Alexey Glutsyuk 
email: aglutsyu@ens-lyon.fr
  
On curves with the Poritsky property

. In the present paper we extend this result of Poritsky to curves on surfaces of constant curvature and to outer billiards on all these surfaces. For curves with the Poritsky property on a surface with arbitrary Riemannian metric we prove the following two results: 1) the Poritsky string length coincides with Lazutkin parameter up to additive and multiplicative constants; 2) a

germ of C 5 -smooth curve with the Poritsky property is uniquely determined by its 4-jet. In the Euclidean case the latter statement follows from the above-mentioned Poritsky's result on conics.

Contents 1 Introduction and main results

1 

Introduction and main results

Consider the billiard in a bounded planar domain Ω ⊂ R 2 with a strictly convex smooth boundary. The billiard dynamics T acts on the space of oriented lines intersecting Ω. Namely, let L be an oriented line intersecting Ω, and let A be its last point (in the sense of orientation) of its intersection with ∂Ω. By definition, T (L) is the image of the line L under the symmetry with respect to the tangent line T A ∂Ω, being oriented from the point A inside the domain Ω. A curve γ ⊂ R 2 is a caustic of the billiard Ω if each line tangent to γ is reflected from the boundary ∂Ω again to a line tangent to γ; in other words, if the curve formed by oriented lines tangent to γ is invariant under the billiard transformation T . In what follows we consider only smooth caustics (in particular, without cusps).

It is well-known that each planar billiard with sufficiently smooth strictly convex boundary has a Cantor family of caustics [START_REF] Lazutkin | The existence of caustics for a billiard problem in a convex domain[END_REF]. An analogous statement for outer billiards was proved in [START_REF] Amiran | Lazutkin coordinates and invariant curves for outer billiards[END_REF]. Every elliptic billiard is Birkhoff caustic integrable, that is, an inner neighborhood of its boundary is foliated by closed caustics. The famous Birkhoff Conjecture states the converse: the only Birkhoff caustic integrable planar billiards are elllipses. The Birkhoff Conjecture together with its extension to billiards on surfaces of constant curvature and its outer and projective billiard versions (due to Sergei Tabachnikov) are big open problems, see, e.g., [START_REF] Bolsinov | Open problems, questions and challenges in finite-dimensional integrable systems[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkhoff billiards on surfaces of constant curvature[END_REF][START_REF] Kaloshin | On local Birkhoff Conjecture for convex billiards[END_REF][START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF] and references therein for history and related results. Recently a Riemannian generalization of the Birkhoff Conjecture was suggested in [10, conjecture 1.2].

It is well-known that each smooth convex planar curve γ is a caustic for a family of billiards Ω = Ω p , p ∈ R + , whose boundaries Γ = Γ p = ∂Ω p are given by the p-th string constructions, see [24, p.73]. Namely, let |γ| denote the length of the curve γ. Take an arbitrary number p > 0 and a string of length p + |γ| enveloping the curve γ. Let us put a pencil between the curve γ and the string, and let us push it out of γ to a position such that the string that envelopes γ and the pencil becomes tight. Then let us move the pencil around the curve γ so that the string remains tight. Moving the pencil in this way draws a convex curve Γ p that is called the p-th string construction, see Fig. For every A ∈ γ by G A we denote the line tangent to γ at A. If γ is oriented by a vector in T A γ, then we orient G A by the same vector. The billiard reflection T p from the curve Γ p acts on the oriented lines tangent to γ. It induces the mapping T p : γ → γ acting on tangency points and called string diffeomorphism. It sends each point A ∈ γ to the point of tangency of the curve γ with the line T p (G A ).

Consider the special case, where γ is an ellipse. Then for every p > 0 the curve Γ p given by the p-th string construction is an ellipse confocal to γ. Every ellipse γ admits a canonical bijective parametrization by the circle S 1 = R/2πZ equipped with a parameter t such that for every p > 0 small enough one has T p (t) = t + c p , c p = c p (γ), see [24, the discussion before corollary 4.5]. The property of existence of the above parametrization will be called the string Poritsky property, and the parameter t will be called the Poritsky-Lazutkin string length.

In his seminal paper [START_REF] Poritsky | The billiard ball problem on a table with a convex boundary -an illustrative dynamical problem[END_REF] Hillel Poritsky proved the Birkhoff Conjecture under the additional assumption called the Graves (or evolution) property: for every two nested caustics γ λ , γ µ of the billiard in question the smaller caustic γ λ is also a caustic of the billiard in the bigger caustic γ µ . His beautiful geometric proof was based on his remarkable theorem stating that in the Euclidean plane only conics have the string Poritsky property [21, section 7].

In the present paper we extend this theorem by Poritsky to billiards on simply connected complete surfaces of constant curvature (Subsection 1.1 and Section 4) and prove its version for outer billiards and area construction on these surfaces (Subsection 1.2 and Section 5). All the results of the present paper will be stated and proved for germs of curves, and thus, in Subsection 1.1 (1.2) we state the definitions of the Poritsky string (area) property for germs. We also study the Poritsky property on arbitrary surfaces equipped with a Riemannian metric. In this general case we show that the Poritsky string length coincides with the Lazutkin parameter t L (s) = introduced in [15, formula (1.

3)], up to multiplicative and additive constants (Theorem 1.15 in Subsection 1.3, proved in Section 6). Here κ is the geodesic curvature. This explains the name "Poritsky-Lazutkin length". Recall that the billiard ball map acting on the space of oriented geodesics preserves the canonical symplectic form (see the background material in Subsection 7.1). The above-mentioned Theorem 1.15 concerns the family of reflections from the string curves Γ p , which is a family of symplectomorphisms having a common invariant curve: the curve of geodesics tangent to γ. In Section 7 we extend Theorem 1.15 to a more general class of symplectic maps: families of the so-called "weakly billiard-like maps" with a converging family of invariant curves (Theorem 7.10 stated in Subsection 7.2).

In [START_REF] Lazutkin | The existence of caustics for a billiard problem in a convex domain[END_REF], for a given curve γ ⊂ R 2 V.F.Lazutkin introduced remarkable coordinates (x, y) on the space of oriented lines, in which the billiard ball map given by reflection from the curve γ takes the form (x, y) → (x + y + o(y), y + o(y 2 )); the x-axis coincides with the set of the lines tangent to γ; x = t L (s) on the x -axis up to multiplicative and additive constants.

For the proof of Theorem 7.10 we use analogous coordinates for weakly billiard-like maps and prove Lemma 7.13 on asymptotic behavior of orbits in these coordinates (Subsection 7.3). We retrieve Theorem 1.15 (for C 6smooth curves) from Theorem 7.10 at the end of Section 7.

R.Melrose and S.Marvizi [START_REF] Marvizi | Spectral invariants of convex planar regions[END_REF] have shown that the billiard ball map given by a C ∞ -smooth curve coincides with a unit time flow map of appropriately "time-rescaled" smooth Hamiltonian vector field, up to a flat correction.

For curves on arbitrary surface equipped with a C 6 -smooth Riemannian metric we show that a C 5 -smooth germ of curve with the string Poritsky property is uniquely determined by its 4-jet (Theorem 1.19 stated in Subsection 1.4 and proved in Section 8). This extends similar property of planar conics.

Theorem 1.3 in Subsection 1.1 (proved in Section 3) states that if a metric and a germ of curve γ are both C k , then the string curve foliation is tangent to a C [ k 2 ]-1 -smooth line field on the closed concave side from γ. In Section 2 we present a Riemannian-geometric background material on normal coordinates, equivalent definitions of geodesic curvature etc. used in the proofs of main results.

The Poritsky property for string construction

Let Σ be a two-dimensional surface equipped with a Riemannian metric. Let γ ⊂ Σ be a smooth curve (a germ of smooth curve at a point O ∈ Σ). We consider it to be convex: its geodesic curvature should be non-zero. For every given two points A, B ∈ γ close enough by C AB we will denote the unique point (close to them) of intersection of the geodesics G A and G B tangent to γ at A and B respectively. (Its existence will be proved in Subsection 2. (1.2)

Here for X, Y ∈ Σ close enough and lying in a compact subset in Σ by |XY | we denote the length of small geodesic segment connecting X and Y .

Definition 1.1 (equivalent definition of string construction) Let γ ⊂ Σ be a germ of curve with non-zero geodesic curvature. For every p ∈ R + small enough the subset

Γ p := {C AB | L(A, B) = p} ⊂ Σ
is called the p-th string construction, see [24, p.73].

Remark 1.2 For every p > 0 small enough Γ p is a well-defined smooth curve, we set Γ 0 = γ. The curve γ is a caustic for the billiard transformation acting by reflection from the curve Γ p : a geodesic tangent to γ is reflected from the curve Γ p to a geodesic tangent to γ [24, theorem 5.1]. In Section 3 we will prove the following theorem.

Theorem 1.3 Let k ≥ 2, Σ be a C k+1 -smooth surface equipped with a C ksmooth Riemannian metric, and let γ ⊂ Σ be a germ of C k -smooth curve at O ∈ Σ with positive geodesic curvature. Let U ⊂ Σ denote a small domain adjacent to γ from the concave side. For every C ∈ U let Λ(C) ⊂ T C Σ denote the exterior bisector of the angle formed by the two geodesics through C that are tangent to γ. Then the following statements hold.

1) The one-dimensional subspaces Λ(C) form a germ at O of line field Λ that is C k-1 -smooth on U and C r(k) -smooth on U,

r(k) = [ k 2 ] -1.
2) The string curves Γ p are tangent to Λ and C r(k)+1 -smooth. Their (r(k) + 1)-jets at base points C depend continuously on C ∈ U. Definition 1. [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] We say that a germ of oriented curve γ ⊂ Σ with nonzero geodesic curvature has the string Poritsky property, if it admits a C 1 -smooth parametrization by a parameter t (called the Poritsky-Lazutkin string length) such that for every p > 0 small enough there exists a c = c p > 0 such that for every pair B, A ∈ γ ordered by orientation with L(A, B) = p one has t(A) -t(B) = c p .

Example 1.5 It is classically known that (i) for every planar conic γ ⊂ R 2 and every p > 0 the p-th string construction Γ p is a conic confocal to γ;

(ii) all the conics confocal to γ and lying inside a given string construction conic Γ p are caustics of the billiard inside the conic Γ p ;

(iii) each conic has the string Poritsky property [21, section 7], [24, p.58];

(iv) conversely, each planar curve with the string Poritsky property is a conic, by a theorem of H.Poritsky [21, section 7].

Two results of the present paper extend statement (iv) to billiards on surfaces of constant curvature (by adapting Poritsky's arguments from [21, section 7]) and to outer billiards on the latter surfaces. To state them, let us recall the notion of a conic on a surface of constant curvature.

Without loss of generality we consider simply connected complete surfaces Σ of constant curvature 0, ±1 and realize each of them in its standard model in the space R 3 (x 1 ,x 2 ,x 3 ) equipped with appropriate quadratic form

< Qx, x >, Q ∈ {diag(1, 1, 0), diag(1, 1, ±1)}, < x, x >= x 2 1 + x 2 2 + x 2 3 .
-Euclidean plane:

Σ = {x 3 = 1}, Q = diag(1, 1, 0).
-The unit sphere:

Σ = {x 2 1 + x 2 2 + x 2 3 = 1}, Q = Id. -The hyperbolic plane: Σ = {x 2 1 + x 2 2 -x 2 3 = -1} ∩ {x 3 > 0}, Q = diag(1, 1, -1).
The metric of constant curvature on Σ is induced by the quadratic form < Qx, x >. The geodesics on Σ are its intersections with two-dimensional vector subspaces in R 3 . The conics on Σ are its intersections with quadrics {< Cx, x >= 0} ⊂ R 3 , where C is a real symmetric 3×3-matrix, see [START_REF] Izmestiev | Spherical and hyperbolic conics[END_REF][START_REF] Veselov | Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space[END_REF]. 

The Poritsky property for outer billiards and area construction

Let γ ⊂ R 2 be a smooth strictly convex closed curve. Let U be the exterior connected component of the complement R 2 \γ. Recall that the outer billiard map T : U → U associated to the curve γ acts as follows. Take a point A ∈ U. There are two tangent lines to γ through A. Let L A denote the right tangent line (that is, the image of the line L A under a small clockwise rotation around the point A is disjoint from the curve γ). Let B ∈ γ denote its tangency point. By definition, the image T (A) is the point of the line L A that is central-symmetric to A with respect to the point B.

It is well-known that if γ is an ellipse, then the corresponding outer billiard map is integrable: that is, an exterior neighborhood of the curve γ is foliated by invariant closed curves for the outer billiard map so that γ is a leaf of this foliation. The analogue of Birkhoff Conjecture for the outer billiards, which was suggested by S.Tabachnikov [25, p.101], states the converse: if γ generates an integrable outer billiard, then it is an ellipse. Its polynomially integrable version was studied in [START_REF] Tabachnikov | On algebraically integrable outer billiards[END_REF] and recently solved in [START_REF] Glutsyuk | On polynomially integrable planar outer billiards and curves with symmetry property[END_REF]. For a survey on outer billiards see [START_REF] Tabachnikov | [END_REF][START_REF] Tabachnikov | Geometry and billiards[END_REF][START_REF] Tabachnikov | Dual billiards[END_REF] and references therein.

For a given strictly convex smooth closed curve Γ there exists a oneparametric family of curves γ p such that γ p lies in the interior component Ω of the complement R 2 \ Γ, and the curve Γ is invariant under the outer billiard map T p generated by γ p . The curves γ p are given by the following area construction analogous to the string construction. Let A denote the area of the domain Ω. For every oriented line intersecting Γ let Ω -( ) denote the connected component of the complement Ω \ for which is a negatively oriented part of boundary. Let now L be a class of parallel and codirected oriented lines. For every p > 0, p < 1 2 A, let L p denote the oriented line representing L that intersects Γ and such that Area(Ω -(L p )) = p. For every given p, the lines L p corresponding to different classes L form a oneparameter family parametrized by the circle: the azimuth of the line is the parameter. Let γ p denote the enveloping curve of the latter family, and let T p denote the outer billiard map generated by γ p . It is well-known that the curve Γ is T p -invariant for every p as above [24, Remark 1.9 For every p > 0 small enough the curve γ p given by the area construction is smooth. But for big p it may have singularities (e.g., cusps).

For Γ being an ellipse, all the γ p 's are ellipses homothetic to Γ with respect to its center. In this case there exists a parametrization of the curve Γ by circle S 1 = R/2πZ with parameter t in which T p : Γ → Γ is a translation t → t + c p for every p. This follows from the area-preserving property of outer billiards, see [27, corollary 1.2], and T q -invariance of the ellipse γ p for q > p, analogously to the arguments in [21, section 7], [24, the discussion before corollary 4.5]. Similar statements hold for all conics, as in loc. cit.

In our paper we prove the converse statement given by the following theorem, which will be stated in local context, for germs of smooth curves. To state it, let us introduce the following definition. Definition 1.10 Let Σ be a surface with a smooth Riemannian metric, O ∈ Σ. Let Γ ⊂ Σ be a germ of smooth strictly convex curve at a point O (i.e., with positive geodesic curvature). Let U ⊂ Σ be a disk centered at O that is split by Γ into two components. One of these components is convex; let us denote it by V . Consider the curves γ p given by the above area construction with p > 0 small enough and lines replaced by geodesics. The curves γ p form a germ at O of foliation in the domain V , and its boundary curve Γ = γ 0 is a leaf of this foliation. We say that the curve Γ has the area Poritsky property, if it admits a local C 1 -smooth parametrization by a parameter t called the area Poritsky parameter such that for every p > 0 small enough the mapping T p : Γ → Γ is a translation t → t + c p in the coordinate t. Proposition 1.11 (see [26, lemma 3] for the hyperbolic case; [27, lemma 5.1] for planar conics). On every surface of constant curvature each conic has the area Poritsky property.

Theorem 1.12 Conversely, on every surface of constant curvature each germ of C 2 -smooth curve with the area Poritsky property is a conic 1 . Remark 1.13 (S.Tabachnikov) The area Poritsky property for conics on the sphere follows from their string Poritsky property and the fact that 1 Earlier, in 2018, S.Tabachnikov proved Theorem 1.12 for planar C 5 -smooth curves using a different, analytic method (showing constance of affine curvature). After the present paper was submitted, M.Arnold and S.Tabachnikov extended Tabachnikov's analytic proof to spherical and hyperbolic cases of Theorem 1.12, see [START_REF] Arnold | Remarks on Joachimsthal integral and Poritsky property[END_REF]. Our proof of Theorem 1.12 given in Section 5 is geometric, analogous to Poritsky's arguments from [21, section 7] (which were given for Birkhoff planar billiards and string construction).

the spherical outer billiards are dual to the spherical Birkhoff billiards [23, subsection 4.1, lemma 5]: the duality is given by orthogonal polarity. Analogous duality holds on hyperbolic plane realized as the half-pseudo-sphere of radius -1 in 3-dimensional Minkowski space [6, section 2, remark 2]. As it was noticed in [3, end of section 3], in the spherical case the area Poritsky property is dual to the string Poritsky property. Therefore, in the spherical case Theorems 1.12 and 1.7 are dual and hence, equivalent.

Coincidence of the Poritsky and Lazutkin lengths

Everywhere in the subsection Σ is a two-dimensional surface equipped with a C 4 -smooth Riemannian metric. Definition 1.14 Let γ ⊂ Σ be a C 2 -smooth curve, let s be its natural length parameter. Let κ(s) denote its geodesic curvature. Fix a point in γ, let s 0 denote the corresponding length parameter value. The parameter (1.4)

t L := s s 0 κ 2 3 (ζ)dζ (1.
A proof of Theorem 1.15 will be presented in Section 6. It is based on the following theorem on asymptotics of the function L(A, B) and its corollaries on string diffeomorphisms, also proved in the same section.

