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Estimating the number and the strength of collisions in

molecular dynamics

Denis Serre

École Normale Supérieure de Lyon∗

Abstract

We consider the motion of a finite though large number of particles in the whole space Rn.

Particles move freely until they experience pairwise collisions. We use our recent theory of

divergence-controlled positive symmetric tensors in order to establish two estimates regarding

the set of collisions. The only information needed from the initial data is the total mass and the

total energy.

1 Models of molecular dynamics

We consider a set of N identical particles of mass m, moving in the whole space Rn. The coordinate

in the physical space R1+n is denoted x = (t,y) where t is the time and y ∈ Rn the position.

In practice n = 3 and N is of the size of the Avogadro number, but the analysis below is valid in

every dimension and for any cardinality. We shall think of the particles as spheres of radius a > 0, so

that a collision between two particles occurs when their centers yα approach to a distance 2a :

|yβ − yα|= 2a.

The incoming and outgoing velocities (vα,β and v′α,β respectively) satisfy

(1) (vβ − vα) · (yβ− yα)< 0, (v′β − v′α) · (yβ− yα)≥ 0.

Our assumptions are as follows:

• Each particle Pα has a finite internal energy εα ≥ 0 and a velocity vα ∈ Rn. These parameters

remain constant between consecutive collisions involving Pα.

∗U.M.P.A., UMR CNRS–ENSL # 5669. 46 allée d’Italie, 69364 Lyon cedex 07. France. denis.serre@ens-lyon.fr
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• When Pα and Pβ collide, at a given time t, their parameters (velocity, internal energy) experience

a jump, which obey to the conservation of momentum and energy:

v′α + v′β = vα + vβ,

m

2

(

|v′α|2 + |v′β|2
)

+ ε′α + ε′β =
m

2

(

|vα|2 + |vβ|2
)

+ εα + εβ.

• The collisions are friction-less, meaning that the jump of velocity is orthogonal to the common

tangent space to the particles:

(2) v′α − vα = vβ − v′β ‖ yβ − yα.

The trajectory of a given particle is a polygonal chain. The conservation of energy implies a bound

for the emerging velocities:

|v′α|2 + |v′β)|2 ≤ |vα|2 +
2

m
εα+ |vβ|2 +

2

m
εβ.

The assumptions made above cover two important cases. On the one hand that of hard spheres, for

which there is no exchange of internal energy (we might as well assume that there is no internal

energy at all) and therefore

|v′α|2 + |v′β|2 = |vα|2 + |vβ|2.
On the other hand, we have the model of sticky particles, for which

v′α = v′β =
1

2
(vα + vβ).

Two important quantities emerge from this considerations, namely the total mass M = Nm and the

total energy

E = ∑
α

(m

2
|vα(t)|2+ εα(t)

)

,

which do not depend on the instant at which they are computed. The third conserved quantity (total

momentum)

Q = m∑
α

vα(t)

will not be used below, for several reasons. On the first leg its nature is vectorial, which makes hard its

use for an estimate. Besides, it just vanishes if we choose an appropriate inertial frame, a flaw which

does not occur to the mass or the energy. Finally, it can be estimated by Cauchy–Schwarz inequality,

|Q| ≤
√

2ME , and therefore the knowledge of M and E will always give a sufficient information.

2



2 Results

Our aim is to estimate the number of collisions during the whole history, given only M and E. We

shall partly achieve this goal, in the sense that we establish estimates of the form

∑
coll.

F(vα,vβ,v
′
α,v

′
β)

in terms of m,M and E, where F is some explicit non-negative function, and we sum over all col-

lisions. We confess that these estimates get poorer when either vβ − vα is small (slow collision), or

when the vectors vα,vβ,v
′
α,v

′
β are approximately coplanar (grazing collisions). We believe that these

limitations are inherent to the context of molecular dynamics, and that they do not reveal a weakness

of the mathematical tool which we employ below.

Our main results are as follows. We limit ourselves to the case where every collision involves

exactly two particles, and the evolution is defined for every time. This is a generic situation, as shown

by Alexander in his PhD thesis [1] ; see Theorem 4.2.1 of [4]. See also Uchiyama’s analysis [12]

of the Broadwell model, amodel with discrete velocity set. Our estimates involve the wedge product

of two or three vectors in arbitrary dimensions ; we explain this notion, that comes from exterior

calculus, in Paragraph 4.2. The product of ℓ vectors in Rn always vanishes if ℓ > n.

