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FOURIER EXPANSIONS AT CUSPS

FRANÇOIS BRUNAULT AND MICHAEL NEURURER

Abstract. In this article we study the number fields generated by the Fourier coefficients
of modular forms at arbitrary cusps. We prove that these fields are contained in certain
cyclotomic extensions of the field generated by the Fourier coefficients at ∞, and show that
this bound is tight in the case of newforms with trivial Nebentypus. The main tool is an
extension of a result of Shimura on the interplay between the actions of SL2(Z) and Aut(C)
on spaces of modular forms. We give two new proofs of this result: one based on products
of Eisenstein series, and the other using the theory of algebraic modular forms.

1. Introduction

In this article we study the number fields generated by the Fourier coefficients of modular
forms at the cusps of X1(N). To do this we study the connections between two actions
on spaces of modular forms: the action of GL+

2 (Q) via the slash-operator and the action
of Aut(C) on the Fourier coefficients of a modular form. A detailed study of these actions
was conducted by Shimura in [16], where he proved a formula for the action of Aut(C) on
f |g for modular forms of even weight. In Theorem 3.3 we give an extension of his result to
modular forms of any integral weight and provide two new proofs of it: one using a theorem
of Khuri-Makdisi [11] on products of Eisenstein series, and the other using Katz’s theory of
algebraic modular forms [10].
We use this theorem to bound the fields generated by the Fourier coefficients of modular
forms at the cusps. Let us assume for simplicity that f is a modular form in Mk(Γ0(N)),
and let g = ( A B

C D ) ∈ SL2(Z). We show in Theorem 4.1 that the coefficients of f |g lie in the
cyclotomic extension Kf (ζN ′), where Kf is the number field generated by the coefficients of
f , and N ′ = N/ gcd(CD,N). In the case f has non-trivial Nebentypus, we show in Theorem
4.4 that the coefficients of f |g belong to a 1-dimensional Kf (ζN ′)-vector space, which is itself
contained in an explicit cyclotomic extension Kf (ζM).
We apply these results in Section 5 to find number fields that contain the Atkin–Lehner
pseudo-eigenvalues of a newform, recovering a result of Cohen in [4].
In Section 6 we discuss how to choose g among the matrices in SL2(Z) that map ∞ to a
given cusp α ∈ P1(Q) so that N ′ (or M) becomes minimal. Assuming that f ∈ Mk(Γ0(N))
is an eigenfunction of the Atkin–Lehner operators, we describe how to further reduce N ′ by
potentially replacing α with its image under a suitable Atkin–Lehner operator. The Fourier
expansion of f |g can then easily be obtained from another Fourier expansion f |g′ which has
coefficients in the field Kf (ζgcd(δ,N/δ)), where δ = gcd(C,N) is the denominator of the cusp
α = A/C. Note that Q(ζgcd(δ,N/δ)) is the field of definition of the cusp α in the canonical
model of X0(N) over Q.

The second author was partially funded by the DFG-Forschergruppe 1920 and the LOEWE research unit
“Uniformized Structures in Arithmetic and Geometry”.
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In the last section, we prove in Theorem 7.6 that if f is a newform for Γ0(N) then the number
field provided by Theorem 4.1 is the best possible, in the sense that it is the number field
generated by the coefficients of f |g.
Recently three algorithms for the computation of the Fourier expansion of f |g have appeared:
two algorithms in SageMath, one by Dan Collins [5] and another by Martin Dickson and the
second author [8]. The third algorithm was implemented in PARI/GP by Karim Belabas
and Henri Cohen [4]. While the first algorithm only uses numerical approximations of the
Fourier coefficients in order to compute Petersson inner products, the latter two calculate
the Fourier coefficients as algebraic numbers. The knowledge of the number field (or vector
space) generated by the Fourier coefficients of f |g could provide a significant speed-up for
these calculations.
Acknowledgements: We thank Henri Cohen for encouraging us to write this article.
We are grateful to Abhishek Saha for pointing out an alternative approach to the Theorems
in Section 4, sketched in Remark 4.8.

Notations. For any integer k ∈ Z, we define the weight k action of GL+
2 (R) on functions

f : H → C by

f |kg(τ) =
det(g)k/2

(cτ + d)k
f
(aτ + b

cτ + d

) (
g =

(
a b
c d

)
∈ GL+

2 (R)

)
.

We will usually omit k from the notation and just write f |g for f |kg.
The automorphism group Aut(C) acts on spaces of modular forms as follows: for any modular
form f(τ) =

∑
n ane

2πinτ/w, we let

fσ(τ) =
∑
n

σ(an)e2πinτ/w (σ ∈ Aut(C)).

For any integer N ≥ 1, we denote ζN = e2πi/N ∈ C.

2. Eisenstein series

2.1. Definitions. We refer the reader to [9, §3] for more details on Eisenstein series.
For integers k ≥ 1, N ≥ 1 and a, b ∈ Z/NZ, define the series

E
(k)
a,b (τ) =

(k − 1)!

(−2πi)k

∑
ω∈Zτ+Z

ω 6=−(ãτ+b̃)/N

1

(ω + ãτ+b̃
N

)k|ω + ãτ+b̃
N
|2s

∣∣∣∣∣
s=0

where ã, b̃ denote any representatives of a, b in Z, and ·|s=0 denotes analytic continuation to
s = 0 (this is needed only when k ∈ {1, 2}). It follows from the definition that the weight k

action of SL2(Z) on these series is given by E
(k)
a,b |g = E

(k)
(a,b)g for every matrix g ∈ SL2(Z). In

particular, the function E
(k)
a,b is modular of weight k with respect to the principal congruence

subgroup Γ(N). If k 6= 2, then E
(k)
a,b is a holomorphic Eisenstein series of weight k with

respect to Γ(N). If k = 2, then Ẽ
(2)
a,b := E

(2)
a,b − E

(2)
0,0 is a holomorphic Eisenstein series of

weight 2 with respect to Γ(N).
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2.2. Fourier expansions. We refer the reader to [10, §3] and [15, Chap. VII] for proofs of
the following facts.

