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Four equivalent properties of integrable
billiards

Alexei Glutsyuk∗ Ivan Izmestiev† Serge Tabachnikov‡

Abstract
By a classical result of Darboux, a foliation of a Riemannian surface

has the Graves property (also known as the strong evolution property)
if and only if the foliation comes from a Liouville net. A similar result
of Blaschke says that a pair of orthogonal foliations has the Ivory
property if and only if they form a Liouville net.

Let us say that a geodesically convex curve on a Riemannian surface
has the Poritsky property if it can be parametrized in such a way
that all of its string diffeomorphisms are shifts with respect to this
parameter. In 1950, Poritsky has shown that the only closed plane
curves with this property are ellipses.

In the present article we show that a curve on a Riemannian sur-
face has the Poritsky property if and only if it is a coordinate curve
of a Liouville net. We also recall Blaschke’s derivation of the Liouville
property from the Ivory property and his proof of Weihnacht’s theo-
rem: the only Liouville nets in the plane are nets of confocal conics
and their degenerations.

This suggests the following generalization of Birkhoff’s conjecture:
If an interior neighborhood of a closed geodesically convex curve on a
Riemannian surface is foliated by billiard caustics, then the metric in
the neighborhood is Liouville, and the curve is one of the coordinate
lines.
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1 Introduction

1.1 Billiards, caustics, and string construction

The billiard dynamical system describes the motion of a free particle (billiard
ball) inside a domain (billiard table): the particle moves with a constant ve-
locity and reflects elastically from the boundary so that the angle of incidence
equals angle of reflection. This law is familiar from geometrical optics.

We refer to the books [5, 13, 22, 23] for the theory of mathematical
billiards and, in particular, to various properties that we discuss below. If
the billiard table is a convex body, one can reduce the continuous time billiard
system to a map that acts on oriented lines that intersect the billiard table
(one may think of them as rays of light): this billiard ball map takes the
incoming trajectory of the billiard ball to the outgoing one. In this paper,
we will study billiard tables with a strictly convex smooth boundary.

A billiard caustic is a curve with the property that if a segment of billiard
trajectory is tangent to it, then the reflected segment is also tangent to it.
That is, a caustic corresponds to an invariant curve of the billiard ball map.
Although caustics may have singularities (generically, semi-cubical cusps),
we will consider only smooth closed convex caustics.

It is a deep result of the KAM theory that if the boundary of the billiard
table is strictly convex and sufficiently smooth then, arbitrarily close to the
boundary, there exist caustics; furthermore, these caustics occupy a set of
positive measure [15]. In general, these caustics do not form a foliation, and
there are slits between them.

Given a billiard table, there is no easy way to find a caustic, but the
converse problem, to construct a table from a caustic, is solved by the fol-
lowing string construction. Let γ be a caustic. Wrap a non-stretchable string
around γ, pull it tight at a point, and move the point around keeping the
string tight. The trajectory of the point is a curve Γ, the boundary of a
billiard table for which γ serves as a caustic, see Figure 1. This construction
yields a 1-parameter family of curves Γ, the parameter being the length of
the string.

Once the length of the string is chosen, the string construction defines a
diffeomorphism of the curve γ that takes one tangency point of the string
with the curve to the other point. Assuming that the curve γ in Figure 1
is oriented clockwise, this diffeomorphism takes point A to B. Let us call
these maps string diffeomorphisms. Varying the length of the string, one has
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Figure 1: The string construction on γ yields the billiard curve Γ.

a 1-parameter family of string diffeomorphisms of the same curve.

1.2 Confocal conics

Beyond the nearly trivial case of a circle (whose caustics are concentric cir-
cles), the most classical example is the billiard inside an ellipse. Let us recall
the salient features of this system; see, e.g., the above mentioned books and
[10].

The billiard inside an ellipse is completely integrable. Specifically, the
caustics of the billiard inside an ellipse are confocal ellipses: if a billiard
trajectory does not intersect the segment between the foci, it is tangent to a
unique confocal ellipse, a caustic. A billiard trajectory that passes through a
focus reflects to the other focus. If a billiard trajectory intersects the segment
between the foci, it is tangent to a unique confocal hyperbola, which is also
a caustic.

The difference between two types of caustics is that the ellipses correspond
to non-contractible invariant circles of the billiard ball map, whereas the
hyperbolas correspond to contractible invariant curves. The phase space of
the billiard is a cylinder, see Figure 2.

As a consequence, one has the Graves theorem: wrapping a closed non-
stretchable string around an ellipse produces a confocal ellipse. Equivalently,
confocal ellipses satisfy what is known as the strong evolution property: a
caustic of a caustic is again a caustic.

This prompts the following definition.
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Figure 2: Phase portrait of the billiard ball map in an ellipse.

Definition 1. An annulus foliated by simple closed convex curves has the
Graves property if, for every pair of nested leaves, the outer one is obtained
by the string construction from the inner one. In particular, this applies to
the boundary curves.

Now we turn to the string diffeomorphisms on ellipses. Each ellipse γ
can be parameterized, γ(t), such that, for every length of the string, the
respective string diffeomorphism is a shift t 7→ t + c, where the constant c
depends on the length of the string. In particular, these diffeomorphisms
commute [23, Corollary 4.6], see Figure 3.

Figure 3: The reflections from two confocal ellipses commute.

We are led to the following definition.

