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Multi-dimensional scalar conservation laws with
unbounded integrable initial data

Denis Serre
École Normale Supérieure de Lyon∗

Abstract

We discuss the minimal integrability needed for the initial data, in order that the Cauchy
problem for a multi-dimensional conservation law admit an entropy solution. In particular
we allow unbounded initial data. We investigate also the decay of the solution as time
increases, in relation with the nonlinearity.

The main ingredient is our recent theory of divergence-free positive symmetric tensor.
We apply in particular the so-called compensated integrability to a tensor which generalizes
the one that L. Tartar used in one space dimension. It allows us to establish a Strichartz-like
inequality, in a quasilinear context.

This program is carried out in details for a multi-dimensional version of the Burgers
equation.

Notations. When 1≤ p≤ ∞, the natural norm in Lp(Rn) is denoted ‖ · ‖p, and the conjugate
exponent of p is p′. The total space-time dimension is d = 1+ n and the coordinates are x =
(t,y). In the space of test functions, D+(R1+n) is the cone of functions which take non-negative
values. The partial derivative with respect to the coordinate y j is ∂ j, while the time derivative is
∂t . Various finite positive constants that depend only the dimension, but not upon the solutions
of our PDE, are denoted cd ; they usually differ from one inequality to another one.
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1 Introduction
Let us consider a scalar conservation law in 1+n dimensions

(1) ∂tu+
n

∑
i=1

∂i fi(u) = 0, t > 0, y ∈ Rn.

We complement this equation with an initial data

u(0,y) = u0(y), y ∈ Rn.

The flux f (s) = ( f1(s), . . . , fn(s)) is a smooth vector-valued function of s ∈ R. We recall the
terminology that an entropy-entropy flux pair is a couple (η,q) where s 7→ η(s) is a numeri-
cal function, s 7→ q(s) a vector-valued function, such that q′(s) ≡ η′(s) f ′(s). The Kruzhkov’s
entropies and their fluxes form a one-parameter family:

ηa(s) = |s−a|, qa(s) = sgn(u−a)( f (u)− f (a)).

Together with the affine functions, they span the cone of convex functions.

We recall that an entropy solution is a measurable function u ∈ L1
loc([0,+∞)×Rn) such that

f (u) ∈ L1
loc([0,+∞)×Rn), which satisfies the Cauchy problem in the distributional sense,

(2)
∫

∞

0
dt

∫
Rn
(u∂tφ+ f (u) ·∇yφ)dy+

∫
Rn

u0(y)φ(0,y)dy = 0, ∀φ ∈D(R1+n),

together with the entropy inequalities∫
∞

0
dt

∫
Rn
(ηa(u)∂tφ+qa(u) ·∇yφ)dy

+
∫
Rn

ηa(u0(y))φ(0,y)dy ≥ 0, ∀φ ∈D+(R1+n), ∀a ∈ R.(3)

When it enjoys higher integrability, an entropy solution is expected to satisfy additional entropy
inequalities of the form

(4)
∫

∞

0
dt

∫
Rn
(η(u)∂tφ+q(u) ·∇yφ)dy+

∫
Rn

η(u0(y))φ(0,y)dy≥ 0, ∀φ ∈D+(R1+n),

for more general convex entropies η. In particular, one is interested in inequality (4) for the
entropy-entropy flux pair

η̄(s) =
1
2

s2, q̄(s) =
∫ s

0
z f ′(z)dz.
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The theory of this Cauchy problem dates back to 1970, when S. Kruzhkov [7] proved that if
u0 ∈ L∞(Rn), then there exists one and only one entropy solution in the class

L∞(R+×Rn)∩C(R+;L1
loc(R

n)).

The operator St : u0 7→ u(t, ·), which maps L∞(Rn) into itself, enjoys several additional prop-
erties. On the one hand, a comparison principle says that if u0 ≤ v0, then Stu0 ≤ Stv0. For
instance, the solution u associated with the data u0 is majorized by the solution ū associated
with the data (u0)+, the positive part of u0. On another hand, if v0− u0 is integrable over Rn,
then Stv0−Stu0 is integrable too, and

(5)
∫
Rn
|Stv0−Stu0|(y)dy≤

∫
Rn
|v0−u0|(y)dy.