Theorem 2.1 Consider a finite system of particles moving in the physical space Rn according to the

laws described above. Let M = Nm be the total mass and E < ∞ be the total energy of the system.

Let us make the generic assumption that the collision set is locally finite, and that the motion involves

only binary collisions.

At every collision, denote v,v1 the incoming velocities and v′,v′1 the ougoing ones (they vary from

one collision to another one, although the notation remains the same).

Then there exists a universal constant such that the following inequalities hold true

(3) m2 ∑
coll.

(

E |v′− v|2 +M |v∧ v′|2
√

(E +M |v|2)(E +M |v′|2)
+

E |v′1 − v1|2 +M |v1 ∧ v′1|2
√

(E +M |v1|2)(E +M |v′1|2)

)

≤ cnME,

where the sum runs over the set of collisions. When n ≥ 2, we also have

(4) m
3
2 ∑

coll.

AB

C
≤ cnM

1
2 E

3
4 ,

where for each collision,

A =
(

E|(v′− v)∧ (v1 − v)|2 +M|v∧ v′∧ v1|2
)

1
2

B =
(

4E +M(|v|2+ |v′|2 + |v1|2+ |v′1|2)
)1/4

C =
(

(E +M|v|2)(E +M|v′|2)(E +M|v1|2)(E +M|v′1|2)
)

1
4 .

By using the inequality |v∧ v′| ≤ |v| · |v′− v|, we see that (3) implies a simpler estimate:
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Corollary 2.1 With the same assumptions as in Theorem 2.1, we have

(5) m2 ∑
coll.

|v∧ v′|2
|v| · |v′| ≤ cnME

for some universal constant cn.

It seems that (4) cannot be simplified in a similar way.

Comments.

• These estimates are independent of the size a of the particles. They are also dimension-

independent, apart for the constants cn.

• The expressions A,B and C are symmetric functions of the velocities v,v′,v1 and v′1 (obvious

for B and C).

• The estimates above do not tell us whether the number of collisions is finite.

• Nethertheless (3) tells us something about the number of the ”strongest” ones. In terms of

a typical velocity v :=
√

E/M , the number of collisions for which |v∧ v′|2 ≥ εv2|v| · |v′| is

bounded by cnN2ε−1.

• Likewise, (4) tells us that the number of collisions for which |(v′− v)∧ (v1 − v)| ≥ εv2 and

|v|, |v′|, |v1|, |v′1| ≤ Av for some 0 < ε < A < ∞, is bounded by Cε,AN
3
2 . On the contrary, it says

very little about grazing collisions.

These polynomial bounds should be compared with those known for the whole set of collisions.

For the hard spheres model with elastic collisions, Alexander [1] and Vaserstein [13] showed that this

set is finite, a problem raised by Ya. Sinai. The proof of finiteness was simplified by Illner [6, 7].

So far, these works argued by contradiction and did not give an upper bound of the collision number.

Later on Burago & all. [2] established the upper bound

(32N
3
2 )N2

.

This seems way too large to be accurate, since the fate of the particles is to disperse towards infinity

in independent directions.

On the opposite side, some authors constructed configurations for which the number of collisions

is superlinear in the number of particles. When the energy is not conserved and may increase arbi-

trarily, one can even observe infinitely many collisions [6, 5]. For hard spheres with elastic collisions,

Burdzy & Duarte [3] anounce that some configuration leads to at least

N3

27

collisions, a number which sounds reasonable. Let us point out that, according to our estimates, most

of these collisions must be weak and grazing.
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Plan of the paper. We begin by constructing in Section 3 the mass-momentum tensor associated

with the motion. It is a map x 7→ T (x) taking values in the cone of positive semi-definite matrices

Sym+
1+n, albeit a singular one: the entries are bounded measures and their support is one-dimensional.

The conservation of mass and momentum is expressed by the row-wise identity DivT = 0. One

striking feature in this construction is the introduction of massless virtual particles (collitons) whose

role is to carry the exchange of momentum between colliding particles. Section 4 presents the tools

that will be used in the analysis. It is mainly a recall of our theory of Compensated Integrability for

symmetric positive tensors whose row-wise divergence is a (vector-valued) bounded measure. We fix

also a few notations related to exterior calculus. Sections 5 and 6 present the proofs of the binary

and ternary estimates, respectively. We combine Compensated Integrability with a trick which we

developed for the first time in [11].