Theorem 1.16 Let γ ⊂ Σ be a C 3 -smooth curve with positive geodesic curvature. For every A ∈ γ let s A denote the corresponding natural length parameter value. Let L(A, B) denote the quantity defined in (1.2). One has

L(A, B) = κ 2 (A) 12 |s A -s B | 3 (1 + o(1)), (1.5) 
uniformly, as s A -s B → 0 so that A and B remain in a compact subarc in γ. Asymptotic (1.5) is also uniform in the metric running through a closed bounded subset in the space of C 4 -smooth Riemannian metrics.

Corollary 1.17 Let γ ⊂ Σ be a germ of C 3 -smooth curve with positive geodesic curvature. For every small p > 0 let T p : γ → γ denote the corresponding string diffeomorphism (induced by reflection of geodesics tangent to γ from the string curve Γ p and acting on the tangency points). For every points B and Q lying in a compact subarc γ γ one has

κ 2 3 (B)λ(B, T p (B)) κ 2 3 (Q)λ(Q, T p (Q)), as p → 0, (1.6) 
uniformly in B, Q ∈ γ.

Corollary 1.18 In the conditions of Corollary 1.17 one has

κ 2 3 (B)λ(B, T p (B)) κ 2 3 (T m p (B))λ(T m p (B), T m+1 p (B)), as p → 0, (1.7)
uniformly in B ∈ γ and those m ∈ N for which T m p (B) ∈ γ.

A symplectic generalization of Theorem 1.15 to families of the so-called weakly billiard-like maps of string type will be presented in Section 7.

Unique determination by 4-jet

The next theorem is a Riemannian generalization of the classical fact stating that each planar conic is uniquely determined by its 4-jet at some its point. 

Background material from Riemannian geometry

We consider curves γ with positive geodesic curvature on an oriented surface Σ equipped with a Riemannian metric. In Subsection 2.1 we recall the notion of normal coordinates. We state and prove equivalence of different definitions of geodesic curvature. One of these definitions deals with geodesics tangent to γ at close points A and B and the asymptotics of angle between them at their intersection point C. In the same subsection we prove existence of two geodesics tangent to γ through every point C close to γ and lying on the concave side from γ; the corresponding tangency points will be denoted by A = A(C) and B = B(C). We also prove an asymptotic formula for derivative of azimuth of a vector tangent to a geodesic (Proposition 2.7). In Subsection 2.2 we prove formulas for the derivatives dA dC , dB dC , which will be used in the proofs of Theorems 1.3, 1.7, 1.15. In Subsection 2.3 we consider a pair of geodesics issued from the same point A and their points G(s), Z(s) lying at a given distance s to A. We give an asymptotic formula for difference of azimuths of their tangent vectors at G(s) and Z(s), as s → 0. We will use it in the proof of Theorem 1.19. In Subsection 2.4 we state and prove some asymptotic formulas relating sides and angles of small geodesic and curvilinear triangles, which will be used in the proofs of Theorems 1.15, 1.16 and 1.19.

Normal coordinates and equivalent definitions of geodesic curvature

Let Σ be a two-dimensional surface equipped with a C 3 -smooth Riemannian metric g. Let O ∈ Σ. Let γ be a C 2 -smooth germ of curve at O parametrized by its natural length parameter. Recall that its geodesic curvature κ = κ(O) equals the norm of the covariant derivative ∇ γ γ. In the Euclidean case it coincides with the inverse of the osculating circle radius. Consider the exponential chart exp : v → exp(v) parametrizing a neighborhood of the point O by a neighborhood of zero in the tangent plane T O Σ. We introduce orthogonal linear coordinates (x, y) on T O Σ, which together with the exponential chart, induce normal coordinates centered at O, also denoted by (x, y), on a neighborhood of the point O. It is well-known that in normal coordinates the metric has the same 1-jet at O, as the standard Euclidean metric (we then say that its 1-jet is trivial at O.) Its Christoffel symbols vanish at O. Remark 2.1 Let the surface Σ be C k+2 -smooth and the metric be C k+1smooth. Then normal coordinates are C k -smooth. This follows from theorem on dependence of solution of differential equation on initial condition (applied to the equation of geodesics) and C k -smoothness of the Christoffel symbols. In normal coordinates the metric is C k-1 -smooth. Thus, each C ksmooth curve is represented by a C k -smooth curve in normal coordinates. Proposition 2.2 For every curve γ as above its geodesic curvature κ(O) equals its Euclidean geodesic curvature κ e (O) in normal coordinates centered at O. If the normal coordinates (x, y) are chosen so that the x-axis is tangent to γ, then γ is the graph of a germ of function: Let us consider that Σ is a Riemannian disk centered at O, the curve γ splits Σ into two open parts, and γ has positive geodesic curvature. For every point A ∈ γ the geodesic tangent to γ at A will be denoted by G A .

γ = {y = f (x)}, f (x) = ± κ(O) 2 x 2 + o(x 2 ), as x → 0. ( 2 
Proposition 2.4 Taking the disk Σ small enough, one can achieve that for every A ∈ γ the curve γ lies in the closure of one and the same component of the complement For every point A ∈ Σ lying in a chart (x, y), e.g., a normal chart centered at O, and every tangent vector v ∈ T A Σ set az(v) := the azimuth of the vector v : its Euclidean angle with the x-axis, i.e., the angle in the Euclidean metric in the coordinates (x, y). The azimuth of an oriented one-dimensional subspace in T A Σ is defined analogously. 2) Set v(s) = α(s). One has

Σ \ G A , γ ∩ G A = {A}.
κ(O) = lim A,B→O α(A, B) λ(A, B) ; (2.2) κ(O) = lim A,B→O 2 dist(B, G A ) λ(A, B) 2 . ( 2 
d az(v(s)) ds = O(dist(α, O)) = O(∠(v(0), AO) dist(A, O)) as A → O, (2.5)
uniformly on the set {|s| ≤ ε}. The latter angle in (2.5) is the Riemannian angle between the vector v(0) and the Euclidean line AO.

Proof In the coordinates (x, y) the geodesics are solutions of the second order ordinary differential equation saying that α equals a quadratic form in α with coefficients equal to appropriate Christoffel symbols of the metric g (which vanish at O), and | α| = 1 in the metric g. The derivative in (2.5) is expressed in terms of the Christoffel symbols. This derivative taken along a geodesic α through O vanishes identically on α, since each geodesic through O is a straight line in normal coordinates. Therefore if we move the geodesic through O out of O by a small distance δ, then the derivative in (2.5) will change by an amount of order δ: the Christoffel symbols are C 1 -smooth, since the metric is C 4 -smooth (hence, C 2 -smooth in normal coordinates). This implies the first equality in (2.5). The second equality follows from the fact that the geodesics through A issued in the direction of the vectors -→ AO and v(0) are respectively the line AO and α, hence, dist(α, O) = O(∠(v(0), AO) dist(A, O)). This proves (2.5).

Let s e denote the Euclidean natural parameter of the curve α, with respect to the standard Euclidean metric in the chart (x, y). Recall that κ e (s) = d az(v(s)) dse . For ε > 0 small enough and A close enough to O the ratio dse ds is uniformly bounded on {|s| ≤ ε}. This together with (2.5) implies (2.4). The proposition is proved. 2

2.2 Angular derivative of exponential mapping and the derivatives dA dC , dB dC

In the proof of main results we will use an explicit formula for the derivatives of the functions A(C) and B(C) from Proposition 2.3. To state it, let us introduce the following auxiliary functions. For every x ∈ Σ set ψ(x, r) := 1 2π (the length of circle of radius r centered at x).

Consider the polar coordinates (r, φ) on the Euclidean plane T x Σ. For every unit vector v ∈ T x Σ, |v| = 1 (identified with the corresponding angle coordinate φ) and every r > 0 let Ψ(x, v, r) denote 1 r times the module of derivative in φ of the exponential mapping at the point rv:

Ψ(x, v, r) := r -1 ∂ exp ∂φ (rv) . (2.6)
Proposition 2.8 (see [START_REF] Bennett | Hyperbolic geometry -circles[END_REF] in the hyperbolic case). Let Σ be a complete simply connected Riemannian surface of constant curvature. Then

rΨ(x, v, r) = ψ(x, r) = ψ(r) =      r, if Σ is Euclidean plane, sin r, if Σ is unit sphere, sinh r, if Σ is hyperbolic plane. (2.7)
Proof The left equality in (2.7) and independence of x and v follow from homogeneity. Let us prove the right equality: formula for the function ψ(r). In the planar case this formula is obvious. a) Spherical case. Without loss of generality let us place the center x = O of the circle under question to the north pole (0, 0, 1) in the Euclidean coordinates (x 1 , x 2 , x 3 ) on the ambient space. Since each geodesic is a big circle of length 2π and due to symmetry, without loss of generality we consider that 0 < r ≤ π 2 . Then the disk in Σ centered at O of radius r is 1-to-1 projected to the disk of radius sin r in the coordinate (x 1 , x 2 )-plane. The length of its boundary equals the Euclidean length 2π sin r of its projection.

b) Case of hyperbolic plane. We consider the hyperbolic plane in the model of unit disk equipped with the metric 2|dz| 1-|z| 2 in the complex coordinate z. For every R > 0, R < 1 the Euclidean circle {|z| = R} of radius R is a hyperbolic circle of radius

r = R 0 2ds 1 -s 2 = log 1 + R 1 -R .
The hyperbolic length of the same circle equals L = 4πR 1-R 2 . Substituting the former formula to the latter one yields

R = e r -1 e r + 1 , L = 2π sinh r,
and finishes the proof of the proposition. 2

Proposition 2.9 Let γ ⊂ Σ be a germ of C 2 -smooth curve. Let s be the length parameter on γ orienting it positively as a boundary of a convex domain. Let U ⊂ Σ be a small domain adjacent to γ from the concave side, see For every

Q = A, B let w Q ∈ T Q γ be the unit tangent vector of the geodesic CQ directed to C. Let ζ Q ∈ T C Σ denote the unit tangent vector of the same geodesic at C directed to Q. For every v ∈ T C Σ and Q = A, B one has ds Q dv = v × ζ Q κ(Q)L Q Ψ(Q, w Q , L Q ) ; v × ζ Q := |v| sin ∠(v, ζ Q ), (2.8) 
where ∠(v, ζ Q ) is the oriented angle between the vectors v and ζ Q : it is positive, if the latter vectors form an orienting basis of the space T C Σ.

Proof Let us prove (2.8) for Q = A; the proof for B is analogous. As A = A(C) moves by ε along the curve γ to the point A ε with the natural parameter

s A + ε, the geodesic G A tangent to γ at A is deformed to the geodesic G Aε intersecting G A at a point converging to A, as ε → 0. Let α(ε)
denote their acute intersection angle at the latter point. One has α(ε) κ(A)ε.

(2.9)

Both above statements follow from (2.2) and definition. One also has

dist(C, G Aε ) α(ε)L A Ψ(A, w A , L A ) εκ(A)L A Ψ(A, w A , L A ), (2.10) 
by the definition of the function Ψ and (2.9). Without loss of generality we consider that v is a unit vector. Let us draw a curve c through C tangent to v and oriented by v. Let τ denote its natural parameter defined by this orientation. Let C ε denote the point of intersection of the geodesic G Aε with c, see Fig. 3. Consider τ = τ (C ε ) as a function of ε: τ = τ (ε). One has

ds A dv = dτ dε (0) -1 , τ (C ε ) -τ (C) dist(C, G Aε ) sin ∠(v, ζ A ) ε dτ dε (0) = ε ds A dv -1
, as ε → 0, by definition. Substituting (2.10) to this formula yields (2.8). 2

A A C C α(ε) c A ε γ ε w A ζ v Figure 3:
The tangent geodesics to γ at the points A and A ε . The angle be-

tween them is α(ε) κ(A)ε. One has dist(C, A ε C ε ) α(ε)L A Ψ(A, w A , L A ), L A = |AC|, and λ(C, C ε ) dist(C, A ε C ε )/ sin ∠(v, ζ A ).

Geodesics passing through the same base point; azimuths of tangent vectors at equidistant points

Proposition 2.10 Let the metric on Σ be C 3 -smooth. Let G t (s), Z t (s) ⊂ Σ be two families of geodesics parametrized by the natural length s and depending on a parameter t ∈ [0, 1]. Let they be issued from the same point A t = G t (0) = Z t (0). Let A t lie in a given compact subset (the same for all t) in a local chart (x, y) (not necessarily a normal chart). Set

φ t = az( Ġt (0)) -az( Żt (0)).
One has Let us now fix the initial point A and consider the derivative of the azimuth az(v(s)) in the initial azimuth az(v(0)) for fixed s. If s = 0, then the latter derivative equals 1, since the initial condition in the equation in variations is the identity matrix. Therefore, in the general case the derivative of the azimuth az(v(s)) in az(v(0

az( Ġt (s)) -az( Żt (s)) φ t , as s → 0, uniformly in t ∈ [0, 1]. ( 2 
)) equals 1 + u A,v(0) (s), where u A,v(0) (s) is a C 1 -smooth function with u A,v(0) (0) = 0.
This together with the above discussion and Lagrange Increment Theorem for the derivative in az(v(0)) implies (2.11). 2

Geodesic-curvilinear triangles in normal coordinates

Everywhere below in the present subsection Σ is a two-dimensional surface equipped with a C 4 -smooth Riemannian metric g, and O ∈ Σ.

Proposition 2.11 Let A u B u C u be a family of geodesic right triangles lying in a compact subset in Σ with right angle B u . Set

c = c u = |A u B u |, b = b u = |A u C u |, a = a u = |B u C u |, α = α u = ∠B u A u C u . Let b u , α u → 0, as u → u 0 . Then b c, b -c a 2 2c 1 2 cα 2 1 2 aα, ∠B u C u A u = π 2 -α + o(α).
(2.12)

Proof Consider normal coordinates (x u , y u ) centered at A u (depending smoothly on the base point A u ). The coordinates

(X u , Y u ) := x u c u , y u c u
are normal coordinates centered at A u for the Riemannian metric rescaled by division by c u . For the rescaled metric one has |A u B u | = 1. In the rescaled normal coordinates (X u , Y u ) the rescaled metric has trivial 1-jet at 0 and tends to the Euclidean metric, as u → u 0 : its nonlinear part tends to zero, as u → u 0 , uniformly on the Euclidean disk of radius 2 in the coordinates

(X u , Y u ). One has obviously |A u B u | |A u C u | in the rescaled metric, since α u → 0.
Rescaling back, we get the first asymptotic formula in (2.12). Let S u denote the circle of radius |A u B u | centered at A u , and let D u denote its point lying on the geodesic

A u C u : |A u B u | = |A u D u |; the arc B u D u of the circle S u
is its intersection with the geodesic angle B u A u C u . In the rescaled coordinates (X u , Y u ) the circle S u tends to the Euclidean unit circle. Thus, its geodesic curvature in the rescaled metric tends to 1. The geodesic segment B u C u is tangent to S u at the point B u , and

∠B u C u A u → π 2 .
The two latter statements together with Proposition 2.2 (applied to O = B and γ = S u ) imply that in the rescaled metric one has

|B u C u | α, |D u C u | = |A u C u | -|A u B u | |B u C u | 2 2 1 2 α 2 1 2 |B u C u |α.
Rescaling back to the initial metric, we get the second, third and fourth formulas in (2.12). The fifth formula follows from Gauss-Bonnet Formula, which implies that the sum of angles in the triangle

A u B u C u differs from π by a quantity O(Area) = O(|A u B u ||B u C u |) = O(α|A u B u | 2 ) = o(α). 2 
Proposition 2.12 Consider a family of C 3 -smooth arcs γ u = A u B u of curves in Σ (lying in a compact set) with uniformly bounded geodesic curvature (from above) such that |A u B u | → 0, as u → 0. Let λ(A u , B u ) denote their lengths. Let α u denote the angle at A u between the arc γ u and the geodesic segment A u B u . One has

λ(A u , B u ) = |A u B u | + O(|A u B u | 3 ), α u = O(|A u B u |). (2.13) 
Proof The proposition obviously holds in Euclidean metric. It remains valid in the normal coordinates centered at A u . Indeed, the length of the arc γ u in the Euclidean metric in the normal chart differs from its Riemannian length by a quantity O(|A u B u | 3 ), since the difference of the metrics at a point

P ∈ γ u is O(|P A u | 2 ) = O(|A u B u | 2
) and the curvature of the arcs γ u is bounded. 2

Proposition 2.13 Consider a family of curvilinear triangles T u := A u B u C u in Σ where the side A u B u is geodesic and the sides A u C u , B u C u are arcs of C 3 -smooth curves with uniformly bounded geodesic curvature. Let the side

A u C u be tangent to the side A u B u at A u . Set ε := |A u B u |, θ := π 2 -∠A u B u C u .
Here ∠A u B u C u is the angle at B u between the (curbilinear) sides A u B u , B u C u of the triangle T u . Let the triangles T u lie in a compact subset in Σ, and ε, θ → 0, as u → 0. Then

λ(A u , C u ) -|A u B u | = O(ε 3 ) + O(ε 2 θ). (2.14) Proof One has |B u C u | = O(ε 2 )
, by construction and since θ → 0. Hence,

|A u C u | ε. Let D u denote the point closest to C u in the geodesic A u B u : the points A u , C u , D u form a triangle ∆ u with right angle at D u . One has |C u D u | = O(ε 2 ), λ(A u , C u ) -|A u C u | = O(ε 3 ), (2.15) 
by definition and (2.13),

|A u C u | -|A u D u | = O( |C u D u | 2 |A u C u | ) = O(ε 3 ), (2.16) 
by (2.15) and (2.12) applied to ∆ u . Let us show that

|A u D u | -|A u B u | = ±|B u D u | = O(ε 2 θ) + O(ε 3 ).
(2.17)

In the right triangle ∆ u with vertices B u , C u , D u one has ∠D u B u C u = π 2 ± θ+O(ε 2
). Indeed, the latter angle is the sum (difference) of the two following angles at B u : the angle π 2 -θ of the triangle T u , if the sign in (2.17) is "-" (or its complementary angle π 2 + θ, if the sign is "+"); the angle between the geodesic B u C u and the curved side

B u C u in T u , which is O(|B u C u |) = O(ε 2
). This implies the above formula for the angle ∠D u B u C u , which in its turn implies that in the triangle ∆ u one has ∠B u C u D u = O(θ) + O(ε 2 ) (the last formula in (2.12)). The latter formula together with (2.15) and (2.12) imply (2.17). Adding formulas (2.15), (2.16), (2.17) yields (2.14). 2

3 The string foliation. Proof of Theorem 1.3

Finite smoothness lemmas

Everywhere below in the present section we are dealing with a function f (x, y) of two variables (x, y): the variable y is scalar, and the variable x may be a vector variable. The function f is defined on the product

Z = U × V of closure of a domain U ⊂ R n x and an interval V = (-ε, ε) ⊂ R y .
The following two lemmas will be used in the proof of Theorem 1.3. Lemma 3.1 Let a function f as above be C k -smooth on Z, k ≥ 2, and let

f (x, y) = a(x)y 2 (1 + o(1)), as y → 0, uniformly in x ∈ U ; a > 0. (3.1)
Then the function g(x, y) := sign(y) f (x, y) is C k-1 -smooth on Z. Lemma 3.2 Let a function f (x, y) as at the beginning of the section be C ksmooth on Z and even in y: f (x, y) = f (x, -y). Then g(x, z)

:= f (x, √ z) is C [ k 2 ] -smooth on Z := U × [0, ε 2 ), and its restriction to Z \ {z = 0} is C k -smooth.
In the proof of the lemmas for simplicity without loss of generality we consider that the variable x is one-dimensional; in higher-dimensional case the proof is the same. We use the following definition and a more precise version of the asymptotic Taylor formula for finitely-smooth functions.