Finally, if u0 belongs to some Lp(Rn) space, then Stu0 has the same integrability, and the map
t 7→ ‖Stu0‖p is non-increasing. We warn the reader that the contraction property (5) occurs only
for the L1-norm, but not for other Lp-norms.

Because of (5) and the density of L1 ∩L∞(Rn) in L1(Rn), the family (St)t≥0 extends in a
unique way as a continuous semi-group of contractions over L1(Rn), still denoted (St)t≥0. When
u0 ∈ L1(Rn) is unbounded, we are thus tempted to declare that u(t,y) := (Stu0)(y) is the abstract
solution of the Cauchy problem for (1) with initial data u0. An alternate construction of (St)t≥0,
based upon the Generation Theorem for nonlinear semigroups, is due to M. Crandall [2], who
pointed out that it is unclear whether u is an entropy solution, because the local integrability of
the flux f (u) is not guaranted. It is therefore an important question to identify the widest class
of integrable data for which u is actually an entropy solution of (1).

To achieve this goal, we develop a new strategy, based on the Compensated Integrability that
we introduced in our previous papers [10, 11]. It uses a map a 7→M(a)∈ Symd , whose lines are
entropy-entropy flux pairs, where the entropies are precisely the functions idR, f1, . . . , fn which
appear in the conservation law. The map M is a non-decreasing function of a. This tensor was
already used when n = 1 by L. Tartar [13] to prove the compactness of the semi-group, and
by F. Golse [5] (see also [6]) to prove some kind of regularity. An essential ingredient is the
amount of non-linearity displayed by the flux f . We illustrate our strategy by carrying out the
details on the most typical nonlinear conservation law, a multi-d generalization of the Burgers
equation.

Outline of the article. We begin with a detailed, definitive, analysis of the multi-d Burgers
equation. The equation is described in the next section. Our main result is a well-posedness

3



when the initial data is integrable. It is based on a dispersion estimate, which has the flavour of
a Strichartz inequality, from which we derive a decay estimate of Lp-norms for p ≤ d2

d−1 . The
proof is given in Sections 3 and 4. We explain how the strategy extends to general fluxes f in
Section 5.

Acknowledgements. I am indebted to C. Dafermos, whose precious comments helped me to
improve this article, in particular in giving full credit to previous contributors. I also thank L.
Silvestre for correcting a miscalculation.

2 The multi-d Burgers equation
For a conservation law of the general form (1), it is harmless to assume f (0) = 0. By chosing
an appropriate inertial frame, which does not affect the norms ‖u(t)‖p, we may also assume
f ′(0) = 0. Thus f (s) = O(s2) at the origin. Say that f (s) ∼ sk~v1 as s→ 0, where ~v1 is a
non-zero constant vector. We may perform a linear change of the spacial coordinates such that
f1(s) ∼ sk

k and f j(s) = o(|s|k) otherwise. Unless we meet a flat component, he process can be
continued until we find a new coordinate system (y1, . . . ,yn) in which

f j(s)∼
sk j

k j
, 2≤ k1 < k2 · · ·< kn.

Generically, we have k j = j+1 for every j ∈ [[1,n]]. This is the reason why we consider from
now on the following scalar conservation law, which we call the multi-dimensional Burgers
equation :

(6) ∂tu+∂ j
u2

2
+ · · ·+ ∂n

un+1

n+1
= 0.

This particular flux was already considered by G. Crippa et al. [3]. If n = 1, we recognize the
original Burgers equation. The equation (6) is a prototype for genuinely nonlinear conservation
laws, those which satisfy the assumption

(7) det( f ′′, . . . , f (n+1)) 6= 0.