Acknowledgement. I am indebted to Laure Saint-Raymond and Reinhard Illner for valuable dis-

cussions and their help in gathering the relevant literature.

3 The mass-momentum tensor

From now on, we denote d = 1+n the time-space dimension.

3.1 Single particle

We begin by considering a single particle P whose constant velocity is v ∈ Rn. The trajectory t 7→
(t,y(t)) of the center of mass in the physical space R1+n is a line L, whose direction is

ξ =
V

|V | , where V :=

(

1

v

)

.

Let us define a symmetric matrix, whose entries are locally finite measures over R1+n, by

S = mV ⊗ξδL = m|V |ξ⊗ξδL.

In other words

〈Sab,φ〉= mVaξb

∫
R

φ(x̄+ sξ)ds, ∀φ ∈CK(R
1+n),

where x̄ is any point on the line L.

Lemma 3.1 One has

DivS = 0,

an equation that stands row-wise. More generally, if Q ∈ Rd with Q 6= 0, and η = Q
|Q| , then for every

line L = x̄+Rη, the symmetric tensor

SQ := Q⊗ηδL

is divergence-free.
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Notice that for a particle, S is nothing but SQ with Q = mV . Remark also that SQ is everywhere

positive semi-definite.

Proof

If φ is a test function, then

〈DivSQ,φ〉=−〈SQ,∇φ〉=−Q

∫
R

η ·∇φ(x̄+ sη)ds =−Q

∫
R

d

ds
φ(x̄+ sη)ds = 0.

3.2 Multi-line configuration

When L is replaced by a semi-infinite line L+ = x̄+R+η, the tensor

SQ+ := Q⊗ηδL+

is no longer divergence-free. The calculation above yields

(6) 〈DivSQ+,φ〉= φ(x̄)Q,

which is recast as

DivSQ+ = Qδx̄ .

Now, if finitely many vectors Q1,Q2, . . . are given, together with a point x̄ ∈ Rd , we may form the

converging semi-lines L+
j = x̄+R+Q j and define a symmetric tensor

Smult := ∑
j

SQ j+.

Then (6) tells us that Smult is divergence-free whenever

(7) ∑
j

Q j = 0.

Application to 1-D molecular dynamics. When n= 1, we may simplify the model by setting a= 0.

At a binary collision, the point particles meet at some point x̄ ∈ R1+1, with incoming velocities v,w
and outgoing ones v′,w′. Let us choose

(8) V1 =−
(

1

v

)

, V2 =−
(

1

w

)

, V3 =

(

1

v′

)

, V4 =

(

1

w′

)

and Q j = mVj. Then the positive semi-definite tensor

SQ1++SQ2++SQ3++SQ4+

associated with this pair of particles is divergence-free ; the compatibility condition Q1 +Q2 +Q3 +
Q4 = 0 is ensured by the conservation of mass and momentum through the collision. Its support is

the union of the trajectories.
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3.3 Binary collisions (n ≥ 2)

When n ≥ 2 instead, the radius a must be positive, in order that collisions take place.

Let two particles Pi and Pj collide at some time t∗. The trajectory of Pi displays a kink at a point

x̄i = (t∗, ȳi), and that of Pj does at x̄ j = (t∗, ȳ j) at the same instant t∗. We have |ȳ j − ȳi| = 2a. Let us

define V1, . . . ,V4 as in (8). Locally, the trajectories are made of segments of the semi-lines

L+
1 = x̄i +R+V1, L+

2 = x̄ j +R+V2, L+
3 = x̄i +R+V3, L+

4 = x̄ j +R+V4.

Let us denote again Q j = mVj. Because these do not meet at a single point, the tensor S = SQ1++
SQ2++SQ3++SQ4+ is not divergence-free. We have instead

DivS = (Q1 +Q3)δxi
+(Q2 +Q4)δx j

= (Q1 +Q3)(δxi
−δx j

).

In order to recover a divergence-free tensor, we introduce a vector Q

Q =

(

0

q

)

, q = m(v′− v) = m(w−w′).