If k 6= 2, then the Fourier expansion of E
(k)
a,b is given by

E
(k)
a,b (τ) = a0(E

(k)
a,b ) +

∑
m,n≥1
m≡a(N)

ζbnN n
k−1qmn/N + (−1)k

∑
m,n≥1

m≡−a(N)

ζ−bnN nk−1qmn/N (q = e2πiτ ).

If k = 2, then the Fourier expansion of Ẽ
(2)
a,b is given by

Ẽ
(2)
a,b (τ) = a0(Ẽ

(2)
a,b ) +

∑
m,n≥1
m≡a(N)

ζbnN nq
mn/N +

∑
m,n≥1

m≡−a(N)

ζ−bnN nqmn/N − 2
∑
m,n≥1

nqmn.

The constant terms a0(E
(k)
a,b ) and a0(Ẽ

(2)
a,b ) are elements of Q(ζN) and are given in [9, 3.10] and

[3, §3]. We will not need the precise expressions since modularity determines them uniquely.

Proposition 2.1. Let g = ( A B
C D ) ∈ SL2(Z) and σ ∈ Aut(C) such that σ(ζN) = ζλN with

λ ∈ (Z/NZ)×. If k 6= 2, then

(E
(k)
a,b |g)σ = (E

(k)
a,b )σ|gλ,

where gλ is any lift in SL2(Z) of the matrix
(

A λB
λ−1C D

)
∈ SL2(Z/NZ). If k = 2, then the

same statement holds with E
(2)
a,b replaced by Ẽ

(2)
a,b .

Proof. Note that (E
(k)
a,b )σ = E

(k)
a,λb, so that

(E
(k)
a,b |g)σ = E

(k)
aA+bC,λ(aB+bD) = E

(k)
a,λb

∣∣∣( A λB
λ−1C D

)
= (E

(k)
a,b )σ|gλ.

The argument for Ẽ
(2)
a,b is similar. �

3. The actions of SL2(Z) and Aut(C) on modular forms

In this section we investigate the connection between the natural actions of SL2(Z) and
Aut(C) on modular forms.
Let us first recall Khuri-Makdisi’s result [11] giving generators of the graded algebra of
modular forms. Let RN be the subalgebra of M∗(Γ(N)) =

⊕
k≥0Mk(Γ(N)) generated by

the Eisenstein series E
(1)
a,b with a, b ∈ Z/NZ.

Theorem 3.1. [11] If N ≥ 3, then RN contains all modular forms on Γ(N) of weight 2 and
above. In other words, RN misses only the cusp forms of weight 1 on Γ(N).

Proof. This follows from combining [11, Theorem 3.5, Remark 3.14, Theorem 5.1]. The link
between our notations and Khuri-Makdisi’s notations is

E
(1)
a,b (τ) = − 1

2πi
G1

(
τ,
aτ + b

N

)
=

1

2πi
λ(aτ+b)/N ,

see [11, Definition 2.1 and Corollary 3.13]. �
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Remark 3.2. If N = 2, then the algebra M∗(Γ(2)) is generated by the weight 2 Eisenstein

series Ẽ
(2)
1,0 , Ẽ

(2)
0,1 and Ẽ

(2)
1,1 , the only relation being Ẽ

(2)
1,0 + Ẽ

(2)
0,1 + Ẽ

(2)
1,1 = 0, see [11, Remark

3.6]. Of course, if N = 1 then M∗(SL2(Z)) is freely generated by the usual Eisenstein series
of weight 4 and 6.

The following theorem is an extension of Shimura’s result [16, Theorem 8] which deals with
the case of modular forms of even weight. We note however, that Shimura works with a
much wider class of functions, including Hilbert modular forms and also certain derivatives
of them. His methods can be extended to provide a full proof of Theorem 3.3, but we will
give two new proofs of it, the first using Khuri-Makdisi’s Theorem 3.1. The second proof
uses Katz’s theory of algebraic modular forms and is given in the appendix along with a
brief introduction to the theory of algebraic modular forms.

Theorem 3.3. Let f ∈ Mk(Γ(N)) be a modular form of weight k ≥ 1 and level Γ(N). Let
g = ( A B

C D ) ∈ SL2(Z) and σ ∈ Aut(C) such that σ(ζN) = ζλN with λ ∈ (Z/NZ)×. Then

(f |g)σ = fσ|gλ,
where gλ is any lift in SL2(Z) of the matrix

(
A λB

λ−1C D

)
∈ SL2(Z/NZ).

First proof. Let us assume N ≥ 3, and let f ∈ RN . The maps h 7→ (h|g)σ and h 7→ hσ|gλ
are both σ-linear ring homomorphisms. We are thus reduced to the case f = E

(1)
a,b , which

follows from Proposition 2.1. If f ∈ S1(Γ(N)), then f 2 and f 3 are in RN , so Theorem 3.3
holds for them. Using f = f 3/f 2, we get (f |g)σ = fσ|gλ. In the case N = 2, we proceed

similarly by applying Proposition 2.1 to Ẽ
(2)
a,b . Finally, the case N = 1 is trivial. �

Remark 3.4. If we restrict to modular forms on Γ1(N), then Theorem 3.3 also follows from
the result of Borisov and Gunnells [2, Thm 5.15] that all modular forms of sufficiently large
weight are toric.