The latter condition is a variant of the non-degeneracy condition at work in the kinetic formu-
lation of the equation (1) ; see [8] or [9].

Let us review two preliminary answers to our natural question, in the context of (6).
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• On the one hand, we might assume that u0 ∈ L1∩Lp(Rn) for some p > 1. Let us define

u0m := max(−m,min(u0,m)) ∈ L1∩L∞(Rn),

which tends towards u0 in the L1-norm. We have u = limm→+∞ um, where um is the
solution associated with the data u0m, and the limit stands in Cb(R+;L1(Rn)). Because of
‖um(t)‖p ≤ ‖u0m‖p ≤ ‖u0‖p, the sequence (um)m≥1 is bounded in L∞(R+;Lp(Rn)). We
infer that u ∈ L∞(R+;Lp(Rn)), and um converges towards u in L∞(R+;Lq(Rn)) for every
q ∈ [1, p). In addition, um converges weakly in L∞(R+;Lp(Rn)). If p > n+ 1, we may
pass to the limit as m→+∞ in the sequences

uk
m, sgn(um−a)(uk

m−ak).

Passing to the limit in the integral formulations (2) and (3), we conclude that u is a genuine
entropy solution of the Cauchy problem. Notice that the argument does not work out
when p = n+ 1, because of the last component of the flux: we are not certain that un+1

m
converges in L1

loc towards un+1. If p > n+ 2, we find as well that u satisfies the entropy
inequality for the pair (η̄, q̄).

The drawback of this argument is that it does not exploit the nonlinearity of the equation,
a property which is expected to imply some kind of regularization or dispersion (see
Theorem 4 and Proposition 1 of [8]). We should be able to lower somehow the threshold
p > n+1.

• The other answer concerns the one-dimensional case (n = 1). The Kruzhkov solution of
the classical Burgers equation satisfies the inequality

(8) TV
(

u(t)2

2

)
≤ 2‖u0‖1

t
,

due to Bénilan & Crandall [1], who exploit the homogeneity of the flux. It is extended
by Dafermos [4] to situations where the flux f has an inflexion point and the data u0
has bounded variations, by a careful use of the generalized backward characteristics. It
implies in particular an estimate

(9) ‖u(t)‖∞ ≤ 2

√
2‖u0‖1

t
.

This shows that the assumption u0 ∈ L1(R) is sufficient in order that u be a true entropy
solution. This is definitely better than the threshold L1∩L2(Rn) considered in the previous
paragraph.
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Dafermos’ argument, which is the most general one, uses the ordered structure of the real
line. Backward characteristics are not unique in general. Given a base point (x∗, t∗) in the
upper half-plane, one has to define and analyse the minimal and the maximal ones. These
notions have not yet been extended to the multi-dimensional situation (see however [12]
for a weaker notion).

Our main result here is the following statement. It tells us that L1(Rn) is the right space for
initial data.

Theorem 2.1 (Multi-d Burgers equation.) Suppose u0 ∈ L1(Rn). Define u(t) = Stu0 and set
u(t,y) = u(t)(y) for t > 0 and y ∈ Rn. Then

1. There holds an algebraic decay:

(10) ‖u(t)‖ d2
d−1
≤ cdt−δ ‖u0‖γ

1,

where

γ =
d2 +1

d(d2−d +2)
, δ = 2

(d−1)(d2−d +1)
d2(d2−d +2)

< 1.

2. For every k ∈ [[1,d +1]], there holds uk ∈ L1
loc(R+×Rn).

3. The function u is an entropy solution of the Cauchy problem.

4. It satisfies the additional entropy inequality

∂t η̄(u)+divyq̄(u)≤ 0.

5. If in addition u0 ∈ L1∩Ld(Rn), then u ∈ L
d2

d−1 (R+×Rn) and there holds

(11)
(∫

∞

0

∫
Rn

u
d2

d−1 dydt
) d−1

d

≤ cd

(∫
Rn

u0(y)ddy
) 1

2
(∫

Rn
u0(y)dy

) 1
2

.