Because of (2), the segment C = [x̄i, x̄ j] has direction Q. In the neighbourhood of the collision, we

can define the tensor

T = SQ1++SQ2++SQ3++SQ4++Q⊗ηδC.

Each of the five terms in the sum above is divergence-free away from either x̄i or x̄ j. At x̄i, DivT is a

sum of three Dirac masses, whose weight is

(9) m(V1 +V3)−Q =

(

0

−mv+mv′−q

)

= 0,

where the minus sign in front of Q comes from the fact that Q is oriented from x j to xi. A similar

identity holds true at x̄ j, though with a plus sign. We conclude that

DivT = 0.

We may interpret the contribution Q⊗ηδC as that of a virtual particle. This particle is mass-less,

because the first component of Q vanishes. It carries a momentum which is exchanged instantaneously

between Pi and Pj. We suggest the name colliton for this object. If we took in account relativistic

effects, there would be instead a pair of virtual particles (a particle and its anti-particle), travelling at

the speed of light.

3.4 The complete construction

Assuming again that only binary collisions happen, we consider the union of trajectories of the centers

of the N particles. Each trajectory is a polygonal chain whose kinks occur where and when the particle
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suffers a collision. Each segment J of a trajectory between two consecutive collisions contributes, as

explained above, with the tensor

mV ⊗ξδJ , V =

(

1

v

)

, ξ =
V

|V | ,

where v is the particle velocity along J. At a collision we also have the contribution of the cor-

responding colliton, as described in the previous paragraph. The sum T of all these contributions

is a divergence-free positive semi-definite tensor, which we call the mass-momentum tensor of the

configuration.

We point out that the support of T is a graph, a one-dimensional object in R1+n. Thus T vanishes

almost everywhere in the Lebesgue sense. The support can be equiped with the positive measure Tr T ,

with respect to which T is rank-1 almost everywhere. We point out however that in order to apply

Compensated Integrability (this tool is described in the next Section), we need to work with tensors

of full rank 1+ n (rather than rank-one), positive definite over a set of positive Lebesgue measure.

To reach these goals, one option is to regularize T by means of a convolution ; at a kink, this will

allow us to combine three contributions, associated with V1,V3 and Q with the notations of (8) (two

branches of a trajectory, plus the colliton). Such a combination has rank 2 only since m(V1+V3) = Q.

If we increase slightly the support of the convolution kernel, we may benefit of the combination of

five contributions, those associated with V1, . . . ,V4 and Q, whose rank is generically 3. This is still not

sufficient if n = 3 (the size of the mass-momentum tensors is 1+n). We thus need an extra trick in

order to conclude. The price to pay is that the resulting tensor will no longer be divergence-free ; this

is the reason why we shall state Theorem 4.1 in the more general context of divergence-controlled

tensors.

4 Miscellaneous tools

The determinant over Sym+
d

The cone Sym+
d of d ×d positive semi-definite symmetric matrices is convex. On this cone, the map

K 7→ detK takes non-negative values, and it is monotonous: if 0d ≺ K ≺ K′ where the order is that

between the associated quadratic forms, then

detK ≤ detK′.

Actually, the d-th root K 7→ (detK)
1
d is a concave function over Sym+

d (Theorem 6.10 in [8]), homo-

geneous of degree one:

(K1, . . . ,Kℓ ∈ Sym+
d ) =⇒

(

(det(K+ · · ·+Kℓ))
1
d ≥ (detK)

1
d + · · ·+(detKℓ)

1
d

)

.
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Since non-negative numbers p1, . . . , pℓ satisfy (p1 + · · ·+ pℓ)
α ≥ pα

1 + · · ·+ pα
ℓ for every exponent

α ≥ 1, we infer (take α = d
d−1

)

(10) (K1, . . . ,Kℓ ∈ Sym+
d ) =⇒

(

(det(K+ · · ·+Kℓ))
1

d−1 ≥ (detK)
1

d−1 + · · ·+(detKℓ)
1

d−1

)

.

Notice that since this inequality is homogeneous of degree α > 1, we cannot deduce the concavity of

K 7→ (detK)
1

d−1 . The latter function is actually superlinear, thus non-concave.