By Theorem 3.3, the space Mk(Γ(N);Q(ζN)) of modular forms with coefficients in Q(ζN)
is stable under the weight k action of SL2(Z). It is thus endowed with a right action of
SL2(Z/NZ). The Galois group Gal(Q(ζN)/Q) also acts on Mk(Γ(N);Q(ζN)), by means of
the usual action on the Fourier expansion. But more is true: for any f ∈Mk(Γ(N);Q(ζN)),
let us define

f
∣∣∣(1 0

0 λ

)
= fσλ (λ ∈ (Z/NZ)×),

where σλ ∈ Gal(Q(ζN)/Q) is the automorphism defined by σλ(ζN) = ζλN . Then the above
actions of SL2(Z/NZ) and (Z/NZ)× combine to give a right action of GL2(Z/NZ) on
Mk(Γ(N);Q(ζN)). Indeed

(1) g

(
1 0
0 λ

)
=

(
A λB
C λD

)
=

(
1 0
0 λ

)(
A λB

λ−1C D

)
=

(
1 0
0 λ

)
gλ

and Theorem 3.3 says precisely that both sides of this equality act in the same way on

Mk(Γ(N);Q(ζN)). Note also that with this definition, the identities E
(k)
a,b |g = E

(k)
(a,b)g for

k 6= 2 and Ẽ
(2)
a,b |g = Ẽ

(2)
(a,b)g are true for any g ∈ GL2(Z/NZ).

Remark 3.5. Let Ỹ (N) be the model of Γ(N)\H over Q(ζN) constructed in [17, Chapter
6]. The automorphism group of the Q-scheme Ỹ (N) contains GL2(Z/NZ). This gives
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a right action of GL2(Z/NZ) on the function field Q(ζN)(Ỹ (N)), which is a subfield of
Q(ζN)((q1/N)). The action of SL2(Z/NZ) is the slash action of weight 0, and the action
of the diagonal matrix ( 1 0

0 λ ) with λ ∈ (Z/NZ)× coincides with the natural action of σλ.
Shimura’s original proof of Theorem 3.3 relies on this fact.

Corollary 3.6. Let f ∈ Mk(Γ0(N), χ) be a nonzero modular form of weight k ≥ 1, level
N ≥ 1 and Nebentypus character χ. Then the field Kf generated by the Fourier coefficients
of f contains the field Q(χ) generated by the values of χ.

Proof. We have to prove that every σ ∈ Aut(C/Kf ) fixes Q(χ). Let g ∈ Γ0(N). Then
f |g = χ(g)f . Applying σ, we get (f |g)σ = χ(g)σf . But Theorem 3.3 implies

(f |g)σ = fσ|gλ = f |gλ = χ(gλ)f = χ(g)f,

so that χ = χσ. �

Remark 3.7. Corollary 3.6 can also be proved using Katz’s theory of algebraic modular forms
(see the Appendix), noting that the diamond operators 〈δ〉, δ ∈ (Z/NZ)× are defined over
Q, hence leave stable the space Mk(Γ1(N);K) of modular forms with coefficients in a fixed
subfield K of C.

4. Bounding the coefficient field of f |g

Theorem 4.1. Let f ∈ Mk(Γ1(N)) be a modular form of integral weight k ≥ 1 on Γ1(N).
Let Kf be the subfield of C generated by the Fourier coefficients an(f), n ≥ 1. Let g =
( A B
C D ) ∈ SL2(Z).

(1) The modular form f |kg has coefficients in Kf (ζM) with M = N/ gcd(C,N).
(2) If f ∈Mk(Γ0(N)) then f |kg has coefficients in Kf (ζN ′) with N ′ = N/ gcd(CD,N).

Proof. Let σ ∈ Aut(C). By Theorem 3.3, a sufficient condition for f |g being fixed by σ is
given by fσ = f = f |gλg−1, where σ(ζN) = ζλN . We have

(2) gλg
−1 ≡

(
AD − λBC AB(λ− 1)
CD(λ−1 − 1) AD − λ−1BC

)
modN.

We see that gλg
−1 ∈ Γ0(N) if and only if λ ≡ 1 modN ′. If f ∈Mk(Γ0(N)), then f |g is fixed

by every σ ∈ Aut(C/Kf (ζN ′)), hence has coefficients in Kf (ζN ′), which proves (2).
Furthermore AD−λBC = 1+BC(1−λ) so that gλg

−1 ∈ Γ1(N) if and only if λ ≡ 1 modN ′

and λ ≡ 1 modN/ gcd(BC,N). Since B and D are coprime, the conjunction of these
conditions is equivalent to λ ≡ 1 modN/ gcd(C,N). This proves (1). �

We now turn to modular forms with characters. We will actually bound not only the field
of coefficients of f |g, but also the vector space generated by the coefficients of f |g.
In order to state our results, we need some more notation. Let f ∈ Mk(Γ0(N), χ), where
χ is a Dirichlet character of conductor m dividing N , and let g = ( A B

C D ) ∈ SL2(Z). Put
N ′ = N/ gcd(CD,N), m′ = m/ gcd(BC,m) and M = lcm(N ′,m′). Let K = Kf (ζN ′)
and L = Kf (ζM). Since L = K(ζm′), the extension L/K is abelian and its Galois group
G = Gal(L/K) identifies with a subgroup G′ of (Z/m′Z)× by means of the cyclotomic
character λ : G → (Z/m′Z)×. Since Gal(L/K) ∼= Gal(Q(ζm′)/K

′) with K ′ = K ∩ Q(ζm′),
the subgroup G′ ⊂ (Z/m′Z)× corresponds to the subfield K ′ ⊂ Q(ζm′).
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Lemma 4.2. The map χg : G→ C× defined by

χg(σ) = χ(AD − λ(σ)−1BC) (σ ∈ G)

is a group homomorphism.

Proof. Let σ ∈ G. Note that m′BC is divisible by m, so that AD − λ(σ)−1BC is well-
defined in Z/mZ. Let λN(σ) ∈ (Z/NZ)× denote the cyclotomic character modulo N . Since
λN(σ) ≡ 1 modN ′, the identity (2) shows that gλN (σ)g

−1 is upper-triangular modulo N . It
follows that AD−λN(σ)−1BC ∈ (Z/NZ)× and thus AD−λ(σ)−1BC ∈ (Z/mZ)×. Therefore
the map χg is well-defined.
Let us show that χg is a group homomorphism. We may write χg as the composition

G
λ−→ G′

ψ−→ (Z/mZ)×
χ−→ C×

where ψ is defined by ψ(µ) = AD − µ−1BC. Using the relation (1), we get the following
identity in GL2(Z/NZ)

gµµ′g
−1 =

(
1 0
0 µ−1

)
gµ′g

−1
(

1 0
0 µ

)
gµg

−1 (µ, µ′ ∈ (Z/NZ)×).