Comments.

• The assumption that u0 ∈ L1(Rn) extends that available in the 1-dimension situation.
However, when n = 1, Theorem 2.1 provides an estimate of u(t) in L4(R) only, instead
of the known L∞(R) or BV (R). Our results are new only when n≥ 2.
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• The decay result is optimal when n = 1, where it states that

‖u(t)‖4 ≤ cst · t−3/8‖u0‖
5/8
1 .

This is the exact rate for an N-wave

NL(t,y) =
{ y

1+t if y ∈ (0,L
√

1+ t),
0 otherwise.

It raises therefore the question whether the decay rate given by (10) is accurate also when
n≥ 2.

• Estimate (11) ressembles a Strichartz inequality. It seems to be new in this situation where
the principal part in not a linear operator, but a quasilinear one.

• By Hölder interpolation, together with u ∈ L∞(R+;L1(Rn)), (10) implies

(12) ‖u(t)‖q ≤ cd,qt−κ/q′‖u0‖
1−ν/q′

1 , ∀q ∈ (1,
d2

d +1
),

where

κ = 2
d−1

d2−d +2
and ν =

d(d−1)
d2−d +2

.

• A natural question is whether (12) extends to every q ∈ [1,∞]. In particular, is it true that
u(t) ∈ L∞(Rn) for every t > 0 ? We now that it is true when n = 1, see (9).

• A useful contribution in this direction was obtained recently by L. Silvestre [12], whose
Theorem 1.5 tells in particular that if u0 ∈ L1∩L∞(Rn), then

‖u(t)‖∞ ≤C(‖u0‖∞;µ)‖u0‖µ
1 t−nµ

for every µ < µ0 where

µ0 =
2

d2−d +2
.

This decay is almost the same as that suggested by extrapolation to q=∞ of ours, because
of

nµ0 = κ =
κ

q′
.

It would be exactly that one if the limit exponent µ0 was allowed, and the dependency of
the constant upon ‖u0‖∞ was removed.
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2.1 Other “monomial” scalar conservation laws
As suggested above, we may be interested into more general conservation laws, whose fluxes
are monomial. Denoting Pk(s) = sk

k , consider the PDE

(13) ∂tu+∂1Pk1(u)+ · · ·+∂nPkn(u) = 0,

where 1 < k1 < · · · < kn are integers. We leave, as a tedious exercise, the interesting reader to
adapt the calculations of the two next sections to (13), to prove the following result. We denote

K =
n

∑
j=1

k j, N = 1+2K−n.

Theorem 2.2 Suppose that nkn < N. Then for every initial data u0 ∈ L1(Rn), the abstract
solution given by the continuous extension of the semi-group (St)t≥0 to L1(Rn), is actually an
entropy solution of the Cauchy problem for (13). It satisfies a dispersion estimate(∫

∞

0
dt

∫
Rn

u(t,y)
N
n dy
) n

n+1

≤ cd

(∫
Rn

u0(y)dy
)1−θ(∫

Rn
u0(y)kndy

)θ

,

where
θ =

K−n
(n+1)(kn−1)

.

It decays as follows

‖u(t)‖N
n
≤ cd
‖u0‖γ

1
tδ

where

γ =
n
N
+

N−n
N(N−K)

, δ =
n(N−n)
N(N−K)

.

The rôle of the assumption nkn < N is to allow us to estimate ‖u(t)‖kn in terms of ‖u(t)‖1
and ‖u(t)‖N/n, in order to apply a Gronwall argument to the dispersion estimate. Notice that it
is always satisfied in one space dimension, because then 1 · k1 < N = 2k1

Remark. If kn is larger than N
n , there should be a weaker result. There will be some exponent

p = p(kn,N) ∈ (1,kn) such that if u0 ∈ L1 ∩ Lp(Rn), then the abstract solution is actually an
entropy solution. We leave the calculation of p(kn,N) to the motivated reader.
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3 Proof of Estimate (11)
Because u is obtained as the limit in C(R+;L1(Rn)) of um, the solution associated with the data
u0m = Proj[−m,m]u0, the estimates (10) and (11) need only to be proved when the initial data
belongs to L1 ∩ L∞(Rn), that is within Kruzhkov’s theory. Then they extend to L1-data by a
density argument.

