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The Cauchy problem for a scalar conservation laws admits a unique entropy solution when the data u 0 is a bounded measurable function (Kruzhkov). The semi-group (S t ) t≥0 is contracting in the L 1 -distance.

For the multi-dimensional Burgers equation, we show that (S t ) t≥0 extends uniquely as a continuous semi-group over L p (R n ) whenever 1 ≤ p < ∞, and u(t) := S t u 0 is actually an entropy solution to the Cauchy problem. When p ≤ q ≤ ∞ and t > 0, S t actually maps

These results are based upon new dispersive estimates. The ingredients are on the one hand Compensated Integrability, and on the other hand a De Giorgi-type iteration.
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Notations. When 1 ≤ p ≤ ∞, the natural norm in L p (R n ) is denoted • p , and the conjugate exponent of p is p . The total space-time dimension is d = 1 + n and the coordinates are x = (t, y). In the space of test functions, D + (R 1+n ) is the cone of functions which take non-negative values. The partial derivative with respect to the coordinate y j is ∂ j , while the time derivative is ∂ t . Various finite positive constants that depend only the dimension, but not upon the solutions

Introduction

Let us consider a scalar conservation law in 1 + n dimensions (1)

∂ t u + n ∑ i=1 ∂ i f i (u) = 0, t > 0, y ∈ R n .
We complement this equation with an initial data u(0, y) = u 0 (y), y ∈ R n .

The flux f (s) = ( f 1 (s), . . . , f n (s)) is a smooth vector-valued function of s ∈ R. We recall the terminology that an entropy-entropy flux pair is a couple (η, q) where s → η(s) is a numerical function, s → q(s) a vector-valued function, such that q (s) ≡ η (s) f (s). The Kruzhkov's entropies and their fluxes form a one-parameter family:

η a (s) = |s -a|, q a (s) = sgn(u -a) ( f (u) -f (a)).
Together with the affine functions, they span the cone of convex functions.

We recall that an entropy solution is a measurable function u ∈ L 1 loc ([0, +∞) × R n ) such that f (u) ∈ L 1 loc ([0, +∞) × R n ), which satisfies the Cauchy problem in the distributional sense, (η a (u)∂ t φ + q a (u) • ∇ y φ) dy + R n η a (u 0 (y))φ(0, y) dy ≥ 0,

∀ φ ∈ D + (R 1+n ), ∀ a ∈ R. (3) 
The theory of this Cauchy problem dates back to 1970, when S. Kruzhkov [START_REF] Kružkov | First order quasilinear equations with several independent variables (in Russian)[END_REF] proved that if u 0 ∈ L ∞ (R n ), then there exists one and only one entropy solution in the class

L ∞ (R + × R n ) ∩C(R + ; L 1 loc (R n )).
The parametrized family of operators S t : u 0 → u(t, •), which map L ∞ (R n ) into itself, form a semi-group. We warn the reader that S t : L ∞ → L ∞ is not continuous, because of the onset of shock waves. Likewise, t → u(t) is not continuous from R + into L ∞ (R n ). This semi-group enjoys nevertheless nice properties. On the one hand, a comparison principle says that if u 0 ≤ v 0 , then S t u 0 ≤ S t v 0 . For instance, the solution u associated with the data u 0 is majorized by the solution ū associated with the data (u 0 ) + , the positive part of u 0 . On another hand, if v 0u 0 is integrable over R n , then S t v 0 -S t u 0 is integrable too, and (4)

R n |S t v 0 -S t u 0 |(y) dy ≤ R n |v 0 -u 0 |(y) dy.
Finally, S t maps L p ∩ L ∞ (R n ) into itself, and the function t → S t u 0 p is non-increasing.

Because of (4) and the density of

L 1 ∩ L ∞ (R n ) in L 1 (R n ),
the family (S t ) t≥0 extends in a unique way as a continuous semi-group of contractions over L1 (R n ), still denoted (S t ) t≥0 . When u 0 ∈ L 1 (R n ) is unbounded, we are thus tempted to declare that u(t, y) := (S t u 0 )(y) is the abstract solution of the Cauchy problem for [START_REF] Ph | Regularizing effects of homogeneous evolution equations[END_REF] with initial data u 0 . At this stage, it is unclear whether (S t ) t≥0 can be defined as a semi-group over some L p -space for p ∈ (1, ∞), because the contraction property (4) occurs only in the L 1 -distance, but in no other L p -distance.

