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On commuting billiards in higher-dimensional

spaces of constant curvature

Alexey Glutsyuk ∗†‡

September 11, 2019

Abstract

We consider two nested billiards in Rd, d ≥ 3, with C2-smooth
strictly convex boundaries. We prove that if the corresponding actions
by reflections on the space of oriented lines commute, then the billiards
are confocal ellipsoids. This together with the previous analogous re-
sult of the author in two dimensions solves completely the Commuting
Billiard Conjecture due to Sergei Tabachnikov. The main result is
deduced from the classical theorem due to Marcel Berger saying that
in higher dimensions only quadrics may have caustics. We also prove
versions of Berger’s theorem and the main result for billiards in spaces
of constant curvature: space forms.
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1 Introduction

1.1 Main result

Let Ωa b Ωb ⊂ Rd be two nested bounded domains with smooth strictly
convex boundaries a = ∂Ωa and b = ∂Ωb. Consider the corresponding
billiard transformations σa, σb acting on the space of oriented lines in space
by reflection as follows. Each σf , f = a, b, acts as identity on the lines
disjoint from f . For each oriented line l intersecting f we take its last
intersection point x with f in the sense of orientation: the orienting arrow
of the line l at x is directed outside Ωf . The image σf (l) is the line obtained
by reflection of the line l from the hyperplane Txf : the angle of incidence
equals the angle of reflection. The line σf (l) is oriented by a tangent vector
at x directed inside Ωf . This is a continuous mapping that is smooth on the
space of lines intersecting f transversely.

Remark 1.1 The above action can be defined for a convex billiard in any
Riemannian manifold; the billiard reflection acts on the space of oriented
geodesics.

Recall, see, e.g., [2, 18], that a pencil of confocal quadrics in a Euclidean
space Rd is a one-dimensional family of quadrics defined in some orthogonal
coordinates (x1, . . . , xd) by equations

d∑
j=1

x2j
a2j + λ

= 1; aj ∈ R are fixed; λ ∈ R is the parameter.

It is known that any two confocal elliptic or ellipsoidal billiards commute
[18, p.59, corollary 4.6], [20, p.58]. Sergei Tabachnikov stated the conjec-
ture affirming the converse: any two commuting nested convex billiards are
confocal ellipses (ellipsoids) [20, p.58]. In two dimensions his conjecture was
proved by the author of the present paper in [10, theorem 5.21, p.231] for
piecewise C4-smooth boundaries. Here we prove it in higher dimensions in
Rd and in spaces of constant curvature: space forms.
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Theorem 1.2 Let two nested strictly convex C2-smooth closed hypersur-
faces in Rd, d ≥ 3, be such that the corresponding billiard transformations
commute. Then they are confocal ellipsoids.

To extend Theorem 1.2 to spaces of constant curvature, let us recall the
notions of space forms and (confocal) quadrics in them.

Definition 1.3 A space form is a complete connected Riemannian manifold
of constant curvature.

Remark 1.4 We will deal only with simply connected space forms. It is
well-known that they are the Euclidean space Rd, the unit sphere Sd ⊂ Rd+1

in the Euclidean space and the hyperbolic space Hd (up to normalization of
the metric by constant scalar factor, which changes neither geodesics, nor
reflections). It is known that the hyperbolic space Hd admits a standard
model in the Minkovski space Rd+1. Finally, each space form Σ we will be
dealing with is realized as an appropriate hypersurface in the space Rd+1

with coordinates x = (x0, . . . , xd) equipped with a suitable quadratic form

< Gx, x >, G is a symmetric (d+ 1)× (d+ 1)−matrix.

Here < x, x >:=
∑

j x
2
j .

Euclidean case: G = diag(0, 1, . . . , 1), Σ = Rd = {x0 = 1}.
Spherical case: G = Id, Σ = Sd = {< Gx, x >= 1}, < Gx, x >=

∑
j x

2
j .

Hyperbolic case: G = diag(−1, 1, . . . , 1), Σ = Hd = {< Gx, x >= −1} ∩
{x0 > 0}.

The metric on each hypersurface Σ is the restriction to TΣ of the quadratic
form < Gx, x > on the ambient space. It is well-known that the geodesics
on Σ are its intersections with two-dimensional vector subspaces in Rd+1.
Completely geodesic k-dimensional submanifolds in Σ are its intersections
with (k + 1)-dimensional vector subspaces in Rd+1.

Definition 1.5 [22, p. 84] A quadric in Σ is a hypersurface

S = Σ ∩ {< Qx, x >= 0}, Q is a symmetric matrix.

The pencil of confocal quadrics associated to a symmetric matrix Q is the
family of quadrics

Sλ = Σ ∩ {< Qλx, x >= 0}, Qλ = (Q− λG)−1, λ ∈ R.
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Definition 1.6 A germ of C2-smooth hypersurface S in a space form Σ at
a point p is strictly convex, if it has quadratic tangency with its tangent
completely geodesic hypersurface Γp: there exists a constant C > 0 such
that for every q ∈ S close to p one has

dist(q,Γp) > C||q − p||2; here ||q − p|| = dist(q, p).

Theorem 1.7 Let d ≥ 3, and let Σ be a simply connected d-dimensional
space form: either Rd, or the unit sphere, or the hyperbolic space. Let
two nested strictly convex C2-smooth closed hypersurfaces in Σ be such that
the corresponding billiard transformations commute. Then they are confocal
quadrics.

Theorem 1.2 follows from Theorem 1.7.
Theorem 1.2 can be deduced from a classical theorem due to Marcel

Berger [2] concerning billiards in Rd, d ≥ 3, which states that only billiards
bounded by quadrics may have caustics (see Definition 1.8 for the notion
of caustic), and the caustics are their confocal quadrics. To prove Theorem
1.7 in full generality, we extend Berger’s theorem to the case of billiards in
space forms (Theorem 1.10 stated in Subsection 1.3 and proved in Section
2) and then deduce Theorem 1.7 in Section 3. A local version of Theorem
1.7 will be proved in Section 4. In Section 5 we present some open problems.