When u0 ∈ L1∩L∞, (11) will provide a uniform bound of∫
∞

0
‖um(t)‖

d2
d−1
d2

d−1

dt.

Then, because of um → u in C(R+;L1(Rn)) as m→ +∞, we infer by interpolation that the
convergence holds true in every space Lq(R+;Lp(Rn)) for which

1≤ p <
d2

d−1
(equivalently

d2

d−1
< q≤ ∞) and

d−1
p

+
d2−d +1

q
= d−1.

Because of (Stu0)± ≤ St(u0)±, it is enough to consider data that are either non-negative
or non-positive. But since v(t,y) = −u(t,−y1,y2, . . . ,(−1)nyn) is the entropy solution associ-
ated with v0(y) =−u0(−y1,y2, . . . ,(−1)nyn), it suffices to prove (11) for non-negative data and
solutions. We therefore assume from now on that u0 ≥ 0, and thus u≥ 0 over R+×Rn.

If a ∈ R, we define a symmetric matrix

M(a) =
(

ai+ j+1

i+ j+1

)
0≤i, j,≤n

.

Remarking that

M(a) =
∫ a

0
V (s)⊗V (s)ds, V (s) =

 1
...

sn

 ,

we obtain that M(a) is positive definite whenever a > 0. We have obviously

detM(a) = Hd ad2
,

where

Hd =

∥∥∥∥ 1
i+ j+1

∥∥∥∥
0≤i, j,≤n

> 0
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is the determinant of the Hilbert matrix (this is the only case where we do not write cd for a
dimensional constant).

Let us form the symmetric tensor

T (t,y) = M(u(t,y)),

with positive semi-definite values. Its first line is formed of (u, f (u)) and therefore is divergence-
free by (6). The second line is formed of (η̄(u), q̄(u)), an entropy-flux pair. It is not divergence-
free in general, although it is so away from shock waves and other singularities of the solution
u. But the entropy inequality tells us that the opposite of its divergence if a non-negative, hence
bounded measure,

µ1 =−divt,y(η̄(u), q̄(u))≥ 0.

The total mass of µ1 over a slab (0,τ)×Rn is given by

‖µ1‖=
∫
Rn

η̄(u0(y))dy−
∫
Rn

η̄(u(τ,y))dy≤
∫
Rn

η̄(u0(y))dy.

Notice that the latter bound does not depend of τ. The same situation occurs for the other lines
of T . They are of the form (η(u),q(u)) where (η,q) is an entropy-flux pair with η convex over
R+ (recall that u takes only non-negative values). The distribution

µ =−divt,y(η(u),q(u))

is therefore again a bounded measure, whose total mass over R+×Rn is bounded by∫
Rn

η(u0(y))dy.

We conclude that the row-wise divergence of T is a (vector-valued) bounded measure, whose
total mass is bounded above by

d

∑
j=2

∫
Rn

u0(y) j

j
dy.

We may therefore apply Compensated integrability (Theorems 2.2 and 2.3 of [11]) to the tensor
T , that is∫

τ

0
dt

∫
Rn
(detT )

1
d−1 dy≤ cd

(
‖T0•(0, ·)‖1 +‖T0•(τ, ·)‖1 +‖Divt,yT‖M ((0,τ)×Rn)

) d
d−1

.

Because of

‖T0•(t, ·)‖1 ≤
d

∑
j=1

∫
Rn

u(t,y) j

j
dy≤

d

∑
j=1

∫
Rn

u0(y) j

j
dy,
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we deduce

(14)
∫

τ

0
dt

∫
Rn

u
d2

d−1 dy≤ cd

(
d

∑
j=1

∫
Rn

u0(y) j dy

) d
d−1

.