Specialising to the case µ, µ′ ≡ 1 modN ′ and comparing the bottom-right entries, we deduce
that ψ is a group homomorphism. �

Note that the character χg takes values in Q(χ)×, which is contained in K×f by Corollary
3.6. By the normal basis theorem, L is a free K[G]-module of rank 1. Since Kf is contained
in K, the character χg cuts out a K-line Lχg in L, namely

(3) Lχg = {x ∈ L : ∀σ ∈ G, σ(x) = χg(σ)x}.

We are now ready to state our result.

Theorem 4.3. The modular form f |g has coefficients in Lχg .

Proof. Let σ ∈ Aut(C/K) with σ(ζN) = ζλN . Since λ ≡ 1 modN ′, we have gλg
−1 ∈ Γ0(N).

Then

(4) (f |g)σ = fσ|gλ = f |gλg−1g = χ(AD − λ−1BC)f |g = χg(σ|L)f |g.

In particular f |g is fixed by Aut(C/L), hence has coefficients in L. Moreover (4) shows that
f |g has coefficients in Lχg . �

We summarise our result and make it slightly more precise as follows.

Theorem 4.4. Let f ∈ Mk(Γ0(N), χ), where χ is a Dirichlet character of conductor m
dividing N , and let g = ( A B

C D ) ∈ SL2(Z). Put N ′ = N/ gcd(CD,N), m′ = m/ gcd(BC,m)
and M = lcm(N ′,m′). Then f |kg has coefficients in Kf (ζM).
More precisely, let G′ be the subgroup of (Z/m′Z)× corresponding to the abelian number
field Kf (ζN ′) ∩Q(ζm′), and let ζ be any m′-th root of unity such that

cχ,g :=
∑
µ∈G′

χ(AD − µBC)ζµ

is nonzero (such a ζ always exists). Then f |kg has coefficient in cχ,g ·Kf (ζN ′).
6



Proof. The fact that f |g has coefficients in L = Kf (ζM) was proved in Theorem 4.3. Let
K = Kf (ζN ′) and let πχg : L → Lχg be the K-linear projector associated to the linear
character χg : G→ K×. It is given explicitly by

πχg(x) =
1

|G|
∑
τ∈G

χg(τ
−1)τ(x) (x ∈ L).

Since L is generated as a K-vector space by the m′-th roots of unity, there exists ζ ∈ µm′
such that πχg(ζ) 6= 0. We set cχ,g = |G| · πχg(ζ), so that

cχ,g =
∑
τ∈G

χg(τ
−1)τ(ζ) =

∑
τ∈G

χg(τ
−1)ζλ(τ) =

∑
µ∈G′

χ(AD − µBC)ζµ.

By Theorem 4.3, the modular form f |g has coefficients in Lχg = cχ,g ·K. �

Remark 4.5. The choice ζ = ζm′ does not always work. For example, take the newform f
of weight k = 3, level N = 9 and character χ of conductor m = 9, with χ(4) = ζ3 and
χ(−1) = −1. We have Kf = Q(χ) = Q(ζ3). Taking g = ( 0 −1

1 3 ), we get N ′ = 3, m′ = 9 and
G′ = {1, 4, 7}, so that cχ,g = 0 for ζ = ζ9. On the other hand, for ζ = ζ29 we get cχ,g = 3ζ29
and f |g indeed has coefficients in ζ29 ·Q(ζ3) = 〈ζ29 , ζ59 〉Q.

Remark 4.6. Theorem 4.4 says that the coefficients of f |g belong to a vector space which
has the same dimension as in the Γ0(N) case.

Remark 4.7. Theorem 4.3 also shows that the coefficients of f |g lie in the fixed field Lkerχg .
Let χ′g : G′ → C× be the character defined by χ′g(µ) = χ(AD−µ−1BC) (using the notations

of the proof of Lemma 4.2, we have χ′g = χ ◦ ψ and χg = χ′g ◦ λ). Then the field Lkerχg is
equal to the composite F ·Kf (ζN ′), where F is the subfield of Q(ζm′) corresponding to the
kernel of χ′g.

Remark 4.8. An alternative approach towards proving Theorems 4.1 and 4.4 would be to
use local Whittaker newforms as in [6]. In particular Proposition 3.3 in loc. cit. gives an
explicit formula for the Fourier coefficients of f |g in terms of Whittaker newforms and the
Galois action on such newforms is described in the proof of Proposition 2.17.

5. Atkin-Lehner operators

For a divisor Q of N with gcd(Q,N/Q) = 1 we define the Atkin-Lehner operator on
Mk(Γ1(N)) as follows. Choose x, y, z, w ∈ Z with x ≡ 1 modN/Q and y ≡ 1 modQ
such that the matrix WQ =

(
Qx y
Nz Qw

)
has determinant Q. Note that WQ = hQ

(
Q 0
0 1

)
with

hQ =
(

x y
N
Q
z Qw

)
∈ SL2(Z). For a modular form f ∈Mk(Γ1(N)) we have

f |kWQ(τ) = Qk/2 (f |khQ) (Qτ).

Therefore we can apply our previous results to find a module that contains the coefficients
of f |hQ, or equivalently the coefficients of Q−k/2f |WQ, and reprove a theorem of Cohen.

Corollary 5.1 (Theorem 2.6 in [4]). Let Q be a maximal divisor of N and let f ∈Mk(Γ1(N))
and Kf be the subfield of C generated by its Fourier coefficients. Then

(1) The modular form f |kWQ has coefficients in Qk/2 ·Kf (ζQ).
7



(2) If f ∈Mk(Γ0(N), χ) for a character χ of conductor m, then f |kWQ has coefficients in
Qk/2G′(χQ) ·Kf , where G′(χQ) is the Gauss sum of the primitive character associated
to the Q-part of χ.