Let S be a symmetric tensor whose entries are distributions. Suppose that for every ξ ∈ Rd ,

ξT Sξ is non-negative, and therefore is a locally bounded measure. Then the entries of S are locally

bounded measures. In particular µ := Tr S is a non-negative locally bounded measure, and every Si j is

absolutely continuous with respect to µ. This allows us to define uniquely the expression (detS)
1
d as

a locally bounded measure, absolutely continuous with respect to µ ; just write Si j = si jµ and define

(detS)
1
d = (dets)

1
d µ.

This definition inherits the properties of the determinant over Sym+
d , in particular the monotonicity

and the concavity.

4.1 Compensated integrability

We shall make use of our recent theory of Compensated Integrability for divergence-controlled posi-

tive symmetric tensors, for which we refer to [9, 10]. The appropriate version is given in the theorem

below. We denote ‖µ‖ for the total mass of a (vector-valued) bounded measure µ,

‖µ‖= 〈|µ|,1〉.

This notation applies below in two distinct contexts, whether µ is a measure over an (n+1)-dimensional

slab H = (t−, t+)×Rn, or a measure over Rn.

Theorem 4.1 Let H = (t−, t+)×Rn be a slab in R×Rn, and S be symmetric positive semi-definite

tensor defined over H, whose entries are bounded measures. We assume that the row-wise divergence

of S is also a (vector-valued) bounded measure. Finally we assume that the normal traces S~et at the

initial and final times t = t± are themselves bounded measures.

Then (detS)
1

n+1 belongs to L1+ 1
n (H) and we have

(11)

∫
H
(detS)

1
n dydt ≤ cn (‖S~et(t−)‖+‖S~et(t+)‖+‖DivS‖)1+ 1

n ,

where cn is a finite constant independent of S and H.
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Remarks.

• The assumption that DivS is a bounded measure allows us to define a normal trace in a rather

weak space, here the dual of Lip(H). This is reminiscent to the definition of the normal trace

of vector fields ~q ∈ Hdiv(Ω), used in the theory of incompressible fluids, which takes values in

H−1/2(∂Ω).

• The additional assumption that this trace is a bounded measure is equivalent to saying that the

extension S̃ by 01+n away from H enjoys too the property that Div S̃ is a bounded measure.

Then

Div S̃ = D̃ivS−S~et(t−)⊗δt=t− +S~et(t+)⊗δt=t+

• The qualitative part of the theorem is that the bounded measure (detS)
1
d is absolutely continuous

with respect to the Lebesgue measure, and that its density is a function of class L
d

d−1 , where
d

d−1
= 1+ 1

n
. The quantitative part (11) estimates this density.

• This theorem is useless when S is rank-1 almost everywhere ; the estimate (11) is then trivial.

4.2 Exterior calculus

We use a natural generalization of the determinant of a system of vectors. Let Z(1), . . . ,Z(k) be a list

of vectors in Rd , with k ≤ d, and let Z ∈ Md×k(R) be the matrix whose columns are the Z( j)’s. Let

us decompose them on the canonical basis,

Z( j) =
d

∑
i=1

zi j~ei.

Then the exterior product Z(1) ∧ · · · ∧Z(k) decomposes over the basis~ei1 ∧ · · ·∧~eik with i1 < · · · < ik
of the exterior power Λk(Rd). Its coordinates are the k× k minors of Z. For instance if d = 3, Z∧Z′

identifies naturally with the cross product.

We denote

|Z(1)∧· · ·∧Z(k)|
the natural euclidian norm of the exterior product, which is invariant upon the action of the orthogonal

group:

|RZ(1)∧· · ·∧RZ(k)|= |Z(1)∧· · ·∧Z(k)|, ∀R ∈ Od(R).

A pratical tool is given by the formula

|Z(1)∧· · ·∧Z(k)|2 = det
(

〈Z( j),Z(ℓ)〉
)

1≤ j,ℓ≤k
.

Suppose k+ℓ≤ d. If Span(Z(1), . . . ,Z(k)) and Span(W (1), . . . ,W (ℓ)) are orthogonal to each other, then

|Z(1)∧· · ·∧Z(k)∧W (1)∧· · ·∧W (ℓ)|= |Z(1)∧· · ·∧Z(k)| · |W (1)∧· · ·∧W (ℓ)|.
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In particular, we shall use the formula

|Z(1)∧· · ·∧Z(k)|=
∣

∣

∣
det(Z(1), . . . ,Z(k),vk+1, . . . ,vd)

∣

∣

∣
,

where (vk+1, . . . ,vd) is any unitary basis of the subspace Span(Z(1), . . . ,Z(k))⊥.