Definition 2. A closed smooth strictly convex curve γ of length ` has the
Poritsky property if it has a parameterization γ(t) such that for some L >
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` and all lengths of the string in the interval [`, L] the respective string
diffeomorphisms are shifts t 7→ t+ c.

The reason we call this the Poritsky property is that H. Poritsky proved
that, in the Euclidean plane, a curve possessing this property is an ellipse
[21] (his theorem is local: it concerns germs of plane curves, and concludes
that the curves are conics). One of the results of [8] is an extension of the
Poritsky theorem to the elliptic and hyperbolic planes and to outer billiards.

In addition to the ellipses with given foci, consider also the hyperbolas
with the same foci. One obtains a net (or a 2-web): through every point
not on the axes there pass a unique ellipse and a unique hyperbola from
the confocal family. A net quadrilateral is a curvilinear quadrilateral whose
sides lie on the net curves. The Ivory’s lemma says that the diagonals of the
curvilinear rectangles made by pairs of confocal ellipses and hyperbolas have
equal length, see Figure 4 and [10, Theorem 1].

Figure 4: Ivory’s lemma.

This motivates the following definition.

Definition 3. A net of curves in the plane has the Ivory property if the
lengths of the diagonals in each net quadrilateral are equal.

Theorems 1 and 2 stated on the next pages imply that if a closed curve
in the plane possesses either Graves or Poritsky property, then it is an el-
lipse (in particular, this reproves Poritsky theorem). Similarly, the only nets
possessing the Ivory property are the confocal nets and their degenerations.

The close link between the Graves, Poritsky, and Ivory properties becomes
more apparent if one generalizes them to Riemannian surfaces.
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1.3 Riemannian surfaces and Liouville nets

The string construction makes sense for any closed curve γ without inflection
points on a Riemannian surface. If points A,B ∈ γ are sufficiently close then
the geodesics tangent to γ at these points intersect at a point C close to γ.
We assume that the length of the string is sufficiently close to the length
` of the curve γ so that the choice of the point C is unique. Under these
assumptions, Definitions 1 and 2 make sense in this more general setting.

Ellipses on the sphere or in the hyperbolic plane possess both the Graves
and the Poritsky property [8].

A further example is provided by the metric on a 3-axial ellipsoid in
R3. The lines of curvature are analogs of confocal conics, and the role of
foci is played by the four umbilic points. See Figure 5, borrowed from the
classical book [9], for illustration. In the billiard table bounded by a line
of curvature, the trajectory of a billiard ball is tangent to another line of
curvature. Equivalently, the string construction around a line of curvature
produces another line of curvature. Note that if γ is a line of curvature, then
there is a choice of the length of the string such that the string construction
yields the intersection of the ellipsoid with a coordinate plane. See [4, 25, 26]
concerning billiards on quadratic surfaces.

Figure 5: Lines of curvature on an ellipsoid.

Note that the lines of curvature on an ellipsoid are the intersection curves
with quadrics from the confocal family which contains this ellipsoid. The
ellipses on the sphere and in the hyperbolic plane (in its hyperboloid model)
are intersections with a certain family of quadratic cones obtained as a de-
generation of a confocal family of quadrics.

Theorem 1 below states that the most general class of curves satisfying
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the Graves, Poritsky, and Ivory properties is given by Liouville nets. Let us
give the corresponding definitions.

Definition 4. A Riemannian metric in a 2-dimensional domain is called a
Liouville metric if there exist coordinates (u, v) in which it is given by the
formula

(U1(u)− V1(v))(U2(u)du2 + V2(v)dv2), (1)

where Ui, Vi, i = 1, 2 are smooth functions of one variable.

An independent change of coordinates ū = ū(u), v̄ = v̄(v) preserves the
structure of the formula (1). This leads to the notion of a Liouville net, which
is a pair of orthogonal foliations such that for any choice of parametrization
of leaves in each of them the resulting coordinates on the surface bring the
Riemannian metric into the Liouville form. An invariant (but quite com-
plicated) local characterization of Riemannian surfaces possessing Liouville
nets was given in [14].

The Euclidean metric is obviously a Liouville metric with Liouville net
formed by lines parallel to orthogonal coordinate axes. It also admits other
Liouville nets formed by confocal conics. Indeed, a family of confocal conics
is given by the formula

x2

a+ λ
+

y2

b+ λ
= 1, a > b > 0,

where λ is the parameter. The parameter values corresponding to two conics
passing through a given point are the elliptic coordinates of the point. In the
elliptic coordinates, the Euclidean metric dx2 + dy2 has the following form:

(λ− µ)

(
dλ2

4(a+ λ)(b+ λ)
− dµ2

4(a+ µ)(b+ µ)

)
. (2)

The ellipsoidal coordinates (λ, µ, ν) in R3 restricted to the ellipsoid ν =
const describe a Liouville metric whose coordinate curves are the lines of cur-
vature on the ellipsoid. Liouville introduced the metrics (1) as an immediate
generalization of the ellipsoidal coordinates: geodesic equation can be solved
for Liouville metrics by the Jacobi separation method. Higher-dimensional
analogs of Liouville metrics/nets are Stäckel metrics/nets.