1.2 Historical remarks

Commuting billiards are closely related to problems of classification of in-
tegrable billiards, see [20]. It is known that elliptic and ellipsoidal billiards
are integrable, see [21, proposition 4], [18, chapter 4], and this also holds
for non-Euclidean ellipsoids in sphere and in the Lobachensky (hyperbolic)
space of any dimension, see [22, the corollary on p. 95]. The famous Birkhoff
Conjecture states that in two dimensions the converse is true. Namely, it
deals with the so-called Birkhoff caustic-integrable convex planar billiards
with smooth boundary, that is, billiards for which there exists a foliation by
closed caustics (a one-parameter family of nested closed caustics Γp, p > 0)
in an interior neighborhood of the boundary, and the boundary itself is the
leaf Γ0 of this foliation. Birkhoff Conjecture states that the only Birkhoff
caustic-integrable billiards are ellipses. Birkhoff Conjecture was first stated
in print in Poritsky’s paper [16], who proved it in loc. cit. under the ad-
ditional assumption that for any two nested caustics in the above family
Γp the smaller one is a caustic for the billiard in the bigger one. Porit-
sky’s assumption implies that the initial billiard map in Γ0 (being restricted
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to the set of those lines that are disjoint from some given caustic Γp with
p > 0) commutes with the billiard in every caustic Γq. This follows by the
arguments presented in [18, section 4, pp.58–59].

The set of lines intersecting the given convex billiard is a topological
cylinder called the phase cylinder. One of the most famous results on
Birkhoff Conjecture is a theorem of M.Bialy [3], who proved that if the
phase cylinder of the billiard map is foliated (almost everywhere) by non-
contractible closed curves which are invariant under the billiard map, then
the boundary is a circle. In [4] he proved the same result for billiards on sur-
faces of non-zero constant curvature. A local version of Birkhoff Conjecture,
for integrable deformations of ellipses was recently solved in [1, 13]. Recent
solution of its polynomial version (stated and partially studied in [8]) is a
result of papers [5, 6, 11, 12]. For a historical survey of Birkhoff Conjecture
see [18, section 5, p.95], the recent surveys [7, 14], the papers [13, 11] and
references therein. Dynamics in billiards in two and higher dimensions with
piecewise smooth boundaries consisting of confocal quadrics was studied in
[9].

1.3 Berger’s theorem and its extension to billiards in space
forms

Definition 1.8 Let a, b be two nested strictly convex closed hypersurfaces
in a Riemannian manifold E: the hypersurface b bounds a relatively compact
domain in E whose interior contains a. We say that a is a caustic for the
hypersurface b, if the image of each oriented geodesic tangent to a by the
reflection σb from b is again a geodesic tangent to a.

Remark 1.9 It is well-known that if a, b are two confocal ellipses (ellip-
soids) in Euclidean space, then the smaller one is a caustic for the bigger
one. In the plane this is the classical Proclus–Poncelet theorem. In higher
dimensions this theorem is due to Jacobi, see [17, p.80]. Similar statement
holds in any space form, see, e.g., [22, theorem 3].

We will deduce Theorem 1.7 from the following theorem, which implies
that in every space form only quadrics have caustics, and the caustics of
each quadric S are exactly the quadrics confocal to S.

Theorem 1.10 Let d ≥ 3, and let Σ be a d-dimensional simply connected
space form. Let S,U ⊂ Σ be germs of C2-smooth hypersurfaces at points
B and A 6= B respectively with non-degenerate second fundamental forms.
Let the geodesic AB be tangent to U at A and transversal to S at B. Let
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C ∈ Σ \ {B}, and let a vector tangent to the geodesic AB at B be reflected
from the hyperplane TBS to a tangent vector to the geodesic BC. Let there
exist a germ of C2-smooth hypersurface V at C tangent to BC at C such that
each geodesic close to AB and tangent to U be reflected from the hypersurface
S to a geodesic tangent to V . Then S is a piece of a quadric b, and U , V
are pieces of one and the same quadric confocal to b.

Remark 1.11 In the case, when Σ = Rd, Theorem 1.10 was proved by
Marcel Berger [2].

2 Caustics of hypersurfaces in space forms. Proof
of Theorem 1.10

The proof of Theorem 1.10 for space forms essentially follows Berger’s proof
for the Euclidean case given in [2]. In Subsection 2.1 we first prove that the
hypersurfaces U and V are pieces of the same quadric denoted by U . Then
in Subsection 2.2 we show that S is a quadric confocal to U , using the fact
that it is an integral hypersurface of a finite-valued hyperplane distribution:
the field of symmetry hyperplanes in TxΣ, x ∈ Σ, for the geodesic cones Kx

circumscribed about the quadric U with vertex at x.

2.1 The hypersurfaces U and V and circumscribed cones

Theorem 2.1 In the conditions of Theorem 1.10 the hypersurfaces U and
V are pieces of one and the same quadric.

Theorem 2.1 is proved below following [2]. As in loc. cit., we first prove that
for every y ∈ S the geodesic cone with vertex y tangent to U is a quadratic
cone tangent to both U and V (Lemma 2.4). Afterwards we apply a result
from [2] (stated below as Lemma 2.12 and proved in loc. cit. via arguments
using projective duality), showing that if the latter statement holds, then U
and V lie in the same quadric.

Let π : Σ → RPd denote the restriction to Σ of the tautological pro-
jection Rd+1 \ {0} → RPd. It is a diffeomorphism onto the image π(Σ) in
non-spherical cases and a degree two covering over RPd in the spherical case.
Let g denote the metric on π(Σ) that is the (well-defined) pushforward of the
space form metric. Note that the geodesics (completely geodesic subspaces)
for the metric g are the intersections of projective lines (respectively, pro-
jective subspaces) with π(Σ). In order to reduce the proof to the Euclidean
case treated in [2], we use the following property of the metric g.
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Proposition 2.2 For every point y ∈ π(Σ) there exist an affine chart Rd ⊂
RPd centered at y and a Euclidean metric on Rd (compatible with the affine
structure) that has the same 1-jet at y, as the metric g.