Definition 3.3 Let l, m ∈ Z ≥0 . We say that f (x, y) = o l (y m ), as y → 0, if for every j, s ∈ Z ≥0 , j ≤ l, s ≤ m the derivative ∂ j+s f ∂ j x∂ s y exists and is continuous on Z = U × V and one has ∂ j+s f ∂ j x∂ s y (x, y) = o(y m-s ), as y → 0, uniformly in x ∈ U . (3.2) 
Proposition 3.4 Let f (x, y) be as at the beginning of the section, and let f be C k -smooth on Z. Then for every l, m ∈ Z ≥0 with l + m ≤ k one has

f (x, y) = f (x, 0) + m j=1 a j (x)y j + R m (x, y), a j (x) = 1 j! ∂ j f ∂y j (x, 0) ∈ C l (U ), R m (x, y) = o l (y m ), as y → 0, uniformly in x ∈ U . (3.3) 
Proof The first formula in (3.3) holds with 

R m (x, y) = 0≤ym≤•••≤y 1 ≤y ( ∂ m ∂y m f (x, y m ) - ∂ m ∂y m f (x, 0))dy m dy m-1 . . .
2 -s (x, y) s j=1 ∂ n j f (x, y) ∂x n j , s ∈ N, n j ≥ 1, s j=1 n j = l. (3.5)
The partial derivatives in (3.5) are

C 1 -smooth, since f is C k -smooth and n j ≤ l ≤ k -1. One has sign(y)f 1 2 -s (x, y) a 1 2 -s (x)y 1-2s , (3.6) 
by definition. If s = 1, then y 1-2s = y -1 , and the expression (3.5) contains only one derivative φ(x, y) Case m = 1 is treated analogously with the following change: one of the derivatives in (3.5) will contain one differentiation in y and will be asymptotic to y times a continuous function in x.

:= ∂ n 1 f (x,y) ∂x n 1 . One has φ ∈ C 1 (Z), φ| y=0 = 0,
Case m ≥ 2. Then k ≥ m + l + 1 ≥ l + 3. One has = o l (y m-1 ), see (3.4). Now it remains to prove the same statement for the derivative h := ∂ l+m g ∂x l ∂y m . Those terms in its expression that include the derivatives of the function o l (y m+1 )

g(x, y) = a 1 2 (x)y w(x, y), (3.7) 
w(x, y) = 1 + m+1 j=3 a -1 (x)a j (x)y j-2 + o l (y m+1 ) y 2 , a, a j ∈ C l (U ), (3.8 
y 2
= o l (y m-1 ) with differentiation in y of orders less than m are well-defined and continuous, as above. Each term in h that contains a derivative ∂ j+m ∂x j ∂y m ( o l (y m+1 ) y 2

) contains only one such derivative, and it comes with the factor y from (3.7); here j ≤ l. On the other hand, the latter derivative is

o l-j (y) y 2
= o( 1 y ), by (3.4). Thus, its product with the above factor y is a continuous function, as are the other factors in the term under question. Continuity of the derivative h is proved. Lemma 3.1 is proved.

2 Proof of Lemma 3.2. Fix l, m ∈ Z ≥0 such that l + m ≤ [ k 2 ]
. Then l + 2m ≤ k, and one has

f (x, y) = m j=0 a j (x)y 2j + o l (y 2m ),
where the functions a j (x) are C l -smooth, by (3.3) and evenness. Set z = y 2 . The derivative ∂ l+m ∂x l ∂z m of the above sum is obviously continuous, since the sum is a polynomial in z with coefficients being C l -smooth functions in x. Let us prove continuity of the derivative of the remainder o l (y 2m ). One has

∂ ∂z = 1 2y ∂ ∂y .
Therefore, the above (l + m)-th partial derivative of the remainder o l (y 2m ) is o(1), see (3.4). This proves continuity and Lemma 3.2. 2

Proof of Theorem 1.3

The fact that the exterior bisector line field Λ is tangent to the string construction curves is well-known and proved as follows. It suffices to prove only statement 1) of Theorem 1.3: C k-1 -smoothness on U and C r(k) -smoothness on U of the line field Λ. Statement 2) on C r(k)+1regularity of its integral curves (the string construction curves) and continuity then follows from the next general fact: for every C r -smooth line field the (r + 1)-jets of its integral curves at base points A are expressed analytically in terms of r-jets of the line field, and hence, depend continuously on A.

Fix a C k -smooth coordinate system (s, z) on Σ centered at the base point O of the curve γ such that γ is the s-axis, s| γ is the natural length parameter of the curve γ and U = {z > 0}. For every σ ∈ R small enough let G(σ) denote the geodesic tangent to γ at the point with length parameter value σ. For every σ, s ∈ R small enough let A(σ, s) denote the point of intersection of the geodesic G(σ) with the line parallel to the z-axis and having abscissa s. The mapping (σ, s) → A(σ, s) is C k-1 -smooth, since so is the family of geodesics G(σ) (by C k -smoothness of the metric (in some initial, C k+1smooth chart) and C k -smoothness of the curve γ) and by transversality. Set z(σ, s) := z(A(σ, s)).

Proposition 3.6 The function

y(σ, s) := sign(σ -s) z(σ, s) is C k-2
-smooth on a neighborhood of zero in R 2 and C k-1 -smooth outside the diagonal {σ = s}. The mapping

F : (σ, s) → (s, y(σ, s)) (3.9)
is a C k-2 -smooth diffeomorphism of a neighborhood of the origin onto a neighborhood of the origin, and it is C k-1 -smooth outside the diagonal. It sends the diagonal to the axis {y = 0}.

Proof For every point Q ∈ Σ lying in a smooth chart (s, z) let u(Q) denote the orthogonal projection of the vector

∂ ∂z ∈ T Q Σ to the line (R ∂ ∂s ) ⊥ . Set µ(Q) := ||u(Q)|| -1 . Recall that κ(s) > 0. One has µ > 0 near O, z(σ, s) = 1 2 µ(s, 0)κ(s)(s -σ) 2 + o((s -σ) 2 ), as σ → s, (3.10) 
uniformly in small s, by (2.3). This together with C k-1 -smoothness of the function z and Lemma 3.1 implies the statements of the proposition. 2

Let us now return to the proof of statement 1) of Theorem 1.3. Consider the mapping inverse to the mapping F from (3.9):

F -1 : (s, y) → (σ, s).
The function σ = σ(s, y) is C k-2 -smooth, by Proposition 3.6, and it is C k-1 -smooth outside the axis {y = 0}. Recall that the geodesic G(σ(s, y)) passes through the point A = (s, z) = (s, y 2 ) ∈ U. For every s and y let v = v(s, y) ∈ T A Σ denote the unit tangent vector of the geodesic G(σ(s, y)) that orients it in the same way, as the orienting tangent vector of the curve γ at σ(s, y). The vector function v(s, y) is C k-2 -smooth in (s, y). For a given point A = (s, z), set y := √ z, the unit vectors v(s, y), v(s, -y) ∈ T A Σ direct the two geodesics through A that are tangent to γ, by construction. Their sum w(s, y) = v(s, y) + v(s, -y) generates the line Λ(A) of the line field Λ, by definition. The vector function w(s, y) is even in y, C k-2 -smooth in both variables, and |w| = 2|v| = 2, whenever y = 0. Thus, w is C [ k 2 ]-1 -smooth in (s, z) and C k-1 -smooth outside the curve γ = {z = 0}, by Proposition 3.6 and Lemma 3.2. Finally, w induces a vector field generating Λ that is . For every p, q > 0 the reflections from the string curves Γ p and Γ q commute as mappings acting on the space of those oriented geodesics that intersect both of them and lie on the concave side U from the curve γ. , which has the above regularity and no critical points. For every q < p the curve Γ * q is invariant under the reflection T p from the curve Γ p (evolution property).

C [ k 2 ]-1 -smooth on U and C k-1 -smooth on U. Theorem 1.3 is proved.
Therefore, the restriction of the function ψ to the strip between the curves Γ * 0 and Γ * p is also T p -invariant. Hence, its Hamiltonian vector field H ψ is also invariant and tangent to the curves Γ * q . Thus, for every q < p the reflection T p : Γ * q → Γ * q acts by translation in the time coordinate t q of the field H ψ on Γ * q , and this also holds for q = 0. The time coordinate t 0 on Γ * 0 induces a parameter, also denoted by t 0 , on the curve Γ 0 = γ. Therefore, γ has the Poritsky property with Poritsky-Lazutkin parameter t 0 , by the above discussion. Any two reflections T p and T q commute while acting on the union of the curves Γ * r with r ≤ min{p, q}: the curves Γ * r are T p -and T q -invariant, and T p , T q act as translations there. Proposition 4.3 is proved. 

Preparatory coboundary property of length ratio

Let Σ be an oriented surface of constant curvature K ∈ {0, ±1}: either Euclidean plane, or unit sphere in R 3 , or hyperbolic plane. Let O ∈ Σ, and let γ ⊂ Σ be a regular germ of curve through O with positive geodesic curvature. We consider that γ is oriented counterclockwise with respect to the orientation of the surface Σ. For every point X ∈ γ by G X we denote the geodesic tangent to γ at X. here |CX| is the length of the geodesic arc CX. Recall that we denote

ψ(x) =      x, if Σ is Euclidean plane, sin x,
if Σ is unit sphere, sinh x, if Σ is hyperbolic plane. 

ds A ds p = sin α(C) κ(A(C))ψ(|AC|) , ds B ds p = sin α(C) κ(B(C))ψ(|BC|) , (4.3) 
ψ(|AB |) ψ(|B C|) ψ(|CA |) ψ(|A B|) ψ(|BC |) ψ(|C A|) = 1. (4.4)
Addendum to Theorem 4.8. Let now in the conditions of Theorem 4.8 A , B , C be points on the geodesics BC, CA, AB respectively so that some two of them, say A , C do not lie on the corresponding sides and the remaining third point B lies on the corresponding side AC, see Fig. 4.

1) In the Euclidean and spherical cases the geodesics AA , BB , CC intersect at the same point, if and only if (4.4) holds.

2) In the hyperbolic case (when Σ is of negative curvature) the geodesics AA , BB , CC intersect at the same point, if and only if some two of them intersect and (4.4) holds.

3) Consider the standard model of the hyperbolic plane Σ in the Minkowski space R 3 , see Subsection 1.1. Consider the 2-subspaces defining the geodesics AA , BB , CC , and let us denote the corresponding projective lines (i.e., their tautological projections to RP 2 ) by A, B, C respectively. The projective lines A, B, C intersect at one point (which may be not the projection of a point in Σ), if and only if (4.4) holds. Proof Statements 1) and 2) of the addendum follow from Theorem 4.8 by analytic extension, when some two points A and C go out of the corressponding sides BC, BA while remaining on the same (complexified) geodesics BC, BA. At the initial position, when t = 0, the point X t lies on the fixed geodesic BB . As t increases from 0 to 1, the points A and C remain fixed, while the points C t and A t move monotonously, so that as C t moves towards (out from) B along the geodesic a, the point A t moves out from (towards) B along the geodesic c, see Fig. 5. In the first case, when C t moves towards B and A t moves out from B, the point X t moves out of the geodesic BB , to the half-plane bounded by BB that contains A, and its distance to BB increases. Hence, Y = X 1 does not lie on BB . The second case is treated analogously. The contradiction thus obtained proves the claim.

2 For every small τ > 0 let A(τ ) denote the point of the curve γ such that λ(A(τ ), A(0)) = τ and the curve γ is oriented by the natural parameter from A(0) to A(τ ). Let B(τ ) ∈ γ denote the family of points such that the area of the domain bounded by the chord A(τ )B(τ ) and the arc A(τ )B(τ ) of the curve γ remains constant, independent on τ . For every τ small enough the chord A(τ )B(τ ) intersects the chord A(0)B(0) at a point X(τ ) tending to the middle of the chord A(0)B(0), see Fig. 6. This follows from constance of area and homogeneity (constance of curvature) of the surface Σ. One has The length λ(A(0), A(τ )) is asymptotic to 1 sin α times dist(A(τ ), B(0)A(0)): the distance of the point A(τ ) to the geodesic X(τ )A(0) = B(0)A(0). Similarly, λ(B(0), B(τ )) 1 sin β dist(B(τ ), B(0)A(0)), as τ → 0. The above distances of the points A(τ ) and B(τ ) to the geodesic A(0)B(0) are asymptotic to each other, since the intersection point X(τ ) of the chords A(τ )B(τ ) and A(0)B(0) tends to the middle of the chord A(0)B(0) and by homogeneity. This implies that the left-hand side in (5.2) tends to the ratio sin α sin β , as τ → 0. This together with (5.2) proves (5.1). 2 Claim 1. The length s A -s B of the arc AB of the curve γ differs from its Euclidean length in the coordinates (x, y) by a quantity o((s A -s B ) 3 ). The same statement also holds for the quantity L(A, B). These asymptotics are uniform in the metric running through a closed bounded subset in the space of C 3 -smooth Riemannian metrics. Proof It is known that the metric g is O(r 2 )-close to the Euclidean metric, and the polar coordinates are g-orthogonal. In the polar coordinates g has the same radial part dr 2 , as the Euclidean metric dr 2 + r 2 dφ 2 , and their angular parts differ by a quantity ∆ = O(r 2 )r 2 dφ 2 = O(r 4 dφ 2 ). The glength of the arc AB is the integral of the g-norm of the Euclidean-unit tangent vector field to γ. The integration parameter is the Euclidean natural parameter. The contribution of the above difference ∆ to the latter integral is bounded from above by the integral I of a quantity O(r 2 α), where α is the acute angle of a tangent vector γ(Q) with the radial line CQ. 

For every point Q ∈ Σ such that the conic φ Q ∈ C passing through Q is regular, set l Q := T Q φ Q . The
( ) A B α β γ A B τ ( ) X τ ( ) τ
= ψ(|CB |) ψ(|CA |) = u(A ) u(B ) , (5.3) 
λ(A, B ) -λ(A, B) = o((s A -s B ) 3 ), L(A, B ) -L(A, B) = o((s A -s B ) 3 ).
Proof Recall that we denote δ = |s A -s B |. The lengths of the arcs AB ⊂ γ and AB ⊂ S A differ by a quantity o(δ 3 ). Indeed, the projection of the arc AB to the arc AB along the radii of the circle S A has norm of derivative of order 1 + o(δ 2 ). This is implied by the two following statements: 1) the distance between the source and the image is of order o(δ 2 ) (the circle is osculating); 2) the slopes of the corresponding tangent lines differ by a quantity o(δ). The asymptotics 1 + o(δ 2 ) for the norm of projection implies that λ(A, B) -λ(A, B ) = o(δ 3 ). Let us now show that the straightline parts of the expressions L(A, B) and L(A, B ) also differ by a quantity o(δ 3 ). The tangent lines T B γ and T B S A pass through o(δ 2 )-close points B and B , and their slopes differ by a quantity o(δ), see the above statements 1) and 2). Note that BB ⊥ T B S A . This implies that the distance between their points C and C of intersection with the line T A γ is o(δ). Consider the line through C orthogonal to the line T B S A . Let H denote their intersection point. The difference of the straighline parts of the expressions L(A, B) and

L(A, B ) is equal to (|BC| -|B H|) ± (|CC | -|C H|).
The second bracket is the difference of a leg and a hypothenuse, both of order o(δ), in a right triangle with angle O(δ) between them. Hence, the latter difference is o(δ 3 ), since the cosine of the angle is 1 + O(δ 2 ). The first bracket is equal to the similar difference in another right triangle, with leg B H and hypothenuse being the segment BC shifted by the vector --→ BB ; both are of order O(δ), and the angle between them is o(δ). Hence, the first bracket is o(δ 3 ) (the cosine being now 1 + o(δ 2 )). Finally, the difference of the straightline parts of the expressions L(A, B) and L(A, B ) is o(δ 3 ). The claim is proved. 2 Claims 1 and 2 reduce Theorem 1.16 to the case, when the metric is Euclidean and γ is a circle in R 2 . Let R denote its radius. Let AB be its arc cut by a sector of small angle φ. Then

L(A, B) = R(2 tan( φ 2 ) -φ) R 12 φ 3 = κ 2 12 |s A -s B | 3 , κ = R -1 .
This proves Theorem 1.16. 2

Proof of Corollary 1.17 

f (Q) f (B) = κ 2 3 (Q) κ 2 3 (B) for every B, Q ∈ γ. (6.1) Fix a small p > 0. Set A := T p (B), R = T p (Q). One has t(A) -t(B) = t(R) -t(Q), (6.2) 
by the Poritsky property. On the other hand, the latter left-and righthand sides are asymptotically equivalent respectively to f (B)λ(A, B) and

f (Q)λ(R, Q). But κ 2 3 (B)λ(A, B) κ 2 3 (Q)λ(R, Q), as p → 0,
by Corollary 1.17. Substituting the two latter asymptotics to (6.2) yields (6.1). Theorem 1.15 is proved. 2

7 Symplectic generalization of Theorem 1.15

In Subsection 7.1 we give a background material on symplectic properties of the billiard ball reflection map. In Subsection 7.2 we introduce weakly billiard-like maps. We consider the so-called string type families of weakly billiard-like maps, which generalize the family of billiard reflections from string construction curves defined by a curve with the string Poritsky property. We state Theorem 7.10, which is a symplectic generalization of Theorem 1.15 (C 6 -smooth case) to the string type billiard-like map families. Theorem 7.10 will be proved in Subsection 7.4. For its proof, in Subsection 7.3 we introduce an analogue of Lazutkin coordinates, the so-called modified Lazutkin coordinates, for weakly billiard-like maps (Theorem 7.11) and prove Lemma 7.13 on asymptotics of orbits in these coordinates. In Subsection 7.5 we show how to retrieve Theorem 1.15 for C 6 -smooth curves from Theorem 7.10.