Proof. The first statement follows directly from Theorem 4.1.
Now let f ∈ Mk(Γ0(N), χ). We will prove that the coefficients of f |hQ lie in G′(χQ) · Kf ,
which is equivalent to the second statement. First we determine the character χhQ from the
previous section. Splitting χ as a product of its Q-part and its N/Q-part we observe

χhQ(σ) = χQ(−N
Q
zyλ(σ)−1)χN/Q(Qwx) = χQ(λ(σ)−1) = χQ(σ).

The conclusion now follows from Theorem 4.4. Since N ′ = 1, m′ = mQ, and for ζ = ζm′ we
have cχ,hQ = G′(χQ). �

Let f ∈ Sk(Γ0(N), χ) be a newform. Then according to [1, §1] there exists a newform

f̃ ∈ Sk(Γ0(N), χQχN/Q) and an algebraic number λQ(f) of absolute value 1 such that

(5) f |WQ = λQ(f)f̃ .

The number λQ(f) is called the pseudo-eigenvalue of f at Q. By looking at the first Fourier
coefficient in (5), we get the following result.

Corollary 5.2. If f ∈ Sk(Γ0(N), χ) is a newform, then the pseudo-eigenvalue λQ(f) is in

Qk/2G′(χQ) ·Kf and f̃ has coefficients in Kf .

This should be compared to the following theorem of Atkin-Li, where an explicit formula for
λQ(f) is derived in a special case.

Theorem 5.3. [1, Theorem 2.1] Let f =
∑

n ane
2πinτ ∈ Sk(Γ0(N), χ) be a newform, q be a

prime dividing N and Q = Nq. If aq 6= 0, then

λQ(f) = Qk/2−1G(χQ)

aQ
,

where G(χQ) =
∑

u∈(Z/QZ)× χQ(u)e2πiu/Q is the Gauss sum of χQ.

6. Optimising the coefficient field

We may reduce the number fields provided by Theorems 4.1 and 4.4 as follows. Let α ∈ P1(Q)
be a cusp, and let g = ( A B

C D ) ∈ SL2(Z) such that g∞ = α. In order to compute the Fourier
expansion of f at α, we may replace g by gT u with T = ( 1 1

0 1 ) and u ∈ Z. Then f |gT u
depends only on the class of u modulo w, where w is the width of α on the appropriate
modular curve. The following proposition gives the minimal value of the integer M from
Theorem 4.4 when u varies in Z/wZ.

Proposition 6.1. In the notation of Theorem 4.4, let M ′ be the minimal value of M for
gT u as u varies. Then

M ′ =
NC

gcd(C,N)
·mC ,

where NC =
∏

p|C p
vp(N) is the C-part of N and mC = m/mC is the prime to C part of m.

Moreover, M ′ is attained for any u such that N/NC divides uC +D.
8



Proof. Replacing g with gT u changes D to uC + D and B to uA + B. Varying u, we need
to determine the minimal value of

Mu = lcm

(
N

gcd(C(uC +D), N)
,

m

gcd(C(uA+B),m)

)
.

Since C and D are coprime we have gcd(C(uC + D), N) = gcd(C,N) gcd(uC + D,N), so
N/ gcd(C(uC +D), N) is divisible by NC/ gcd(C,N). Therefore NC/ gcd(C,N) divides Mu.
Let p - C. Since C(uA+B) = A(uC +D)− 1, we have

vp

(
N

gcd(C(uC +D), N)

)
= vp(N)−min(vp(uC +D), vp(N)),

vp

(
m

gcd(C(uA+B),m)

)
= vp(m)−min(vp(A(uC +D)− 1), vp(m)).

If vp(uC + D) 6= 0, then vp (m/ gcd(C(uA+B),m)) = vp(m). On the other hand, if
vp(uC + D) = 0, then vp (N/ gcd(C(uC +D), N)) = vp(N) ≥ vp(m). In all cases, we have
vp(Mu) ≥ vp(m), which proves that mC divides Mu. It follows that Mu is always divisible
by NC/ gcd(C,N) ·mC .
Now choose u such that NC = N/NC divides uC + D. This is possible because C and NC

are coprime. Then gcd(uC +D,N) = NC so that

N

gcd(C(uC +D), N)
=

N

gcd(C,N)NC

=
NC

gcd(C,N)
.

Moreover gcd(C(uA + B),m) = gcd(A(uC + D)− 1,m) is coprime to NC and thus divides
mC . It follows that

mC |
m

gcd(C(uA+B),m)

On the other hand, if p | C, then

vp

(
m

gcd(C(uA+B),m)

)
≤ vp

(
m

gcd(C,m)

)
≤ vp

(
NC

gcd(C,N)

)
.

Hence Mu = (NC/ gcd(C,N)) ·mC . �

In practice, we may further reduce the field of coefficients as follows. Let f ∈Mk(Γ0(N)) be
an eigenvector of the Atkin–Lehner operators and g = ( A B

C D ) ∈ SL2(Z). The denominator of
the cusp α = g∞ = A/C of X0(N) is δ := gcd(C,N).
Now let Q be a maximal divisor of N , and let WQ be the associated Atkin-Lehner involution
of X0(N). Using the notations of Section 5, if f is an eigenvector of WQ with eigenvalue
λQ(f) ∈ {±1}, then we may write

f |g = λQ(f)f |WQg = λQ(f)f |hQ
(
Q 0
0 1

)(
A B
C D

)
= λQ(f)f |hQ

(
AQ

gcd(C,Q)
s

C
gcd(C,Q)

r

)(
gcd(C,Q) rBQ− sD

0 Q
gcd(C,Q)

)
,

where r, s are chosen, so that r AQ
gcd(C,Q)

− s C
gcd(C,Q)

= 1.
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The action of the upper triangular matrix
(

gcd(C,Q) rBQ−sD
0 Q

gcd(C,Q)

)
on Fourier expansions is easily

calculated. We now try to find Q such that f |g′ has coefficients in the minimal possible

number field, where g′ = hQ

(
AQ

gcd(C,Q)
s

C
gcd(C,Q)

r

)
∈ SL2(Z).