Proof Without loss of generality we consider that y = (1 : 0 : · · · : 0): the
isometry group of the space form Σ acts transitively, and the projection π
conjugates its action on Σ with its action on RPd by projective transforma-
tions (since the isometry group is a subgroup in GLd+1(R)). Thus, in the
standard affine chart Rd = {x0 = 1} the point y is the origin. The metric g
is invariant under the orthogonal transformations of the chart Rd, since the
metric of the space form is invariant under the rotations around the x0-axis.
The metric g on TyRd coincides with the standard Euclidean metric of the
chart Rd, by definition. The two last statements together imply that the
1-jets of both metrics at y = 0 coincide. This proves the proposition. 2

Corollary 2.3 Let U ⊂ Σ be a germ of hypersurface with non-degenerate
second fundamental form. Then its projection π(U) has non-degenerate sec-
ond fundamental form in any affine chart Rd with respect to the standard
Euclidean metric.

Proof The corollary follows from Proposition 2.2 and invariance of the
property of having non-degenerate second fundamental form under projec-
tive transformations. Indeed, each germ of projective hypersurface is tangent
to some quadric with order 3 (which is not unique). The 2-jet of a quadric
determines completely whether it is regular or not. Non-degeneracy of the
second fundamental form is equivalent to regularity of the tangent quadric.
The space of regular quadrics is invariant under projective transformations.
This proves the corollary. 2

In what follows in the present subsection we identify the hypersurfaces
S, U , V and their points with their projection images: for simplicity the
projection images π(S), π(U), π(B) etc. will be denoted by the symbols S,
U , B,...

Lemma 2.4 Let S,U, V ⊂ RPd be the tautological projection images of the
same hypersurfaces in Σ, as in Theorem 1.10 (see the above paragraph).
For every y ∈ S there exists a quadratic cone Ky ⊂ RPd (i.e., given by the
zero locus of a homogeneous quadratic polynomial) with vertex at y that is
tangent to both hypersurfaces U and V .

The proof of Lemma 2.4 given below follows [2, section 2].
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Let σg : (TRPd)|S → (TRPd)|S denote the involution acting as the sym-
metry of each space TyRPd, y ∈ S, with respect to the hyperplane TyS in the
metric g. Its action on the projectivized tangent spaces RPd−1y = P(TyRPd)
induces its action on the space of projective lines in RPd ⊃ S intersecting S
transversely and so that the intersection point is unique: if ` intersects S at
a point y, then

ˆ̀ := σg(`)

is the line through y that is symmetric to ` in the above sense.
For every y ∈ Σ set

My := the space of projective lines through y that are tangent to U.

It suffices to prove the statement of Lemma 2.4 for an arbitrary point
y ∈ S satisfying the following statements.

Proposition 2.5 (stated in [2, pp. 110-111]) There exists an open and
dense subset of points y ∈ S ⊂ RPd for which there exists an open and
dense subset M0

y ⊂My of lines ` satisfying the following statements:
(i) the line ` is quadratically tangent to U , (i.e., ` is not an asymptotic

direction of the hypersurface U at the tangency point);
(ii) the line ˆ̀= σg(`) is quadratically tangent to V at a point, where the

second fundamental form of the hypersurface V is non-degenerate;
(iii) the lines ` and ˆ̀ are transversal to TyS and their above tangency

points with U and V are distinct from the point y.

Proof Statement (i) holds for an open and dense subset of lines ` ∈ My,
since the second fundamental form of the hypersurface U is non-degenerate
(by assumptions and Corollary 2.3). Statement (iii) also holds for a generic
` ∈ My, whenever y /∈ U ∪ V . Let us show that statement (ii) also holds
generically.

Let y ∈ S, y /∈ U ∪V , and let ` be a line through y satisfying assumption
(i). Then the cone Ky with vertex y containing ` and circumscribed about
U is tangent to U along a (n− 2)-dimensional submanifold TU ⊂ U .

The correspondence sending a point p ∈ TU to the projective hyperplane
tangent to U at p (i.e., to the projective hyperplane tangent to the cone
along the line yp) is a local immersion to the space of hyperplanes through
y. Or equivalently, the correspondence sending a line L ⊂ Ky through y
to the projective hyperplane tangent to Ky along L is a local immersion.
This follows from non-degeneracy of the second fundamental form of the
hypersurface U . This implies the similar statement for the symmetric cone

8



K̂y = σg(Ky) circumscribed about V : the correspondence sending each line

L̂ ⊂ K̂y through y to the hyperplane tangent to K̂y along the line L̂ is a
local immersion to the space of hyperplanes through y.

Suppose now that a line L̂ ⊂ K̂y through y is quadratically tangent to
V at a point q. Then the above immersivity statement for the symmetric
cone together with quadraticity of tangency imply non-degeneracy of the
second fundamental form of the hypersurface V at the point q. It is clear
that for a generic choice of the point y ∈ S and a line L ⊂ Ky through y

the corresponding symmetric line L̂ = σg(L) is quadratically tangent to V .
This proves the proposition. 2

Convention 2.6 In the proof of Lemma 2.4 without loss of generality we
consider that y = B, and there exists a line ` through B that is transversal
to S and satisfies statements (i)–(iii) of Proposition 2.5. Without loss of
generality we consider that A is the tangency point of the line ` with U , and
C is the tangency point of the symmetric line ˆ̀ = σg(`) with V ; A,C 6= B.
Fix an affine chart Rd ⊂ RPd centered at B and equipped with an Euclidean
metric whose 1-jet at B coincides with the 1-jet of the metric g (Proposition
2.2).

Consider a smooth deformation x(t) ∈ S of the point B, x(0) = B, and
a smooth deformation p(t) ∈ U of the point A, p(0) = A, such that the line
`(t) = x(t)p(t) is tangent to U at p(t); t ∈ [0, 1). Then the line ˆ̀(t) = σg(`(t))
symmetric to `(t) in the metric g is tangent to the hypersurface V at some
point q(t), q(0) = C, that depends smoothly on the parameter t (assump-
tions (i)–(iii)). We will show that the property that every deformation x(t)
extends to a pair of deformations p(t) and q(t) as above implies that the
cone Ky tangent to both U and V is quadratic. To do this, consider the
projective hyperplanes U and V through B containing the lines `(0) = BA
and ˆ̀(0) = BC respectively: U is tangent to U at A, and V is tangent to V
at C.

