj↑ηj↓c
†
j,↓e

iπ
∑
k<j(nk↑+nk↓), (50)

However, at half-filling, the charge is gapped so that
one can approximate,

eiπ
∑
k<j(nk↑+nk↓) ' (−)j , (51)

and the remaining gapless spin mode described by an
effective spin chain model:

H =
4t2

U

∑
n

~Sn · ~Sn+1. (52)

The antihermitian operator ηj↑ηj↓ commutes with the
Hamiltonian, and can be replaced by one of its eigenval-
ues ±i. Then, the interchain hopping reduces to:

Ω

2

∑
j

(ei(λ−π)jic†j↑cj↓ +H.c.), (53)

and, having in mind the Jordan-Wigner transformation
(A4), it reduces to Ω

∑
j S

y
j when λ = π. Therefore, it

acts on the spin chain (52) as a uniform magnetic field,
and induces a magnetization along the y axis. Such
magnetization also gives rise to incommensuration71

in the correlation functions of the spin components x
and z. This treatment represents the simplest way to
understand the origin of a second-incommensuration in
the correlation functions. However, in the case away
from half-filling, the second incommensuration could not
be deduced as straightforwardly38 and one had to resort
to a modified mean-field theory.
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Here, we want to present another approach, using a
canonical transformation that avoids some of the short-
comings of the mean-field theory. If we bosonize the
Jordan-Wigner fermionic version of the Hamiltonian (49)
we obtain:

H =
∑
ν=c,s

∫
dx

2π

[
uνKν(πΠν)2 +

uν
Kν

(∂xφν)2

]
+

Ω

2πa

∫
dx
[
ei
√

2φc(e−i
√

2(θs+φs) + e−i
√

2(θs−φs)) + H.c.
]

− 2g1⊥

(2πa)2

∫
dx cos

√
8φs. (54)

The Hamiltonian (54) contains relevant perturbations
of conformal spin ±1 that break Lorentz invariance and
can in particular shift the minimum of the dispersion101

of the low energy excitations away from k = 0. In such
case, incommensurate modulation of the correlation func-
tions can be observed.102–105 On the basis of a modified
mean-field theory, we have argued38 previously that in-
deed the rung current correlator would develop a incom-
mensuration in its correlation functions. Here, we will
follow a different approach using a canonical transforma-
tion. Indeed, in the limit Kc → 0, the field φc becomes
classical, and the incommensurate character of the cor-
relations can be readily obtained. If we introduce the

rescaling φc =
√
Kcφ̂c, θcθ̂c/

√
Kc, and use the unitary

transformation (55)

U = exp

[
−i
∫
dx

π

√
Kcφ̂c(x)∂xφs

]
, (55)

we will have:

U†HU =

∫
dx

2π

[
uc(πΠ̂c)

2 + usKs(πΠs)
2

+ (usKsKc + uc) (∂xφ̂c)
2 +

(
ucKc +

us
Ks

)
(∂xφs)

2

]
+
√
Kc

∫
dx(usKsΠs∂xφ̂c − ucΠ̂c∂xφs)

+
Ω

2πa

∫
dx cos

√
2θs cos

√
2φs

− 2g1⊥

(2πa)2

∫
dx cos

√
8φs (56)

The spin-charge interaction in the second line of the
Hamiltonian is proportional to

√
Kc � 1, and is an ex-

actly marginal perturbation in the renormalization group
sense. In a first approximation, we can neglect it. We
then obtain the Hamiltonian of an XXZ chain in a uni-
form transverse field.106,107 Using a rotation (see App. C)
one can find the ground state of that Hamiltonian106,107

and obtain its correlation functions. In the gapless phase,

one finds:

〈ρ(j)ρ(j′)〉 ∼ 〈σz(j)σz(j′)〉 ∼ (−1)j−j
′

|j − j′|

+
1

2π2(j − j′)2
cos

(
hs(j − j′)

us
± λ(j − j′)

)
(57)

〈j⊥(j)j⊥(j′)〉 ∼ (−1)j−j
′

|j − j′|

+
1

2π2(j − j′)2
cos

(
hs(j − j′)

us
± λ(j − j′)