Let δ = δQδQ where δQ is the Q-part of δ. Then the cusp α′ = g′∞ = WQα has denominator

δ′ = Q
δQ
δQ and we may choose Q such that M ′ := Nδ′/δ

′ is minimal. Explicitly, the choice

Q =
∏
p|N

0<vp(δ)≤vp(N)/2

pvp(N)

gives the minimal value M ′ = gcd(δ,N/δ). By Proposition 6.1, there exists v ∈ Z such
that the form f |g′T v has coefficients in Kf (ζM ′). Thus the problem of finding the Fourier
expansion of f |g reduces to finding the the eigenvalue λQ(f) ∈ {±1}, calculating the Fourier
expansion of f |g′T v which is over a potentially much smaller number field than that of f |g,
and finally applying an upper triangular matrix to f |g′T v. Some information, such as the
vanishing order of f |g or the absolute value of its Fourier coefficients, can be extracted
directly from f |g′T v without further calculation.

7. Determining the exact number field

Our final goal is to determine the exact coefficient field of f |g when f is a newform. In this
section, we assume that f is a newform of (even) weight k ≥ 2 on the group Γ0(N).
We will need the following theorems of Newman [12, 13] on the congruence subgroup Γ0(N),
where N is a fixed integer ≥ 1.

Theorem 7.1. [12, Theorem 3] Every intermediate subgroup between Γ0(N) and SL2(Z) is
of the form Γ0(M) for some positive divisor M of N .

In the following, we denote by R the matrix ( 1 0
1 1 ).

Corollary 7.2. Let M be a positive divisor of N . The group Γ0(M) is generated by Γ0(N)
and RM = ( 1 0

M 1 ).

Proof. Let Γ be the group generated by Γ0(N) andRM . By Theorem 7.1, we have Γ = Γ0(M
′)

for some M ′ dividing N . Since RM ∈ Γ0(M
′), the integer M ′ divides M . Moreover Γ is

contained in Γ0(M), so that M divides M ′. It follows that Γ = Γ0(M). �

Theorem 7.3. [13] The normaliser of Γ0(N) in SL2(Z) is equal to Γ0(N/s), where s is the
largest divisor of 24 such that s2 divides N . Moreover, the quotient group Γ0(N/s)/Γ0(N)
is cyclic of order s, generated by the class of RN/s =

(
1 0
N/s 1

)
.

Proof. The first assertion follows from [13, Theorem 1]. By Corollary 7.2, the group Γ0(N/s)
is generated by Γ0(N) and RN/s. It follows that the quotient group Γ0(N/s)/Γ0(N) is
generated by the class of RN/s, and it is easy to see that this class has order s. �

Proposition 7.4. Let F be a nonzero element of the new subspace Snew
k (Γ0(N)). Then its

stabiliser
Stab(F ) = {g ∈ SL2(Z) : F |g = F}

is equal to Γ0(N).
10



Proof. Since Stab(F ) contains Γ0(N), Theorem 7.1 implies that Stab(F ) = Γ0(M) for some
positive divisor M of N . But F belongs to the new subspace, so we must have M = N . �

Proposition 7.5. Let f be a newform of weight k ≥ 2 on Γ0(N). Let g ∈ SL2(Z) and
σ ∈ Aut(C) such that f |g = fσ. Then we have fσ = f and g ∈ Γ0(N).

Proof. By Proposition 7.4, the stabilisers of f and fσ are both equal to Γ0(N). On the
other hand Stab(f |g) = g−1Stab(f)g, so that g normalises Γ0(N). By Theorem 7.3, we have
g ∈ Γ0(N/s), and there exists an integer m ∈ Z such that Γ0(N)g = Γ0(N)RmN/s. Hence
f |g = f |RmN/s.
We now make use of the Atkin-Lehner involution WN = ( 0 −1

N 0 ). Let w ∈ {±1} be the
root number of f , defined by f |WN = wf . Since WN is defined over Q, we also have
fσ|WN = wfσ. Applying WN on both sides of the equality f |g = fσ, we get

wfσ = fσ|WN = f |gWN = f |RmN/sWN = f |WN

(
W−1
N RmN/sWN

)
= wf |R′

with R′ = W−1
N RmN/sWN =

(
1 −m/s
0 1

)
. The Fourier expansion of f |R′ is given by

f |R′(z) = f(z −m/s) =
∑
n≥1

an(f)e−2πimn/se2πinz.

Comparing the first term of the Fourier expansions, we get e−2πim/s = 1. This implies that
s divides m, fσ = f and g ∈ Γ0(N). �

We are now in the position to determine the exact number field of f |g. This refines Theorem
4.1(2) for Γ0(N) newforms.

Theorem 7.6. Let f be a newform of weight k ≥ 2 on Γ0(N). Let g = ( A B
C D ) ∈ SL2(Z).

Then the field generated by the Fourier coefficients of f |kg is equal to Kf (ζN ′) with N ′ =
N/ gcd(CD,N).

Proof. We have to show that every automorphism of C fixing f |g also fixes Kf (ζN ′). Let
σ ∈ Aut(C) such that (f |g)σ = f |g. Define λ ∈ (Z/NZ)× by σ(ζN) = ζλN . By Theorem
3.3, we have fσ|gλ = f |g, so that fσ = f |gg−1λ . By Proposition 7.5, we have fσ = f and
gg−1λ ∈ Γ0(N). It follows that σ fixes Kf , and we have already seen in the proof of Theorem
4.1 that the condition gg−1λ ∈ Γ0(N) is equivalent to λ ≡ 1 modN ′. Therefore σ fixes
Kf (ζN ′). �

Remark 7.7. An inspection of the proofs shows that Proposition 7.5 and Theorem 7.6 are
valid for elements f =

∑
anq

n of the new subspace of Sk(Γ0(N)) that are eigenfunctions of
WN and satisfy the following condition: if s denotes the largest divisor of 6 whose square
divides N , then there exists n ∈ N which is coprime to s such that an is a non-zero rational
number. One family of such forms is given by the traces

∑
σ f

σ of newforms f , where the
sum is over all embeddings of Kf into C.

