On commuting billiards in higher-dimensional spaces of constant curvature - ENS de Lyon - École normale supérieure de Lyon
Article Dans Une Revue Pacific Journal of Mathematics Année : 2020

On commuting billiards in higher-dimensional spaces of constant curvature

Alexey Glutsyuk

Résumé

We consider two nested billiards in ℝd, d≥3, with C2-smooth strictly convex boundaries. We prove that if the corresponding actions by reflections on the space of oriented lines commute, then the billiards are confocal ellipsoids. This together with the previous analogous result of the author in two dimensions solves completely the Commuting Billiard Conjecture due to Sergei Tabachnikov. The main result is deduced from the classical theorem due to Marcel Berger saying that in higher dimensions only quadrics may have caustics. We also prove versions of Berger's theorem and the main result for billiards in spaces of constant curvature: space forms.
Fichier principal
Vignette du fichier
commute-caust.pdf (331.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

ensl-01964943 , version 1 (24-12-2018)
ensl-01964943 , version 2 (20-11-2019)

Identifiants

Citer

Alexey Glutsyuk. On commuting billiards in higher-dimensional spaces of constant curvature. Pacific Journal of Mathematics, 2020, 305 (2), pp.577--595. ⟨10.2140/pjm.2020.305.577⟩. ⟨ensl-01964943v2⟩
55 Consultations
120 Téléchargements

Altmetric

Partager

More