Remark 2.7 Let U and V be as above. The tangent subspaces TBU , TBV ⊂
TBRPd are σg-symmetric. Indeed, consider the germs of the cones circum-
cribed about the hypersurfaces U and V with vertex B and containing the
lines l(0) and l̂(0) respectively: we take the germs of the above cones at
the latter lines. The σg-symmetry permutes the cones, by statement (ii) of
Proposition 2.5, which holds for an open and dense set of lines throuh B.
The hyperplanes U and V are tangent to the cones along the lines l(0) and
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l̂(0) respectively, by construction. Hence they are also σg-symmetric, as are
the cones, and so are their tangent spaces TBU and TBV.

The latter tangent spaces intersect on a codimension 2 subspace H ⊂
TBRd lying in TBS, by symmetry:

H = TBU ∩ TBS = TBV ∩ TBS. (2.1)

For every deformations x(t), p(t), q(t) as above one has

u = x′(0) ∈ TBS, v = p′(0) ∈ TAU , w = q′(0) ∈ TCV. (2.2)

This motivates the following definition

Definition 2.8 Let S be a germ of hypersurface at a point B ∈ Rd ⊂ RPd.
Let g be a positive definite scalar product on the bundle TRd|S . Let ` be a
projective line through B that is transversal to TBS, and let H ⊂ TBS be a
vector subspace of codimension one (codimension two in TBRd). Let A ∈ `,
C ∈ ˆ̀ = σg(`), A,C 6= B. Let U and V denote the projective hyperplanes

through B that are tangent to H and such that ` ⊂ U , ˆ̀⊂ V. Let

u ∈ TBS, u 6= 0, v ∈ TAU , w ∈ TCV.

We say that (B, `,H, u,A, v, C,w) is a Berger tuple with base point B, if
there exist germs of C1-smooth curves of points x(t) ∈ S, p(t), q(t) ∈ RPd,
x(0) = B, p(0) = A, q(0) = C, such that statements (2.2) hold and for every
small t the lines x(t)p(t) and x(t)q(t) are σg-symmetric.

Proposition 2.9 The property of being a Berger tuple depends only on the
1-jet of the metric g. Namely, let S be a germ of hypersurface at a point
B ∈ Rd ⊂ RPd. Let g1 and g2 be two positive definite scalar products on the
bundle (TRd)|S that have the same 1-jet at B. Then any Berger tuple for
the metric g1 with base point B is a Berger tuple for the metric g2 and vice
versa.

Proof The proposition follows from definition and smoothness of the de-
pendence of the reflection σg on the parameters of the metric g: if two
metrics have the same 1-jets at B, then the corresponding reflections acting
in TyRd differ by a quantity o(y −B). 2

Theorem 2.10 [2, section 2]. Let S be a germ of hypersurface at a point
B ∈ Rd ⊂ RPd. Consider the standard Euclidean metric on the affine chart
Rd, and let S have non-degenerate second fundamental form. Let ` be a line
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through B transversal to TBS. Then there exist only a finite number k ≤ d−1
of codimension one vector subspaces H = H1(`), . . . ,Hk(`) ⊂ TBS such that
for every u ∈ TBS, u 6= 0 the triple (`,H, u) extends to a Berger tuple
(B, `,H, u,A, v, C,w) for the Euclidean metric. The number k depends only
on the second fundamental form of the hypersurface S at B. The subspaces
Hj(`) are uniquely determined by the line ` and the second fundamental
form.

Proposition 2.11 [2, p. 114]. In the conditions of Theorem 2.10 consider
the tautological projection πB : Rd \ {B} → RPd−1 to the space of lines
through B. For every line ` through B the corresponding projection πB(` \
{B}) ∈ RPd−1 will be denoted by [`]. For every ` transversal to S let ∆j(`) ⊂
TBRPd = Rd denote the codimension 1 vector subspace spanned by Hj(`) and

`. Let ∆̃j([`]) = πB(∆j(`) \ {0}) ⊂ RPd−1 denote its tautological projection,
which is a projective hyperplane through [`]. Set

Dj([`]) := T[`]∆̃j([`]) ⊂ T[`]RPd−1.

The subspaces D1([`]), . . . ,Dk([`]) ⊂ T[`]RPd−1 form a k-valued hyperplane

distribution D on RPd−1, whose all integral surfaces are quadrics. Moreover,
let S̃ be a quadric tangent to S at B with order 3: having the same second
fundamental form at B. The πB-preimages of the above quadrics in RPd−1
(i.e., the preimages of the integral hypersurfaces) are cones with vertex at B
that are tangent to the quadrics confocal to S̃.

Proof of Lemma 2.4. Let K be the cone with vertex at y = B circum-
scribed about the hypersurface U . Let A be a point of tangency of the cone
K with U . Set ` = BA, ˆ̀ = σg(`). Let C denote the point of tangency

of the line ˆ̀ with V . (We consider that the assumptions of Convention 2.6
hold.) Then for every germ of smooth curve x(t) ⊂ S, x(0) = B, there exist
curves p(t) ⊂ U and q(t) ⊂ V , p(0) = A, q(0) = C, such that the lines
x(t)p(t) and x(t)q(t) are tangent to U and V at p(t) and q(t) respectively
and σg-symmetric.

Let U ,V ⊂ RPd be the previously defined projective hyperplanes through
B tangent to U and V at A and C respectively, and H = TBU∩TBV ⊂ TBS,
see (2.1). The tuple (B, `,H, x′(0), A, p′(0), C, q′(0)) is a Berger tuple for the
metric g, by definition. Therefore, it is also a Berger tuple for the Euclidean
metric as well (Proposition 2.9). This together with Theorem 2.10 implies
that H = Hj(`) for some j.