)
, (58)

with hs = O(Ω). The correlation functions will there-
fore present periodic oscillations of wavevector formed
of linear combinations of λ and hs/us with integer coeffi-
cients, i. e. besides the incommensuration resulting from
the flux, a second incommensuration resulting from in-
terchain hopping is obtained. At large Ω a gapped phase
can form in which either the spin-spin or the rung current
correlation will show a quasi long range order. In such
case, the oscillations associated with the second incom-
mensuration become exponentially damped, but give rise
to Lorentzian-like peaks in the structure factors. When
Ω is low, a charge density wave can be stabilized. Such
situation is possible in the case of attractive interaction,
and making attraction between opposite spins stronger
is detrimental to the observation of the second incom-
mensuration. This explains why, in Ref. 51, we were not
observing a competition of Ising and second incommen-
suration in the attractive case. At odds, in the repulsive
case, the second incommensuration is very robust. Let is
finally note that if we consider the effect of the marginal
operator that we have neglected, its main effect will be to
modify scaling dimension of the other operators. It may
thus affect the location of the phase boundaries, but not
the presence of an incommensuration in the correlation
functions.

V. THE HARD-CORE LIMIT

In this section we report numerical results on the effect
of the interaction between opposite spins when the repul-
sion between bosons of the same spin is infinite (hard-core
case). Here we focus on the repulsive case, since results
obtained in the attractive case have been discussed in
Ref. 51, where we found that instead of having a single
flux-driven Meissner to Vortex transition, the commen-
surate Meissner phase and the incommensurate Vortex
phase leave space to a Meissner charge-density wave and
to a melted vortex phase with short range order. The
transition from the Meissner to the charge density wave
phase was in the Ising universality class, as predicted by
fermionization. With a repulsive interaction we find that
the observation of the Ising transition becomes difficult
even though signatures of a vortex melting remain visi-
ble.

We show results from DMRG simulations for the filling
ρ = 0.5 per rung. We fix interchain hopping Ω/t and con-
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sider different values of the applied flux λ with varying
the interaction strength U⊥. Simulations are performed
in Periodic Boundary Conditions (PBC) for L = 32 and
up to L = 64 in some selected cases, keeping up to
M = 841 states during the renormalization procedure.
The truncation error, that is the weight of the discarded
states, is at most of order 10−5, while the error on the
ground-state energy is of order 10−4 at most.108,109

At variance with attractive case, for filling different
from unity, in the absence of an applied field we do not
expect the transition from the superfluid Meissner phase
to the density wave phase63 since repulsion only gives
rise to a marginally irrelevant perturbation. Thus, the
phase diagram in the presence of flux is expected to be
qualitatively different from the one with attraction.

In Fig. 3 we show the response functions, Sc(k) for the
attractive case and Ss(k) for the repulsive case, as they
evolve upon increasing the strength of interchain inter-
action, when λ = 0. As already discussed in Sec. II A,in
the hard-core case, attractive interchain interaction is ex-
pected to give rise to charge density wave, while in the
repulsive case there is not a spin density wave. In the
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FIG. 3. Left panel: Sc(k) for the attractive case. Right
panel: Ss(k) for the repulsive case. Interaction strength is
|U⊥|/t = ±1.0, 1.5, 2.0, 3.0 and 6.0 from bottom to top curves.
Solid black curves indicate a Meissner state, while red solid
curves indicate a CDW where the peaks at k = 2kF develop.
Data from L = 64 DMRG simulations in PBC at λ = 0 for
ρ = 0.5, at Ω/t = 0.5. Color online.

left panel of Fig. 3, peaks in Sc(k) (U⊥/t < 0) develop at
k = π/2 and k = 3π/2 as attraction increases and the sys-
tem enters the in-phase density wave phase. Meanwhile
in the right panel of Fig. 3, Ss(k) (U⊥/t > 0) never devel-
ops peaks and in fact becomes almost flat as the bosons
become more localized, as repulsion is increased. Hence,
as expected from marginal irrelevance of interchain re-
pulsion, the spin density wave phase is unfavored.

In order to detect the density wave phases we choose
a value of Ω/t sufficiently large and an applied flux close
to the value at which the commensurate-incommensurate

transition between the Meissner and the Vortex phases
occurs in the absence of interchain interaction. Let us
note that the Luttinger parameters Kc and Ks have a
different dependence on the interchain interaction. In
the attractive case Kc is enhanced and Ks is reduced,
thus the region of stability of the Meissner phase is re-
duced and the system is more prone to reach the in-phase
density wave and vortex regime. On the contrary, in the
repulsive case Kc is reduced and Ks is increased and, as
a consequence, the Meissner phase becomes more stable
at the expense of the Vortex and density wave ones.