An alternate construction of (S t ) t≥0 over L 1 (R n ), based upon the Generation Theorem for nonlinear semigroups, was done by M. Crandall [START_REF] Crandall | The semigroup approach to first order quasilinear equations in several space variables[END_REF], who pointed out that it is unclear whether u is an entropy solution, because the local integrability of the flux f (u) is not guaranted 1 . The following question is therefore an important one:

Identify the widest class of integrable initial data for which u is actually an entropy solution of (1).

Our most complete results are about a special case, the so-called multi-dimensional Burgers equation

(5) ∂ t u + ∂ j u 2 2 + • • • + ∂ n u n+1 n + 1 = 0,
which is a paradigm of a genuinely non-linear conservation law. This equation was already considered by G. Crippa et al. [START_REF] Crippa | Regularizing effect of nonlinearity in multidimensional scalar conservation laws. Transport equations and multi-D hyperbolic conservation laws[END_REF], and more recently by L. Silvestre [START_REF] Silvestre | Oscillation properties of scalar conservation laws[END_REF]. The particular flux in ( 5) is a prototype for genuinely nonlinear conservation laws, those which satisfy the assumption

(6) det( f , . . . , f (n+1) ) = 0.
The latter condition is a variant of the non-degeneracy condition at work in the kinetic formulation of the equation [START_REF] Ph | Regularizing effects of homogeneous evolution equations[END_REF] ; see [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] or [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF].

Our first result deals with dispersive estimates:

Theorem 1.1 Let 1 ≤ p ≤ q ≤ ∞ be two exponents. Define two parameters α, β(p, q) by

(7) α(p, q) = h(q) h(p) , h(p) := 2 + dn p and (8) β(p, q) = h(q)(δ(p) -δ(q)), δ(p) := n 2p + dn .
There exists a finite constant c d,p,q such that for every initial data u 0 ∈ L 1 ∩ L ∞ (R n ), the entropy solution u(t) of the scalar conservation law (5) satisfies (9) u(t) q ≤ c d,p,q t -β(p,q) u 0 α(p,q) p , ∀t > 0.

Remarks

• The consistency of estimates [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] with the Hölder inequality is guaranted by the property that whenever θ ∈ (0, 1), (10)

1 q = 1 -θ p + θ r =⇒    α(p, q) = 1 -θ + θα(p, r),
β(p, q) = θβ(p, r).

• The consistency under composition (p, q) ∧ (q, r) → (p, r) is ensured by the rules [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF] α(p, r) = α(p, q)α(q, r) and β(p, r) = β(q, r) + β(p, q)α(q, r)

• In one space dimension, (9) gives back well-know results, such as Theorem2 11.5.2 in [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF].

Theorem 1.1 has several important consequences. An obvious one is that the extension of (S t ) t≥0 as a semi-group over L 1 (R n ) satisfies the above estimates with p = 1 :

Corollary 1.1 If u 0 ∈ L 1 (R n ) and t > 0, then S t u 0 ∈ 1≤q≤∞ L q (R n ) and we have S t u 0 q ≤ c d,q t -κ/q u 0 1-ν/q 1 , ∀q ∈ [1, ∞],
where the exponents are given in terms of

κ = 2 d -1 d 2 -d + 2 and ν = d(d -1) d 2 -d + 2 .
The next one is that the Cauchy problem is solvable for data taken in L p (R n ) for arbitrary exponent p ∈ [1, ∞]. In particular, it solves Crandall's concern.

Theorem 1.2 Let p ∈ [1, ∞) be given. For every t ≥ 0, the operator S t :

L 1 ∩ L ∞ (R n ) → L 1 ∩ L ∞ (R n ) admits a unique continuous extension S t : L p (R n ) → L p (R n ).
The family (S t ) t≥0 is a continuous semi-group over L p (R n ). If u 0 ∈ L p (R n ), the function u(t, y) defined by u(t) = S t u 0 is actually an entropy solution of the Cauchy problem for [START_REF] Dafermos | Regularity and large time behaviour of solutions of a conservation law without convexity[END_REF] with initial data u 0 .

Finally, S t (L p (R n )) is contained in p≤q≤∞ L q (R n ) and the estimates ( 9) are valid for every data u 0 in L p (R n ).

The proof of Theorem 1.1 will be done in two steps. The first one consists in establishing the estimate (9) when q = p * is given by the formula

p * = d 1 + p n .
To this end, we apply Compensated Integrability to a suitable symmetric tensor, whose rowwise divergence is a bounded measure with controlled mass. This argument involves the theory recently developped by the first author in [START_REF] Serre | Divergence-free positive symmetric tensors and fluid dynamics[END_REF][START_REF] Serre | Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics[END_REF]. The second step is an iteration in De Giorgi's style, based on the preliminary work [START_REF] Silvestre | Oscillation properties of scalar conservation laws[END_REF] by the second author ; see also the original paper by E. De Giorgi [START_REF] Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF] or the review paper by A. Vasseur [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF]. This technique allows us to establish an L ∞ -estimate, which extends the dispersive estimate to q = +∞. Then using the Hölder inequality, we may interpolate between this result and the decay of t → u(t) p , and treat every exponent q > p.