Question 7.8. What is the Q-vector space (or Kf -vector space) generated by the Fourier
coefficients of f |g? Furthermore, can we bound effectively the denominators of these coeffi-
cients? Note that the q-expansion principle implies that the Fourier expansion of f |g lies in
Z[[q1/N ]]⊗Kf (ζN ′), so that the denominators of f |g are indeed bounded. In fact, by Remark
8.5, we know that the denominators of f |g divide some fixed power of N .

Question 7.9. It would be interesting to generalise Theorem 7.6 to newforms with non-
trivial character. Is the number field provided by Remark 4.7 best possible?
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8. Appendix: Algebraic modular forms

Here we recall the theory of algebraic modular forms, in order to give a second proof of
Theorem 3.3. For more details on this theory, see [10, Chap. II] and the references therein.

Definition 8.1. Let R be an arbitrary commutative ring, and let N ≥ 1 be an integer.
A test object of level N over R is a triple T = (E,ω, β) where E/R is an elliptic curve,
ω ∈ Ω1(E/R) is a nowhere vanishing invariant differential, and β is a level N structure on
E/R, that is an isomorphism of R-group schemes

β : (µN)R × (Z/NZ)R
∼=−→ E[N ]

satisfying eN(β(ζ, 0), β(1, 1)) = ζ for every ζ ∈ (µN)R. Here µN = SpecZ[t]/(tN − 1) is the
scheme of N -th roots of unity, and eN is the Weil pairing on E[N ] 1.

If φ : R → R′ is a ring morphism, we denote by TR′ = (ER′ , ωR′ , βR′) the base change of T
to R′ along φ.
The isomorphism classes of test objects over C are in bijection with the set of lattices L
in C endowed with a symplectic basis of 1

N
L/L [10, 2.4]. Another example is given by the

Tate curve Tate(q) = Gm/q
Z [7, §8]. It is an elliptic curve over Z((q)) endowed with the

canonical differential ωcan = dx/x and the level N structure βcan(ζ, n) = ζqn/N mod qZ. The
test object (Tate(q), ωcan, βcan) is defined over Z((q1/N)).

Definition 8.2. An algebraic modular form of weight k ∈ Z and level N over R is the data,
for each R-algebra R′, of a function

F = FR′ : {isomorphism classes of test objects of level N over R′} → R′

satisfying the following properties:

(1) F (E, λ−1ω, β) = λkF (E,ω, β) for every λ ∈ (R′)×;
(2) F is compatible with base change: for every morphism of R-algebras ψ : R′ → R′′

and for every test object T of level N over R′, we have FR′′(TR′′) = ψ(FR′(T )).

We denote by Malg
k (Γ(N);R) the R-module of algebraic modular forms of weight k and level

N over R.

Evaluating at the Tate curve provides an injective R-linear map

Malg
k (Γ(N);R) ↪→ Z((q1/N))⊗Z R

called the q-expansion map. The q-expansion principle states that if R′ is a subring of R,
then an algebraic modular form F ∈ Malg

k (Γ(N);R) belongs to Malg
k (Γ(N);R′) if and only

if the q-expansion of F has coefficients in R′.
Algebraic modular forms are related to classical modular forms as follows. To any algebraic
modular form F ∈Malg

k (Γ(N);C), we associate the function F an : H → C defined by

F an(τ) = F
( C

2πiZ + 2πiτZ
, dz, βτ

)
with βτ (ζ

m
N , n) := [2πi(m+ nτ)/N ].

1Our definition of the Weil pairing is the reciprocal of Silverman’s definition [18, III.8]. With our definition,
we have eN (1/N, τ/N) = e2πi/N on the elliptic curve C/(Z + τZ) with Im(τ) > 0.
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Proposition 8.3. The map F 7→ F an induces an isomorphism between Malg
k (Γ(N);C) and

the space M !
k(Γ(N)) of weakly holomorphic modular forms on Γ(N) (that is, holomorphic

on H and meromorphic at the cusps). Moreover, the q-expansion of F coincides with that
of F an.

We now interpret the action of SL2(Z) on modular forms in algebraic terms. Let F ∈
Malg

k (Γ(N);C) with f = F an, and let g = ( a bc d ) ∈ SL2(Z). A simple computation shows that

(6) (f |kg)(τ) = F
( C

2πi(Z + τZ)
, dz, β′τ

)
where the level N structure β′τ is given by

(7) β′τ (ζ
m
N , n) = βτ (ζ

md+nb
N ,mc+ na).

Let ψ : (Z/NZ)2 → µN(C) × Z/NZ be the isomorphism defined by ψ(a, b) = (ζbN , a). Let
us identify the level structure βτ (resp. β′τ ) with the map ατ = βτ ◦ ψ (resp. α′τ = β′τ ◦ ψ).
Then (7) shows that

(8) α′τ (a, b) = ατ ((a, b)g).

What we have here is the right action of SL2(Z) on the row space (Z/NZ)2, which induces a
left action on the set of level N structures. As we will see, all this makes sense algebraically.
For any Z[ζN ]-algebra R, we denote by ζN,R the image of ζN = e2πi/N under the structural
morphism Z[ζN ]→ R.

Lemma 8.4. If R is a Z[ζN , 1/N ]-algebra, then there is an isomorphism of R-group schemes

(Z/NZ)R
∼=−→ (µN)R sending 1 to ζN,R.