The idea to extend Theorem 1.15 to a more general symplectic context was suggested by Sergei Tabachnikov.

Symplectic properties of billiard ball map

The background material recalled here can be found in [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF][START_REF] Arnold | Contact geometry and wave propagation[END_REF][START_REF] Marvizi | Spectral invariants of convex planar regions[END_REF][START_REF] Melrose | Equivalence of glancing hypersurfaces[END_REF][START_REF] Melrose | Equivalence of glancing hypersurfaces 2[END_REF][START_REF] Tabachnikov | [END_REF].

Let Σ be a surface with Riemannian metric. Let Π : T Σ → Σ denote the tautological projection. Let us recall that the tautological 1-form α on T Σ (also called the Liouville form) is defined as follows: for every (Q,

P ) ∈ T Σ with Q ∈ Σ and P ∈ T Q Σ for every v ∈ T (Q,P ) (T Σ) set α(v) :=< P, Π * v > . (7.1)
The differential ω = dα of the 1-form α is the canonical symplectic form on T Σ.

Let O ∈ Σ, and γ ⊂ Σ be a germ of regular oriented curve at O. We parametrize it by its natural length parameter s. The corresponding function s • Π on T γ will be also denoted by s. For every Q ∈ γ and

P ∈ T Q γ set γ(Q) = dγ ds (Q) := the directing unit tangent vector to γ at Q, σ(Q, P ) :=< P, γ(Q) >, y(Q, P ) := 1 -σ(Q, P ). (7.
2)

The restriction to T γ of the form ω is a symplectic form, which will be denoted by the same symbol ω. 

S = T 1 Σ := {||P || 2 = 1} ⊂ T Σ.
It is known that for every point x ∈ S the kernel of the restriction ω| TxS is the one-dimensional linear subspace spanned by the vector V (x) of the field V . Each cross-section W ⊂ S to the field V is identified with the (local) space of geodesics. The symplectic structure ω induces a well-defined symplectic structure on W called the symplectic reduction.

Remark 7.2

The symplectic reduction is invariant under holonomy along orbits of the geodesic flow. Namely, for every arc AB of its orbit and two germs of cross-sections W 1 and W 2 through A and B respectively the holonomy mapping W 1 → W 2 , A → B along the arc AB is a symplectomorphism.

Consider the local hypersurface

Γ = Π -1 (γ) ∩ S = (T 1 Σ)| γ ⊂ S.
At those points (Q, P ) ∈ Γ, for which the vector P is transverse to γ the hypersurface Γ is locally a cross-section for the restriction to S of the geodesic flow. Thus, near the latter points the hypersurface Γ carries a canonical symplectic structure given by the symplectic reduction. Set

O ± := (O, ± γ(O)) ∈ Γ.
Let γ have positive geodesic curvature. For every (Q, P ) ∈ Γ close enough to O ± the oriented geodesic through Q issued in the direction P intersects γ at two points Q and Q (which coincide if P is tangent to γ). Let P denote the orienting unit tangent vector of the latter geodesic at Q . This defines the germ at O ± of involution

β : (Γ, O ± ) → (Γ, O ± ), β(Q, P ) = (Q , P ), β 2 = Id, (7.3) 
which will be called the billiard ball geodesic correspondence.

Consider the following open subset in T γ: the unit ball bundle

T ≤1 γ := {(Q, P ) ∈ T γ | ||P || 2 ≤ 1}.
Let π : (T Σ)| γ → T γ denote the mapping acting by orthogonal projections

π : T Q Σ → T Q γ, Q ∈ γ.
It induces the following projection also denoted by π: 

π : Γ → T ≤1 γ. ( 7 
δ + := π • β • µ + : (T ≤1 γ, O ± ) → (T ≤1 γ, O ± ). (7.5)
Recall that Γ carries a canonical symplectic structure given by the abovementioned symplectic reduction (as a cross-section), and T γ carries the standard symplectic structure: the restriction to T γ of the form ω = ds ∧ dy.

Theorem 7.3 [23, subsection 1.5], [START_REF] Melrose | Equivalence of glancing hypersurfaces[END_REF][START_REF] Melrose | Equivalence of glancing hypersurfaces 2[END_REF][START_REF] Arnold | Mathematical methods of classical mechanics[END_REF][START_REF] Arnold | Contact geometry and wave propagation[END_REF] The mappings β, π, and hence, δ + given by ( 7.3), (7.4) and (7.5) respectively are symplectic.

Proof Symplecticity of the mapping β follows from the definition of symplectic reduction and its holonomy invariance (Remark 7.2). Symplecticity of the projection π follows from definition and the fact that the π-pullback of the tautological 1-form α on T γ is the restriction to Γ of the tautological 1-form on T Σ. This implies symplecticity of µ + = π -1 , and hence, δ + . 2

Let I : Γ → Γ denote the reflection involution

I : (Q, P ) → (Q, P * ),
Q ∈ γ, P * := the vector symmetric to P with respect to the line T Q γ.

Let Γ + ⊂ Γ denote the subset of those points (Q, P ) for which P either is directed inside the convex domain V, or coincides with γ(Q).

Proposition 7. [START_REF] Arnold | Mathematical methods of classical mechanics[END_REF] The involution I preserves the tautological 1-form α, and hence, is symplectic. The involutions I and β are C r -smooth germs of mappings (Γ, O ± ) → (Γ, O ± ), if the metric and the curve γ are C r+1 -smooth. The mapping δ + is conjugated to their product acting on Γ + :

δ + := I • β = µ + • δ + • µ -1 + . (7.6)
The proposition follows immediately from definitions.

The billiard transformation T of reflection from the curve γ acts on the space of oriented geodesics that intersect γ and are close enough to the geodesic tangent to γ at O. Each of them intersects γ at two points (which coincide, if the geodesic is tangent to γ). To each oriented geodesic G we put into correspondence a point (Q, P ) ∈ Γ + , where Q is its first intersection point with γ (in the sense of the orientation of the geodesic G) and P is the orienting unit vector tangent to G at Q. This is a locally bijective correspondence.

Proposition 7.5 Let the metric and the curve γ be C3 -smooth. The billiard mapping T written as a mapping Γ + → Γ + via the above correspondence coincides with δ + . Consider the coordinates (s, φ) on Γ: s = s(Q) is the natural length parameter of a point Q ∈ γ; φ = φ(Q, P ) is the oriented angle of the vector γ(Q) with a vector P ∈ T Q Σ. In the coordinates (s, φ) the mappings I, β and T = δ + are C 2 -smooth and take the form

I(s, φ) = (s, -φ), β(s, φ) = (s + 2κ -1 (s)φ + O(φ 2 ), -φ + O(φ 2 )), (7.7) δ + (s, φ) = (s + 2κ -1 (s)φ + O(φ 2 ), φ + O(φ 2 )). (7.8)
The asymptotics are uniform in s, as φ → 0. In the coordinates (s, y), y = 1 -cos φ, (7.9) see ( 7.2), the billiard mapping T coincides with δ + and takes the form

δ + (s, y) = (s + 2 √ 2κ -1 (s) √ y + O(y), y + O(y 3 
2 )). (7.10)

Proof All the statements of the proposition except for the formulas follow from definition. Formula (7.7) follows from the definitions of the mappings I and β: a geodesic issued from a point Q ∈ γ at a small angle φ with the tangent vector γ(Q) intersects γ at a point

Q such that λ(Q, Q ) = 2κ -1 (Q)φ + O(φ 2
). The latter formula follows from its Euclidean analogue (applied to the curve γ represented in normal coordinates centered at Q), Proposition 2.2 and smoothness. Formulas (7.7) and (7.6) imply (7.8), which in its turn implies (7.10), since y = φ 2 2 + O(φ 4 ). 2

Families of billiard-like maps with invariant curves. A symplectic version of Theorem 1.15

In this and the next subsections we study the following class of area-preserving mappings generalizing the billiard mappings (7.10).

Definition 7.6 A weakly billiard-like map is a germ of mapping preserving the standard area form dx ∧ dy,

F : (R × R ≥0 , (0, 0)) → (R × R ≥0 , (0, 0)), F = (f 1 , f 2 ) : (x, y) → (x + w(x) √ y + O(y), y + O(y conjugates F to a C 2 -smooth germ F (x, φ).
The above asymptotics are uniform in x, as y → 0. If, in addition to the above assumptions, the latter mapping F is a product of two involutions:

F = I • β, I(x, φ) = (x, -φ), β(x, φ) = (x + w(x)φ + O(φ 2 ), -φ + O(φ 2 )), β 2 = Id, (7.12) 
then F will be called a (strongly) billiard-like map.

Example 7.7 The mapping δ + from (7.10) is strongly billiard-like in the coordinates (s, y) with w(s) = 2 √ 2κ -1 (s), see (7.6), (7.7), (7.8) and (7.10).

The next definition generalizes the notion of string curve family to weakly billiard-like maps.

Definition 7.8 A family F ε (x, y) of weakly billiard-like maps (7.11) depending on a parameter ε ∈ [0, ε 0 ] is of string type, if the derivatives up to order 2 of the corresponding mappings

F ε (x, φ) are continuous in (x, φ, ε) on a product {|x| ≤ δ 0 } × [0, φ 0 ] × [0, ε 0 ]
and there exist a δ ∈ (0, δ 0 ] and a family γ ε of F ε -invariant graphs of continuous functions

h ε : [-δ, δ] → R ≥0 , γ ε = {y = h ε (x)}, (7.13) 
such that γ ε converge to the x-axis: h ε (x) → 0 uniformly on [-δ, δ].

Example 7.9 Let γ ⊂ Σ be a germ of curve with positive geodesic curvature such that the corresponding string construction curves Γ p are C 3smooth and their 3-jets depend continuously on the base points. (For example, this holds automatically in the case, when the curve γ and the metric are C 6 -smooth, see Theorem 1.3.) Then the family of billiard reflection maps from the curves Γ p is a string type family. The invariant curves γ p from (7.13) are identified with one and the same curve in the space of oriented geodesics: the family of geodesics tangent to the curve γ and oriented by its tangent vectors γ. See Subsection 7.5 for more details.

The next theorem deals with string type families of weakly billiard-like maps satisfying an analogue of the Poritsky property. It extends Theorem 1.15 on coincidence of Poritsky and Lazutkin parameters. Theorem 7.10 Let F ε (x, y) be a string type family of weakly billiard maps. Let for every ε small enough there exist a continuous strictly increasing parameter t ε on γ ε in which F | γε is a translation by ε-dependent constant,

t ε • F | γε = t ε + c(ε), (7.14) 
such that the parameter t ε = t ε (x) considered as a function of x converges to a strictly increasing function t 0 (x) uniformly on [-δ, δ], as ε → 0. Then

t 0 = aX + b, X := x 0 w -2 3 (z)dz, a, b ≡ const. (7.15) 
Here w = w 0 (x) is the function from (7.11) corresponding to the mapping F ε with ε = 0.

Theorem 7.10 is proved in Subsection 7.4.

Modified Lazutkin coordinates and asymptotics

In the proof of Theorem 7.10 we use the following well-known theorem.

Theorem 7.11 Let F be a weakly billiard-like map, and let w(x) be the corresponding function in (7.11). The transformation

L : (x, y) → (X, Y ), X(x) = x 0 w -2 3 (z)dz Y (x, y) := w 2 3 (x)y (7.16)
is symplectic. Its post-composition with the variable change (X, Y ) → (X, Φ), Φ := √ Y , conjugates F to a mapping with the asymptotics

F : (X, Φ) → (X + Φ + o(Φ), Φ(1 + o(Φ))), as Φ → 0, (7.17) 
uniform in X. The coordinates (X, Φ) will be called the modified Lazutkin coordinates.

A version of Theorem 7.11 is implicitly contained in [START_REF] Lazutkin | The existence of caustics for a billiard problem in a convex domain[END_REF][START_REF] Marvizi | Spectral invariants of convex planar regions[END_REF]. For completeness of presentation, we present its proof using the following proposition.

Proposition 7.12 The y-component of a weakly billiard-like map (7.11) admits the following more precise formula:

f 2 (x, y) = y - 2 3 w (x)y 3 2 + o(y 3 2 
). (7.18)

Proof Recall that F = ( f 1 , f 2 ) is a C 2 -smooth mapping, φ = √ y, f 2 (x, φ) = f 2 (x, φ 2 ).
Consider the Taylor expansion of the function f 2 in φ:

f 2 (x, φ) = φ + c(x)φ 2 + o(φ 2 ), f 2 (x, y) = f 2 2 (x, φ) = y(1 + c(x) √ y + o( √ y)) 2 = y + 2c(x)y 3 2 + o(y 3 
2 ), (7.19)

∂f 2 ∂y (x, y) = 1 √ y f 2 ∂ f 2 ∂φ (s, φ) = 1 + 3c(x) √ y + o( √ y).
This together with analogous calculations of the other partial derivatives,

∂f 1 ∂x = 1 + w (x) √ y + o( √ y), ∂f 1 ∂y = O(y -1 2 ), ∂f 2 ∂x = 2 f 2 (x, φ) ∂ f 2 ∂x (x, φ) = o(φ 2 ) = o(y),
shows that the Jacobian of the mapping F (x, y) equals 1+(w (x)+3c(x)) √ y+ o( √ y). But it should be equal to 1, by symplecticity. Therefore, c(x) = - 1 3 w (x). This together with (7.19) proves the proposition. 2

Proof of Theorem 7.11. Symplecticity of the transformation L follows from definition. Let us show that the coordinate change (x, y) → (X, Φ) conjugates F to a mapping with asymptotics (7.17). One has

X • F (x, y) = X + x+w(x) √ y+O(y) x w -2 3 (z)dz = X + w(x)w -2 3 (x) √ y + O(y) = X + Φ + O(Φ 2 ), (7.20) 
Φ • F (x, y) = w 2 3 (f 1 (x, y))f 2 (x, y) = w 1 3 (x + w(x) √ y + o( √ y)) y(1 - 2 3 w (x)y 1 2 + o(y 1 
2 )).

Substituting the expressions √ y = Φw -1 3 (x) and

w 1 3 (x + w(x) √ y + o( √ y)) = w 1 3 (x) + 1 3 w -2 3 (x)w (x)w(x) √ y + o( √ y) = w 1 3 (x)(1 + 1 3 w (x) √ y + o( √ y))
to the above formula yields

Φ • F (x, y) = Φ(1 + 1 3 w (x)y 1 2 + o(y 1 2 ))(1 - 1 3 w (x)y 1 2 + o(y 1 2 )) = Φ + o(Φ 2 ).
This together with (7.20) proves (7.17). 2

We use the following lemma on asymptotics of orbits of a mapping (7.17).

Lemma 7.13 Let V ∆,σ := [-∆, ∆]×[0, σ] ⊂ R 2 (X,Φ) , F : V ∆,σ → F (V ∆,σ
) be a homeomorphism with asymptotics (7.17) uniform in X ∈ [-∆, ∆]. There exist functions α(z), β(z) > 0, α(z), β(z) → 0, as z → 0 such that for every η ∈ (0, σ 4 ) small enough the following statements hold. Fix an arbitrary δ ∈ (0, ∆). For every q 0 ∈ V δ,η its two-sided orbit in V δ,σ is a finite sequence: O := (q j min , . . . , q -1 , q 0 , q 1 , . . . , q jmax ), q j = (X j , Φ j ), q j+1 = F (q j ), (7.21)

X j min -1 = X • F -1 (q j min ) < -δ, X jmax+1 = X • F (q jmax ) > δ. (7.22) 
The following inequalities hold for every j = j min -1, . . . , j max + 1:

| ln Φ j Φ 0 | ≤ α(η); (7.23) e -β(η) Φ 0 ≤ X j+1 -X j ≤ e β(η) Φ 0 . (7.24) 
Addendum to Lemma 7.13. Let F ε be a family of homeomorphisms defined on V ∆,η and depending on a parameter ε ∈ [0, ε 0 ] with asymptotics (7.17) being uniform in

(X, ε) ∈ [-∆, ∆] × [0, ε 0 ].
Then all the statements of the lemma hold with functions α and β independent on ε.