We notice that the symmetric tensor mentionned above extends to a multi-dimensional context the one already used when n = 1 by L. Tartar [START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF] to prove the compactness of the semigroup, and by F. Golse [START_REF] Golse | Hyperbolic problems: theory, numerics and applications[END_REF] (see also [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF]) to prove some kind of regularity.

Previous dispersive estimates. In one space dimension n = 1, (5) reduces to the original Burgers equation. Its Kruzhkov solution satisfies the Oleinik inequality ∂ y u ≤ 1 t , which does not involve the initial data at all. Ph. Bénilan & M. Crandall [START_REF] Ph | Regularizing effects of homogeneous evolution equations[END_REF] proved

(12) TV u(t) 2 2 ≤ 2 u 0 1 t ,
by exploiting the homogeneity of the flux f (s) = s 2 2 . Inequality ( 12) implies an estimate ( 13)

u(t) ∞ ≤ 2 2 u 0 1 t ,
which is a particular case of Corollary 1.1 in this simplest case. C. Dafermos [START_REF] Dafermos | Regularity and large time behaviour of solutions of a conservation law without convexity[END_REF] proved a general form of ( 12) in situations where the flux f may have one inflexion point and the data u 0 has bounded variations, by a clever use of the generalized backward characteristics. His argument involves the order structure of the real line. Backward characteristics are not unique in general. Given a base point (x * ,t * ) in the upper half-plane, one has to define and analyse the minimal and the maximal ones. The description of backward characteristics seems to be much more complicated in higher space dimensions, and Dafermos' strategy has not been applied successfully beyond the 1-D case.

Enhanced decay. Because of a scaling property which will be described in the next section, the dispersion ( 9) is optimal, as long as we involve only the L p -norms, and we exclude any extra information about the initial data. It is however easy to obtain a better decay as time t goes to infinity. Let us give one example, by taking an initial data u 0 such that 0 ≤ u 0 (y) ≤ v 0 (y 1 ),

v 0 ∈ L 1 (R).
By the maximum principle, we have u(t, y) ≤ v(t, y 1 ), where v is the solution of the 1-dimensional Burgers equation associated with the initial data v 0 . We have therefore

u(t) ∞ ≤ 2 2 v 0 1 t ,
where the decay rate t -1 2 is independent of the space dimension. In particular this decay is faster than that given by Corollary 1.1 when n ≥ 3.

The way this faster decay is compatible with the optimality of ( 9) is well explained by a study of the growth of the support of the solution. In the most favorable case where the data u 0 is bounded with compact support, the argument above yields u(t) ∞ = O((1 + t) -1/2 ). It is easy to infer that the width of Supp(u(t)) in the y 1 -direction expands as O( √ t ) (one might have used the comparison with the solution v above). Likewise, the width in the y 2 -direction is an O(logt) and that in the other y k -directions remains bounded because

∞ 0 (1 + t) -k 2 dt < ∞.
On the contrary, if u 0 ∈ L 1 (R n ) has compact support but is not bounded by an integrable fonction v 0 (y 1 ) as above, Corollary 1.1 gives only u(t) ∞ = O(t -κ ). It turns out that nκ ≥ 1 when n ≥ 2, and therefore 0 t -nκ dt = +∞.

This suggest that the width of the support in the y n -direction is immediately infinite: the support of u(t) is unbounded for every t > 0. The solution has a tail in the last direction, and this tail is responsible for a slow L ∞ -decay, at rate t -κ instead of t -1 2 . This analysis suggests in particular that the fundamental solution U m , if it exists, should have an unbounded support in the space variable when n ≥ 2. The terminology denotes an entropy solution of ( 5), say a non-negative one, with the property that

U m (t) t→0+ -→ m δ y=0
in the vague sense of bounded measures. In particular,

R n U m (t, y) dy ≡ m.
This behaviour is in strong constrast with the one-dimensional situation, where

U m (t, y) = y t 1 (0, √ 2mt )
is compactly supported at every time.

The existence of a fundamental solution is left as an open problem. It should play an important role in the time-asymptotic analysis of entropy solutions of finite mass. This asymptotics has been known in one-space dimension since the seminal works by P. Lax [START_REF] Lax | Hyperbolic systems of conservation laws[END_REF] and C. Dafermos [START_REF] Dafermos | Characteristics in hyperbolic conservation laws[END_REF].