The only bad feature in the estimate (14) is the lack of homogeneity of its right-hand side.
To recover a well-balanced inequality, we exploit an idea already used in [10]. We begin by
remarking that if λ > 0 is a constant parameter, then the function

v(t,y) =
1
λ

u(λt,λ2y1, . . . ,λ
dyn)

is the entropy solution associated with the initial data

v0(y) =
1
λ

u0(λ
2y1, . . . ,λ

dyn).

Applying (14) to the pair (v,v0) instead, then using∫
Rn

v0(y) jdy = λ
− j− (d−1)(d+2)

2

∫
Rn

u0(y) jdy

and (∫
∞

0

∫
Rn

v
d2

d−1 dydt
) d−1

d

= λ
−d− d2−1

2

(∫
∞

0

∫
Rn

u
d2

d−1 dydt
) d−1

d

,

we get a parametrized inequality(∫
τ

0
dt

∫
Rn

u
d2

d−1 dy
) d−1

d

≤ cdλ
d+1

2

d

∑
j=1

λ
− j

∫
Rn

u0(y) j dy.

In order to minimize the right-hand side, we choose the value

λ =

(∫
Rn

u0(y)ddy/
∫
Rn

u0(y)dy
) 1

d−1

.

The extreme terms, for j = 1 or d, contribute on a equal foot with(∫
Rn

u0(y)ddy
) 1

2
(∫

Rn
u0(y)2dy

) 1
2

.
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The other ones, which are(∫
Rn

u0(y)ddy/
∫
Rn

u0(y)dy
) d+1−2 j

2(d−1)
∫
Rn

u j
0dy,

are bounded by the same quantity, because of Hölder inequality. We end therefore with the
fundamental estimate (11).

4 Proof of Theorem 2.1
We now complete the proof of our main theorem.

4.1 The decay result
We keep working with the assumptions u0 ∈ L1∩L∞(Rn) and u0 ≥ 0.

Let us define

X(t) :=
∫
Rn

u
d2

d−1 dy = ‖u(t)‖
d2

d−1
d2

d−1

.

From the Hölder inequality, we have

‖u0‖d ≤ ‖u0‖1−θ

1 ‖u0‖θ

d2
d−1

, θ =
d(d−1)

d2−d +1
∈ (0,1).

The inequality (11) implies therefore∫
∞

0
X(t)dt ≤ cd‖u0‖α

1 X(0)β

where

β =
θ

2
, α =

d(d2 +1)
2(d−1)(d2−d +1)

.

Considering the solution v(t,y) = u(t + τ,y), whose initial data is u(τ, ·), we also have

(15)
∫

∞

τ

X(t)dt ≤ cd‖u(τ)‖α
1 X(τ)β ≤ cd‖u0‖α

1 X(τ)β.

Let us denote
Y (τ) :=

∫
∞

τ

X(t)dt.
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We recast (15) as

Y
1
β + cd‖u0‖

α

β

1 Y ′ ≤ 0.

Multiplying by Y−1/β and integrating, we infer (mind that 1− 1
β

is negative)

t + cd‖u0‖
α

β

1 Y (0)1− 1
β ≤ cd‖u0‖

α

β

1 Y (t)1− 1
β .

This provides a first decay estimate

Y (t)≤ cd‖u0‖
α

1−β

1 t−
β

1−β .

Remarking that t 7→ X(t) is a non-increasing function, so that

τ

2
X(τ)≤ Y (

τ

2
),

we deduce the ultimate decay result

X(t)≤ cd‖u0‖
α

1−β

1 t−
1

1−β .

Restated in terms of a Lebesgue norm of u(t), it says

(16) ‖u(t)‖ d2
d−1
≤ cd‖u0‖γ

1 t−δ,

where

γ =
d2 +1

d(d2−d +2)
, δ = 2

(d−1)(d2−d +1)
d2(d2−d +2)

.