We consider the following case: Ω/t = 0.125 at dif-
ferent applied fluxes. At λ . λc(U⊥ = 0), .i.e just
before the C-IC transition occurs, the system never de-
velops a density wave. In Fig. 4 we show the behavior
of the spin and the charge response functions Ss(k) and
Sc(k) respectively, for small and large interaction interac-
tion strength. On increasing the strength the spin static
structure factor develops shoulders at k = 2kF = ±π/2
signaling the incipient transition towards a density wave
phase, while the static structure factor for low momen-
tum show the expected linear behavior Sc(k) ' 2Kc

π |k|
for gapless charge excitations. Kc smoothly decreases as
a function of U⊥, going from one, as for a non-interacting
hard-core Bose system, towards 1/2 as shown from the
slope of the low momentum linear behavior of Sc(k) (see
Fig. 4).
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FIG. 4. Sc(k)and Ss(k) for the repulsive case, respectively
solid and dotted lines, for U⊥/t = 0.5 and 5.5, red and black
curves respectively. Data from L = 64 DMRG simulations in
PBC at λ = 0.0625π, for Ω/t = 0.125 and ρ = 0.5. Color
online.

The asymmetry between the attractive and the repul-
sive case persists in the presence of an applied flux, as
shown in Fig. 5, where we follow the response functions
change when we increase the interaction strength at fixed
λ and Ω/t = 0.5. At small |U⊥|, panel (c) and (b) we start
from Meissner phase where the momentum distribution
has a single peak at k = 0, but for larger interaction
strength, while in the attractive case we are in a melted
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Vortex phase, panel (a), in the repulsive case the sys-
tem is still in the Meissner phase and Ss(k) shows only
shoulders at k = 2kF (panel (d)).
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FIG. 5. Sc(k) and Ss(k) are respectively shown as dark-green
and red solid lines in all panels. Blue dotted lines are for
spin resolved momentum distribution nσ(k) whose argument
has been shifted shifted of π and black dashed lines are for
rung-rung correlation function C(k). Panels a, b, c and d are
respectively for U⊥ = −3,−1, 1 and 3. Data from L = 64
DMRG simulations in PBC at λ = π/8, for Ω/t = 0.5 and
ρ = 0.5. Color online.

In the following we investigate the system for fixed
Ω/t = 0.125 and at a fixed applied flux for which the
system is in the Vortex state in the absence of inter-
action between the chains (U⊥ = 0). In the absence
of the interaction the spin response function Ss(k) dis-
plays the expected linear behavior at small momentum
and a discontinuity in the derivative at k = 2kF

38. As
we increase the interaction strength (panel A in Fig. 6)
the spin structure factor develops peaks at k = π/2 and
k = 3π/2 and an almost quadratic behavior at small
wavevector. The quadratic behavior indicates that spin
excitations remain gapped, while the presence of peaks at
k = π/2, 3π/2 is the signature of a zig-zag charge density
wave (in the ladder language) or a spin density wave (in
the spin-orbit language). The momentum distribution as
well the rung-rung response function C(k) develop two
separate peaks, that show negligible size effects, indicat-
ing the presence of an incommensuration. Thus, we can
identify the phase to the so-called melted Vortex phase.51

For large value of interaction, panel C of Fig. 6, the
system is in strongly correlated Meissner phase, indeed
momentum distribution shows only one peak at k = 0
whose height scales with size as n(k) = L1−1/(4Kc)f(kL)
where f(kL) can be expressed as a ratio of Gamma func-
tions. At the same time Ss(k) develops two peaks, whose
shape is well fitted by a Lorentzian form, at k = π/2 and
k = 3π/2, signalling the incipient transition towards the
CDW-Meissner phase.

In panel B we have an intermediate situation. The sig-
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FIG. 6. Upper panel shows the spin current Js as a func-
tion of strength of interchain interaction, solid red line is only
a guide to eye. Panels below show 8Ss(k) (red solid line),
4C(k) (black dashed line), and n(k) (blue dotted line) where
the argument of this last quantity has been shifted of π. Left,
center and right panel shows these quantities for the cases
indicated by the point A, B and C in the upper panel, re-
spectively corresponding to cases where the system is in the
melted Vortex phase, in the CDW–Meissner phase and in the
Meissner phase. Data shown are from DMRG simulations in
PBC for L=32. Color online.

nature of the zig-zag DW can be detected from the peaks
in the spin response function. The absence of a short-
range incommensuration is visible from the position at
k = 0 of the peak in n(k) and from rung-rung correlation
function, which show negligible size effects. We conjec-
ture that this corresponds to the so-called charge-density
Meissner phase.