Preliminary works. The authors posted, separately, recent preprints on this subject in ArXiv database, see [START_REF] Serre | Multi-dimensional scalar conservation laws with unbounded integrable initial data[END_REF][START_REF] Silvestre | A dispersive estimate for the multidimensional Burgers equation[END_REF]. The present paper supersedes both of them.

Outline of the article. We prove a special case of the dispersive estimate [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF], that for the pairs (p, p * ), in Section 2. We treat the case (p, ∞) in Section 3. This allows us to extend the (9) to every pair (p, q) with p ≤ q. The construction of the semi-group over every L p -space is done in Section 4. We show in Section 5 how these ideas adapt to a scalar equation when the fluxes f j are monomials. The last section describes how the first argument, which involves Compensated Integrability, can be adapted to conservation laws with arbitrary flux.

Acknowledgements. We are indebted to C. Dafermos, who led us to collaborate.

2 Dispersive estimate ; the case (p, p * )

To begin with, we recall that the Burgers equation enjoys an exceptional one-parameter transformation group, a fact already noted in [START_REF] Silvestre | Oscillation properties of scalar conservation laws[END_REF] : Let u be an entropy solution of the Cauchy problem for (5) and λ be a positive constant. Then the function

v(t, y) = 1 λ u(t, λy 1 , . . . , λ n y n )
is an entropy solution associated with the initial data

v 0 (y) = 1 λ u 0 (λy 1 , . . . , λ n y n ).
The following identities will be used below:

τ 0 dt R n v(t, y) q dy = λ -q-d(d-1) 2 τ 0 dt R n u(t, y) q dy, (14) 
R n v 0 (y) q dy = λ -q-d(d-1) 2 R n u 0 (y) q dy. ( 15 
)
Let u ± 0 be the positive and negative parts of the initial data: u - 0 ≤ u 0 ≤ u + 0 with u 0 (x) ∈ {u - 0 (x), u + 0 (x)} everywhere. Denote u ± the entropy solutions associated with the data u ± 0 . By the maximum principle, we have u -≤ u ≤ u + everywhere. Because of u(t) q ≤ u -(t) q + u + (t) q and u 0 p = ( u - 0 p p + u + 0 p p ) 1/p , it suffices to proves the estimate for u ± , that is for initial data that are signed. And since v(t, y) = -u(t, -y 1 , y 2 , . . . , (-1) n y n ) is the entropy solution associated with v 0 (y) = -u 0 (-y 1 , y 2 , . . . , (-1) n y n ), it suffices to treat the case of a non-negative initial data.

We therefore suppose from now on that u 0 ∈ L 1 ∩ L ∞ (R n ) and u 0 ≥ 0, so that u ≥ 0 over R + × R n . We wish to estimate u(t) q in terms of u 0 p when q = p * = d(1 + p n ). We point out that p * > p.

A Strichartz-like inequality

If a ∈ R, we define a symmetric matrix M(a) = a i+ j+p i + j + p 0≤i, j,≤n .

Remarking that

M(a) = a 0 V (s) ⊗V (s) s p-1 ds, V (s) =    1 . . . s n    ,
we obtain that M(a) is positive definite whenever a > 0. Obviously,

det M(a) = H d,p a d(p+d-1) = H d,p a np * ,
where

H d,p = 1 i + j + p 0≤i, j,≤n > 0 is a Hilbert-like determinant.
Let us form the symmetric tensor

T (t, y) = M(u(t, y)),
with positive semi-definite values. Its row of index i is formed of (η i+p (u), q i+p (u)), an entropyflux pair where η r (s) = |s| r r is convex. In the special case where p = 1 and i = 0, it is divergencefree because of (5) itself. Otherwise, it is not divergence-free in general, although it is so wherever u is a classical solution. But the entropy inequality tells us that the opposite of its divergence if a non-negative, hence bounded measure, µ r = -div t,y (η r (u), q r (u)) ≥ 0.

The total mass of µ r over a slab (0, τ) × R n is given by

µ r = R n η r (u 0 (y)) dy - R n η r (u(τ, y)) dy ≤ R n u 0 (y) r r dy.
Since the latter bound does not depend upon τ, µ r is actually a bounded measure other R + × R n .

We conclude that the row-wise divergence of T is a (vector-valued) bounded measure, whose total mass is bounded above by n ∑ j=0 R n u 0 (y) j+p j + p dy.