See [12] for general material about Liouville metrics and [10, 18, 19, 20]
for Liouville billiards.
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Now we formulate our main result.
Consider a closed annulus A equipped with a Riemannian metric and

foliated by smooth closed geodesically convex curves. (By smooth we always
mean C∞-smooth.) Call this foliation F1, and let F2 be the foliation formed
by the curves orthogonal to the leaves of F1.

Theorem 1. The following four properties are equivalent:
(i) The foliation F1 has the Graves property;
(ii) The inner boundary curve of A has the Poritsky property;
(iii) The foliations F1 and F2 form a Liouville net;
(iv) The net (F1,F2) in A has the Ivory property.

The conjecture, attributed to Birkhoff, states that if the interior neigh-
borhood of a smooth strictly convex boundary curve of a billiard table in the
Euclidean plane is foliated by caustics, then this curve is an ellipse (or a
circle). A substantial progress has been made recently toward the proof of
this conjecture; see the surveys [1, 11] and the references therein.

We finish this introduction with a version of Birkhoff conjecture.

Conjecture 1. Consider an annulus equipped with a Riemannian metric
in which one of the components Γ of the boundary is strictly convex, and
consider the billiard system near this component. If a neighborhood of Γ is
foliated by caustics, then the metric near Γ is Liouville, and Γ is one of the
coordinate lines.

Conjecture 1 implies the classical Birkhoff Conjecture due to the following
classical result.

Theorem 2 (Wei24, Bla28). Any Liouville net in a domain Ω ⊂ R2 is of
one of the following types.

1. Net of confocal ellipses and hyperbolas.

2. Net of confocal and coaxial parabolas.

3. Net of concentric circles and their radial lines.

4. Orthogonal net of lines.

Weihnacht’s result is more general: he deals with Liouville nets in di-
mension 2 and with Stäckel nets in dimension 3. Blaschke discusses only the
3-dimensional case using the equivalence of the Liouville and Ivory proper-
ties. In the Appendix we give a proof of Theorem 2 based on Blaschke’s
ideas.
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1.4 Local version of the main result

Let D be a topological disc equipped with a smooth Riemannian metric.
Let γ ⊂ D be a germ of curve with positive geodesic curvature at a point
O ∈ D. For every two given points A,B ∈ γ, we will denote by CAB the
point of intersection of the geodesics tangent to γ at A and B. We consider
the situation when A and B are close to each other, and then we can, and
will, choose the above CAB close to A and B in a unique way. Set

λ(A,B) := the length of the arc AB of the curve γ,

L(A,B) := |ACAB|+ |BCAB| − λ(A,B). (3)

Here, for X, Y ∈ D close enough to a given point O, we denote by |XY | the
length of the geodesic segment connecting X and Y .

Definition 5. Under the above conditions, for every p ∈ R+ small enough,
the subset

Γp := {CAB | L(A,B) = p} ⊂ D

is called the p-th string construction; we set Γ0 = γ

Remark 1.1. In the case when γ is a closed curve in a Riemannian surface,
for every O ∈ γ, the family of curves given by the global string construction
(Subsection 1.1) coincides locally near O with the above family Γp given by
the local string construction.

Remark 1.2. For every p > 0 small enough, Γp is a well-defined smooth
curve. The curve γ is a caustic for the billiard in the curve Γp, as in the
global string construction. Let U be a small neighborhood of the base point
O, and let A be the connected component of the complement U \ γ lying on
the concave side from the curve γ. As in the closed curve case, the curves Γp

with small p ≥ 0 form a smooth foliation F1 on A by smooth curves.

The definitions of Graves and Poritsky properties of the above foliation
on A by curves Γp are the same as in the previous subsection.

Theorem 3. Let γ be a germ of curve in a Riemannian topological disc. Let
A be as above. Let F1 be the foliation of the domain A by curves Γp given
by the above local string construction. Let F2 be the foliation orthogonal to
F1. The following four properties are equivalent:
(i) The foliation F1 has the Graves property;
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(ii) The curve γ has the Poritsky property;
(iii) The metric in A is Liouville, and the leaves of the foliations F1 and F2

are the coordinate lines;
(iv) The net (F1,F2) in A has the Ivory property.

1.5 Plan of the paper and the proof

The proof of Theorem 1 given below is done by local arguments and remains
valid in the local case: for Theorem 3.

Implication (i)⇒(ii) is proved in Section 2.
Implication (ii)⇒(iii) is proved in Section 3.
Equivalence of statements (iii) and (iv) is proved in Section 4.
Equivalence (iii)⇔(i) is explained in Section 5.

2 Graves implies Poritsky
In this section we shall show that the Graves property implies the Poritsky
property, that is, we establish the implication (i) ⇒ (ii) in Theorem 1. The
argument is not new and, in various forms, it is described in the literature;
see, e.g., [22]. We break the argument into a number of lemmas, and we only
sketch the proofs, referring for details to the literature.

Lemma 2.1. Let D be a Riemannian surface. For every point O ∈ D and
every strictly convex neighborhood U = U(O) ⊂ D with smooth boundary,
the space of oriented geodesics in U is a two-dimensional manifold. It is
topologically a cylinder S1 × (0, 1).