Proof of Lemma 7.13. The second component of asymptotics (7.17) is equivalent to the uniform asymptotics ln Φ•F (X,Φ) Φ = o(Φ): to the existence of a non-decreasing function u(Φ) > 0, u(Φ) → 0, as Φ → 0, such that

| ln Φ • F ±1 (X, Φ) Φ | ≤ Φu(Φ). (7.25) 
The first component of asymptotics (7.17) is equivalent to the existence of a non-decreasing function v(Φ) > 0, v(Φ) → 0, as Φ → 0, for which

Φ(1 -v(Φ)) ≤ X • F (X, Φ) -X ≤ Φ(1 + v(Φ)). (7.26) 
Consider the maximal connected piece O 4 of the orbit O containing q 0 whose points have Φ-coordinates satisfying the inequality Φ 0 4 ≤ Φ j ≤ 4Φ 0 : O 4 := (q j min,4 , . . . , q 0 , . . . , q j max,4 ), j min ≤ j min,4 ≤ 0 ≤ j max,4 ≤ j max ,

1 4 Φ 0 ≤ Φ j ≤ 4Φ 0 for every j ∈ [j min,4 , j max,4 ]. (7.27) 
By definition, if j min,4 > j min , then (7.27) does not hold for j = j min,4 -1.

Analogous statement holds for j max,4 . Let us choose an η > 0 small enough so that u(4η), v(4η) < 1 4 . Then for every j = j min,4 , . . . , j max,4 one has

1 8 Φ 0 ≤ X j+1 -X j ≤ 8Φ 0 , (7.28) 
by (7.27) amd (7.26). Set N := j max,4 -j min,4 + 1 = |O 4 |. One has

N ≤ 16δ Φ 0 + 1 < 16∆ Φ 0 , (7.29) 
whenever Φ 0 < ∆ -δ, by (7.28). For every i ∈ [j min,4 -1, j max,4 ] one has

| ln Φ i+1 Φ i | ≤ 4Φ 0 u(4η), (7.30) 
by (7.25) and (7.27). Summing up the latter inequality and using (7.29), we get the following inequality for j ∈ [j min,4 -1, j max,4 + 1]:

| ln Φ j Φ 0 | ≤ N u(4η)Φ 0 ≤ α(η) := 16∆u(4η). (7.31) 
One has obviously α(η) → 0, as η → 0. This proves (7.23) for j ∈ [j min,4 -1, j max,4 + 1]. Inequality (7.24) for the same j with

β(η) = -ln(1 -v(4η)) + α(η)
follows from (7.23) and (7.26). Claim. For every η > 0 small enough (such that α(η), 4ηu(4η) < 1 8 ) and every q 0 ∈ V δ,η one has O 4 = O: that is, j min,4 = j min , j max,4 = j max . Proof Suppose the contrary, for some η as above and some q 0 = (X 0 , Φ 0 ) ∈ V δ,η one has, say, j max,4 < j max . Set j 0 := j max,4 . Then

| ln Φ j 0 +1 Φ j 0 |, | ln Φ j 0 Φ 0 | < 1 8
, by (7.30) and (7.23) for j = j 0 . Adding the latter inequalities we get | ln

Φ j 0 +1 Φ 0 | < 1 4 , thus, 1 4 Φ 0 < Φ j 0 +1 < 4Φ 0 .
The contradiction thus obtained with the definition of the number j max,4 (maximality) proves the claim. 2

Let η be small, as in the claim. One has q jmax+1 = F (q jmax ) / ∈ V δ,σ , by definition. But Φ(q jmax+1 ) ≤ e α(η) Φ 0 < 4η < σ, by (7.23). Therefore, X jmax+1 > δ, by definition and (7.24). This together with a similar argument for the point q j min -1 implies (7.22). Lemma 7.13 is proved.

2

Proof of the Addendum to Lemma 7.13. The addendum follows from uniformity of asymptotics (7.17) in (X, ε) and from the above proof. 2

7.4 Proof of Theorem 7.10

Everywhere below we write the mappings F ε in the coordinates (X ε , Φ ε ) given by (7.17). We consider that F ε are well-defined on one and the same set

V ∆,η = [-∆, ∆] × [0, η] ⊂ R 2 (Xε,Φε) for all ε ∈ [0, ε 0 ]
. Thus, we identify the above coordinates for all ε and denote them by (X, Φ). To show that the limit parameter t 0 is equal to the Lazutkin coordinate X up to multiplicative and additive constants, we have to show that for every four distinct points in the X-axis with X-coordinates X j ,

-∆ < X 1 < X 2 < X 3 < X 4 < ∆,
the ratios of lengths of the segments

I 1 := [X 1 , X 2 ], I 3 := [X 3 , X 4 ]
in the parameters X and t 0 are equal:

t 0 (X 2 ) -t 0 (X 1 ) t 0 (X 4 ) -t 0 (X 3 ) = X 2 -X 1 X 4 -X 3 . (7.32) 
Take a ε > 0 small enough, and consider the corresponding F ε -invariant curve γ ε . It can be represented as the graph {Φ = H ε (X)} of a continuous function. The parameter t ε on γ ε in which F ε is a translation induces a parameter on the X-axis via projection; the induced parameter will be also denoted by t ε . Fix a δ ∈ (0, ∆) such that -δ < X 1 < X 4 < δ. Consider the corresponding orbit O of the point q 0,ε = (X 1 , H ε (X 1 )) ∈ γ ε , see (7.21), and let us denote its points by q j,ε := F j (q 0,ε ). Set

ν(ε) := Φ(q 0,ε ) = H ε (X 1 ); ν(ε) → 0, as ε → 0.
The sequence X j := X(q j,ε ) is strictly increasing with steps having uniform asymptotics ν(ε)(1+o(1)), as ε → 0, by Lemma 7.13 and its addendum. For every i = 1, 2, 3, 4 let j i = j i,ε denote the maximal number j for which X j ≤ X i . By definition, j 1 = 0. For every i = 2, 3, 4 and every ε small enough one has X i -X j i < 2ν(ε), by the above asymptotics. The sequence t ε (X j ) is an arithmetic progression, since F ε | γε acts as a translation in the parameter t ε . Its step tends to zero, as ε → 0, since t ε limits to a strictly increasing continuous parameter t 0 and the X-lengths of steps tend to zero uniformly. This implies that the ratio of the t ε -lengths of the segments I 1 and I 3 has the same finite asymptotics, as the ratio

R 1,3 (ε) := j 2,ε -j 1,ε j 4,ε -j 3,ε .
8.1 Cartan distribution, a generalized version of Theorem 1.19 and plan of the section

Everywhere below for a curve (function) γ by j r p γ we denote its r-jet at the point p. Set F r := the space of r-jets of functions of one variable x ∈ R.

Let Σ be a C m -smooth two-dimensional manifold. For every r ∈ Z ≥0 , r ≤ m, set J r = J r (Σ) := the space of r-jets of regular curves in Σ.

In more detail, a germ of regular curve is the graph of a germ of function {y = h(x)} in appropriate local chart (x, y). Locally a neighborhood in J r of the jet of a given C r -germ of regular curve is thus identified with a neighborhood of a jet in F r . One has dim F r = dim J r = r + 2. There are local coordinates (x, b 0 , . . . , b r ) on F r defined by the condition that for every jet j r p h ∈ F r one has

x(j r p h) = p, b 0 (j r p h) = h(p), b 1 (j r p h) = h (p), . . . , b r (j r p h) = h (r) (p). (8.1)
Recall that the r-jet extension of a function (curve) is the curve in the jet space F r (respectively, J r ) consisting of its r-jets at all points.

Definition 8.1 (see an equivalent definition in [20, pp.122-123]). Consider the space F r equipped with the above coordinates (x, b 0 , . . . , b r ). The Cartan (or contact) distribution D r on F r is the field of two-dimensional subspaces in its tangent spaces defined by the system of Pfaffian equations

db 0 = b 1 dx, db 1 = b 2 dx, . . . , db r-1 = b r dx. (8.2) 
For every C m -smooth surface Σ and every r ≤ m the Cartan (or contact) distribution (plane field) on J r , which is also denoted by D r , is defined by (8.2) locally on its domains identified with open subsets in F r ; the distributions (8.2) defined on intersecting domains V i , V j with respect to different charts (x i , y i ) and (x j , y j ) coincide and yield a global plane field on J r .

Remark 8.2 Recall that the r-jet extension of each function (curve) is tangent to the Cartan distribution.

Remark 8.3 The geodesic curvature of a germ of curve is a function of its 2-jet. We will call a 2-jet of curve κ-nondegenerate, if the corresponding geodesic curvature is positive. For every r ≥ 2 an r-jet of curve with κnondegenerate 2-jet will be also called κ-non-degenerate. The property of being κ-nondegenerate depends on the Riemannian metric. We denote J r,0 = J r,0 (Σ) = {the κ -nondegenerate r -jets of curves}.

The main result of the present section is the following theorem, which immediately implies Theorem 1.19. Proofs of both theorems will be given in Subsection 8.7.

Theorem 8.4 Let Σ be a two-dimensional surface with a C 6 -smooth Riemannian metric. There exists a C 1 -smooth line field P on J 4,0 = J 4,0 (Σ) lying in the Cartan plane field D 4 such that the 4-jet extension of every C 5smooth curve on Σ with positive geodesic curvature and the string Poritsky property (if any) is a phase curve of the field P.

Let γ be a germ of curve with the string Poritsky property at a point O ∈ Σ. The Poritsky-Lazutkin parameter t on γ is given by already known formula (1.4). We normalize it by additive and multiplicative constants so that t(O) = 0 and dt ds (O) = κ(O), see (8.4). We identify points of the curve γ with the corresponding values of the parameter t. Consider the function L(A, B) defined in (1.2). Let t(A) = a, t(B) = a + τ . The Poritsky property implies that the function L(a, a + τ ) = L(0, τ ) is independent on a. In particular, the function Λ(t) := L(0, t) -L(-t, 0) (8.3) vanishes. For the proof of Theorem 8.4 we show (in the Main Lemma stated in Subsection 8.2) that for every odd n > 3 the "differential equation" Λ (n+1) (0) = 0 is equivalent to an equation saying that the coordinate b n = db n-1 dx of the n-jet of the curve γ is equal to a function of the other coordinates (x, b 0 , . . . , b n-1 ). For n = 5 this yields an ordinary differential equation on J 4,0 satisfied by the 4-jet extension of the curve γ. It will be represented by a line field contained in D 4 .

The proof of the Main Lemma takes the most of the section. For its proof we study (in Subsection 8.3) two germs of curves γ and γ n,b at a point O having contact of order n ≥ 3. More precisely, they are graphs of functions y = h(x) and y = h n,b (x) such that h n,b (x) -h(x) = bx n + o(x n ). We show that the corresponding functions Λ(t) and Λ n,b (t) differ by c n bt n+1 +o(t n+1 ), with c n being a known constant depending on the second jet of the curve γ; c n = 0 for odd n > 3. To this end, we consider a local normal chart (x, y) centered at O with x-axis being tangent to γ at O. We compare different quantities related to both curves, all of them being considered as functions of x: the natural parameters, the curvature etc. In Subsection 8.4 we show that the asymptotic Taylor coefficients of order (n + 1) of the functions L(0, t) and Λ(t) depend only on the n-jet of the metric at O. We show in Subsection 8.5 that the above Taylor coefficients are analytic functions of the n-jets of metric and the curve (using results of Subsections 8.3 and 8.4). In Subsection 8.6 we show that the degree n + 1 coefficient of the function Λ(t) is a linear non-homogeneous function in b n = b n (γ) with coefficients depending on b j , j < n; the coefficient at b n being expressed via c n (using results of Subsection 8.3). This will prove the Main Lemma.

Differential equations in jet spaces and the Main Lemma

Let s denote the natural orienting length parameter of the curve γ, s(O) = 0. Let κ be its geodesic curvature considered as a function κ(s), and let κ > 0. We already know that if the curve γ has the string Poritsky property, then its Poritsky-Lazutkin parameter t is expressed as a function of a point Q ∈ γ in terms of the parameter s via formula (1.1), up to constant factor and additive constant, which can be chosen arbitrarily. We normalize it as follows:

t(Q) := κ 1 3 (0) s(Q) 0 κ 2 3 (s)ds (8.4)
We can define the parameter t given by (8.4) on any curve γ, not necessarily having the Poritsky property. We identify the points of the curve γ with the corresponding values of the parameter t; thus, t(O) = 0.

Remark 8.5 The parameter t on a curve γ given by (8.4) is invariant under rescaling of the metric by constant factor. This follows from the fact that if the norm induced by the metric is multiplied by a constant factor C, then the Levi-Civita connexion remains unchanged, the unit tangent vectors γ are divided by C, and the geodesic curvature ||∇ γ γ|| of the curve γ considered as a function of a point in γ is divided by C.

Let G = G(0) denote the geodesic tangent to γ at its base point O. We will work in normal coordinates (x, y) centered at O, in which G coincides with the x-axis. For every t let G(t) denote the geodesic tangent to γ at the point t, and let C(t) denote the point of the intersection G ∩ G(t).

Let L(A, B) the function of A, B ∈ γ defined in (1.2). We consider L(A, B) as a function of the corresponding parameters t(A) and t(B), thus,

L(0, t) = L(O, γ(t)) = |OC(t)| + |C(t)γ(t)| -λ(0, t), (8.5) 
where λ(0, t) = λ(O, γ(t)) is the length of the arc Oγ(t) of the curve γ.

The main part of the proof of Theorem 8.4 is the following lemma.

Lemma 8.6 (The Main Lemma). Let n ∈ N, n ≥ 5. Let Σ be a surface equipped with a C n+1 -smooth Riemannian metric. Let V ⊂ Σ be a domain equipped with a chart (x, y), where the metric is C n+1 -smooth. Let J n y (V ) denote the space of those κ-nondegenerate n-jets of curves in V (see Remark 8.3) that are graphs of C n -smooth functions {y = h(x)}; thus, it is naturally identified with an open subset F n y (V ) ⊂ F n . Let (x, b 0 , . . . , b n ) denote the corresponding coordinates on F n y (V ) J n y (V ) given by (8.1). Set

J 2 := (x, b 0 , b 1 , b 2 ).
There exist C 1 -smooth functions σ n (J 2 ) and P n (J 2 ; b 3 , . . . , b n-1 ), σ n = 0 for odd n > 3; σ n ≡ 0 for n = 3 and for every even n > 3, (

such that every jet J n = (x, b 0 , . . . , b n ) ∈ J n y (V ) extending J 2 satisfies the following statement. Let γ be a C n -smooth germ of curve representing the jet J n , and let t be the parameter on γ defined by (8.4). Let t > 0, L(0, t) be the same, as in (8.5). The corresponding function Λ(t) from (8.3) admits an asymptotic Taylor formula of degree n + 1 at 0 of the following type: The main result of the present subsection is the following lemma.

Λ(t) = n+1 k=3 Λ k t k + o(t n+1 ), (8.7) 
Λ n+1 = σ n (J 2 )b n -P n (J 2 ; b 3 , . . . , b n-1 ). ( 8 
Lemma 8.8 In the above conditions let t be the parameter on γ given by (8.4). Let L(0, t), L n,b (0, t) and Λ(t), Λ n,b (t) be the functions from (8.3) defined for the curves γ and γ n,b respectively. For every t > 0 one has

L n,b (0, t) -L(0, t) = (n -2)(n -3) 12(n + 1) bt n+1 + o(t n+1 ), as t → 0, (8.10) Λ n,b (t) -Λ(t) = (n-2)(n-3) 6(n+1) bt n+1 + o(t n+1 ), if n is odd, o(t n+1 ), if n is even. (8.11)
For the proof of Lemma 8.8 we first compare the natural parameters s(x), s n,b (x) centered at O, , the curvatures κ(x), κ n,b (x) and the parameters t(x), t n,b (x) given by (8.4) for the curves γ and γ n,b as functions of x. We also compare the corresponding inverse functions x = x(t) and x = x n,b (t) as functions of t, see Proposition 8.9 below. Afterwards we prove formula (8.10) using the above-mentioned comparison results and the results of Section 2. Then we deduce (8.11). Proposition 8.9 As x → 0 (or equivalently, t → 0), one has t(x) t n,b (x) x, x(t) t h (x(t)), (8.12) Let us prove (8.14). The Christoffel symbols at the O(x n )-close points γ(x) and γ n,b (x) are O(x n )-close, as in the above discussion. Therefore, the difference κ n,b (x) -κ(x) is equal up to O(x n ) to the same difference, where each curvature is calculated in the metric (Christoffel symbols) of the point γ(x). The difference of the Christoffel parts of the curvatures, which are quadratic in the vectors

s n,b (x) -s(x) = n n + 1 bx n+1 + o(x n+1 ), (8.13) 
κ n,b (x) -κ(x) = n(n -1)bx n-2 + o(x n-2 ), (8.14) 
t n,b (x) -t(x) = 2n 3 bx n-1 + o(x n-1 ), (8.15) 
1 || γ(x)|| γ(x), 1 || γn,b (x)|| γn,b (x), is O(||v(x)||) = O(x n-1
), by (8.18). The difference of their second derivative terms is equal to

h n,b (x) -h (x) + O(x n ) = n(n -1)bx n-2 + o(x n-2
), by definition and (8.18). This together with the above discussion implies (8.14).