The cone K is tangent along the line ` to the hyperplane generated
by ` and H = Hj , by definition. Therefore, the tautological projection
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K̃ = πB(K \ {B}) ⊂ RPd−1 is tangent at [`] = πB(` \ {B}) to the corre-
sponding hyperplane Dj([`]) from Proposition 2.11. Finally, K̃ is an integral
hypersurface of the multivalued hyperplane distribution D from Proposi-
tion 2.11, and hence, lies in a quadric Γ(U). The preimage π−1B (Γ(U)) is a
quadratic cone KB with vertex B that contains K and is σg-symmetric, be-

ing a cone tangent to a quadric confocal to S̃, see Proposition 2.11. (Recall
that for any given quadric S̃ and B ∈ S̃ a cone with vertex B circumscribed
about a quadric confocal to S̃ is symmetric with respect to the hyperplane
tangent to S̃ at B.) Similarly, the punctured cone σg(K) \ {B} tangent to
V is projected to a quadric Γ(V ), and σg(K) lies in a quadratic cone. The
latter quadratic cone coincides with KB, by symmetry. This proves Lemma
2.4. 2

Lemma 2.12 [2, section 3] Let U , V , S be C2-smooth germs of hypersur-
faces in RPd with non-degenerate second fundamental forms. Let for every
x ∈ S there exist a quadratic cone Kx with vertex at x that is tangent to
both U and V . Then U and V are pieces of one and the same quadric.

Proof of Theorem 2.1. For every y ∈ S close enough to B there exists
a quadratic cone Ky with vertex at y circumscribed about both U and V
(Lemma 2.4). Applying this statement to an open and dense subset of points
y ∈ S satisfying genericity assumptions from Convention 2.6 together with
Lemma 2.12 yield that U and V are pieces of one and the same quadric.
Theorem 2.1 is proved. 2

2.2 Symmetry hyperplanes of circumscribed cones and con-
focal quadrics

Here we prove the following lemma and then deduce Theorem 1.10 from it.

Lemma 2.13 (A generalization of an anologous statement in [2, p. 109].)
Let Σ be a simply connected space form of dimension at least three. Let
U ⊂ Σ be a quadric with non-degenerate second fundamental form. For
every y ∈ Σ \ U let Ky denote the geodesic cone circumscribed about the
quadric U with the vertex at y (i.e., the union of geodesics through y that are
tangent to U). We identify the cone Ky with the cone K̃y ⊂ TyΣ of vectors
tangent to the above geodesics via the exponential mapping exp : TyΣ → Σ.
Let S ⊂ Σ be a germ of hypersurface at a point B /∈ U with non-degenerate
second fundamental form such that for every y ∈ S the cone K̃y is symmetric
with respect to the hyperplane TyS. Then S is a quadric confocal to U .
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In the proof of Lemma 2.13 we use the following lemma. To state it, let
us recall that the orthogonal polarity in Rd+1 is the correspondence send-
ing each vector subspace to its orthogonal complement with respect to the
standard Euclidean scalar product. The orthogonal polarity in codimension
one, which sends codimension one vector subspaces to their orthogonal lines,
induces a projective duality RPd∗ → RPd sending hyperplanes to points. It
sends each hypersurface S ⊂ RPd to its dual S∗: the family of points dual
to the hyperplanes tangent to S.

Definition 2.14 Consider a scalar product < Gx, x > on Rd+1 defining a
space form. Orthogonality with respect to the latter scalar product will be
called G-orthogonality. Let V ⊂ Rd+1 be a subspace that is not isotropic:
this means that the restriction to V of the scalar product < Gx, x > is a
non-degenerate quadratic form (or equivalently, that V is not tangent to the
light cone {< Gx, x >= 0}). The pseudo-symmetry with respect to V is the
linear involution IV : Rd+1 → Rd+1 that preserves the above scalar product
on Rd+1 and whose fixed point set coincides with V : it acts trivially on V
and as a central symmetry in the G-orthogonal subspace.

Lemma 2.15 Let V ⊂ Rd+1 be a non-isotropic vector subspace. Let k <
d + 1. Consider the action IV,k : G(k, d + 1) → G(k, d + 1) of the pseudo-
symmetry with respect to V on the Grassmannian of k-subspaces. The or-
thogonal polarity L 7→ L⊥ conjugates the actions IV,k and1 IV ⊥,d+1−k.

Proof The lemma seems to be well-known to specialists. In three dimen-
sions it follows from [8, formula (15), p.23], [15, formula (3.12), p.140]. Let
us present its proof for completeness of presentation. As it is shown below,
Lemma 2.15 is implied by the two following propositions.

Proposition 2.16 Let G be a real symmetric (d+ 1)× (d+ 1)-matrix such
that G3 = G. Let two non-isotropic subspaces V,W ⊂ Rd+1 of comple-
mentary dimensions be G-orthogonal. Then their Euclidean orthogonal
complements V ⊥ and W⊥ are also non-isotropic and G-orthogonal.

Proof The condition of the proposition implies that the restrictions of the
linear operator G to V and W have zero kernels and

GV = W⊥, GW = V ⊥. (2.3)

1Everywhere below the orthogonality sign ⊥ means orthogonality with respect to the
standard Euclidean scalar product.
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Thus, to prove G-orthogonality of the latter subspaces, it suffices to show
that

< G2v,Gw >=< G3v, w >= 0 for every v ∈ V and w ∈W.

The first equality follows from symmetry of the matrix G. The second one
follows from G-orthogonality of the subspaces V and W and the equality
G3 = G. The subspaces (2.3) are non-isotropic, since the restrictions to
them of the scalar product < Gx, x > are isomorphic to its restrictions to V
and W via the operator G: for every v1, v2 ∈ V one has < G(Gv1), Gv2 >=<
Gv1, v2 >, since G3 = G. Proposition 2.16 is proved. 2

Proposition 2.17 Let < Gx, x > be a scalar product on Rd+1 defining a
space form. Let k ∈ {1, . . . , d}, V ⊂ Rd+1 be a non-isotropic subspace, and
let W ⊂ Rd+1 be its G-orthogonal completent2. Let Nk(V ) ⊂ G(k, d + 1)
denote the subset of those vector k-subspaces in Rd+1 that are direct sums
of some subspaces `1 ⊂ V and `2 ⊂ W . The pseudo-symmetry IV induces
a non-trivial projective involution RPd → RPd and acts trivially on Nk(V ).
Vice versa, every non-trivial projective involution acting trivially on Nk(V )
is the projectivization of the pseudo-symmetry IV .