Proof. The convexity assumption on U implies that every oriented geodesic
in U intersects its boundary at two points: the departure point and the arrival
point. To each oriented geodesic in U we associate the pair (x, v): x ∈ ∂U
being the departure point and v its orienting unit tangent vector at x. For a
given x ∈ ∂U the space of all the departure vectors v ∈ TxD is the semicircle
of unit vectors directed inside U . The above correspondence is bijective. Its
image is a cylinder: the product of the boundary ∂U and semicircle. 2

Denote the above space of oriented geodesics in U by G = GU .
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Lemma 2.2. (Melrose construction, see [17]). The space G has an area form
ω obtained by the symplectic reduction from the canonical symplectic form in
the cotangent bundle T ∗D. The area forms coming from different intersecting
neighborhoods coincide.

Proof. The construction described below works in any dimension.
The cotangent bundle T ∗D carries the canonical symplectic structure Ω =

dp ∧ dq, where q are the positions and p are the momenta. The Riemannian
metric makes it possible to talk about the norms of covectors. The geodesic
flow is the Hamiltonian flow with the energy function |p|2/2. Identifying
the tangent and cotangent bundles by the Riemannian metric, we obtain the
geodesic flow on the tangent bundle TD.

Consider the unit energy hypersurface S ⊂ T ∗D. The restriction of the
symplectic form Ω on S has 1-dimensional kernel, and S is foliated by the
integral curves of this line field, the characteristic curves. Each characteristic
curve is the trajectory of the Hamiltonian vector field of the energy function,
and it can be viewed as an arc length parameterized geodesic.

Let π : TD → D denote the standard projection. The quotient space
of S ∩ π−1(U) by the characteristic foliation is the space of oriented non-
parameterized geodesics in U , and since one factorizes by the kernel of the
restriction of the symplectic structure Ω on S, we obtain an induced sym-
plectic structure on G. The last statement of the lemma follows immediately
from definition. 2

Let δ be a geodesically convex simple closed curve in D (or a germ of
curve with positive geodesic curvature at a point O ∈ D). Consider the
billiard inside δ. The respective billiard ball map F acts on the space of
oriented geodesics that intersect δ. (In the case of germ it acts on the oriented
geodesics intersecting δ that are close to the geodesic tangent to δ at O.)
Abusing notation, we denote the restriction of the symplectic form ω on the
latter space of geodesics by the same letter.

Lemma 2.3. The billiard ball map F preserves the form ω.

Proof. Once again, the argument works in any dimension, and it is an
adaptation of a more general result of Melrose [17].

Assign to an oriented geodesic intersecting δ its first intersection point A
with δ and its unit tangent vector v at this point. This gives an identification
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of this space of geodesics with the space of unit tangent vectors with foot
point on δ having the interior direction. Projecting the tangent vector v to
the tangent space TAδ identifies the space of geodesics with the unit disk
subbundle of Tδ, identified with T ∗δ by the metric. The latter has its own
canonical symplectic structure “dp ∧ dq". One can prove that this structure
coincides with ω; see [22].

The billiard ball map is a composition of two transformations. The first
one takes the a unit vector v ∈ TAD to a unit vector w ∈ TBD, where B is
the second intersection point of the oriented geodesic tangent to v with δ and
w is its tangent vector at B. The second transformation reflects the vector w
from the tangent space TBδ. The first transformation is seen to preserve the
form ω, constructed in Lemma 2.2. The reflection of a unit tangent vector
in tangent space TBδ does not change its projection to TBδ, hence it also
preserves ω. This proves the lemma. 2

Let us reiterate: for every billiard table, the billiard ball map preserves
the same area form on the space of oriented geodesics; this form depends
only on the Riemannian metric.

Remark 2.4. Another way to construct an invariant symplectic form of
the billiard ball map is by considering the billiard inside δ as a discrete
Lagrangian system. The geodesic AB reflects to the geodesic BC, where
A,B,C ∈ δ, if and only if the sum of the Riemannian distances |AB|+ |BC|
has a critical point at B as a function of B ∈ δ. That is,

L(A,B) = |AB| : δ × δ → R

is the Lagrangian function. Then the 2-form

∂2L(A,B)

∂A ∂B
dA ∧ dB

is invariant under the billiard ball map (A,B) 7→ (B,C), see [27, chapter 1,
section 1]. Here the derivatives and the differentials are taken with respect
to the length parameters of the points A and B.

However, in this approach, it is not clear that the invariant 2-form is the
same for different billiard curves δ.

Let γ1 be a leaf of the foliation F1. Consider the billiard system inside
γ1. The leaves of F1 that lie between γ and γ1 are caustics of this billiard.
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Consider the part of the phase space that is the union of the respective
invariant curves under the billiard ball map: it looks like the lower part of
Figure 2, below the singular, eye-shaped, leaf. The billiard ball map gives a
transformation of each of these invariant curves.

Lemma 2.5. Each invariant curve can be parameterized so that the billiard
ball transformation is a shift t 7→ t+ c.

Proof. Choose a functionH whose level curves are the invariant curves, and
consider its Hamiltonian vector field sgrad H with respect to the area form ω.
This vector field is tangent to the invariant curves, and the desired coordinate
t is the one in which sgrad H is a constant vector field d/dt. Changing H
scales the coordinate t on each invariant curve. One can normalize the domain
of the parameter t to be the unit circle, and this fixes t up to an additive
constant. In other words, the 1-form dt is well defined on each invariant
curve.

The billiard ball map preserves ω and the invariant curves, hence it pre-
serves dt, that is, the map is a shift t 7→ t+ c. 2

As an aside, we note two geometric consequences. The first is a version
of the Poncelet porism: if a billiard trajectory in γ1 closes up after a number
of reflections, then all the trajectories with the same caustic close up after
the same number of reflections.