Proof. Note that (µN)R = SpecR[t]/(tN − 1) = SpecR[Z/NZ] and (Z/NZ)R = SpecRZ/NZ.
If R = C, then C[Z/NZ] ∼= CZ/NZ because all irreducible representations of Z/NZ have
dimension 1. This isomorphism FC is given by the Fourier transform, and both FC and F−1C
have coefficients in Z[ζN , 1/N ] with respect to the natural bases. It follows that in general
R[Z/NZ] ∼= RZ/NZ and this isomorphism sends [1] to (ζaN,R)a∈Z/NZ. �

Let R be a Z[ζN , 1/N ]-algebra. We have an isomorphism of R-group schemes

ψR : (Z/NZ)2R → (µN)R × (Z/NZ)R

given by ψR(a, b) = (ζbN,R, a). The group SL2(Z) acts from the right on the row space

(Z/NZ)2R by R-automorphisms, and for α : (Z/NZ)2R
∼=−→ E[N ] we define

(9) (g · α)(a, b) = α((a, b)g) ((a, b) ∈ (Z/NZ)2).

Using ψR, we transport this to a left action of SL2(Z) on the set of level N structures of an
elliptic curve over R. Given a test object T = (E,ω, β) over R, we define g ·T := (E,ω, g ·β).

For any F ∈Malg
k (Γ(N);R), we define F |g ∈Malg

k (Γ(N);R) by the rule (F |g)(T ) = F (g ·T )
for any test object T over any R-algebra R′. The computation (6) then shows that the right

action of SL2(Z) on Malg
k (Γ(N);C) corresponds to the usual slash action on M !

k(Γ(N)).

Remark 8.5. The action of SL2(Z) on algebraic modular forms over Z[ζN , 1/N ]-algebras has
the following consequence: if a classical modular form f ∈Mk(Γ(N)) has Fourier coefficients
in some subring A of C, then for any g ∈ SL2(Z), the Fourier expansion of f |g lies in
Z[[q1/N ]]⊗ A[ζN , 1/N ].
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We now interpret the action of Aut(C) in algebraic terms (see [14, p. 88]). Let σ ∈ Aut(C).
For any C-algebra R, we define Rσ := R⊗C,σ−1 C, which means that (ax)⊗ 1 = x⊗ σ−1(a)
for all a ∈ C, x ∈ R. We endow Rσ with the structure of a C-algebra using the map
a ∈ C 7→ 1 ⊗ a ∈ Rσ. We denote by φσ : R → Rσ the map defined by φσ(x) = x ⊗ 1.
The map φσ is a ring isomorphism, but one should be careful that φσ is not a morphism of
C-algebras, as it is only σ−1-linear. For any test object T over R, we denote by T σ its base
change to Rσ using the ring morphism φσ.
Let F ∈Malg

k (Γ(N);C) be an algebraic modular form. For any C-algebra R, we define

F σ
R : {isomorphism classes of test objects of level N over R} → R

T 7→ φ−1σ
(
FRσ(T σ)

)
.

One may check that the collection of functions F σ
R satisfies the conditions (1) and (2) above,

hence defines an algebraic modular form F σ ∈ Malg
k (Γ(N);C). Moreover, since the Tate

curve is defined over Z((q)), one may check that the map F 7→ F σ corresponds to the usual

action of Aut(C) on the Fourier expansions of modular forms: for every F ∈Malg
k (Γ(N);C)

and every σ ∈ Aut(C), we have (F σ)an = (F an)σ.
We finally come to the second proof of Theorem 3.3.

Proof. Let f ∈ Mk(Γ(N)) with corresponding algebraic modular form F ∈ Malg
k (Γ(N);C).

Let g ∈ SL2(Z) and σ ∈ Aut(C). We take as test object T = (Tate(q), ωcan, βcan) over
R = Z((q1/N)) ⊗ C. Since a modular form is determined by its Fourier expansion, and
unravelling the definitions of F |g and F σ, it suffices to check that the test objects g ·T σ and
(gλ · T )σ over Rσ are isomorphic. Since SL2(Z/NZ) acts only on the level structures of the
test objects, we have to show that

(10) g · βσcan ∼= (gλ · βcan)σ.

For any scheme X over R, let Xσ denote its base change to Rσ along φσ. Since φσ is a ring
isomorphism, the canonical projection map Xσ → X is an isomorphism of schemes, and we
also denote by φσ : X → Xσ the inverse map.

Put E = Tate(q) and β = βcan. Let α = β ◦ ψR : (Z/NZ)2R
∼=−→ E[N ]. By functoriality, the

level structure βσ is given by the following commutative diagram

(11)

(Z/NZ)2R (µN)R × (Z/NZ)R E[N ]

(Z/NZ)2Rσ (µN)Rσ × (Z/NZ)Rσ Eσ[N ].

γ

ψR

α

β

φσ∼= φσ∼=

ψRσ

ασ

βσ

Let us compute the dotted arrow γ. Since φσ is σ−1-linear, we have φσ(ζN,R) = ζλ
−1

N,Rσ . It
follows that

(12) φσ(ψR(a, b)) = φσ(ζbN,R, a) = (ζλ
−1b

N,Rσ , a) = ψRσ(a, λ−1b)
14



so that γ(a, b) = (a, λ−1b). We may thus express ασ in terms of α by

(13) ασ(a, b) = φσ ◦ α ◦ γ−1(a, b) = φσ ◦ α(a, λb) = φσ ◦ α
(

(a, b)

(
1 0
0 λ

))
.

Let us make explicit both sides of (10). By (9) and (13), the left hand side is given by

(14) (g · ασ)(a, b) = ασ((a, b)g) = φσ ◦ α
(

(a, b)g

(
1 0
0 λ

))
.

Let us now turn to the right hand side of (10). By (9), we have (gλ · α)(a, b) = α((a, b)gλ).
Applying the commutative diagram (11) with α replaced by gλ · α, we get

(15) (gλ · α)σ(a, b) = φσ ◦ (gλ · α)

(
(a, b)

(
1 0
0 λ

))
= φσ ◦ α

(
(a, b)

(
1 0
0 λ

)
gλ

)
.

Finally, we recall equation (1), which states g ( 1 0
0 λ ) = ( 1 0

0 λ ) gλ.
�
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