4.2 The function u is an entropy solution
We already know that the functions um are entropy solutions, with initial data u0m ∈L1∩L∞(Rn).
Because of (11), we have seen that um converges towards u in the norm of Lq(R+;Lp(Rn))
whenever

1≤ p <
d2

d−1
and

d−1
p

+
d2−d +1

q
= d−1.

Because of d2

d−1 > d +1, this implies that (um)
k→ uk for every k ∈ [[1,d +1]]. Recalling that

f (s) = (s,
s2

2
, . . . ,

sd

d
) and q̄(s) = (

s3

3
, . . . ,

sd+1

d +1
),
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we see that we may pass to the limit as m→+∞ in the identity∫
∞

0
dt

∫
Rn
(um∂tφ+ f (um) ·∇yφ)dy+

∫
Rn

u0m(y)φ(0,y)dy = 0, ∀φ ∈D(R1+n),

as well as in the Kruzhkov inequalities∫
∞

0
dt

∫
Rn
(ηa(um)∂tφ+qa(um) ·∇yφ)dy+

∫
Rn

ηa(u0m(y))φ(0,y)dy≥ 0, ∀φ ∈D+(R1+n),

and in the inequality∫
∞

0
dt

∫
Rn
(η̄(um)∂tφ+ q̄(um) ·∇yφ)dy+

∫
Rn

η̄(u0m(y))φ(0,y)dy≥ 0, ∀φ ∈D+(R1+n).

Therefore u is an entropy solution with initial data u0, which satisfies in addition the entropy
inequality for the pair (η̄, q̄).

Remark. When n ≥ 2, the Compensated Integrability cannot be applied directly to the solu-
tion u, when the data is only integrable. Because we don’t know whether the jth line of T is
locally integrable if j = 3, · · · ,n+ 1 ; its last component is un+ j

n+ j , where the exponent n+ j is

larger than d2

d−1 .

5 The strategy for general fluxes f

We come back to the study of a multi-dimensional conservation law of general form (1). Fol-
lowing the ideas develloped in the Burgers case, we begin by considering a signed, bounded
initial data: u0 ∈ L1∩L∞(Rn), u0 ≥ 0. If a ∈ R+, we define a symmetric matrix

M(a) =
∫ a

0
F ′(s)⊗F ′(s)ds,

where F(s) = (s, f1(s), . . . , fn(s)). This matrix is positive definite under the non-degeneracy
condition that F([0,a]) is not contained in an affine hyperplane. We denote

∆(a) := (detM(a))
1
n ≥ 0.

Let us define T (t,y) := M(u(t,y)). Because u ∈ L∞(0,τ;L1 ∩L∞(Rn)), the tensor T is in-
tegrable over (0,τ)×Rn. The first line of T is divergence-free. The other lines are made of
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entropy-entropy flux pairs ( fi,Qi). Since fi might not be convex, we cannot estimate the mea-
sure µi =−∂t fi(u)−divyQi(u) directly by the integral of fi(u0). To overcome this difficulty, we
define a convex function φ over R+ by

φ(0) = φ
′(0) = 0, φ

′′(s) = | f ′′(s)|.

Remark that | f ′| ≤ φ′ and | f | ≤ φ. Let Φ be the entropy flux associated with the entropy φ. Then
the measure ν :=−∂tφ(u)−divyΦ(u) is non-negative and a bound of its total mass is as usual

‖ν‖ ≤
∫
Rn

φ(u0(y))dy.

We now use the kinetic formulation of (1), a notion for which we refer to [9], Theorem
3.2.1. Recall the definition of the kinetic function χ(ξ;a), whose value is sgna if ξ lies between
0 and a, and is 0 otherwise. There exists a non-negative bounded measure m(t,y,ξ) such that
the function g(t,y,ξ) = χ(ξ;u(t,y)) satisfies

∂tg+ f ′(ξ) ·∇yg =
∂

∂ξ
m, g(0,y;ξ) = χ(ξ;u0(y)).

