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On commuting billiards in higher dimensions

Alexey Glutsyuk ∗†‡

August 1, 2018

Abstract

We consider two nested billiards in Rn, n ≥ 3, with smooth strictly
convex boundaries. We prove that if the corresponding actions by
reflections on the space of oriented lines commute, then the billiards are
confocal ellipsoids. This together with the previous analogous result of
the author in two dimensions solves completely the Commuting Billiard
Conjecture due to Sergei Tabachnikov. The main result is deduced
from the classical theorem due to Marcel Berger saying that in higher
dimensions only quadrics may have caustics.

1 Introduction

Let Ωa b Ωb ⊂ Rn be two nested bounded domains with smooth strictly
convex boundaries a = ∂Ωa and b = ∂Ωb. Consider the corresponding
billiard transformations σa, σb acting on the space of oriented lines in the
plane by reflection as follows. Each σg, g = a, b, acts as identity on the
lines disjoint from g. For each oriented line l intersecting g we take its last
intersection point x with g in the sense of orientation: the orienting arrow
of the line l at x is directed outside Ωg. The image σg(l) is the line obtained
by reflection of the line l from the hyperplane Txg: the angle of incidence
equals the angle of reflection. The line σg(l) is oriented by a tangent vector
at x directed inside Ωg. This is a continuous mapping that is smooth on the
space of lines intersecting g transversely.

Recall, see, e.g., [2, 12], that a pencil of confocal quadrics in a Euclidean
space Rn is a one-dimensional family of quadrics defined in some orthogonal
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coordinates (x1, . . . , xn) by equations

n∑
j=1

x2j
a2j + λ

= 1; aj ∈ R are fixed; λ ∈ R is the parameter.

It is known that any two confocal elliptic or ellipsoidal billiards commute
[12, p.59, corollary 4.6], [13, p.58]. Sergei Tabachnikov stated the conjecture
affirming the converse: any two commuting nested billiards are confocal
ellipses (ellipsoids) [13, p.58]. In two dimensions his conjecture was proved
by the author of the present paper in [6, theorem 5.21, p.231] for piecewise
C4-smooth boundaries. Here we prove it in higher dimensions.

Theorem 1.1 Let two nested strictly convex C2-smooth closed hypersur-
faces in Rn, n ≥ 3 be such that the corresponding billiard transformations
commute. Then they are confocal ellipsoids.

In the next section Theorem 1.1 will be deduced from a classical theorem
due to Marcel Berger concerning billiards in Rn, n ≥ 3, which states that
only billiards bounded by quadrics may have caustics, see the next definition.
In Subsection 3 we state and prove a tangential local version of Theorem
1.1.

Definition 1.2 Let a, b be two nested strictly convex closed hypersurfaces
in Rn, a b Ωb, see the notations at the beginning of the paper. We say
that a is a caustic for the hypersurface b, if the image of each oriented line
tangent to a by the reflection σb is again a line tangent to a.

Example 1.3 It is well-known that if a, b are two confocal ellipses (ellip-
soids), then the smaller one is a caustic for the bigger one. In the plane
this is the classical Proclus–Poncelet theorem. In higher dimensions this
theorem is due to Jacobi, see [11, p.80].

Commuting billiards are closely related to problems of classification of
integrable billiards, see [13]. It is known that elliptic billiards and billiards
in ellipsoids are integrable, see [14, proposition 4], [12, chapter 4], and this
also holds for non-Euclidean ellipsoids in sphere and in the Lobachensky
(hyperbolic) space of any dimension, see [15, the corollary on p. 95]. The fa-
mous Birkhoff Conjecture states that in two dimensions the converse is true.
Namely, it deals with the so-called Birkhoff caustic-integrable convex planar
billiards with smooth boundary, that is, billiards for which there exists a
foliation by closed caustics in an interior neighborhood of the boundary. It
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states that the only Birkhoff caustic-integrable billiards are ellipses. Birkhoff
Conjecture was first stated in print in Poritsky’s paper [10], who proved it
in loc. cit. under the additional assumption that the billiard in each closed
caustic near the boundary has the same closed caustics, as the initial billiard.
Poritsky’s assumption implies that the initial billiard map commutes with
the billiard in any closed caustic; this follows by the arguments presented
in [12, pp.58–59]. One of the most famous results on Birkhoff Conjecture is
a theorem of M.Bialy, who proved that if the phase cylinder of the billiard
map is foliated (almost everywhere) by non-contractible closed curves which
are invariant under the billiard map, then the boundary is a circle. A local
version of Birkhoff Conjecture, for integrable deformations of ellipses was
recently solved in [1, 9]. Its recently solved algebraic version is a result of
papers [3, 4, 7], see also a short version [8] of the preprint [7]. For a historical
survey of Birkhoff Conjecture see [12, p.95] and papers [9, 7] and references
therein. Dynamics in billiards in two and higher dimensions with piecewise
smooth boundary consisting of confocal quadrics was studied in [5].