In the upper panel of Fig. 6 we show the spin current
Js as a function of the strength of interchain interac-
tion when the system goes from the Vortex state to the
Meissner one: there is no cusp indicating a square root
threshold singularity typical of the C-IC transition, in-
stead the spin current only shows at most a vertical tan-
gent indicating a possible logarithmic divergence of its
derivative. To summarize, under application of interleg
repulsion, the Vortex phase becomes first a melted vortex
phase via a BKT transition, then past the disorder point
a DW-Meissner is formed, and finally the Meissner state
is stabilized at large repulsion.

As discussed in the previous section, in the presence
of the so-called second incommensuration,37,38 the pic-
ture becomes more complicated. Indeed, in such a case,
nearby λ ' πn there is a new incommensurate wavevec-
tor which gives, in the various structure factors, extra
peaks whose magnitude of which is controlled by Ω. In
order to illustrate that situation we have made simula-
tions for a larger interchain hopping, namely Ω/t = 0.5,
so that we have the C-CI transition nearby λ = nπ in
absence of interchain interaction and therefore near the
occurrence of the second incommensuration.
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In Fig. 7 situation at fixed U⊥/t = 1.5 and Ω/t = 0.5
is shown. In the upper panel we follow the spin current
as a function of the applied field. It shows the typi-
cal behavior of the Meissner phase when it increases as a
function of λ, then it rapidly decreases when entering the
Vortex phase which is however short-ranged ordered and
finally for λ & 0.75π enters the quasi long range ordered
Vortex phase, as it can also seen from the typical finite
size induced oscillations in this quantity.110 The Meissner
phase is shown in panel A, while the melted-Vortex phase
is shown in panel B, where the spin response function has
the expected peaks at k = π/2 and 3π/2, yet it has the
low momentum behavior observed in the presence of a
second incommensuration.38 In this case, in the momen-
tum distribution is possible to see besides the primary
peaks also the secondary peaks related to the second in-
commensuration. These peaks can be seen also in the
rung-rung correlation function C(k). However, both of
these functions do not show appreciable size effects at-
testing the short range of the incommensurate order. In
panel C we recover the quasi-long range ordered Vortex
phase.

As a last comment we want to stress the fact that in the
rung-rung current correlation function in the Meissner
phase, see panel C of Fig. 6 and panel A of Fig. 7, shows
respectively a Lorentzian-like peak and a cusp centered
at k = 4kF = π as the result of higher order term in
the Haldane expansion when we derive the rung current.
This cusp is present since the exponent Kc is decreasing
with repulsion, thus enhancing the contribution of the
contribution at π compared with the attractive case.
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FIG. 7. Upper panel shows the spin current Js as a function of
the applied flux, red line is only a guide to eye. Panels below
show Ss(k) (red solid line), C(k) (black line), nσ(k) (blue line)
where the argument of this last quantity has been shifted of
π. Left, center and right panels show these quantities for the
cases indicated by the point A, B and C in the upper panel,
respectively corresponding to cases where the system is in the
Meissner phase, in the melted-Vortex phase and in the Vortex
phase. Data shown are from DMRG simulations in PBC for
L=64. Color online.

VI. CONCLUSIONS

To conclude, we have analyzed the phase diagram
of boson ladder in the presence of an artificial gauge
field, when a repulsive interchain interaction is switched
on. We have shown, using bosonization, fermioniza-
tion and DMRG approach, that the the commensurate-
incommensurate transition between the Meissner phase
and the QLRO vortex phase is replaced by an Ising-
like transition towards a commensurate zig-zag density
wave phase. The fermionization approach has allowed us
to predict the existence of a disorder point after which
the bosonic Green’s functions and the rung current cor-
relation function develop exponentially damped oscilla-
tions in real space while zig-zag density wave phase per-
sists. This phase is recognized as a melted vortex phase.
Differently from the attractive interaction, a second-
incommensuration, i.e. an extra periodic oscillation of
the correlation functions at wavevectors formed by a lin-
ear combinations of the flux and the interchain inter-
action, dominates even away from half-filling. As nu-
merically shown, the hard core limit in the chains favors
the zig-zag density wave phase. Our predictions on the
melting of vortices in Bose-Einstein condensates and on
the second incommensuration in optical lattices can be
traced in current experiments by the measuring the static
structure factors and momentum distributions, together
with the rung current.
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Salerno.