Let us prove (8.15). One has x 0 n(n-1)bu n-2 du = 2n 3 bx n-1 , by (8.14) and since κ(0) = 1. This proves (8.15). Formula (8.16) follows from (8.15). Proposition 8.9 is proved. 2

t n,b (x) -t(x) = x 0 (κ 2 
In the proof of formula (8.10) we use the following notations: Recall that λ(O, A), λ(O, P ) are lengths of arcs OA and OP of the curves γ n,b and γ respectively. Set

P = P (t) := γ(t), Q = Q(t) := (x n,b (t), h(x n,b (t))) ∈ γ, A = A(t) := γ n,b (t), G(t) := the geodesic tangent to γ at P, G(0) = the x -axis, C = C(t) := G(t) ∩ G(0), V = V (t) := {x = x n,b (t)}, B = B(t) := G(t) ∩ V,
L 1 = L 1 (t) := |OC| + |CB| -λ(O, Q), L 2 = L 2 (t) := |OC| + |CA| -λ(O, A), ∆ 1 = ∆ 1 (t) := L 1 (t) -L(0, t) = λ(Q, P ) -|BP |, ∆ 2 = ∆ 2 (t) := L 2 (t) -L 1 (t), ∆ 3 = ∆ 3 (t) := L n,b (0, t) -L 2 (t) : L n,b (0, t) -L(0, t) = ∆ 1 (t) + ∆ 2 (t) + ∆ 3 (t). (8.21) 
In what follows we find asymptotics of each ∆ j .

Proposition 8.10 One has 

∆ 1 (t) = O(t 2n-1 ) = O(t n+2 ) whenever n ≥ 3. ( 8 
= λ(Q, P ) -|P B| = O(|P B| 3 ) + O(t|P B| 2 ) = O(t 3n-3 ) + O(t 2n-1
(t) = |OC| + |CA| -λ(O, A) -(|OC| + |CB| -λ(O, Q)) = (|CA| -|CB|) -(λ(O, A) -λ(O, Q)), (8.24) 
λ(O, A) -λ(O, Q) = s n,b (x n,b (t)) -s(x n,b (t)) = nbt n+1 n + 1 + o(t n+1 ), (8.25) 
by (8.13) and (8.12). To find the asymptotics of the difference |CA| -|CB|, let us consider the height denoted by BH of the geodesic triangle ABC, which splits it into two right triangles ABH and CBH, see Fig. 7. We use the following asymptotic formula for lengths of their sides: ), by construction. Therefore, the distance between them in the metric g is asymptotic to the same quantity, since g is Euclidean on T O Σ. The Euclidean distance between the points Q and B is of order O((x(P )-x(B)) 2 ) O(t 2(n-1) ) = O(t n+1 ), by (8.16) and since n ≥ 3: 2(n-1) ≥ n+1 for n ≥ 3. The two latter statements together imply that |AB| = bt n +o(t n ); this is the first asymptotics in (8.26).

|AB| bt n + o(t n ) |BH|, (8.26 
In the proof of the second asymptotics in (8.26) and in what follows we use the two next claims.

Claim 1. The azimuths of the tangent vectors of the geodesic arcs CA, CP , DA at all their points are uniformly asymptotically equivalent to t = t(P ), as t → 0. Proof Let us prove the above statement for the geodesic arc CP ; the proof for the arcs CA and DA is analogous. The slope of the tangent vector to the curve γ at the point P is asymptotic to x(P ) = x(t) t, and it is equal to the slope of the tangent vector of the geodesic CP at P . On the other hand, let us apply formula (2.5) to the geodesic arc α = CP : its right-hand side is O(t). The length of the arc CP is O(t). Hence, the difference between Let us prove formula (8.11). Consider the points of the curves γ and γ n,b with x < 0. Taking them in the coordinates (x, y), x := -x results in multiplying the coefficient b by (-1) n . This implies that for every t > 0 Here we prove the following lemma, which shows that the (n + 1)-jets of the quantities L(0, t) and Λ(t) depend only on the n-jet of the metric.

L n,b (-t, 0) -L(-t, 0) = (-1) n (n -2)(n -3) 12(n + 1) bt n+1 + o(t n+1 ). ( 8 
Lemma 8.13 Let n ≥ 5, Σ be a two-dimensional surface. Let O ∈ Σ, γ ⊂ Σ be a germ of C n -smooth curve at O with positive geodesic curvature. Let g and g be two C n+1 -smooth Riemannian metrics on Σ having the same n-jet at O: g(q) -g(q) = o(dist n (q, O)), as q → O. Then the differences L g (0, t) -L g (0, t), Λ g (t) -Λ g (t) of quantities L(0, t) and Λ(t) defined by the metrics g and g are o(t n+1 ).

Proof Let s, s, t, t, κ, κ denote the natural and Lazutkin parameters centered at O, see (8.4), and the geodesic curvature of the curve γ defined by the metrics g and g respectively. One has κ(O) = κ(O), since n ≥ 3. Let us rescale the metrics by the same constant factor so that κ(O) = 1. Fix C n -smooth coordinates (x, y) centered at O so that the x-axis is tangent to the curve γ and || ∂ ∂x || = 1 at O. Consider x as a local parameter on γ. We consider the above quantities as functions of x; s(0) = s(0) = t(0) = t(0) = 0.

Let x(t), x(t) denote the functions inverse to t(x) and t(x) respectively. Let γ(t), γ(t) denote the points of the curve γ with x-coordinates x(t) and x(t) respectively. Let now s(t) and s(t) denote the natural length parameters of the metrics g and g, now considered as functions of the parameter t defined by the metric under question (g or g). Proposition 8.14 One has t x t s s, 

s(x) -s(x) = o(x n+1 ), κ(x) -κ(x) = o(x n-1 ), t(x) -t(x) = o(x n ), (8.36) x(t) -x(t) = o(t n ), dist(γ(t), γ(t)) = o(t n ), (8.37) s(t) -s(t) = o(t n ), s (t) -s (t) = o(t n-1 ). ( 8 
Fix a small value t ∈ R, say, t > 0. Set

P = γ(t), A = γ(t).
Let C ( C) be the point of intersection of the g-(respectively, g-) geodesics G(P ), G(O) tangent to γ at P and O. Let D ( D) be the analogous points of intersection of the geodesics tangent to γ at A and O. See Fig. 8a). The distance (arc length) between points E and F in a metric h will be denoted by |EF | h (respectively, λ h (E, F )). One has (8.40) are O(t)-close to O. The g-and g-distances between any two points (which will be denoted by E and F ) differ by a quantity o(t n+1 ). Indeed, the g-length of the g-geodesic segment EF differs from its g-length by o(t n+1 ), since the metrics differ by o(t n ). The distance |EF | g is no greater than the latter g-length, and hence, no greater than |EF | g + o(t n+1 ). Applying the same arguments to interchanged metrics yields that the above distances differ by o(t n+1 ). Similarly, λ g (O, A)λ g (O, A) = o(t n+1 ). This proves the claim.

2

Let H and M denote the points in the g-geodesics OD and DA respectively that are g-closest to D: DH ⊥ g OD; DM ⊥ g DA; see Fig. 8b). the Christoffel symbols. This implies that dist(D, O D g ) = o(t n+1 ). Therefore, the g-geodesic O D should be turned at O by an angle of order o(t n ) in order to hit the point D, by the above statement and since |OD| g t 2 , as in (8.27). This implies that the points in O D g lying on a distance of order O(t) from O are o(t n+1 )-close to the geodesic OD g . This proves the statement of the claim for the distance | DH| g . The proof for | DM | g is analogous.

Namely, first we rescale the metric g by constant factor 1 + o(t n ) in order to achieve that a vector tangent to γ at A has equal g-and g-norms. Then the g-and g-geodesics AD, A D tangent to γ at A, being lifted to the tangent bundle, are phase curves of the vector fields defining g-and g-geodesic flows, with the same initial condition at A. The latter vector fields differ by o(t n-1 ) on the 1 2 -neighborhood (in the norm of the metric g) of the g-unit tangent bundle over the 6|t|-neighborhood of O. This implies that the solutions of the corresponding second order equations on geodesics differ by o(t n+1 ) on the time segment [-2t, 2t] higher Taylor coefficients are fixed. Consider L(0, t) and Λ(t) as functions in t and in the latter variable Taylor coefficients. They are analytic on the product of a small complex disk centered at 0 with coordinate t and a domain in the space of collections of the above Taylor coefficients. In more detail, complexifying everything we get that L(0, t) has a well-defined holomorphic extension to complex domain. (The complexified lengths of segments in the definition of the function L(0, t) become integrals of appropriate holomorphic forms along paths.) Well-definedness follows from the fact that through each point C in a complex neighborhood of the real curve γ there are two complex geodesics tangent to its complexification. This follows by quadraticity of tangencies (non-vanishing of geodesic curvature) and Implicit Function Theorem. Analytic extendability to the locus {t = 0} follows from the Erasing Singularity Theorem on bounded functions holomorphic on complement to a hypersurface. Therefore, both functions admit a Taylor series in t with coefficients being analytic functions in the above Taylor coefficients.

Case 2) of general C n+1 -smooth metric g and C n -smooth curve γ. Consider other, analytic metric g and curve γ representing their n-jets. The functions L(0, t) = L g, γ (0, t) and Λ(t) = Λ g, γ (t) defined by them are analytic and coincide with the functions L(0, t) = L g,γ (0, t) and Λ(t) = Λ g,γ (t) corresponding to g and γ up to o(t n+1 ). Indeed, L g,γ (0, t) -L g,γ (0, t) = o(t n+1 ), by Lemma 8.13; L g, γ (0, t) -L g,γ (0, t) = o(t n+1 ), by Lemma 8.8 applied to b = 0. Thus, L(0, t)-L(0, t) = o(t n+1 ), Λ(t)-Λ(t) = o(t n+1 ). This together with the discussion in Case 1) implies that L(0, t) and Λ(t) have asymptotic Taylor expansions of order up to t n+1 coinciding with those of L(0, t) and Λ(t), and hence, having coefficients being analytic functions of the n-jets of g and γ. They depend only on pure n-jets, since applying a translation of both the curve and the metric leaves L(0, t) and Λ(t) invariant. Lemma 8.15 is proved. by (8.8). On the other hand, the 5-jet extension of the curve γ is tangent to the contact distribution D 5 , and hence, to the hyperplane field {db 4 = b 5 dx}. This together with (8.57) implies that its 4-jet extension is tangent to the hyperplane field {db 4 = h 5 σ 5 dx}. Thus, it is tangent to the kernel field K 4 , and hence, to P = K 4 ∩ D 4 . This proves Theorem 8.4.

2

Proof of Theorem 1.19. Two germs of curves with the string Poritsky property and the same 4-jet correspond to the same point in J 4 . Therefore, their 4-jet extensions coincide with one and the same phase curve of the line field P, by Theorem 8.4 and the Uniqueness Theorem for ordinary differential equations. Thus, the germs coincide. This proves Theorem 1.19. 2

Figure 1 :

 1 Figure 1: The string construction.

  1.) Set λ(A, B) := the length of the arc AB of the curve γ, L(A, B) := |AC AB | + |BC AB | -λ(A, B).

Proposition 1 . 6

 16 On every surface of constant curvature each conic has the string Poritsky property. Theorem 1.7 Conversely, on every surface of constant curvature each germ of C 2 -smooth curve with the string Poritsky property is a conic. Proposition 1.6 and Theorem 1.7 will be proved in Section 4. Remark 1.8 In the case, when the surface under question is Euclidean plane, Proposition 1.6 was proved in [21, formula (7.1)], and Theorem 1.7 was proved in [21, section 7].

Figure 2 :

 2 Figure 2: The area construction: Area(Ω -(L p )) ≡ p.

3 )= κ 2 3

 32 is called the Lazutkin parameter. See [15, formula (1.3)]. Theorem 1.15 Let γ ⊂ Σ be a germ of C 3 -smooth curve with positive geodesic curvature κ and the string Poritsky property. Then its Poritsky string length parameter t coincides with the Lazutkin parameter (1.3) up to additive and multiplicative constants. That is, up to constant factor one has dt ds (s).

Proposition 2 . 2 . 2 . 5 2 Proposition 2 . 6

 2225226 4 follows its Euclidean version and Proposition 2.Proposition For every two points A, B ∈ γ close enough to O the geodesics G A and G B intersect at a unique point C = C AB ∈ U close to O. Proof Let H denote the geodesic through B orthogonal to T B γ. It intersects the geodesic G A at some point P (A, B) ∈ U. The geodesic G B separates P (A, B) from the punctured curve γ \ {B}, by construction and Proposition 2.4. Therefore, G B intersects the interval (A, P (A, B)) of the geodesic G A . Uniqueness of intersection point of two geodesics in a domain with small diameter is classical. This proves the proposition. For every A, B ∈ γ close enough to O let C = C AB denote the point of intersection G A ∩ G B . Let α(A, B) denote the acute angle between the geodesics G A and G B at C, and let λ(A, B) denote the length of the arc AB of the curve γ. The geodesic curvature κ(O) of the curve γ at O can be found from any of the two following limits:

Proposition 2 . 7

 27 Let the metric on Σ be C 4 -smoooth. Let A ∈ Σ be a point close to O and α(s) be a geodesic through A parametrized by the natural length parameter s, α(0) = A. 1) Let κ e (s) denote the Euclidean curvature of the geodesic α as a planar curve in normal chart (x, y) centered at O. For every ε > 0 small enough κ e (s) = O(dist(α, O)), as A → O, uniformly on {|s| ≤ ε}, (2.4) dist(α, O) := the distance of the geodesic α to the point O.

Proposition 2 . 3 .

 23 For every C ∈ U let A(C), B(C) ∈ γ be the corresponding points from Proposition 2.3, and let s A = s A (C), s B = s B (C) denote the corresponding length parameter values as functions of C. Set L A := |CA(C)|, L B := |CB(C)|.

. 11 )

 11 Proof A geodesic, say, G(s) is a solution of a second order vector differential equation with a given initial condition: a point A ∈ Σ and the azimuth az(v(0)) of a unit vector v(0) ∈ T A Σ. Here we set v(s) = Ġ(s). It depends smoothly on the initial condition. The derivative of the vector function (G(s), az v(s)) in the initial conditions is a linear operator (3 × 3matrix) function in s that is a solution of the corresponding linear equation in variations. The right-hand sides of the equation for geodesics and the corresponding equation in variations are respectively C 2 -and C 1 -smooth.

dy 1 , 2 Proposition 3 . 5

 1235 by the classical asymptotic Taylor formula with error term in integral form. The latter R m is o l (y m ), whenever f ∈ C k and k ≥ l + m. One hasy -s o l (y m ) = o l (y m-s ) for every m, s ∈ Z ≥0 , m ≥ s. (3.4) The proposition follows from definition. Proof of Lemma 3.1. The function g(x, y) = sign(y) f (x, y) is welldefined, by (3.1). It is obviously C k -smooth outside the hyperplane {y = 0}. Fix arbitrary l, m ∈ Z ≥0 such that l + m ≤ k -1. Let us prove continuity of the derivative ∂ l+m g ∂x l ∂y m on Z. Case m = 0; then k ≥ l + 1. The above derivative is a linear combination of expressions sign(y)f

1

 1 

  ∂φ ∂y | y=0 = 0, by smoothness and since f (x, y) = O(y 2 ). Hence φ(x, y) = o(y) uniformly, as y → 0. Therefore, the expression (3.5) is continuous on Z \ {y = 0}, and it extends continuously to Z as zero along the line {y = 0}. If s ≥ 2, then n j ≤ l -1 ≤ k -2. Hence, each derivative in (3.5) is C 2smooth, has vanishing first derivative in y at y = 0 and is asymptotic to y 2 times a continuous function in x. Then (3.5) is again continuous, by (3.6).

  ) by(3.3) applied to the function f (x, y) and m replaced by m + 1. The derivative ∂ l+m-1 g ∂x l ∂y m-1 exists and continuous for small y, by (3.8) and since o l (y m+1 ) y 2

  Consider the value L(A, B) = |AC| + |CB| -λ(A, B) as a function of C: here A = A(C) and B = B(C) are the same, as in Proposition 2.3. Its derivative along the string construction curve Γ p through C should be zero. Let v ∈ T C Σ be a unit vector. Let α and β be respectively the oriented angles between the vector v and the vectors ζ A and ζ B in T C Σ directing the geodesics G A , G B from C to A and B respectively. The derivative of the above function L(A(C), B(C)) along the vector v is equal to -(cos α + cos β). Therefore, it vanishes if and only if the line generated by v is the exterior bisector Λ(C) of the angle ∠ACB. Therefore, the level sets of the function L(A(C), B(C)), i.e., the string construction curves are integral curves of the line field Λ.