5 The binary estimate

In this section, we supplement the mass-momentum tensor T with a contribution associated with the

changes v 7→ v′ in the direction of particles motions. Let K be a kink of a trajectory, happening at a

point x∗. The incoming/outgoing velocities being v,v′ respectively, with v′ 6= v, we complete the free

family

V =

(

1

v

)

, V ′ =
(

1

v′

)

into a basis (V,V ′,z2, . . . ,zn) of R1+n, where (z2, . . . ,zn) is some orthonormal basis of Span(V,V ′)⊥.

To define the kink contribution, we introduce the positive semi-definite tensor

SK =
n

∑
j=2

z j ⊗ z jδσ j
,

where σ j := (x∗− az j,x
∗+ az j) is an interval. Because DivSK is a sum of Dirac masses at the end

points x∗±az j, we have

‖DivSK‖= 2(n−1).

Given a slab H, we form the tensor

T ′ = T + ∑
kinks in H

bKSK,

where the positive numbers bK will be chosen later. We have

‖DivT ′‖ ≤ 2(n−1) ∑
kinks in H

bK,

where the inequality reflects the fact that a few end points could lie away from H.

Now, we make the convolution product T ′
2a = φ2a ∗T ′ with the non-negative kernel

φ2a =
1

|B2a|
1B2a

,

where B2a is the ball of radius 2a centered at the origin, and 1 denotes the characteristic function.

This new tensor is still symmetric, positive semi-definite, and satisfies

‖DivT ′
2a‖ ≤ 2(n−1) ∑

kinks in H

bK.
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Let K be a kink in H, occuring at point x∗. If x ∈ Ba(x
∗), then B2a(x) contains Ba(x

∗). In particular

B2a(x) meets every branch of the support of T ′ around x∗ along a segment of length ≥ a. There follows

that

T ′
2a(x)≥

a

|B2a|

(

mV ⊗ξ+mV ′⊗ξ′+bK

n

∑
2

z j ⊗ z j

)

, ∀x ∈ Ba(x
∗).

By the monotonicity of the determinant, we infer

detT2a(x)≥
m2bn−1

K

adn|B2|d|V | · |V ′| (det(V,V ′,z2, . . . ,zn))
2 =

m2bn−1
K

adn|B2|d
|V ∧V ′|2
|V | · |V ′| .

We now apply Theorem 4.1 to T ′
2a in the slightly larger slab H +B2a. Let us assume first that the

distance between two kinks in H is ≥ 2a, so that the balls Ba(x
∗) are disjoint. Then the integral in the

left hand side is estimated below by

(12)

∫
H+B2a

(detT ′
2a(x))

1
n dx ≥ 2−dm2/n

|B2|1/n ∑
kinks

b
1− 1

n

K

( |V ∧V ′|2
|V | · |V ′|

)

1
n

.

When two (or more) balls Ba(x
∗) may overlap, we use Inequality (10) to get

(detT2a(x))
1
n ≥ m2/n

ad |B2|d/n

′
∑b

1− 1
n

K

( |V ∧V ′|2
|V | · |V ′|

)

1
n

,

where the sum runs over all the kinks K for which x ∈ Ba(x
∗). By integrating over x ∈ H and then

rearranging the sum, we deduce again the same lower bound (12).

From (11) and (12), we deduce

m2/n ∑
kinks

b
1− 1

n

K

( |V ∧V ′|2
|V | · |V ′|

)

1
n

≤ cn

(

‖T ′
2a~et(t−−2a)‖+‖T ′

2a~et(t++2a)‖+2(n−1) ∑
kinks

bK

)1+ 1
n

for some universal constant cn ; we recall that the kinks in the summation are those in H. There

remains to estimate the masses in the right hand side. We notice that

‖T ′
2a~et(t++2a)‖ ≤ sup

t>t+

‖T ′~et(t)‖= sup
t>t+

‖T~et(t)‖= m sup
t>t+

∑ |V |,

where the sum runs over all particles. Because of |V |=
√

1+ |v|2 ≤ 1+ 1
2
|v|2, we infer

‖T ′
2a~et(t++2a)‖ ≤ M+E

and we deduce an explicit inequality

(13) m2/n ∑
kinks

b
1− 1

n

K

( |V ∧V ′|2
|V | · |V ′|

)

1
n

≤ cn

(

M+E +(n−1) ∑
kinks

bK

)1+ 1
n

12



with a slightly different constant cn.