Proof The first statement of the proposition is obvious. Let us prove the
second one. Let F : Rd+1 → Rd+1 be a linear transformation whose projec-
tivization is a non-trivial involution acting trivially on Nk(V ). Without loss
of generality we consider that F 2 = ±Id. For every vector subspace L ⊂ V
of dimension between 1 and k the transformation F preserves the subset in
Nk(V ) consisting of the k-subspaces containing L. Their intersection being
equal to L, F preserves L. The same statement holds for L ⊂W . Therefore,
the restriction of the transformation F to any of the subspaces V and W
is a homothety. The coefficients of the homotheties on V and W are equal
to ±1, since F 2 = Id up to sign. The signs of the latter coefficients are
opposite, since the projectivization of the transformation F is non-trivial.
Hence, F = ±IV . This proves the proposition. 2

Let us now return to the proof of Lemma 2.15. The action of a linear
automorphism F : Rd+1 → Rd+1 on all the vector subspaces of all the
dimensions is conjugated via the orthogonal polarity to the similar action

2The G-orthogonal complenent W to a non-isotropic subspace V is always a vector sub-
space complementary to V . In the non-Euclidean cases W is automatically non-isotropic.
In the Euclidean case, when the matrix G is degenerate, W contains the kernel of the
matrix G: the x0-axis.
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of the inverse (F ∗)−1 to the conjugate operator F ∗ (with respect to the
Euclidean scalar product). In the case, when F is an involution, so is F ∗ =
(F ∗)−1. Let W be the G-orthogonal complement of the subspace V .

Claim. The conjugate operator F = I∗V acts trivially on Nd+1−k(V
⊥).

Proof The orthogonal polarity sends each k-subspace Π = `1⊕`2 ∈ Nk(V ),
`1 ⊂ V , `2 ⊂W , to the intersection of two subspaces Lj = Lj(Π) = `⊥j :

L1 ⊃ V ⊥, L2 ⊃W⊥, Π⊥ = L1 ∩ L2, (2.4)

dim(Π⊥) = dimL1 + dimL2 − (d+ 1) = d+ 1− k.

The transformation F fixes Π⊥, by construction and since the pseudo-
symmetry IV fixes Π (Proposition 2.17). The intersection Π⊥ is the direct
sum of the subspaces L1 ∩ W⊥ and L2 ∩ V ⊥, which follows from the in-
clusions (2.4). Hence, Π⊥ lies in Nd+1−k(V

⊥). Vice versa, each point in
Nd+1−k(V

⊥) can be represented as the intersection Π⊥ of some subspaces
L1 and L2 containing V ⊥ and W⊥ respectively. Therefore, F acts trivially
on all of Nd+1−k(V

⊥). The claim is proved. 2

The operator F = I∗V is a projectively non-trivial involution, as is IV .
It coincides with IV ⊥ up to sign, by the claim and Proposition 2.17. This
together with the discussion preceding the claim implies the statement of
Lemma 2.15. 2

Proof of Lemma 2.13. Consider the tautological projection π : Rd+1 \
{0} → RPd, the images π(S), π(U) ⊂ RPd and the hypersurfaces in RPd
projective-dual to them with respect to the orthogonal polarity. For sim-
plicity the latter projective-dual hypersurfaces will be denoted by S∗ and
U∗ respectively. Let S̃, Ũ , S̃∗, Ũ∗ ⊂ Rd+1 denote the complete π-preimages
in Rd+1 of the hypersurfaces π(S), π(U), S∗ and U∗ respectively: the cones
in Rd+1 \ {0} defined by the latter hypersurfaces. Recall that π(U) and U∗

are dual quadrics; thus one can write

U∗ = {< Qx, x >= 0}, Q is a real symmetric (d+ 1)× (d+ 1)−matrix.

For every y ∈ S let TyS ⊂ RPd denote the projective hyperplane tangent to
π(S) at π(y). Define the following vector subspaces in Rd+1:

Πy := π−1(TyS) ∪ {0} ⊂ Rd+1, Ly := Π⊥y ,

Vy := the one-dimensional subspace π−1(π(y)) ∪ {0} ⊂ Πy, Wy := V ⊥y .

The subspaces Ly and Wy are non-isotropic. Indeed, in the case, when Σ is
non-Euclidean, this follows from obvious non-isotropicity of their orthogonal
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subspaces Πy and Vy and Proposition 2.16. In the case, when Σ is Euclidean,
if, to the contrary, either Ly, or Wy contained the x0-axis, this would imply
that either Πy, or Vy lies in the coordinate (x1, . . . , xd)- subspace, and hence,
is disjoint from Σ. This is obviously impossible.

Claim 1. The quadric U∗ is regular, i.e., the matrix Q is non-degenerate.
The hyperplane section Ũ∗∩Wy is invariant under the pseudo-symmetry with
respect to the one-dimensional vector subspace Ly ⊂Wy.
Proof The first statement (non-degeneracy) follows from non-degeneracy
of the second fundamental form of the quadric U . The inclusion Ly ⊂ Wy

follows from definition. Recall that the cone K̃y is symmetric with respect to
the hyperplane TyS, i.e., the preimage π−1(Ky) is pseudo-symmetric with
respect to Πy, by assumption. The latter statement is equivalent to the
second statement of the claim, by duality and Lemma 2.15. 2

The restriction to the d-dimensional vector subspace Wy of the scalar
product < Gx, x > is non-degenerate (non-isotropicity), and there exist d
values λ = λ1(y), . . . , λd(y) (taken with multiplicity, some of them may coin-
cide) such that the restriction toWy of the scalar product< (Q−λG)x, x > is
degenerate. Thus, the d-dimensional vector subspaceWy is theG-orthogonal
direct sum of kernels of the scalar products < (Q− λj(y)G)x, x > |Wy .