The second consequence concerns the billiard systems inside two leaves of
the foliation F1, curves γ1 and γ2. These billiards share the caustics, and the
invariant measure dt on the respective invariant curves depends only on the
metric and the foliation by invariant curves, that is, this invariant measure
is the same for both billiards. Since shifts commute, it follows that the two
billiard ball transformations commute as well; this argument is presented in
[23, pp. 58, 59, corollary 4.6].

Thus the situation is exactly the same as for ellipses in the Euclidean
plane.

Finally we show that the curve γ has the Poritsky property. Indeed, γ is
a caustic for the billiard system inside each leaf of the foliation F1, hence it
carries a parameter t constructed in Lemma 2.5. As we already mentioned,
this parameter is the same for every choice of a leaf. Invoking the string
construction, which recovers the billiard table from its caustic, we see that γ
possesses the Poritsky property.
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3 Poritsky implies Liouville
Let γ possess the Poritsky property, and let γ(t) be the respective parame-
terization.

Consider Figure 6: we can use (s, t) as coordinates of point C. We also
consider another coordinate system

x =
s+ t

2
, y =

t− s
2

(these formulas make sense locally; globally, they are well-defined up to
adding a constant to the x-coordinate).

Figure 6: Coordinates in the exterior of the curve γ.

Lemma 3.1. The metric in the domain A admits orthogonal coordinates
(x, y) in which the diagonals x± y = const are geodesics.

Proof. Let ξ and η be the unit tangent vectors along the geodesics AC and
BC in Figure 6. These geodesics are given by the equations s = const and
t = const. Hence ds(ξ) = dt(η) = 0.

Each curve given by the string construction has the equation t − s =
const, and the billiard property implies that the vector ξ − η is tangent to
this curve. Hence (dt− ds)(ξ − η) = 0. This implies that dt(ξ) + ds(η) = 0,
and therefore (dt+ ds)(ξ + η) = 0.

Since the vectors ξ and η are unit, ξ + η is orthogonal to ξ − η. But the
vector ξ + η is tangent to the level curve of s+ t. Therefore this level curve
is orthogonal to the level curve of t− s.
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Changing to the (x, y)-coordinates, we see that the coordinate lines x =
const and y = const are orthogonal. And the geodesics AC and BC are the
diagonals x− y = const and x+ y = const, as claimed. 2

Remark 3.2. In Figure 6, consider two functions, ϕ(C) = |AC|+
^

|AP | and
ψ(C) = |BC|+

^

|BP |, the distances from point C to point P going around

the obstacle γ; here
^

|AP | and
^

|BP | are the lengths of the corresponding lower
arcs of the curve γ. The vectors ξ and η are the gradients of these functions.
Each curve given by the string construction is a level curve of the function
ϕ + ψ. This implies that the orthogonal curves are the level curves of the
function ϕ − ψ. See [16, 10] for an argument in the Euclidean case which
applies in the more general Riemannian case as well.

We add that that one does not need to consider the “invisible part" of
the curve γ: one can redefine the functions ϕ and ψ by taking the difference
|AC|−

^

|AQ| and |BC|−
^

|BQ|. This allows to adapt our arguments for the
proof of Theorem 3.

We will now prove the main result of this section.

Theorem 4. Let a Riemannian metric, written in orthogonal coordinates
(x, y), have the property that the diagonals x ± y = const are geodesics.
Then this metric is Liouville.

Proof. Let the metric be

a(x, y)dx2 + b(x, y)dy2. (4)

The constant speed parametrized geodesics are the extremals of the func-
tional ∫ 1

0

L(x, y, ẋ, ẏ)dt, L(x, y, ẋ, ẏ) = a(x, y)ẋ2 + b(x, y)ẏ2.

The corresponding system of Euler–Lagrange equations

d

dt

∂L

∂ẋ
=
∂L

∂x
,
d

dt

∂L

∂ẏ
=
∂L

∂y

takes the following form:{
2aẍ+ 2ẋ2 ∂a

∂x
+ 2ẋẏ ∂a

∂y
= ẋ2 ∂a

∂x
+ ẏ2 db

dx

2bÿ + 2ẏ2 ∂b
∂y

+ 2ẋẏ ∂b
∂x

= ẏ2 ∂b
∂y

+ ẋ2 da
dy
.

(5)
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Let us write down equations (5) on the diagonals ±x−y = const, oriented
by the coordinate x, which are known to be geodesics. Along these diagonals
one has

ẋ = ±ẏ, ẍ = ±ÿ.
Substituting the latter formulas to (5), we get:{

2aẍ = ẋ2( ∂b
∂x
− ∂a

∂x
∓ 2∂a

∂y
)

±2bẍ = ẋ2(∂a
∂y
− ∂b

∂y
∓ 2 ∂b

∂x
).

(6)

Let us multiply the equations in (6) by b and a, respectively. In the case
of "+" (the diagonals y − x = const), taking the difference of thus obtained
equations, yields

b

(
∂b

∂x
− ∂a

∂x
− 2

∂a

∂y

)
= a

(
∂a

∂y
− ∂b

∂y
− 2

∂b

∂x

)
. (7)

In the case of "−" (the diagonals x+ y = const), taking their sum, yields

b

(
∂b

∂x
− ∂a

∂x
+ 2

∂a

∂y

)
= −a

(
∂a

∂y
− ∂b

∂y
+ 2

∂b

∂x

)
. (8)

Taking the sum and the difference of equations (7) and (8) yields the system{
b( ∂b

∂x
− ∂a

∂x
) = −2a ∂b

∂x

2b∂a
∂y

= a( ∂b
∂y
− ∂a

∂y
).