We exploit (13) by letting the coefficients bK vary. Let us choose positive numbers βK and another

positive parameter λ. By setting

bK = λβ
n

n−1

K ,

we have

m2/n ∑
kinks

βK

( |V ∧V ′|2
|V | · |V ′|

)

1
n

≤ cnλ
1
n
−1

(

M+E +λ(n−1) ∑
kinks

β
n

n−1

K

)1+ 1
n

.

Choosing

λ =
M+E

∑β
n

n−1

K

,

we obtain

m2/n ∑
kinks

βK

( |V ∧V ′|2
|V | · |V ′|

)

1
n

≤ cn(M+E)
2
n

(

∑
kinks

β
n

n−1

K

)1− 1
n

= cn(M+E)
2
n

∥

∥

∥

~β
∥

∥

∥

ℓn/(n−1)
.

Since n
n−1

is the conjugate exponent of n, a convenient choice of the vector~β gives us an estimate of

the ℓn-norm of the vector whose coordinates are the expressions

( |V ∧V ′|2
|V | · |V ′|

)

1
n

.

Specifically, we have proved

(14) m2 ∑
kinks

|V ∧V ′|2
|V | · |V ′| ≤ cn(M+E)2,

with again a slightly different constant cn. This estimate can be recast in terms of the velocities only,

by using

|V |=
√

1+ |v|2 , |V ∧V ′|2 = |v− v′|2 + |v× v′|2.
We point out that the constant in (14) depends only on the space dimension and not on the data. In

particular, it does not depend upon the width of the slab H. Since the right-hand side depends only on

the initial data, we deduce that (14) is valid when we sum over the whole set of kinks in R1+n.

The last step involves a rescaling. Keeping the same space variable y and changing the time

variable into t̄ = µ−1t has the effect of replacing the velocities v by µv. The mass is preserved, while

the energy becomes µ2E. Applying (14) to the new dependent/independent variables, we obtain a

parametrized estimate

m2 ∑
kinks

µ2|v′− v|2 +µ4|v∧ v′|2
√

(1+µ2|v|2)(1+µ2|v′|2)
≤ cn(M+µ2E)2, ∀µ > 0.

13



Choosing now µ2 = M/E , we arrive at our final estimate, which is now invariant upon the rescaling

of the time and space variables:

m2 ∑
kinks

E |v′− v|2 +M |v∧ v′|2
√

(E +M |v|2)(E +M |v′|2)
≤ cnME.

6 The ternary estimate

We change slightly the strategy described in the previous section, by considering the set of collisions

instead of that of kinks. At a collision C between two particles Pα and Pβ, we denote x̄ the middle

point between the kinks xα,β. The incoming/outgoing velocities are denoted v,v1,v
′,v′1. When the

vectors v′ − v and yβ − yα are not colinear1, the vectors V,V ′ and xβ − xα are not coplanar ; they

span a 3-dimensional subspace which contains also V1 and V ′
1. Then we choose an orthonormal basis

(w3, . . . ,wn) of the subspace Span(V,V ′,xβ − xα)
⊥, and we define a tensor

SC =
n

∑
j=3

w j ⊗w j δθ j
, θ j := (x̄−aw j, x̄+aw j).

As above, DivSC is a sum of Dirac masses at the end points x̄±aw j, whose total mass is 2(n−2).
Let H = (t−, t+)×Rn be a slab. We say that a collision C is in H if it happens at a time t∗ ∈ (t−, t+).

We form the symmetric, positive semi-definite tensor

T ′′ = T + ∑
coll. in H

bCSC,

where the positive numbers bC are to be chosen. Then we make the convolution T ′′
3a of T ′′ with the

kernel φ3a. The total mass of DivT ′′ is 2(n−2)∑bC.