Claim 2. For every y ∈ S the pseudo-symmetry line Ly lies in the
kernel of some of the scalar products < (Q− λj(y)G)x, x > |Wy .
Proof The scalar product < Qx, x > |Wy is invariant under the pseudo-
symmetry with respect to the line Ly. Indeed, the latter pseudo-symmetry is

an involution preserving the zero locus (light cone) Ũ∗∩Wy = {< Qx, x >=
0} ∩Wy (Claim 1), and hence, it preserves the above scalar product up to
sign. Let us show that the sign is also preserved. For an open and dense
subset of points y ∈ S one has < Qx, x >6= 0 on Ly \ {0}: equivalently
(via duality), the tangent hyperplane TyS is not tangent to U . Indeed, the
latter statement holds for an open and dense subset of points y ∈ S, since
S ∩U = ∅ and a (germ of) hypersurface is uniquely defined by the family of
its tangent hyperplanes (well-definedness of the dual hypersurface). Thus,
for the above y the pseudo-symmetry fixes the non-zero quadratic form
< Qx, x > |Ly , since the points of the line Ly are fixed. This together with
the above discussion implies that the above-mentioned sign, and hence the
scalar product < Qx, x > |Wy are preserved for all y ∈ S.

For every λj(y) the kernel of the form < (Q−λj(y))x, x > |Wy is invariant
under the above pseudo-symmetry, by invariance of the scalar products <
Qx, x > and < Gx, x >. This is possible only in the case, when the pseudo-
symmetry line Ly lies in some of the kernels, which form an orthogonal direct
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sum decomposition of the subspace Wy. This proves Claim 2. 2

Remark 2.18 The subspace Wy and hence, the corresponding kernels from
Claim 2 depend only on y and are well-defined for all y ∈ Σ.

Due to Claim 2, the following two cases are possible.
Case 1: for an open and dense subset S0 of points y ∈ S the line Ly

coincides with a one-dimensional kernel corresponding to a simple eigenvalue
λj(y). Let us show that in this case S lies in a quadric confocal to U . Indeed
then there exist a neighborhood Y = Y (B) ⊂ Σ of the base point B of the
hypersurface S and an open and dense subset Y0 ⊂ Y containing S0 such
that the correspondence y 7→ Ly extends to a family of lines depending
analytically on y ∈ Y0: these lines are some of the kernels mentioned in the
above remark. This implies that the corresponding hyperplanes Πy := L⊥y
also depend analytically on y and thus, induce a field of hyperplanes T =
T (y) = Πy ∩ TyΣ on Y0. The hypersurface S0 is its integral hypersurface.

Subcase 1.1): U is a generic quadric. Then for a generic point y ∈ Σ
(here ”generic” means ”outside an algebraic subset”)

- there are exactly d quadrics through y confocal to U , and any two of
them are orthogonal at y;

- the corresponding eigenvalues λj(y) are simple and the corresponding
d kernels in Wy are one-dimensional.

Recall that the tangent hyperplanes at y of the above confocal quadrics
are symmetry hyperplanes for the cone Ky, since U is a caustic for its
confocal quadrics. Therefore, the orthogonal polarity Πy 7→ Ly induces
a one-to-one correspondence between the above tangent hyperplanes and
kernels. This implies that for a generic y ∈ Y0 the integral hypersurface
of the hyperplane field T through y is a confocal quadric to U . Passing to
limit, as y tends to a point of the integral hypersurface S, we get that S is
a confocal quadric as well.

Subcase 1.2): U is a general regular quadric. Then it is a limit of generic
quadrics Un in the above sense. For each Un the integral hypersurfaces of
the corresponding above hyperplane field Tn are quadrics confocal to Un.
Passing to limit, as n → ∞, we get the same statement for the hyperplane
field T associated to U . Hence, S is a quadric confocal to U .

Case 2: there exists an open subset of points y ∈ S for which Ly lies
in at least two-dimensional kernel of the form < (Q − λj(y))x, x > |Wy

corresponding to a multiple eigenvalue λj(y). In this case the latter kernel
contains at least two linearly independent vectors w1, w2 ∈ Wy, and by
definition, both of them are orthogonal to the hyperplane Wy with respect

17



to the scalar product < (Q−λG)x, x >, λ = λj(y). Hence, their appropriate
non-zero linear combination w = a1w1 + a2w2 is orthogonal to the whole
ambient space Rd+1 with respect to the same scalar product. Therefore, w
lies in the kernel of the same scalar product taken on all of Rd+1, and thus,
λ is such that the matrix Q − λG is degenerate: then we’ll call such a λ a
global eigenvalue. The number of global eigenvalues λ is at most d+ 1, and
all of them are independent on y.

Finally, there exist a global eigenvalue λ and an open subset S0 ⊂ S
such that for every y ∈ S0 one has < (Q− λ)x, x >≡ 0 on Ly, since Ly lies
in the kernel of the restriction to Wy of the scalar product < (Q− λ)x, x >.

Thus, for y ∈ S0 the projections p(y) = π(Ly \ {0}) ∈ RPd lie in a
degenerate quadric Γ ⊂ RPd defined by the equation < (Q − λ)x, x >=
0. The points p(y) form the dual hypersurface S∗0 , by definition. Hence,
S∗0 lies in a degenerate quadric Γ. This contradicts non-degeneracy of the
second fundamental form of the hypersurface S. Hence, the case under
consideration is impossible. Lemma 2.13 is proved. 2

Proof of Theorem 1.10. The hypersurfaces U and V lie in the same
quadric in Σ, which will be now denoted by U (Theorem 2.1). The quadric
U is a caustic for the hypersurface S: for every y ∈ S the cone of geodesics
through y that are tangent to U is symmetric with respect to the hyperplane
tangent to TyS. Therefore, S is a quadric confocal to U , by Lemma 2.13.
This proves Theorem 1.10. 2

3 Commuting billiards and caustics: proof of The-
orem 1.7

Proposition 3.1 Let Σ be a space form of constant curvature of dimension
d ≥ 2. Let two nested strictly convex C2-smooth closed hypersurfaces a, b ⊂
Σ, a b Ωb (see the notations at the beginning of the paper) be such that
the corresponding billiard transformations σa and σb commute. Then a is a
caustic for the hypersurface b.