We may therefore apply Compensated Integrability (Theorems 2.2 and 2.3 of [START_REF] Serre | Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics[END_REF]) to the tensor T , that is

τ 0 dt R n (det T ) 1 d-1 dy ≤ c d T 0• (0, •) 1 + T 0• (τ, •) 1 + Div t,y T M ((0,τ)×R n ) d d-1 .
Because of

T 0• (t, •) 1 = n ∑ j=0 R n u(t, y) j+p j + p dy. ≤ n ∑ j=0 R n u 0 (y) j+p j + p dy.,
we deduce ( 16)

τ 0 dt R n u p * dy ≤ c d,p n ∑ j=0 R n u 0 (y) j+p dy d d-1 .
Again, the right-hand side does not depend upon τ, thus the inequality above is true also for τ = +∞.

The only flaw in the estimate ( 16) is the lack of homogeneity of its right-hand side. To recover a well-balanced inequality, we use the scaling, in particular the formulae [START_REF] Serre | Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics[END_REF]. Applying [START_REF] Serre | Multi-dimensional scalar conservation laws with unbounded integrable initial data[END_REF] to the pair (v, v 0 ) instead, we get a parametrized inequality

∞ 0 dt R n u p * dy d-1 d ≤ c d λ d-1 2 n ∑ j=0 λ -j R n u 0 (y) j+p dy,
where λ > 0 is up to our choice. In order to minimize the right-hand side, we select the value

λ = R n u 0 (y) n+p dy/ R n u 0 (y) p dy 1 n
.

The extreme terms, for j = 0 or n, contribute on a equal foot with

R n u 0 (y) n+p dy 1 2 R n u 0 (y) p dy 1 2
.

The other ones, which are

R n u 0 (y) n+p dy/ R n u 0 (y) p dy 1 2 -j d-1
R n u j+p 0 dy, are bounded by the same quantity, because of Hölder inequality. We end therefore with the fundamental estimate of Strichartz style ( 17)

∞ 0 R n u p * dydt d-1 d ≤ c d R n u 0 (y) p+n dy 1 2 R n u 0 (y) p dy 1 2
.

Proof of estimate (9)

We shall contemplate [START_REF] Silvestre | Oscillation properties of scalar conservation laws[END_REF] as a differential inequality. To the end, we define

X(t) := R n u p * dy = u(t) p * p *
Noticing that p + n is less than p * , and using Hölder inequality, we get

R n |w| p+n dy ≤ R n |w| p dy a R n |w| p * dy b for a = p + n p + dn , b = n 2 p + dn .
The inequality [START_REF] Silvestre | Oscillation properties of scalar conservation laws[END_REF] implies therefore

∞ 0 X(t) dt 2n d ≤ c d u 0 p(1+a) p X(0) b .
Considering the solution w(t, y) = u(t + τ, y), whose initial data is u(τ, •), we also have (18

) ∞ τ X(t) dt 2n db ≤ c d u(τ) p 1+a b p X(τ) ≤ c d u 0 p 1+a b p X(τ). Let us denote Y (τ) := ∞ τ X(t) dt.
We recast [START_REF] Silvestre | A dispersive estimate for the multidimensional Burgers equation[END_REF] as

Y ρ + c d u 0 µ p Y ≤ 0, ρ := 2n db µ := p 1 + a b .
Remark that ρ = 2 p+dn dn > 2. Multiplying by Y -ρ and integrating, we infer

t + c d u 0 µ p Y (0) 1-ρ ≤ c d u 0 µ p Y (t) 1-ρ .
This provides a first decay estimate

Y (t) ≤ c d u 0 µ ρ-1 p t -1 ρ-1 . Remarking that t → X(t) is a function, so that τ 2 X(τ) ≤ Y ( τ 2 ),
we deduce the ultimate decay result

X(t) ≤ c d u 0 µ ρ-1 p t -ρ ρ-1 .
Restated in terms of a Lebesgue norm of u(t), it says ( 19)

u(t) p * ≤ c d u 0 α(p,p * ) p t -β(p,p * ) ,
where α(p, q) and β(p, q) are given in ( 7) and ( 8). This is a special case of (9).

3 General pairs (p, q) where p < q ≤ ∞ Because of (10) and of the Hölder inequality, it will be enough to prove [START_REF] Golse | Optimal regularizing effect for scalar conservation laws[END_REF] when q = +∞. Once again, it is sufficient to treat the case of non-negative data / solutions.