(9)

System (9) can be rewritten as{
∂a
∂x

= (1 + 2a
b
) ∂b
∂x

∂b
∂y

= (1 + 2 b
a
)∂a
∂y
.

(10)

The first equation in (10) says that, along the lines parallel to the x-axis,
the implicit function a(b) satisfies the differential equation

da

db
= 1 + 2

a

b
. (11)

Each solution of equation (11) is of the form a(b) = c1b
2 − b. Therefore,

a = c1(y)b2 − b. (12)
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Similarly the second equation in (10) says that, along the lines parallel to
the y-axis, the implicit function b(a) satisfies a similar differential equation,
and we get that

b = c2(x)a2 − a. (13)

Combining formulas (12) and (13) we obtain

b = c2(x)a2 − a = c2(x)(c1(y)b2 − b)2 − c1(y)b2 + b.

The latter is equivalent to the equality

c2(x)(c1(y)b− 1)2 = c1(y).

Thus we obtain that

a(x, y) =
f(x) + g(y)

f 2(x)g(y)
, b(x, y) =

f(x) + g(y)

f(x)g2(y)
,

where
f(x) = (c2(x))

1
2 , g(y) = (c1(y))

1
2 .

Finally, make a coordinate change u(x), v(y) given by the formula

dx

f(x)
1
2

= du,
dy

g(y)
1
2

= dv.

Then the metric (4) becomes(
1

f(x)
+

1

g(y)

)
(du2 + dv2) = (U(u)− V (v))(du2 + dv2),

which has the Liouville form (1). This finished the proof. 2

Lemma 3.1 and Theorem 4 combined show that the Poritsky property of
the curve γ implies that the metric in the annulus A is Liouville.

4 Ivory is equivalent to Liouville
The theorem that the Liouville nets are characterized by the Ivory property
is due to Blaschke and Zwirner [2, 29]; see also [24]. In [10], the second
and the third authors of the present paper provided a streamlined account
of the implication Liouville ⇒ Ivory. Here we give a proof of the converse
implication based on Blaschke’s arguments in [3, §56]. See also [2, 24] for the
higher-dimensional analog: Ivory property holds only in Stäckel nets.
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Theorem 5. If a Riemannian metric g satisfies the Ivory property, then it
is Liouville:

g = (U1 − V1)(U2du
2 + V2dv

2),

where U1, U2 are functions of u, and V1, V2 are functions of v.

We start with a number of lemmas.

Lemma 4.1. In a metric with Ivory property, the coordinate lines are or-
thogonal.

Proof. Let (u, v) be a point sufficiently close to (u0, v0), and let a du2 +
2b du dv+ c du2 be the metric tensor at (u, v). Let ε > 0 be sufficiently small,
so that the coordinate rectangle [u, u+ ε]× [v, v + ε] has diagonals of equal
length. As ε tends to zero, the diagonal lengths satisfy

L+ ∼ ε
√
a+ 2b+ c, L− ∼ ε

√
a− 2b+ c,

where L+ is the length of the diagonal containing (u, v), and L− is the length
of the diagonal containing (u, v + ε). The equality L+ = L− implies b = 0,
and we are done. 2

Lemma 4.2. Let [u1, u2] × [v1, v2] be a coordinate rectangle satisfying the
Ivory property, and let γ+ : [0, L] → R2, γ− : [0, L] → R2 be its (arc length
parametrized) geodesic diagonals such that

γ+(0) = (u1, v1), γ+(L) = (u2, v2),

γ−(0) = (u1, v2), γ−(L) = (u2, v1).

If all sufficiently close rectangles also satisfy the Ivory property, then one has〈
γ̇+(L),

∂

∂u

〉
=

〈
γ̇−(L),

∂

∂u

〉
,

〈
γ̇+(L),

∂

∂v

〉
= −

〈
γ̇−(0),

∂

∂v

〉
.

Proof. Deform the rectangle by moving its u = u2 side. Let γε+ be the
geodesic from (u1, v1) to (u2 + ε, v2), and γε− be the geodesic from (u1, v2) to
(u2 + ε, v1). Let L(γε±) denote the length of the curve γε±.

Then, by the first variation of arc length formula, one has

d

dε

∣∣∣∣
ε=0

L(γε+) =

〈
γ̇+(L),

∂

∂u

〉
,

d

dε

∣∣∣∣
ε=0

L(γε−) =

〈
γ̇−(L),

∂

∂u

〉
.
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By the Ivory property, one has L(γε+) = L(γε−) for all sufficiently small ε.
This implies the first equation of the Lemma. See Figure 7. The second
equation is proved similarly by moving the v = v2 side of the rectangle. 2

Figure 7: To the proof of Lemma 4.2.

Lemma 4.2 can be reformulated as follows: at each of the corners of
the coordinate rectangle, take the velocity vector of the geodesic diagonal
ending at this corner and turn it into a covector via the Riemannian metric.
Then the du-components of the covectors at the corners with the same u-
coordinate coincide, up to the sign, and the dv-components of the covectors
at the corners with the same v-coordinate coincide, up to the sign.