Proof Let Πa denote the open subset of geodesics in Σ that are disjoint
from the hypersurface a. Its boundary ∂Πa consists of those geodesics that
are tangent to a. A geodesic L is fixed by σa, if and only if L ∈ Πa, i.e., L
is either disjoint from a, or tangent to a. In this case σbσa(L) = σb(L) =
σaσb(L), and thus, σb(L) is a fixed point of the transformation σa. This
implies that σb(Πa) ⊂ Πa. The subset Πa is invariant under two transforma-
tions acting on oriented geodesics: the reflection σb and the transformation
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J of the orientation change. The transformations J and J ◦ σb are invo-
lutions. Hence, they are homeomorphisms of the whole space of oriented
geodesics in Σ. Their restrictions to the common invariant subset Πa should
be also a homeomorphism: an involution acting on a set is obviously always
bijective. Therefore, each of them sends the boundary ∂Πa onto itself home-
omorphically, and the same is true for their composition σb = J ◦ (J ◦ σb):
σb(∂Πa) = ∂Πa. The latter equality means exactly that a is a caustic for
the hypersurface b. The proposition is proved. 2

Proof of Theorems 1.7 and 1.2. Let a, b ⊂ Σ be two nested strictly
convex C2-smooth closed hypersurfaces in a space form Σ with commuting
billiard transformations, a b Ωb, dim Σ ≥ 3. Then a is a caustic for the
hypersurface b, by Proposition 3.1. This means that for every points B ∈ b
and A ∈ a such that the line AB is tangent to a at A the image σb(AB) of
the line AB (oriented from A to B) is a line through B tangent to a. Recall
that a and b are strictly convex, which implies that their second fundamental
forms are sign-definite and thus, non-degenerate. Therefore, for every A and
B as above the germs at A and B of the hypersurfaces U = a and S = b
respectively satisfy the conditions of Theorem 1.10, with V being the germ of
the hypersurface a at its point D of tangency with the line σb(AB). Hence,
for every A and B as above the germ (S,B) lies in a quadric, and the germs
(U,A), (V,D) lie in one and the same quadric confocal to S. This implies
that b is a quadric, and a is a quadric confocal to b. Theorems 1.7, and 1.2
are proved. 2

4 A tangential local version of Theorem 1.7

Theorem 4.1 Let d ≥ 3. Let (U,A), (S,B), (V,D) be germs of C2-smooth
hypersurfaces in a d-dimensional space form Σ at points A, B and D. Let
B 6= A,D, and let U and S have non-degenerate second fundamental forms.
For every Z = U, S, V consider the action of the reflection σZ on the oriented
geodesics that intersect Z, defined as at the beginning of the paper: we reflect
the geodesic at its last intersection point with the hypersurface Z. Let L0

be a geodesic through B transversal to S and quadratically tangent to U at
A (we orient it from A to B), and let its image σS(L0) be quadratically
tangent to V at D. Let W be a small neighborhood of the geodesic L0 in
the space of oriented geodesics; in particular, each point in W represents
a geodesic intersecting S transversally. Let ΠW ⊂ W denote the subset of
those geodesics that intersect U . Let for every L ∈ ΠW the image σS(L)
intersect V ; more precisely, we suppose that the compositions σS ◦ σU and
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σV ◦ σS are well-defined on ΠW . Let the latter compositions be identically
equal on ΠW . Then S lies in a quadric b, and U , V lie in one and the same
quadric confocal to b.

Proof Every geodesic L tangent to U and close enough to L0 lies in ΠW .
Its image σU (L) coincides with L (by definition), and hence, σS ◦ σU (L) =
σS(L) = σV ◦ σS(L). Thus, the geodesic σS(L), which should intersect V
by assumption, is fixed by σV . Hence, it is tangent to V (at the last point
of its intersection with V ). Finally, the germs of hypersurfaces U , S and V
satisfy the conditions of Theorem 1.10. Therefore, S lies in a quadric b, and
U , V lie in one and the same quadric confocal to b, by Theorem 1.10. This
proves Theorem 4.1. 2

5 Open problems

The billiards in space forms are particular cases of the projective billiards
introduced in [19]. The main results of the present paper (Theorem 1.10 ex-
tending Berger’s result on caustics [2], Theorem 1.7 on commuting billiards)
are proved for billiards in space forms. It would interesting to extend them
to projective billiards.

Problem 1 (appeared as a result of our discussion with Sergei Tabach-
nikov). Let S ⊂ Rd, d ≥ 3 be a germ of hypersurface at a point B equipped
with a field Λ of one-dimensional subspaces Λy ⊂ TyRd, y ∈ S, transversal
to S. Consider the family of linear involutions σy : TyRd → TyRd, y ∈ S,
that fix each point of the hyperplane TyS and have Λy as an eigenline with
eigenvalue −1. Let there exist two germs of hypersurfaces U and V at points
A,C 6= B respectively such that the lines AC, BC are tangent to U and
V at points A and C respectively and for every y ∈ S each line through y
that is tangent to U is reflected by σy to a line tangent to V . (Thus defined
action of the reflections σy on oriented lines transversal to S is called the
projective billiard transformation, and the pair (S,Λ) is called a pro-
jective billiard, see [19].) Is it true that then U and V lie in one and the
same quadric?

Problem 2 (S.Tabachnikov). Classify commuting nested pairs of pro-
jective billiards in Rd, d ≥ 2.
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Mathématiques, Teubner, Gauthier-Villars, J.Gabay, 1904–1992, 1–
162.

[18] Tabachnikov, S., Geometry and Billiards. Amer. Math. Soc. 2005.

[19] Tabachnikov, S., Introducing projective billiards. Erg. Th. and Dynam.
Sys. 17 (1997), 957–976.

[20] Tabachnikov, S., Commuting dual billiard maps. Geometriae Dedicata,
53 (1994), 57–68.

[21] Veselov, A. P. Integrable systems with discrete time, and difference op-
erators. Funct. Anal. Appl. 22 (1988), No. 2, 83–93.

[22] Veselov, A.P. Confocal surfaces and integrable billiards on the sphere
and in the Lobachevsky space. J. Geom. Phys., 7 (1990), Issue 1, 81–107.

22