Remark 4 . 4

 44 In the Euclidean case the first part of Proposition 4.3 with a proof is contained in[START_REF] Poritsky | The billiard ball problem on a table with a convex boundary -an illustrative dynamical problem[END_REF][START_REF] Amiran | Caustics and evolutes for convex planar domains[END_REF]. Commutativity then follows by arguments from[24, chapter 3]. The proof of the first part of Proposition 4.3 given below is analogous to arguments from[START_REF] Poritsky | The billiard ball problem on a table with a convex boundary -an illustrative dynamical problem[END_REF],[24, ch.3]. The analogue of evolution property for outer billiards was introduced and studied by E. Amiran[START_REF] Amiran | Lazutkin coordinates and invariant curves for outer billiards[END_REF].Proof of Proposition 4.3. Billiard reflections acting on the manifold of oriented geodesics preserve a canonical symplectic form ω. See [21, section 3],[24, chapter 3] in the planar case. In the general case the form ω is given by Melrose construction, see [23, section 1.5],[START_REF] Melrose | Equivalence of glancing hypersurfaces[END_REF][START_REF] Melrose | Equivalence of glancing hypersurfaces 2[END_REF][START_REF] Arnold | Mathematical methods of classical mechanics[END_REF][START_REF] Arnold | Contact geometry and wave propagation[END_REF] and Subsection 7.1 below. The string curves Γ p form a foliation of U by level curves of a function φ that is C 3 -smooth on U, C 1 -smooth on U and has no critical points. This follows from the fact that they are tangent to the line field Λ of the same regularity (Theorem 1.3). Consider the mapping R of the set U to the space of oriented geodesics sending each point Q ∈ U to the geodesic tangent to Λ(Q). The orientations of the lines Λ(Q) are chosen to converge to the orientation of the curve γ, as Q → γ. This is a diffeomorphism onto U * := R(U) of the same regularity, as Λ, by construction and since γ has positive geodesic curvature. The image Γ * p := R(Γ p ) of each curve Γ p is the family or geodesics tangent to Γ p and oriented as Γ p . The curves Γ * p form a foliation by level curves of the function ψ := φ • R -1

  Let A, B ∈ γ be two distinct points close to O such that the curve γ is oriented from B to A. Let C = C AB denote the unique intersection point of the geodesics G A and G B that is close to O. (Then CA is the right geodesic tangent to γ through C.) Set L A := |CA|; L B := |CB|;

(4. 1 )

 1 Proposition 4.5 Let Σ be as above, γ ⊂ Σ be a germ of C 2 -smooth curve at a point O ∈ Σ with the string Poritsky property. There exists a positive continuous function u(X), X ∈ γ, such that for every A, B ∈ γ close enough to O one has ψ(L A ) the Poritsky parameter. Proof For every p > 0 small enough and every C ∈ Γ p close enough to O there are two geodesics issued from the point C that are tangent to γ (Proposition 2.3). The corresponding tangency points A = A(C) and B = B(C) in γ depend smoothly on the point C ∈ Γ p . Let s p denote the natural length parameter of the curve Γ p . We set s = s 0 : the natural length parameter of the curve γ. We write C = C(s p ), and consider the natural parameters s A (s p ), s B (s p ) of the points A(C) and B(C) as functions of s p . Let α(C) denote the oriented angle between a vector v ∈ T C Γ p orienting the curve Γ p and a vector ζ A ∈ T C G A directing the geodesic G A from C to A. It is equal (but with opposite sign) to the oriented angle between the vector -v and a vector ζ B ∈ T C G B directing the geodesic G B from C to B, since the tangent line to Γ p at C is the exterior bisector of the angle between the geodesics G A and G B (Theorem 1.3). One has
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 3746447 Figure 4: A curve γ with tangent incidence property.
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 247249 Statement 3) is proved analogously. Let O be the base point of the germ γ, and let A , B , C be its three subsequent points close enough to O. Let a, b, c be respectively the geodesics tangent to γ at them. Then each pair of the latter geodesics intersect at one point close to O. Let A, B, C be the points of intersections b ∩ c, c ∩ a, a ∩ b respectively. The point B lies on the geodesic arc AC ⊂ b. This follows from the assumption that the point B lies between A and C on the curve γ and the inequality κ = 0. In a similar way we get that the points A and C lie on the corresponding geodesics a and c but outside the sides BC and AB of the geodesic triangle ABC so that A lies between C and B, and C lies between A and B. The geodesics BB and AA intersect, by the two latter arrangement statements. Let u : γ → R be the function from Proposition 4.5. One hasψ(|BA |) ψ(|BC |) = u(A ) u(C ) , by (4.2), and similar equalities hold with B replaced by A and C. Multiplying the three latter equalities we get (4.4), since the right-hand side cancels out. Hence the geodesics AA , BB and CC intersect at one point, by statements 1), 2) of the addendum to Theorem 4.8. Proposition 4.7 is proved. Each conic on a surface of constant curvature has tangent incidence property. Vice versa, each C 2 -smooth curve on a surface of constant curvature that has tangent incidence property is a conic.Proof The first, easy statement of the theorem follows from Propositions 1.6 and 4.7. The proof of its second statement repeats the arguments from [21, p.462], which are given in the Euclidean case but remain valid in the other cases of constant curvature without change. Let us repeat them briefly in full generality for completeness of presentation. Let γ be a germ of curve with tangent incidence property on a surface Σ of constant curvature. Let A , B , C denote three distinct subsequent points of the curve γ, and let a, b, c be respectively the geodesics tangent to γ at these points. Let A, B, C denote respectively the points of intersections b ∩ c, c ∩ a, a ∩ b. Fix the points A and C . Consider the pencil C of conics through A and C that are tangent to T A γ and T C γ. Then each point of the surface Σ lies in a unique conic in C (including two degenerate conics: the double geodesic A C ; the union of the geodesics G A and G C ). Let φ ∈ C denote the conic passing through the point B . Claim. The tangent line l = T B φ coincides with T B γ. Proof Let L denote the geodesic through B tangent to l. Let C 1 and A 1 denote respectively the points of intersections L ∩ a and L ∩ c. Both curves γ and φ have tangent incidence property. Therefore, the three geodesics AA , BB , CC intersect at the same point denoted X, and the three geodesics A A 1 , BB , C C 1 intersect at the same point Y ; both X and Y lie on the geodesic BB . We claim that this is impossible, if l = T B γ (or equivalently, if L = b). Indeed, let to the contrary, L = b. Let us turn the geodesic b continuously towards L in the family of geodesics b t through B , t ∈ [0, 1]: b 0 = b, b 1 = L, the azimuth of the line T B b t turns monotonously (clockwise or counterclockwise), as t increases. Let A t , C t denote respectively the points of the intersections b t ∩ c and b t ∩ a: A 0 = A, C 0 = C. Let X t denote the point of the intersection of the geodesics A A t and C C t : X 0 = X, X 1 = Y .
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 252511 Figure 5: The intersection point X t moves away from the geodesic BB .

Figure 6 :

 6 Figure 6: Curve γ with the area Poritsky property. The chords AB, A(τ )B(τ ).
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 52 Let Σ, O and γ be as at the beginning of the section. Let there exist a function u on γ that satisfies (5.1) for every A, B ∈ γ close to O. Then γ has tangent incidence property, see Definition 4.6. Proof Let A , B , C be three subsequent points of the curve γ. Let a, b, c denote respectively the geodesics tangent to γ at these points. Let A, B, C denote respectively the points of intersections b ∩ c, c ∩ a, a ∩ b (all the points A , B , C , and hence A, B, C are close enough to the base point O), as at Fig. 4. Let ψ be the same, as in (4.1). One has sin ∠CA B sin ∠CB A
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 333322 Set δ := |s A -s B |. The arc AB lies in a O(δ)-neighborhood of the point C. The distance of the arc AB to C is of order O(δ 2 ). Those points in the arc AB where α is bounded away from zero are on distance O(δ 2 ) from the origin C. Therefore, α = o(1), as δ → 0, uniformly on the complement of the arc AB to the disk D δ centered at C. Hence, the above integral of O(r 2 α) over the complement to the disk D δ is o(δ 3). The integral inside this disk is also o(δ 3 ), since its intersection with γ has length of order O(δ ), while the subintegral expression is O(δ 2 ). Finally, the upper bound I for the contribution of the non-Euclidean angular part ∆ is o(δ 3 ). This implies the statement of the claim for the g-length s A -s B , and hence, for the expression L(A, B): the g-lengths of the segments AC, BC coincide with their Euclidean lengths by the definition of normal coordinates. The asymptotics of Claim 1 are uniform in the metric, as are the intermediate asymptotics used in the proof. Let γ ⊂ R 2 be a C 3 -smooth curve with positive geodesic curvature. (Here we deal with the standard Euclidean metric on R 2 .) For every point A ∈ γ consider the osculating circle S A at A of the curve γ. For every B ∈ γ close to A let us consider the point B ∈ S A closest to B (BB ⊥ S A ) and the corresponding expressions λ(A, B ), L(A, B ) = L S A (A, B ) written for the circle S A . One has
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 122212 Let C ∈ Γ p . Let A = A(C), B = B(C) ∈ γ denote the points such that the geodesics AC and BC are tangent to γ at A and B respectively. We order them so that A(C) = T p (B(C)). One has L(A(C), B(C)) = p for all C ∈ Γ p , by definition. On the other hand, L(A(C), B(C)) A(C))|s(A(C)) -s(B(C))| 3 , as C tends to a compact subarc γ γ, by Theorem 1.16. Therefore, all the quantities κ (A(C))|s(A(C)) -s(B(C))| are uniformly asymptotically equivalent. Substituting A(C) = T p (B(C)), we get (1.6). Corollary 1.17 is proved. 18 follows immediately from Corollary 1.17. Proof of Theorem 1.15. Let the curve γ have the string Poritsky property. Let t denote its Poritsky parameter. Set f := dt ds . For the proof of Theorem 1.15 it suffices to show that f ≡ κ up to constant factor. Or equivalently,

Proposition 7 . 1

 71 (see[16, formula (3.1)] in the Euclidean case). The coordinates (s, y) on T γ are symplectic: ω = ds ∧ dy on T γ.Proof The proposition follows from the definition of the symplectic structure ω = dα, α is the same, as in (7.1): in local coordinates (s, σ) one has α = σds, thus, ω = dσ ∧ ds = ds ∧ dy.2Let V denote the Hamiltonian vector field on T Σ with the Hamiltonian ||P || 2 . It generates the geodesic flow. Consider the unit circle bundle:

. 4 )

 4 Let V denote a convex domain with boundary containing γ. Every point (Q, P ) ∈ T ≤1 γ has two π-preimages (Q, w ± ) in Γ: the vector w + (w -) is directed inside (respectively, outside) the domain V. The vectors w ± coincide, if and only if ||P || = 1, and in this case they lie in T Q γ. Thus, the mapping π : Γ → T ≤1 γ has two continuous inverse branches. Let µ + := π -1 : T ≤1 γ → Γ denote the inverse branch sending P to w + , cf. [16, section 2]. The above mappings define the germ of mapping

. 8 ) 8 . 7 A 8 . 3

 88783 Definition pure n-jet of curve γ in R 2 is a class of n-jets of curves modulo translations. If γ = {y = h(x)}, then it is identified with the collection of Taylor coefficients of the function h(x) at monomials of degrees from 1 to n. A pure n-jet of metric on a planar domain is a class of n-jets of metrics modulo translations. It is identified with the collection of Taylor coefficients of the metric tensor at monomials of degrees from 0 to n.Addendum to Lemma 8.6. The function σ n depends analytically on the pure 1-jet of the metric and the pure 2-jet of the curve. The function P n depends analytically on the pure n-jet of the metric and the pure (n -1)jet of the curve. The function σ n is defined by the following formula. Setu = u(J 2 ) := (1, b 1 ) ∈ T (x,b 0 ) Σ. Let w ∈ T (x,b 0 ) Σ denote the image of the vector ∂ ∂y ∈ T (x,b 0 )Σ under the Riemannian-orthogonal projection to the line Ru ⊥ . Let κ = κ(J 2 ) denote the geodesic curvature of a curve γ representing the jet J 2 (it depends on the pure 2-jet of the curve and the pure 1-jet of the metric). Then for every odd n ≥ 3σ n (J 2 ) = (n -2)(n -3) 6(n + 1)! ||w||(||u||κ(J 2 )) -n .(8.9)Lemma 8.6 and its addendum will be proved in Subsection 8.6. Comparison of functions L(0, t) and Λ(t) for osculating curves Let n ≥ 3. Let Σ be a surface equipped with a Riemannian metric, O ∈ Σ. Let us consider normal coordinates (x, y) centered at O. We consider that the metric under question is C 3 -smooth in the normal coordinates. This holds automatically for every C 6 -smooth metric. Let b ∈ R, and let γ, γ n,b ⊂ Σ be two germs of C n -smooth curves at O with the same (n-1)-jet that are tangent to the x-axis at O, γ = {y = h(x)}, γ n,b = {y = h n,b (x)}, h n,b (x) = h(x) + bx n + o(x n ), h, h n,b ∈ C n . Here o(x n ) is a function tending to zero together with its derivatives up to order n, as x → 0. Their geodesic curvatures at O are equal to the same number κ(O) = |h (0)| = |h n,b (0)|, by (2.1). Without loss of generality we consider that κ(O) = h (0) = 1. One can achieve this by rescaling the norm of the metric by constant factor κ(O), see Remark 8.5, and changing sign of the coordinate y.

x 2 -

 2 n,b (t) -x(t) = -2n 3 bt n-1 + o(t n-1 ). (8.16) Proof Formulas (8.12) follow from (8.4), since κ(O) = h (0) = 1. In the parametrizations γ = γ(x), γ n,b = γ n,b (x) one has s(x) = x 0 || γ(u)||du, s n,b (x) = x 0 || γn,b (u)||du. (8.17) We claim that || γn,b (x)|| -|| γ(x)|| = nbx n + o(x n ). (8.18) Indeed, let us identify the tangent spaces T (x,y) Σ at different points (x, y) by translations. One has γ(x), γn,b(x) = (1, x + o(x)), v(x) := γn,b (x) -γ(x) = (0, nbx n-1 + o(x n-1 )) : (8.19) h (x) x, since h (0) = κ(O) = 1,by assumption. The metric has trivial 1-jet at the base point O. Therefore, the difference of metric tensors at the O(x n )-close points γ(x), γ n,b (x), which are O(x)-close to O, is O(x n+1 ). Hence, it suffices to prove (8.18) for the vector γn,b (x) being translated to the point γ(x). The Euclidean angle between the vectors v(x) and γ(x) is π x + o(x), by (8.19). Therefore, the angle between them in the metric of the tangent plane T γ(x) Σ has the same asymptotics. Hence, || γn,b (x)|| 2 = ||v(x) + γ(x)|| 2 = || γ(x)|| 2 + 2nbx n + o(x n ), by Cosine Theorem and since ||v(x)|| 2 = O(x 2n-2 ) = O(x n+1 ) (n ≥ 3). The latter formula together with the obvious formula || γ(x)|| = 1 + O(x) imply (8.18), which together with (8.17) implies (8.13).
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 322 ,b (u)|| γn,b (u)|| -κ (u))|| γ(u)||du + O(x n ), by definition and (8.18). The latter right-hand side is asymptotic to 2 3

G

  n,b (t) := the geodesic tangent to γ n,b at A, D = D(t) := G n,b (t) ∩ G(0), see Fig. 7. By definition, Q = Q(t) = γ ∩ V . In what follows for any two points E, F ∈ Σ close to O the length of the geodesic segment connecting F to E will be denoted by |EF |. By definition, L(0, t) = |OC|+|CP |-λ(O, P ), L n,b (0, t) = |OD|+|DA|-λ(O, A). (8.20)

Figure 7 :

 7 Figure 7: Auxiliary geodesics for calculation of the asymptotic of the difference L n,b (0, t) -L(0, t).

LClaim 1 .

 1 g (0, t) = |OC| g + |CP | g -λ g (O, P ), L g (0, t) = |O D| g + | DA| g -λ g (O, A), by definition. Set ∆ 1 (t) := |OC| g + |CP | g -|OD| g -|DA| g -(λ g (O, P ) -λ g (O, A)); (8.39) ∆ 2 (t) := (|OD| g -|OD| g )+(|DA| g -|DA| g )-(λ g (O, A)-λ g (O, A)); (8.40) ∆ 3 (t) := (|OD| g -|O D| g ) + (|DA| g -| DA| g ). (8.41) One has L g (0, t) -L g (0, t) = ∆ 1 + ∆ 2 + ∆ 3 . (8.42) One has ∆ 1 (t) = o(t n+1). Proof Let us introduce the point B of intersection of the g-geodesic P C with the vertical line through A, see Fig.8a): x(B) = x(t). One has∆ 1 = (|OC| g + |CB| g -|OD| g -|DA| g ) + (BP g -λ g (A, P )). (8.43) Here BP g and λ g (A, P ) are the corresponding oriented lengths, which are positive if and only if A lies between O and P on the curve γ. Consider the curvilinear triangle AP B formed by the arc AP of the curve γ, the g-geodesic P B and the vertical segment BA. Its sides AP and BA have glength o(t n ), by definition and (8.37). Its angle B is π 2 + O( x(t)) = π 2 + O(t), as in Claim 2 in Subsection 8.3. (Here and below, in order to use arguments from proofs of Claims 2 and 4 from Sect. 8.3, we use C 4 -smoothness of the metric g in g-normal coordinates centered at O. This follows from its C n+1 -smoothness, n ≥ 5.) This together with (2.14) implies that the second bracket in (8.43) is o(t n+1 ). Let us prove the same statement for the first bracket. It is equal to DC g + |CA| g -|DA| g + (|CB| g -|CA| g ) = DC g + |CA| g -|DA| g + o(t n+1 ), (8.44) since ||CB| g -|CA| g | ≤ |BA| = O((x(P ) -x(B)) 2 ) = o(t n+1

Claim 3 .Figure 8 :