Let [u1, u2] × [v1, v2] be a coordinate rectangle such that all coordinate
rectangles inside of it satisfy the Ivory property. Let γ+ be its geodesic
diagonal, as in Lemma 4.2. Define two differential 1-forms in the rectangle as
follows. Through any point (u, v) draw coordinate lines until they intersect
the geodesic diagonal γ+. Let (u, v′) and (u′, v) denote the corresponding
intersection points. Take the velocity vector of γ+ at the point (u, v′), and
denote by φ(u) the du-component of the corresponding covector. Similarly,
denote by ψ(v) the dv-component of the covector dual to the velocity vector
of γ+ at (u′, v). Then put

η+(u, v) = φ(u)du+ ψ(v)dv, η−(u, v) = φ(u)du− ψ(v)dv.

See Figure 8.

Lemma 4.3. One has ‖η±‖ = 1.
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(u, v)

Figure 8: To the definition and properties of η±.

Proof. Consider the rectangle with corners (u, v), (u, v′), (u′, v), and (u′, v′).
Draw a geodesic diagonal from (u, v) to (u′, v′). By Lemma 4.2 and by def-
inition of η−, the velocity vector of this geodesic at (u, v′) is the image of
η− under the isomorphism induced by the Riemannian metric. This implies
‖η−‖ = 1. Due to the orthogonality of the coordinate system, one also has
‖η+‖ = 1. 2

Corollary 4.4. Let f(u) and g(v) be functions such that φ(u)du = df and
ψ(v)dv = dg. The integral curves of the gradient fields ∇(f+g) and ∇(f−g)
are geodesics.

Proof. The gradient of f ± g has norm 1 everywhere. By a well-known
theorem, the integral curves of such a gradient field are geodesics. 2

Proof of Theorem 5. By Lemma 4.1, the Riemannian metric has the form
a(u, v)du2 + b(u, v)dv2 for some functions a and b. By Lemma 4.3, there are
functions φ(u) and ψ(v) such that

‖φ(u)du+ ψ(v)dv‖ = 1.

Change the direction of the geodesic γ+ and consider a coordinate rectangle
with a different “aspect ratio”. This yields another pair of functions φ̃(u) and
ψ̃(v) with the same property. Denote U = φ2, V = ψ2 and Ũ = (φ̃)2, Ṽ =

(ψ̃)2. Since ‖du‖2 = 1
a
, etc., the conditions on the norm can be rewritten as

U

a
+
V

b
= 1,

Ũ

a
+
Ṽ

b
= 1.
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Solving this system of equations with respect to a and b, one obtains

a =

∣∣∣∣U V

Ũ Ṽ

∣∣∣∣
Ṽ − V

=

(
U

Ũ − U
− V

Ṽ − V

)
(Ũ − U),

b =

∣∣∣∣U V

Ũ Ṽ

∣∣∣∣
U − Ũ

=

(
U

Ũ − U
− V

Ṽ − V

)
(V − Ṽ ).

This shows that the metric is Liouville. 2

5 Liouville is equivalent to Graves
That Liouville nets have the Graves property, and vice versa, foliations with
the Graves property are coordinate lines of a Liouville net, is proved in the
Opus Magnum of Darboux [6], item 589, Livre VI, Chap. I. For a concise
exposition of Darboux’ arguments we refer the reader to [7], Section 5.5. In-
terestingly, Blaschke’s proof of “Ivory implies Liouville” is very similar to that
of Darboux for “Graves implies Liouville”: Darboux deduces from the Graves
property the existence of two independent distance functions in separated
variables.

A Liouville nets in the plane: Weihnacht-Blaschke
theorem

Here we give a proof of Theorem 2 which uses some of the ideas of [2], where
a 3-dimensional version of the same result is proved.

Any point p ∈ Ω has a neighborhood of the form (umin, umax)×(vmin, vmax),
where (u, v) are any local parameters for the net. It suffices to prove the the-
orem for such a net rectangle. We start with the following lemma.

Lemma A.1. For the coordinate lines {u = const} one of the following
holds.

21



1. All of them are arcs of conic sections and the map (u0, v) 7→ (u1, v)
between any two curves {u = u0} and {u = u1} is the restriction of an
affine transformation of R2.

2. All of them are straight line segments.

Proof. Choose any u0, u1 ∈ (umin, umax) and v0, v1, v2 ∈ (vmin, vmax). For
an arbitrary v ∈ (vmin, vmax) consider the net rectangles [u0, u1] × [vi, v],
i = 0, 1, 2. (We abuse the notation, the endpoints of the coordinate intervals
might be in a different order.) Since Liouville nets satisfy the Ivory property,
the diagonals in each of these rectangles have equal length:

(x(u1, v)− x(u0, vi))
2 + (y(u1, v)− y(u0, vi))

2

= (x(u0, v)− x(u1, vi))
2 + (y(u0, v)− y(u1, vi))

2, i = 0, 1, 2. (14)

Here (x(u, v), y(u, v)) are Cartesian coordinates of the point with Liouville
coordinates (u, v). Subtract from the equation for i = 0 the equation for i = 1
or 2. This leads to two linear equations between the Cartesian coordinates
of the points (u0, v) and (u1, v):

aix(u1, v) + biy(u1, v) + cix(u0, v) + diy(u0, v) + ei = 0, i = 1, 2. (15)

The further case distinction depends on the degeneracy of the matrix(
a1 b1
a2 b2

)
=

(
x(u0, v1)− x(u0, v0) y(u0, v1)− y(u0, v0)
x(u0, v2)− x(u0, v0) y(u0, v2)− y(u0, v0)

)
.