An estimate for (u -) +

Let > 0 be a given number. We denote w the entropy solution of ( 5) associated with the initial data (u 0 -) + + = max{u 0 , }. The function z := wis an entropy solution of a modified conservation law

∂ t z + n ∑ k=1 ∂ k (z + ) k+1 k + 1 = 0.
This is not exactly the Burgers equation for z . However the (n+2)-uplet (1, X + , . . . , . . . , (X+ ) n+1 n+1 ) is a basis of R n+1 [X]. We pass from this basis to (1, X, . . . , X n+1 n+1 ) by a triangular matrix with unit diagonal. There exists therefore a change of coordinates

t y = P t y = 1 0 . . . Q t y ,
where Q is a unitriangular matrix, such that z obeys the Burgers equation in the new coordinates:

∂z ∂t + n ∑ k=1 ∂ ∂y k z k+1 k + 1 = 0.
We may therefore apply [START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF] to z :

R n z (t, y ) p * dy 1 p * ≤ c d R n z (0, y ) p dy α(p,p * ) p t -β(p,p * ) .
Remarking that the time variable is unchanged, and the Jacobian of the change of variable y → y at fixed time equals one, we have actually

z (t) p * ≤ c d z (0) α(p,p * ) p t -β(p,p * ) .
Finally, the maximum principle tells us that u ≤ w . The inequality above is therefore an estimate of the positive part of u -:

(20) (u -) + (t) p * ≤ c d (u 0 -) + α(p,p * ) p t -β(p,p * ) .

An iteration à la De Giorgi

We now prove the L p -L ∞ estimate, in the special case where u 0 p = 1. We recall that u 0 is non-negative.

For the moment, we fix an arbitrary constant B > 0, which we will choose large enough in the end of the proof. Then we define the following sequences for k ∈ N :

t k = 1 -2 -k , k = Bt k , w k = (u -k ) + , a k = w k (t k ) p .
Remark that the sequences k and w k are increasing and decreasing, respectively. Since t 0 = 0, we have a 0 = u 0 p = 1.

For each value of k, we apply [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF] in order to estimate w k+1 (t k+1 ) p * in terms of w k+1 (t k ) p . For the sake of simplicity, we write α, β for α(p, p * ) and β(p, p * ). We get

w k+1 (t k+1 ) p * ≤ c d,p w k+1 (t k ) α p (t k+1 -t k ) -β = c d,p 2 β(k+1) w k+1 (t k ) α p ≤ c d,p 2 β(k+1) a α k .
With Hölder inequality, we have also

a k+1 = w k+1 (t k+1 ) p ≤ w k+1 (t k+1 ) p * 1 {y : w k+1 (t k+1 ,y)>0} r where 1 p = 1 p * + 1 r .
Remark that r > 1. Combining both we obtain

a k+1 ≤ c d,p 2 β(k+1) a α k |{y : w k+1 (t k+1 , y) > 0}| 1 r .
Observing that w k+1 > 0 implies w k > B2 -k-1 , we infer

a k+1 ≤ c d,p 2 β(k+1) a α k {y : w k (t k+1 , y) > B2 -k-1 } 1 r .
We now use Chebychev Inequality

{y : w k (t k+1 , y) > B2 -k-1 } 1 p ≤ B -1 2 k+1 w k (t k+1 ) p ≤ B -1 2 k+1 w k (t k ) p to deduce a k+1 ≤ c d,p B -p r 2 (β+ p r )(k+1) a α+ p r k = C2 Ck a 1+δ k B -γ .
We have set δ = α -p p * and γ = p r . By a direct computation, we verify that δ is positive:

α - p p * = p * h(p * ) -ph(p) p * h(p) = 2 p * -p p * h(p) > 0.
The sequence b k := B -γ δ a k , which starts with b 0 = B -γ δ , satisfies therefore a recurrence relation

b k+1 ≤ C2 Ck b 1+δ k . It is known that if b 0 is small enough, that is if B is large enough, then b k → 0+ as k → +∞. Equivalently, a k → 0+.
We have therefore found a constant B > 0 such that

(u -k ) + (1) p ≤ (u -k ) + (t k ) p = a k → 0 + . Since k → B, this means exactly that u(1) ∞ ≤ B.
We have thus proved that (u m ) m>0 is a Cauchy sequence in C 0 (τ, ∞; L r (R n )), hence is convergent in this space. If b m is another approximating sequence for u 0 , and u m the corresponding solution of the Cauchy problem, we may form an approximating sequence c m in the sense of Lemma 4.1, by alterning b 1 , b 1 , b 2 , b 2 , . . .. The sequence u 1 , u 1 , u 2 , u 2 , . . . will be convergent in the sense above. This shows that the limit of u m does not depend upon the precise sequence (b m ) m>0 chosen above. Thus we may set

S t u 0 :== lim m→+∞ u m (t), which defines a u ∈ C b (R + ; L p (R n )) p<r<∞ C 0 (0, +∞; L r (R n )).
There remains to prove that u is an entropy solution of [START_REF] Dafermos | Regularity and large time behaviour of solutions of a conservation law without convexity[END_REF]. For this, we use the fact that u m is itself an entropy solution, and the convergence stated above ensures that every monomial (u m ) j in the flux f (u m ), converges towards u j in L 1 loc . The fact that u(0) = u 0 follows from u m (0) = b m , the L p -convergence b m → u 0 , and the uniform convergence u m (t) → u(t) in L p (R n ).