Appendix A: Hard core boson limit and mappings

That limit corresponds to U↑↑ = U↓↓ → +∞. In that
limit, the bosonic ladder can be mapped to an anisotropic
two-leg ladder model with Dzyaloshinskii-Moriya111,112

interaction, and to the Hubbard model.

1. Mapping to a spin ladder

If we consider hard core bosons, we can use the map-
ping of hard core bosons to spins 1/2:

b†j = S+
j (A1)

bj = S−j (A2)

b†jbj = Szj +
1

2
, (A3)
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which can be deduced easily from the Holstein-Primakoff
representation113 of spin-1/2 operators. With such map-
ping, we can rewrite the Hamiltonian (1) as a two-leg
ladder Hamiltonian in which the upper and the lower
leg have uniform Dzyaloshinskii Moriya interaction. In
the two leg ladder representation, Ω and U↑↓ become the
rung exchange interaction, t cos(λ/2) and U↑↑, U↑↑ be-
come the leg exchange interaction, t sin(λ/2) becomes the
Dzyaloshinskii-Moriya term.

2. Mapping to spin-1/2 fermions

Another possible mapping in the case of hard core
bosons U↑↑, U↓↓ → ∞ is to the Hubbard model. This
mapping is only valid when Ω = 0, but it allows
to take advantage of the integrability of the Hubbard
model.114–117 The mapping, is obtained from the Jordan-
Wigner transformation118 given in AppendixA 2, that
maps hard core bosons operators bjσ to fermion opera-
tors cjσ :

bjσ = ησcj,σe
iπ

∑
k<j c

†
k,σck,σ , (A4)

b†jσbjσ = c†j,σcj,σ, (A5)

where {ησ, ησ′}+ = δσσ′ . The Hamiltonian (1) with Ω =
0 is rewritten as:

H = −t
∑
j,σ

(c†j+1,σe
−iλσcj,σ + H.c.) + U

∑
j

nj,↑nj,↓(A6)

The gauge transformation119 cj,σ = e−iλσjaj,σ reduces
the Hamiltonian (A6) to the Hubbard form. The Hub-
bard model presents a spin-charge separation. When
interactions are repulsive, and away from half-filling,
charge and spin modes are gapless, whereas with attrac-
tive interactions charge modes are always gapless but
spin modes are gapped. In terms of the original bosons,
total density modes are always gapless away from half-
filling, but the chain antisymmetric density fluctuations
are gapped with attractive interaction giving rise to a
symmetric density wave phase, gapless with repulsive in-
teraction.

Appendix B: Asymptotic behavior of the Green’s
functions

To estimate the asymptotic behavior of the Green’s
functions, we apply a contour integral method95 to the
integral

Ī1(x) =

∫ ∞
−∞

dk

2π

eik|x|

E−(k)
. (B1)

The function E−(k) has only branch cut singularities in
the upper half plane. The branch cuts arise either from
h2(uk)2 + h2m2 +m2∆2 < 0 or (uk)2 +m2 + ∆2 + h2 −

2
√
h2(uk)2 + h2m2 +m2∆2 < 0. The first branch cut,

obtained for u2k2 < −m2(1+∆2/h2) gives a contribution

decaying as e−m
√

1+∆2/h2|x|/u, that can be ignored for
|x| � m/u. The contribution of the cuts of the second
type depends whether h < m or h > m. For h < m, there
is a single branch cut extending along the imaginary axis
from i|∆ −

√
m2 − h2|/u < k < i(∆ +

√
m2 − h2). We

can rewrite the integral (B1) as:

Ī1(x) =

∫ ∆+
√
m2−h2

u

|∆−
√
m2−h2|
u

dk

π

e−k|x|

E−(ik)
. (B2)

showing that I1(x) ∼ e−
|∆−
√
m2−h2||x|
u . This gives a cor-

relation length diverging as ∼ |m−
√
h2 + ∆2|−1 near the

Ising transition.
For h > m, there are two branch cuts given by:√

(uk)2 +m2 +
m2∆2

h2
= h± i∆

√
1− m2

h2
coshα,(B3)

and α real. The integration path in the complex plane
is represented on Fig. 8. The branch cuts terminate

at the branch points k
(±)
d = i∆

u ±
√
h2−m2

u such that

E−(k
(±)
d )2 = 0. The long distance behavior of Ī1 is de-

termined by these two branch points as:

Ī1(x) ∼ e−
∆|x|
u

[
ei
√
h2−m2|x|

u ϕ1(x) + e−i
√
h2−m2|x|

u ϕ1(x)∗
]
,

(B4)

so that oscillations of wavevector
√
h2 −m2/u appear in

the real space correlation functions for h > m. The
point h = m is called a disorder point57,58. Disorder
points are known to occur in frustrated quantum Ising
chains in transverse field,120 bilinear-biquadratic spin-1
chains,121,122 frustrated spin-1/2123,124 and spin-1125,126

chains. They can be classified58 into disorder points of
the first kind (with parameter dependent incommensura-
tion) and disorder point of the second kind (with param-
eter independent incommensuration). In our model, the
disorder point is of the first kind.

Appendix C: Second incommensuration and
canonical transformation

In this section, we give some details on the
rotation106,107 used to diagonalize the Hamiltonian ob-
tained after the unitary transformation of Eq. (55).
First, we rewrite our Hamiltonian (56) using nonabelian
bosonization:127

Hs =
2πv

3

∫
dx( ~JR · ~JR + ~JL · ~JL) + g1‖

∫
dxJzRJ

z
L(C1)

+g1⊥

∫
dx(JxRJ

x
L + JyRJ

y
L) + Ω

∫
dx(JyR + JyL) (C2)
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Re(k)

Im(k)

0

FIG. 8. The integration path in complex k plane for h > m.
The red curves are such that E−(k)2 < 0. The red dots at
extremities of the curve are the points where E−(k) = 0.

with g1‖ 6= g1⊥ . Using a π
2 rotation around the x axis37

we can rewrite:

Hs =
2πv

3

∫
dx( ~̃JR · ~̃JR + ~̃JL · ~̃JL) + g1‖

∫
dxJ̃yRJ̃

y
L

+g1⊥

∫
dx(J̃xRJ̃

x
L + J̃zRJ̃

z
L) + Ω

∫
dx(J̃zR + J̃zL) (C3)

Finally, returning to abelian bosonization, we
obtain106,107

Hs =

∫
dx

2π

[
uK(πΠ̃s)

2 +
u

K
(∂xφ̃s)

2
]
− Ω

π
√

2

∫
dx∂xφ̃s

+
2(g1⊥ + g1‖)

(2πa)2

∫
dx cos

√
8φ̃s

+
2(g1⊥ − g1‖)

(2πa)2

∫
dx cos

√
8θ̃s (C4)

As we can see, either we obtain a fixed point with θ̃s long
range ordered or a gapless fixed point. In both cases since

we may eliminate the ∂xφ̃s by a shift of the φ̃s field, one
has 〈φ̃s〉 = hs√

2us
x. When θ̃s is gapless, this gives rise

to the second incommensuration of Ref. 38. To be more
precise, if we consider the bosonized expression for the
observables:

U†ρ(x)U = ρ0 −
√

2

π
∂xφc + cos

√
2(φc − 2πρ0x) cos

√
2φs (C5)

U†σz(x)U = −
√

2

π
∂xφs + cos

√
2(φc − 2πρ0x) sin

√
2φs (C6)

U†j⊥(x)U =
Ω

πa

[∑
r=±1

sin
√

2(θs + rφs) cos
√

2φc

+ cos
√

2(θs + rφs) sin
√

2φc + sin
√

2θs cos(
√

2φc + λx)

+ cos
√

2θs sin(
√

2φc + λx)
]

and perform here the shift of the field φ̃s → φs − hsx√
2us

x

and using a rotation of the SU(2)1 primary fields37, we
reexpress the observables as:

U†ρ(x)U = ρ0 −
√

2

π
∂xφc

+ cos
√

2(φc − 2πρ0x) cos

(√
2φ̃s +

hs
us
x

)
(C7)

U†σz(x)U = − 1

πa

∑
r,r′=±

eir
√

2(θ̃s+r
′φ̃s)+irr

′ hsx
us

− cos
√

2(φc − 2πρ0x) cos
√

2θ̃s (C8)

U†j⊥(x)U =
Ω

πa

[∑
r=±1

sin
√

2

(
θ̃s + rφ̃s +

hs
us
x

)
cos
√

2φc

− 1

π
√

2
∂xφ̃s sin

√
2φc + sin

√
2θ̃s cos(

√
2φc + λx)

+ sin

(√
2φ̃s +

hs
us
x

)
sin(
√

2φc + λx)

]
(C9)

In the gapless case, taking the expectation value gives
the second incommensuration.
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