 38 Figure 8: The curve γ, points P , A, C, D, B (fig. a)). The points D, H, M ; case 2) (fig. b)).

2 Claim 4 .

 24 and | DM | g = o(t n+1 ), by a modified version of the above argument for | DH| g . One has ∆ 3 (t) = o(t n+1 ). Proof All the distances below are measured in the metric g. One has|O D| -|OH| = O( | DH| 2 |O D| ) = o(t 2n+1 ) = o(t n+1 ), (8.46) |A D| -|AM | = O( | DM | 2 |A D| ) = o(t 2n+1 ) = o(t n+1 ),(8.47) by (2.12) (applied to the right g-triangles O DH and A DM ) and Claim 3, |OD| -|OH| = ±|DH|, |AD| -|AM | = ±|DM |, (8.48)
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 628172818 Proof ofLemma 8.6 Let Σ be a two-dimensional surface equipped with a C n+1 -smooth Riemannian metric g. Let V ⊂ Σ be a domain equipped with a chart (x, y) (not necessarily normal) where the metric is C n+1 -smooth. Consider a C n -smooth germ of curve γ at a point O ∈ V with positive geodesic curvature that is a graph of C n -smooth function {y = h(x)}; the tangent line T O γ is not necessarily horizontal. The corresponding function Λ(t) admits an asymptotic One has dx = αd x + βd y onT O Σ, α = dx( ∂ ∂ x ) = ||u|| -1 , by definition; x = α x + β y + O(| x| 2 + | y| 2 ). One has y = κ(O) 2 x 2 = O( x 2) along each curve γ n,b , by(2.1). This together with (8.51) implies that∆( x) = ||w||||u|| -n b x n + o( x n ). (8.52)Hence, in the coordinates ( x, y)γ n,b = { y = h n,b ( x)}, h n,b ( x) = h n,0 ( x) + ||w||||u|| -n b x n + o( x n ).Now rescaling to the coordinates (x, ŷ) yields that γ n,b is a family of graphs of functions ĥn,b (x) satisfying (8.50). The proposition is proved. Consider the above family of curves γ n,b and the corresponding functions Λ n,b (t) from (8.3), set Λ n,0 := Λ. For every n ≥ 3 one has Λ n,b n+1 = Λ n+1 + ν n b, ν n := (n-2)(n-3) 6(n+1) ||w||(||u||κ(O)) -n , for odd n, 0, for even n. (8.53) Proof The coordinates (x, ŷ) are normal coordinates for the rescaled metric ĝ := κ(O)g. The common geodesic curvature at O of the curves γ n,b in the metric ĝ is equal to 1, by Remark 8.5. Therefore, for the metric ĝ one has Λ n,b n+1 -Λ n+1 = (n-2)(n-3) 6(n+1) µ n b for odd n, and the latter difference vanishes for even n, by Lemma 8.8 and (8.50). Rescaling the metric back to g by the factor κ -1 (O) rescales the functions Λ n,b and their Taylor coefficients by the same factor (Remark 8.5). This implies (8.53). Let n ≥ 5, and let the metric on Σ be C n+1 -smooth. Let γ be a germ of C n -smooth curve at a point O ∈ Σ lying in a chart with coordinates (x, y). Let γ be a graph {y = h(x)}. Let b 1 , . . . , b n denote the coordinates of the pure n-jet j n O h. Let w, u ∈ T O Σ be the vectors from Proposition 8.16. Then the Taylor coefficient Λ n+1 of the corresponding function Λ(t) is equal to Λ n+1 = σ n b n -P n , (8.54) σ n = (n -2)(n -3) 6(n + 1)! ||w|| (||u||κ(O)) -n for odd n, (8.55) σ n = 0 for even n, where P n is an analytic function in b 1 , . . . , b n-1 and in the pure n-jet of the metric at O. the y-axis. Let γ have the string Poritsky property. Then Λ(t) ≡ 0, hence, Λ 6 = 0, thus, σ 5 (J 2 )b 5 -h 5 (J 2 ; b 3 , b 4 ) = 0, (8.57)
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  Let the germ (γ, O) ⊂ Σ be the same as at the beginning of the subsection, and let γ have positive geodesic curvature. Let U ⊂ Σ be a small domain adjacent to γ from the concave side: γ is its concave boundary. Let γ ⊂ γ be a compact subset: an arc with boundary. For every C ∈ U close enough to γ there exist exactly two geodesics through C tangent to γ. In what follows we denote their tangency points with γ by A = A(C) and B = B(C) so that AC is the right geodesic through C tangent to γ.

		.1)
	Proof Proposition 2.2 follows from definition and vanishing of the Christof-
	fel symbols at O in normal coordinates.	2
	Proposition 2.3 Proof The statement of the proposition is obvious in the Euclidean case.
	The non-Euclidean case is reduced to the Euclidean case by considering a
	point C ∈ U close to γ and normal coordinates (x C , y C ) centered at C so
	that their family depends smoothly on C. In these coordinates the curves
	γ = γ C depend smoothly on C and are strictly convex in the Euclidean sense,
	by Proposition 2.2. The geodesics through C are lines. This together with
	the statement of Proposition 2.3 in the Euclidean case implies its statement
	in the non-Euclidean case.	2

  Let Γ p denote the family of curves obtained from it by string construction. We say that γ has evolution (or Graves) property, if for every p 1 < p 2 the curve Γ p 1 is a caustic for the curve Γ p 2 . Let Σ be a surface equipped with a C 4 -smooth Riemannian metric. Let γ ⊂ Σ be a C 4 -smooth germ of curve with positive geodesic curvature that has evolution property. Then it has the string Poritsky property2 

	string construction are confocal conics. In the Euclidean case this follows
	from the classical fact saying that the caustics of a billiard in a conic are
	confocal conics (Proclus-Poncelet Theorem). Analogous statements hold in
	non-zero constant curvature and in higher dimensions, see [29, theorem 3].
	Proposition 4.3
	Example 4.2 It is well-known that each conic on a surface Σ of constant
	curvature has evolution property, and the corresponding curves Γ p given by

4 Billiards on surfaces of constant curvature. Proofs of Proposition 1.6 and Theorem 1.7 In Subsection 4.1 we prove Proposition 1.6. The proof of Theorem 1.7, which follows its proof given in [21, section 7] in the Euclidean case, takes the rest of the section. In Subsection 4.2 we prove the following coboundary property of a curve γ with the string Poritsky property: for every A, B ∈ γ, set C = C AB , the ratio |AC|/|BC| equals the ratio of values at A and B of some function on γ. In Subsection 4.3 we deduce Theorem 1.7 from the coboundary property by planimetric arguments using Ceva's Theorem.

4.1 Proof of Proposition 1.6

We re-state and prove Proposition 1.6 in a more general Riemannian context.

To do this, let us recall the following definition.

Definition 4.1 [1, p. 345] (implicitly considered in

[START_REF] Poritsky | The billiard ball problem on a table with a convex boundary -an illustrative dynamical problem[END_REF]

) Let Σ be a surface equipped with a Riemannian metric, γ ⊂ Σ be a (germ of) curve with positive geodesic curvature.

2

  Proposition 1.6 follows from Proposition 4.3 and Example 4.2.

  Let t A (s p ) and t B (s p ) denote its values at the points A(C) and B(C) respectively as functions of s p . Their difference is constant, by the Poritsky property. Therefore,

		dt A ds p	=	dt ds	(A)	ds A ds p	=	dt B ds p	=	dt ds	(B)	ds B ds p	.
	Substituting (4.3) to the latter formula and cancelling out sin α(C) yields
	(4.2) with u = 1 κ	dt ds .											2

by (2.8), (2.7) and the above angle equality.

Let now t be the Poritsky parameter of the curve γ.

  Recall that the metric is C 4 -smooth, and hence, it is C 2 -smooth in normal coordinates. The next two claims concern asymptotics of different quantities, as dist(A, B) → 0 so that A and B lie in a compact subarc in γ.

		Proposi-
	tions 5.1 and 5.2. Hence, it is a conic, by Theorem 4.9. Theorem 1.12 is
	proved.	2
	6 The function L(A, B) and the Poritsky-Lazutkin
	parameter. Proofs of Theorems 1.16, 1.15 and
	Corollaries 1.17, 1.18	

by

(5.1) 

and Sine Theorem on the Euclidean plane and its analogues for unit sphere and hyperbolic plane applied to the geodesic triangle CA B , see

[14, p.

215], [22, theorem 10.4.1]. Similar equalities hold for other pairs of points (B , C ), (C , A ). Multiplying all of them yields relation (4.4): the ratios of values of the function u at A , B , C cancel out. This together with Theorem 4.8 and its addendum implies that γ has tangent indicence property and proves Proposition 5.2. 2 Proof of Theorem 1.12. A curve with the area Poritsky property on a surface of constant curvature has tangent incidence property, by Proof of Theorem 1.16. Let g denote the metric. Let C = C AB denote the point of intersection of the geodesics G A and G B tangent to γ at the points A and B respectively. We will work in normal coordinates (x, y) centered at C and the corresponding polar coordinates (r, φ).

  .22) 

	Proof In the curvilinear triangle QP B with QP ⊂ γ, P B being geodesic
	and QB vertical segment one has |P B| = O(x n,b (t) -x(t)) = O(t n-1 ), by
	(8.16). Its angle at B is π 2 + O(t). Therefore, by (2.14),
	∆ 1

  ).

	Proposition 8.11 One has			
	∆ 2 (t) =	b n + 1	t n+1 + o(t n+1 ).	(8.23)
	Proof By definition,			
	∆ 2			
	The latter right-hand side is O(t 2n-1 ) = O(t n+2 ), since n ≥ 3.	2

  .38)

	Proof The asymptotic equivalences follow from (8.4). The first formula in
	(8.36) is obvious. The second one holds by definition and since the Christoffel
	symbols of the two metrics differ by a quantity o(x n-1 ). The third formula
	follows from the second one. Formula (8.37) follows from the third formula
	in (8.36). Formula (8.38) follows from (8.36) and (8.37).

  ). Here DC g is the oriented length |OC| g -|OD| g . One hasDC g + |CA| g -|DA| g = o(t n+1). (8.45) Indeed, consider the height CT of the triangle ADC, which splits it into two right triangles. One has ∠CAD = O(x(A) -x(P )) = o(t n ), as in the proof of Claim 4 in the previous subsection. This together with right triangle arguments using (2.12) analogous to those from the proof of Claim 5 (Subsection 8.3) implies (8.45). Substituting (8.45) to (8.44) and then substituting everything to (8.43) yields ∆ 1 (t) = o(t n+1 ). Claim 1 is proved. 2 Claim 2. One has ∆ 2 (t) = o(t n+1 ). Proof All the points in

Recently, after an arxiv draft of the present paper was written, it was shown in a joint paper of the author with Sergei Tabachnikov and Ivan Izmestiev[START_REF] Glutsyuk | Four equivalent properties of integrable billiards[END_REF] that for a C ∞smooth curve γ the evolution property is equivalent to the Poritsky property. And that it is also equivalent to the statement that the foliation by the curves Γp and its orthogonal foliation form a Liouville net on the concave side U from the curve γ. See[START_REF] Glutsyuk | Four equivalent properties of integrable billiards[END_REF] for a survey of related results

2 )), w(x) > 0,(7.11) for which the x-axis is a line of fixed points and such that the variable change (x, y) → (x, φ), y = φ 2

We treat the lengths of sides of the triangle CDT as oriented lengths (without module sign): we take them with the sign equal to sign(α), where α is the same, as in Claim
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But the ratio of their X-lengths has also the same asymptotics, as R 1,3 (ε), since all the steps of the sequence X(q j,ε ) are asymptotically equivalent to one and the same quantity ν(ε). This proves (7.32) and Theorem 7.10.

7.5 Deduction of Theorem 1.15 (case C 6 ) from Theorem 7.10

Let the metric on Σ be C 6 -smooth. Let γ ⊂ Σ be a germ of C 6 -smooth curve with the Poritsky property. Let Γ ε be the corresponding family of string curves. Let F ε := δ +,ε be the billiard ball maps (7.6) defined by reflections from the curves Γ ε ; see also (7.8). We write them in the coordinates (s ε , φ ε ) associated to Γ ε on the space of oriented geodesics, see Proposition 7.5. The curves Γ ε form a foliation tangent to a C 2 -smooth line field on the closure of the concave domain adjacent to γ. They are C 3 -smooth, and their 3-jets depend continuously on points. Both statements follow from Theorem 1.3. This implies that the mappings F ε = δ +,ε (s ε , φ ε ) have derivatives of order up to 2 that are continuous in (s ε , φ ε , ε). Therefore, the corresponding maps F ε := δ +,ε = δ ε (s ε , y ε ), y ε = 1 -cos φ ε , see (7.9), (7.5), (7.10), are strongly billiard-like.

The maps F ε have invariant curves γ ε , which are identified with the family of geodesics tangent to the curve γ and oriented as γ. In the coordinates (s ε , y ε ) the curves γ ε are graphs of continuous functions converging to zero uniformly, as ε → 0, by construction.

Let now γ have the string Poritsky property. Then the Poritsky parameter t induces a parameter denoted by t ε on each invariant curve γ ε : by definition, the value of the parameter t ε at a geodesic tangent to γ is the value of the Poritsky parameter t at the tangency point. The maps δ ε : γ ε → γ ε act by translations in the parameters t ε . The parameters t ε obviously converge uniformly to the Poritsky parameter t = t 0 of the curve γ = Γ 0 , as ε → 0. Therefore, the billiard ball maps F ε satisfy the conditions of Theorem 7.10 with w = 2 √ 2κ -1 , see Example 7.7. This together with Theorem 7.10 implies that t 0 = at L + b, a, b ≡ const, and proves Theorem 1.15 in the case, when the metric and the curve γ are C 6 -smooth. 

Now let us prove the second asymptotic formula in (8.28). One has

by formula (2.12) applied to the family of triangles BCH. The right-hand side in the latter formula is b 2 t 2n-1 + o(t 2n-1 ) = O(t n+2 ), by (8.27) and Claim 3 and since 2n -1 ≥ n + 2 for n ≥ 3. Thus,

)

by the first formula in (8.28) proved above. Formula (8.28) is proved. 2

Substituting formulas (8.25) and (8.28) to (8.24) yields

Proposition 8.11 is proved. 2 Proposition 8.12 One has

Here DC is the "oriented length" DC := |OC| -|OD|.

Let CT denote the height of the geodesic triangle DCA. To find an asymptotic formula for the right-hand side in (8.31), we first find asymptotics of the length of the height CT and the angle ∠DAC.

Claim 4. Let α := ∠DAC denote the oriented angle between the geodesics AD and AC: it is said to be positive, if D lies between O and C, as at Fig. 7. One has α = 6-n 3 bt n-1 + o(t n-1 ). Proof Consider the following tangent lines of the geodesic arcs AD, AC, BC, CP and the curve γ:

We orient all these lines "to the right". One has α az( 2 ) -az( 1 ), (8.32) by definition and since the Riemannian metric at the point A written in the normal coordinates (x, y) tends to the Euclidean one, as t → 0. Let us find asymptotic formula for the above difference of azimuths by comparing azimuths of appropriate pairs of lines 1 , . . . , 5 . One has

since the above azimuth difference is asymptotically equivalent to the difference of the derivatives of the functions h(x) and

by (8.16) and since the function h (x) x has unit derivative at 0,

by (2.5) and (8.16), az( 2 ) -az( 3 ) ∠BCA = 2bt n-1 + o(t n-1 ), by (2.11), (2.5), (8.28) and Claim 3. The right-hand sides of the above asymptotic formulas for azimuth differences are all of order t n-1 , except for one, which is O(t n ). Summing all of them yields the statement of Claim 4:

Claim 5. In the right triangle 3 CDT ∠T DC t, CT = 6-n 6 bt n +o(t n ),

(8.33) Proof The angle asymptotics follows from Claim 1. The length asymptotics for the side CT is found via the adjacent right triangle ACT , from the formula CT AC∠CAT after substituting α = ∠CAT = 6-n 3 bt n-1 + o(t n-1 ) (Claim 4) and AC t 2 , see (8.27). This together with formula (2.12) applied to the right triangle CDT and the asymptotics ∠CDT t implies (8.33).

2 

see the cases of signs (which do not necessarily coincide) below. Taking sum of equalities (8.48) and its difference with the sum of (8.46), (8.47) yields Case 2). In the right tringle D DH the angle D tends to zero along some sequence of parameter values t converging to 0, see Fig. 8b). Then the same holds in DM D. In this case the signs in (8.49) are different. For example, if H lies between O and D, then the angle ∠ DDA is obtuse and D lies between M and A. The opposite case is treated analogously. Let us denote

Applying (2.12) to the above right triangles together with Claim 3 yields

Hence, |DH| -|DM | = o(t n+1

). This together with (8.49) implies the asymptotics of Claim 4 (along the above sequence). Claim 4 is proved. 2 Claims 1, 2 and 4 together with (8.42) imply the statement of Lemma 8.13 on the function L. In its turn, it implies the same statement on Λ. 2

Taylor coefficients of Λ(t): analytic dependence on jets

Lemma 8.15 Let (x, y) be coordinates on a neighborhood of a point O ∈ Σ, n ≥ 5. Let a metric on Σ be C n+1 -smooth in the coordinates (x, y), and let γ be a germ of C n -smooth curve on Σ at O. Then the corresponding functions L(0, t), Λ(t) are O(t 3 ). They admit asymptotic Taylor expansions up to t n+1 . Their coefficients at t n+1 are analytic functions of the pure n-jets of the metric and the curve γ.

Proof The asymptotics L(0, t), Λ(t) = O(t 3 ) follows from Theorem 1.16.

Case 1): the curve γ and the metric are analytic. Consider the metric and the curve with variable Taylor coefficients of orders up to n; the other, Taylor expansion

Its coefficients are analytic functions of the pure n-jets of the metric and γ at O (Lemma 8.15). Therefore, without loss of generality we consider that O is the origin in the coordinates (x, y), applying a translation. Then

By definition, the coordinates of the pure jet j n O γ are (b 1 , . . . , b n ). We already know that Λ n+1 is an affine function in b n , which follows from Lemma 8.8, see (8.11). To obtain a precise formula for its coefficient at b n , we use the following proposition. Proposition 8.16 Let n ≥ 5, Σ, O, (x, y), h(x) be as above. Consider a family of tangent germs of In the coordinates (x, ŷ) the family of curves γ n,b is the family of graphs of C n -functions {ŷ = ĥn,b (x)}, set ĥn,0 := ĥ, such that ĥ(x) = 2

Proof of Lemma 8.6 and its addendum. All the statements of Lemma 8.6 and its addendum follow from the above proposition, except for the following points discussed below. Note that σ n depends only on the pure 2-jet of the curve γ and the pure 1-jet of the metric, by definition. The function P n is an analytic function of the pure n-jet of the metric and the pure (n -1)-jet of the curve γ. Let us treat it as a function of a point and a pure (n -1)-jet of curve. We have to prove its smoothness. To this end, we use the assumption that the metric is C n+1 -smooth. (This is the main place in the proof where we use this assumption.) Then its pure n-jet is a C 1 -smooth function of a point. Similarly, σ n is smooth, by (8.55). This together with the above analyticity statement proves C 1 -smoothness and finishes the proof of Lemma 8. Let γ be an arbitrary C 5 -smooth germ of curve γ based at a point A ∈ V with positive geodesic curvature such that the line T A γ is not parallel to