Other "monomial" scalar conservation laws

We consider in this section conservation laws whose fluxes are monomial. Denoting m k (s) = s k+1 k+1 , they bear the form (23)

∂ t u + ∂ 1 m k 1 (u) + • • • + ∂ n m k n (u) = 0, where 0 < k 1 < • • • < k n are integers.
The time derivative may be written as well ∂ t m k 0 (u) with k 0 = 0. As before, we may restrict to non-negative initial data u 0 that belong to L 1 ∩ L ∞ (R n ). Given an exponent p ≥ 1, our symmetric tensor if T (t, y) = M(u(t, y)) where now M(a) := m p+k i +k j -1 (a) 0≤i, j≤n .

Notice that M(a) is symmetric, and its upper-left entry is a p p . Because of

M(a) = a 0 s p-1 V (s) ⊗V (s) ds, V (s) :=    s k 0 . . . s k n    ,
We may now continue the analysis with a Gronwall argument, provided p + k n ∈ (p, Q]. We leave the interested reader to check the details. Our first dispersion estimate is

(25) u(t) Q ≤ c d,p t -β(p) u 0 α(p) p ,
whenever p ≥ nk n -2K (remark that for the Burgers equation, this restriction is harmless).

At this stage, it seems that we miss an argument in order to carry out the De Giorgi technique, because the conservation law satisfied by uwill be a different one. Whether it can be done here and for general conservation laws is left for a future work. What we can do at least is to combine the estimates (25) in order to cover pairs (p, q) of finite exponents. For instance, starting from a pair (p, Q) as above and chosing p 1 = Q, we have a corresponding Q 1 such that (25) applies with (p 1 , Q 1 ) instead of (p, Q). We infer

u(t) Q 1 ≤ c d,Q (t/2) -β(Q) u(t/2) α(Q) Q ≤ c d,p t -β(Q)-α(Q)β(p) u 0 α(p)α(Q) p .
Because the iteration p → Q defines a sequence which tends to +∞, and using the Hölder inequality to fill the gaps, we deduce the dispersion inequalities for the monomial conservation law: Theorem 5.1 For the scalar conservation law (23) with monomial fluxes, there exist finite constants c d,p,q such that whenever p ≥ nk n -2K, q ∈ [p, ∞) and u 0 ∈ L p ∩ L ∞ (R n ), we have u(t) q ≤ c d,p,q t -β(p,q) u 0 α(p,q) p .

The exponents are given by the formula

α(p, q) = h(q) h(p) , h (p 
) := 1 + K p and β(p, q) = n α(p, q) p - 1 q .
As in the case of the Burgers equation, we can use these estimates in order to define the semi-group over L p -spaces: Corollary 5.1 The semi-group (S t ) t≥0 for equation (23) extends by continuity as a continuous semi-group over L p (R n ) for every p ∈ [1, +∞) such taht p ≥ nk n -2K. It maps L p (R n ) into L q (R n ) for every q ∈ [p, ∞). If u 0 ∈ L p (R n ), then the function u(t, y) := (S t u 0 )(y) is an entropy solution with initial data u 0 .

Compensated integrability for general fluxes f

We consider now a multi-dimensional conservation law of the most general form [START_REF] Ph | Regularizing effects of homogeneous evolution equations[END_REF]. Following the ideas developped in the Burgers and monomial cases, we begin by considering a signed, bounded initial data: u 0 ∈ L 1 ∩ L ∞ (R n ), u 0 ≥ 0. If a ∈ R + , we define a symmetric matrix M g (a) = a 0 g(s)Z (s) ⊗ Z (s) ds, where Z(s) = ( f 0 (s) = s, f 1 (s), . . . , f n (s)) and g is some positive function. This matrix is positive definite under the non-degeneracy condition that Z([0, a]) is not contained in an affine hyperplane. We denote ∆ g (a) := (det M g (a))