Consider a collision C in H. For any point x in Ba(x̄), the ball B3a(x) contains the balls Ba(xα,β),
thus meets the five segments involved in the collision pattern along intervals of lengths at least a.

Therefore we have

T ′′
3a(x)≥

a

|B3a|

(

m(V ⊗ξ+V ′⊗ξ′+V1 ⊗ξ1 +V ′
1 ⊗ξ′1 +V̄ ⊗ ξ̄)+bC

n

∑
3

w j ⊗w j

)

, ∀x ∈ Ba(x̄)

where

V̄ =

(

0

v′− v

)

, ξ =
V̄

|V̄ |
accounts for the colliton. With the monotonicity of the determinant, we infer the coarse lower bound

detT ′′
3a(x)≥

m3bn−2
C

adn|B3|d
|V ∧V ′∧V1|2
|V | · |V ′| · |V1|

.

1This is the generic situation where the trajectories are not coplanar

14



More generally, if x is a-close to several collisions, then we have

(detT ′′
3a(x))

1
n ≥ m3/n

ad|B3|d/n

′
∑b

1−2/n

C

( |V ∧V ′∧V1|2
|V | · |V ′| · |V1|

)

1
n

,

where the sum runs over those collisions C in H for which x ∈ Ba(x̄).
Integrating with respect to x in H +Ba, and rearranging the sum, we obtain

∫
H+Ba

(detT ′′
3a(x))

1
n dx ≥ m3/n|B1|

|B3|d/n ∑
coll. in H

b
1−2/n

C

( |V ∧V ′∧V1|2
|V | · |V ′| · |V1|

)

1
n

,

Applying (11) to T ′′
3a in H +Ba, we deduce again

m
3
n ∑

coll. in H

b
1−2/n

C

( |V ∧V ′∧V1|2
|V | · |V ′| · |V1|

)

1
n

≤ cn

(

M+E +(n−2) ∑
coll. in H

bC

)1+ 1
n

.

Introducing as above auxiliary positive parameters λ and βC, with

bC = λβ
p
C, p :=

n

n−2
,

and choosing

λ =
M+E

β
p
C

,

we deduce

m
3
n ∑

coll. in H

βC

( |V ∧V ′∧V1|2
|V | · |V ′| · |V1|

)

1
n

≤ cn(M+E)‖~β‖ℓp.

An appropriate choice of~β yields an estimate in the ℓp′-norm, where p′ = n
2

. Namely, we have

(15) m
3
2 ∑

coll. in H

|V ∧V ′∧V1|
√

|V | · |V ′| · |V1|
≤ cn(M+E)

3
2 .

Remark that we used only the three first factors among V ⊗ξ,V ′⊗ξ′,V1⊗ξ1 and V ′
1 ⊗ξ′1 in order

to bound by below the determinant of T ′′
3a(x). We might as well have taken any three of the four.

Remarking that the wedge product remains the same, up to the sign, because of V +V1 =V ′+V ′
1, we

deduce that (15) remains valid when we replace |V | · |V ′| · |V1| by any other product of three norms in

the denominator. In other terms, we have

m
3
2 ∑

coll. in H

|V ∧V ′∧V1|
√

|V | · |V ′| · |V1| · |V ′
1|

(

|V |1/2 + |V ′|1/2 + |V1|1/2 + |V ′
1|1/2

)

≤ cn(M+E)
3
2 ,
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where we now sum a quantity that is symmetric in the four velocities.

Our next remark is, as before, that the left-hand side does not depend upon the choice of the slab.

Thus our inequality is valid when we sum over the set of all collisions in R1+n.

We end our analysis as above by applying the rescaling argument. This transform an inhomoge-

neous estimate into an homogeneous one:

m
3
2 ∑

coll.

(

E|(v′− v)∧ (v1 − v)|2 +M|v∧ v′∧ v1|2
)

1
2
(

4E +M(|v|2 + |v′|2 + |v1|2 + |v′1|2)
)1/4

(

(E +M|v|2)(E +M|v′|2)(E +M|v1|2)(E +M|v′1|2)
)

1
4

≤ cnM
1
2 E

3
4 ,

where we have used also the identity

|V ∧V ′∧V1|2 = |(v′− v)∧ (v1 − v)|2 + |v∧ v′∧ v1|2.
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