2 Commuting billiards and caustics: proof of The-
orem 1.1

Proposition 2.1 Let n ≥ 3. Let two nested strictly convex C2-smooth
closed hypersurfaces a, b ⊂ Rn, a b Ωb (see the notations at the beginning of
the paper) be such that the corresponding billiard transformations σa and σb
commute. Then a is a caustic for the hypersurface b.

Proof Let Πa denote the open subset of lines in Rn that are disjoint from
the hypersurface a. Its boundary ∂Πa consists of those lines that are tangent
to a. A line L is fixed by σa, if and only if L ∈ Πa, i.e., L is either disjoint
from a, or tangent to a. In this case σbσa(L) = σb(L) = σaσb(L), and thus,
σb(L) is a fixed point of the transformation σa. This implies that σb(Πa) ⊂
Πa. The subset Πa is invariant under two transformations acting on oriented
lines: the reflection σb and the transformation J of the orientation change.
The transformations J and J ◦ σb are involutions, thus sending Πa to itself.
Therefore, J(Πa) = J ◦ σb(Πa) = Πa. Hence, σb(Πa) = Πa, and thus,
σb(∂Πa) = ∂Πa. The latter equality means exactly that a is a caustic for
the hypersurface b. The proposition is proved. 2

As it is shown below, Theorem 1.1 is implied by Proposition 2.1 and the
following theorem due to M.Berger.
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Theorem 2.2 [2] Let n ≥ 3. Let S,U ⊂ Rn be germs of C2-smooth hyper-
surfaces at points B and A respectively with non-degenerate second funda-
mental forms. Let the affine tangent line TAU go through B transversely to
S. Let there exist a germ of C2-smooth hypersurface V such that for every
point x ∈ U close to A the image of the affine tangent line TxU under the
reflection from the hypersurface S be tangent to V . Then S is a piece of a
quadric a, and U , V are pieces of one and the same quadric confocal to a.

Proof of Theorem 1.1. Let a, b ⊂ Rn be the nested hypersurfaces under
question with commuting billiard transformations, a b Ωb. Then a is a
caustic for the hypersurface b, by Proposition 2.1. This means that for every
points B ∈ b and A ∈ a such that the line AB is tangent to a at A the image
σb(AB) of the line AB (oriented from A to B) is a line through B tangent
to a. Recall that a and b are strictly convex, which implies that their second
fundamental forms are sign-definite and thus, non-degenerate. Therefore,
for every A and B as above the germs at A and B of the hypersurfaces
U = a and S = b respectively satisfy the conditions of Theorem 2.2, with
V being the germ of the hypersurface a at its point D of tangency with
the line σb(AB). Hence, for every A and B as above the germ (S,B) lies
in a quadric, and the germs (U,A), (V,D) lie in one and the same quadric
confocal to S. This implies that b is a quadric, and a is a quadric confocal
to b. Theorem 1.1 is proved. 2

3 A tangential local version of Theorem 1.1

Theorem 3.1 Let n ≥ 3. Let (U,A), (S,B), (V,D) be germs of hypersur-
faces in Rn at points A, B and D, and let U and S have non-degenerate
second fundamental forms. For every G = U, S, V consider the action of
the reflection σG on the oriented lines that intersect G, defined as at the
beginning of the paper. Let the affine tangent line L0 = TAU go through
B transversely to S (we orient it from A to B), and let its image σS(L0)
be tangent to V at D. Let W be a small neighborhood of the line L0 in
the space of oriented lines; in particular, each line in W intersects S. Let
ΠW ⊂ W denote the subset of those lines that intersect U . Let for every
L ∈ ΠW the image σS(L) intersect V : thus, the compositions σS ◦ σU and
σV ◦ σS are well-defined on ΠW . Let the latter compositions be identically
equal on ΠW . Then S lies in a quadric b, and U , V lie in one and the same
quadric confocal to b.

Proof Every line L tangent to U and close enough to L0 lies in ΠW . Its
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image σU (L) is tangent to V . Indeed, σS ◦ σU (L) = σS(L) = σV ◦ σS(L).
Thus, the line σS(L) intersects V and is invariant under the reflection from
V . Hence, it is tangent to V (at the last point of its intersection with V ).
Finally, the germs of hypersurfaces U , S and V satisfy the conditions of
Theorem 2.2. Therefore, S lies in a quadric b, and U , V lie in one and the
same quadric confocal to b, by Theorem 2.2. This proves Theorem 3.1. 2
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