1 n ≥ 0.
Let us define T (t, y) := M φ (u(t, y)). Because of u ∈ L ∞ (R + ; L 1 ∩ L ∞ (R n )), the tensor T is integrable over (0, τ) × R n . Each row of T is made of entropy-entropy flux pairs (F i , Q i ). Since F i might not be convex, we cannot estimate the measure µ i = -∂ t F i (u)div y Q i (u) directly by the integral of F i (u 0 ). To overcome this difficulty, we define a convex function φ g over R + by φ g (0) = φ g (0) = 0, φ g (s) = |F (s)|,

where F = (F 0 , . . . , F n ). Remark that |F | ≤ φ g and |F| ≤ φ g . Let Φ g be the entropy flux associated with the entropy φ g . Then the measure ν g := -∂ t φ g (u)div y Φ g (u) is non-negative and a bound of its total mass is as usual

ν g ≤ R n
φ g (u 0 (y)) dy.

We now use the kinetic formulation of (1), a notion for which we refer to [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], Theorem 3.2.1. Recall the definition of the kinetic function χ(ξ; a), whose value is sgn a if ξ lies between 0 and a, and is 0 otherwise. There exists a non-negative bounded measure m(t, y, ξ) such that the function w(t, y, ξ) = χ(ξ; u(t, y)) satisfies

∂ t w + f (ξ) • ∇ y w = ∂ ∂ξ m,
w(0, y; ξ) = χ(ξ; u 0 (y)).

If (η, q) is an entropy-entropy flux pair, then the measure µ = -∂ t ηdiv y q is given by µ = R η (ξ)dm(ξ).

(

  u∂ t φ + f (u) • ∇ y φ) dy + R n u 0 (y)φ(0, y) dy = 0, ∀φ ∈ D(R 1+n ), together with the entropy inequalities ∞ 0 dt R n

Except of course in the case where f is globally Lipschitz.

Mind that this statement contains a typo, as the choice r = 1 -1 p in Theorem 11.5.1 yields the exponent -1 p+1 instead of -p p+1 .
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End of the proof of dispersive estimates

Let u 0 ∈ L 1 ∩ L ∞ (R n ) be non-negative. For two positive parameters λ, µ, the entropy solution associated with the data v 0 (y) = 1 λ u 0 (µλy 1 , . . . , µλ n y n )

is the function v(t, y) = 1 λ u(µt, µλy 1 , . . . , µλ n y n ). Eliminating λ with (21), this gives

If

which is nothing but the dispersive estimate ( 9) for q = +∞.

There remains to pass from q = +∞ to every q ∈ [p, +∞]. We do that by applying the Hölder inequality. Writing

We conclude by using the relations [START_REF] Kružkov | First order quasilinear equations with several independent variables (in Russian)[END_REF]. [START_REF] Dafermos | Characteristics in hyperbolic conservation laws[END_REF] The L p -semi-group for finite exponents

We now prove Theorem 1.2. We start with a remark about L p -spaces.

Decomposing our function as a = a 1 + a ∞ where

we may form the sequence of bounded functions b

Let u 0 ∈ L p (R n ) be given. In order to define S t u 0 , we consider a sequence b m that approximates u 0 in the sense of Lemma 4.1. Remark that we do not care about the construction of b m , as we only use the properties stated in the Lemma.

To begin with, u m (t) := S t b m is well-defined and belongs to L ∞ (R n ). Because of ( 9), we have (22) u m (t) q ≤ c d,p,q b m α(p,q) p t -β(p,q) ≤ C p,q (u 0 )t -β(p,q) .

The sequence (u m ) m>0 is thus bounded in C 0 (τ, ∞; L q (R n )) for every q ∈ [p, ∞) and every τ > 0.

The contraction property gives us

Let r, q be exponents satisfying p ≤ r < q < ∞. By Hölder inequality, we have

where θ ∈ (0, 1]. With (22), we infer that

it positive definite whenever a > 0. We have

As above, the lines of T are made of entropy-entropy flux pairs of the equation ( 23). Its row-wise divergence is therefore a vector-valued bounded measure. Compensated integrability yields again an inequality

The conservation law is invariant under the scaling

Applying the estimate above to v, we obtain a parametrized inequality :

u 0 (y) p+k j dy.

We now choose λ = Applying this calculation to the interval (τ, +∞), and using the decay of the L p -norm, we infer

We deduce that the vector-valued measure µ = (µ 0 , . . . , µ n ) satisfies |µ| ≤ ν g . This yields the estimate µ ≤ R n φ g (u 0 (y)) dy.

We may therefore apply the compensated integrability, which gives here

φ g (u 0 (y)) dy Whether (26) can be used to prove dispersive estimates depends of the amount of nonlinearity of the equation [START_REF] Ph | Regularizing effects of homogeneous evolution equations[END_REF]. We leave this question for a future work.