Since the choices of u0, u1, v0, v1, v2 are mutually independent, for any
choice of u0 one of the following holds.

Case 1. There are v0, v1, v2 such that det

(
a1 b1
a2 b2

)
6= 0.

Then the linear system (15) can be solved for x(u1, v) and y(u1, v) which
become linear (non-homogeneous) functions of x(u0, v) and y(u0, v). Substi-
tuting these functions into any of the equations (14) one obtains a quadratic
equation on (x(u0, v), y(u0, v)). It follows that the curve {u = u0} is a conic
section or a line, and that for all u1 the map (u0, v) 7→ (u1, v) is the restriction
of an affine transformation.

Case 2. For all v0, v1, v2 one has det

(
a1 b1
a2 b2

)
= 0.
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For v0 and v1 fixed, this is a linear equation on x(u0, v2) and y(u0, v2).
Thus {u = u0} is a line segment.

If for all u0 Case 2 takes place, then all coordinate curves {u = const}
are straight line segments: the second possibility of Lemma A.1 is realized.
If for at least one choice of u0 Case 1 takes place, then all these curves are
straight line segments or arcs of conics and are affine images of each other:
the first possibility of Lemma A.1 is realized. 2

If both u-coordinate lines and v-coordinate lines are straight line seg-
ments, then they form an orthogonal grid of lines. Assume that the curves
{u = const} are arcs of conics. From Lemma A.1 and the orthogonality of the
Liouville net we will derive that this family of conics is one of the following.

• concentric circles;

• confocal ellipses;

• confocal hyperbolas;

• confocal parabolas with parallel directrices.

Denote γt = {u = u0 + t}, and let φt be the affine transformation whose
restriction sends γ0 to γt via (u0, v) 7→ (u0 + t, v). Take any Cartesian coor-
dinate system (x, y) and write the curve γt as

γt = {(x, y) | p>Qtp = 0},

where

p =

xy
1

 , Qt =

(
At bt
b>t ct

)
,

with At a symmertic 2×2 matrix, bt ∈ R2, ct ∈ R. The affine transformation
φt can be written as(

φt(x, y)
1

)
=

(
Φt ψt

0 1

)xy
1

 = Rtp.

Due to γt = φt(γ0), one has

Qt = (R−1t )>Q0R
−1
t ⇒ Q̇ = Ṡ>Q0 +Q0Ṡ,
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where Q̇ and Ṡ are the derivatives of Qt and R−1t at t = 0. Take any point

(x, y) ∈ γ0. Then γ0 and t 7→ Φt

(
x
y

)
+ψt are the Liouville coordinate curves

through (x, y), hence they are orthogonal. One obtains a normal vector to
the former by computing the gradient of the function F (x, y) = p>Q0p, and
a tangent vector to the latter by taking derivative in t. These vectors are
collinear:

Φ̇

(
x
y

)
+ ψ̇ = α(x, y)

(
A0

(
x
y

)
+ b0

)
.

(We denote by Φ̇ and ψ̇ the derivatives of Φt and ψt at t = 0.) The above
equation holds for all (x, y) ∈ γ0 for some function α defined on γ0. It follows
that α(x, y) is constant and

Φ̇ = αA0, ψ̇ = αb0 ⇒ Ṙ = α

(
A0 b0
0 0

)
, Ṡ = −α

(
A0 b0
0 0

)
,

since R0 = Id.
Assume that the conic γ0 is central. In an appropriate Cartesian coordi-

nate system one has

Q0 =

 1
a

0 0
0 1

b
0

0 0 1


(we do not specify the signs of a and b). This implies

Ṡ = −α

 1
a

0 0
0 1

b
0

0 0 0


and

Q̇ = Ṡ>Q0 +Q0Ṡ = −2α

 1
a2

0 0
0 1

b2
0

0 0 0

 .

At the same time, for the confocal family

Qt =

 1
a+t

0 0

0 1
b+t

0

0 0 1

 ,
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one has

Q̇ =

− 1
a2

0 0
0 − 1

b2
0

0 0 0

 .

This means that our curve (family) of conics γt is tangent at t = 0 to the
family of confocal conics. Since the same holds at all times t, the family γt
is either a confocal family of ellipses or hyperbolas or a concentric family of
circles.

Now assume that γ0 is a parabola. Choose the coordinates so that the
focus of γ0 is at the origin, and the axis coincides with the y-axis:

Q0 =

a 0 0
0 0 1
0 1 − 1

a

 .

Then

Ṡ = −α

a 0 0
0 0 1
0 0 0

 ,

and therefore

Q̇ = −2α

a2 0 0
0 0 0
0 0 1

 .

At the same time, for the family of confocal-coaxial parabolas

Qt =

a+ t 0 0
0 0 1
0 1 − 1

a+t

 ,

one has

Q̇ =

1 0 0
0 0 0
0 0 1

a2

 .

Thus our curve of conics γt is tangent at t = 0 to the confocal-coaxial family
of parabolas.
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