If (η,q) is an entropy-entropy flux pair, then the measure µ =−∂tη−divyq is given by

µ =
∫
R

η
′′(ξ)dm(ξ).

We deduce that the vector-valued measure µ = (µ1, . . . ,µn) satisfies |µ| ≤ ν. This yields the
estimate

‖µ‖ ≤
∫
Rn

φ(u0(y))dy.

We may therefore apply the compensated integrability, which gives here

∫
τ

0
dt

∫
Rn

∆(u(t,y))dy≤ cd

(
‖F(u0)‖1 +‖F(u(τ))‖1 +

∫
Rn

φ(u0(y))dy
)1+ 1

n

.

Because of | f | ≤ φ and ‖φ(u(τ))‖1 ≤ ‖φ(u0)‖1, we end up with an analog of (11)

(17)
∫

∞

0
dt

∫
Rn

∆(u(t,y))dy≤ cd(‖u0‖1 +‖φ(u0)‖1)
1+ 1

n .

To improve the inequality above, we use again a scaling argument. However, because the
components f j of the flux are not homogeneous anymore, we modify simultaneously the solu-
tion and the flux, using the fact that the constant cd in (17) does not depend upon f . Our new
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dependent variables are

v(t,y) =
1
λ

u(λt,Py), v0(y) = v(0,y) =
1
λ

u0(Py)

where P ∈ GLn(R) is a matrix to be chosen later. The function v is an entropy solution of the
Cauchy problem associated with the conservation law

∂tv+divy g(v) = 0

for the flux

(18) g(s) = P−1 f (λs).

The symmetric matrix N(a) that plays the role of M(a) for (18) is given by the formula

N(s) = λRM(λs)RT , R = diag(
1
λ
,P−1).

We have detN(s) = λn−1(detP)−2 detM(λs), from which we derive∫
∞

0

∫
Rn
(detN(v))

1
n dydt = λ

− 1
n (detP)−1− 2

n

∫
∞

0

∫
Rn

∆(u)dydt.

When applying (18) to v and g, one integral in the right-hand side transforms easily:∫
Rn

v0(y)dy =
1

λdetP

∫
Rn

u0(y)dy.

The other one involves a modified function

φλ,P(s) = ψP(λs), ψ
′′
P(s) = |P−1 f ′′(s)|.

As usual ψP is fixed by ψP(0) = ψ′P(0) = 0. We have therefore∫
Rn

φP(v0(y))dy =
1

detP

∫
Rn

ψP(u0(y))dy.

All the identities above, together with (18) applied to (v,g), yield our parametrized estimate

∫
∞

0

∫
Rn

∆(u)dydt ≤ cdλ
1
n (detP)

1
n

(
1
λ

∫
Rn

u0dy+
∫
Rn

ψP(u0)dy
)1+ 1

n

.
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We optimize this inequality with respect to λ, by choosing

λ =

∫
Rn u0dy∫

Rn ψP(u0)dy
.

We infer ∫
∞

0

∫
Rn

∆(u)dydt ≤ cd(detP)
1
n

(∫
Rn

u0dy
) 1

n ∫
Rn

ψP(u0)dy.

There remains to minimize the right-hand side with respect to P :

(19)
∫

∞

0

∫
Rn

∆(u)dydt ≤ cd

(∫
Rn

u0dy
) 1

n

I[u0],

where
I[w] := inf

P∈GLn(R)
(detP)

1
n

∫
Rn

ψP(w(y))dy.

The calculation of I[w] has to be made on a case-by-case basis.

Let us define again

X(t) =
∫
Rn

∆(u(t,y))dy.

Applying (19) on an interval (τ,∞) instead, and using the decay of the L1-norm, we arrive to

∫
∞

τ

X(t)dt ≤ cd

(∫
Rn

u0dy
) 1

n

I[u(τ)].

A decay result will be obtained through a Gronwall argument, whenever we can estimate I[u(t)]
in terms of ‖u(t)‖1 and X(t).
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