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LENARD-BALESCU CORRECTION TO MEAN-FIELD THEORY

MITIA DUERINCKX AND LAURE SAINT-RAYMOND

Abstract. In the mean-field regime, the evolution of a gas of N interacting particles is
governed in first approximation by a Vlasov type equation with a self-induced force field.
This equation is conservative and describes return to equilibrium only in the very weak
sense of Landau damping. However, the first correction to this approximation is given by
the Lenard-Balescu operator, which dissipates entropy on the very long timescale O(N).
In this paper, we show how one can derive rigorously this correction on intermediate
timescales (of order O(Nr) for r < 1), close to equilibrium.

1. Introduction

1.1. General overview. Consider the dynamics of a system of N classical particles in
the torus Td as given by Newton’s equations of motion,

d

dt
xj,N = vj,N ,

d

dt
vj,N = − 1

N

∑
1≤l≤N
l 6=j

∇V (xj,N − xl,N ), 1 ≤ j ≤ N, (1.1)

where {(xj,N , vj,N )}Nj=1 denotes the set of positions and velocities of the particles in the
phase space D := Td × Rd, where V : Td → R is a long-range interaction potential, and
where the mean-field scaling is considered. In terms of a probability density FN on the
N -particle phase space DN = (Td × Rd)N , these equations are equivalent to the following
Liouville equation,

∂tFN +

N∑
j=1

vj · ∇xjFN =
1

N

∑
1≤j 6=l≤N

∇V (xj − xl) · ∇vjFN . (1.2)

where particles are assumed to be exchangeable, hence FN is symmetric in its N variables
zj := (xj , vj) ∈ D, 1 ≤ j ≤ N . In the large-N limit, rather than describing the whole
set of individual particle trajectories in this N -body problem, one looks for an “averaged”
description of the system: one may typically focus on the evolution of one “typical” particle
in the system, as described by the first marginal of FN ,

F 1;t
N (z) :=

ˆ
DN−1

F tN (z, z2 . . . , zN ) dz2 . . . dzN .

Neglecting 2-particle correlations (the so-called Boltzmann’s chaos assumption) formally
leads to the following mean-field approximation: F 1

N is expected to remain close to the
solution H of the Vlasov equation,

∂tH + v · ∇xH = (∇V ∗ µH) · ∇vH, µH(x) :=

ˆ
Rd
H(x, v) dv. (1.3)

We refer to [12] for a review of rigorous results on this well-travelled topic. Next, we may
investigate the next-order correction to this mean-field approximation. This is particularly
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relevant in the case of spatially homogeneous systems: if the mean-field density is spatially
homogeneous, H = H(v), it remains constant in time in view of (1.3), hence the mean-field
regime is trivial and the next-order correction becomes the relevant leading order. In that
setting, we naturally focus on the velocity density of the typical particle,

f1;t
N (v) :=

ˆ
Td
F 1;t
N (x, v) dx.

In agreement with Bogolyubov’s theory of non-equilibrium statistical mechanics [8], while
the mean-field approximation was obtained by neglecting particle correlations, the next-
order correction precisely amounts to taking into account those 2-particle correlations
(or “collisions”), only neglecting higher-order correlations. Correlations should lead to
irreversible effects and actually create a non-Markovian correction of order O( 1

N ). This
contribution is expected to become O(1) only on the relevant long timescale t ∼ N , and
memory effects to vanish on this long timescale, hence giving rise to a simple collisional
operator. More precisely, the time-rescaled velocity density f1;Nt

N is predicted to remain
close to the solution f of the following so-called Lenard-Balescu kinetic equation,

∂tf = LB(f) := ∇ ·
ˆ
Rd
B(v, v − v∗;∇f)

(
f∗∇f − f∇∗f∗

)
dv∗, (1.4)

with the notation f = f(v), f∗ = f(v∗), ∇ = ∇v, and ∇∗ = ∇v∗ , where the collision kernel
is given by

B(v, v − v∗;∇f) :=
∑

k∈2πZd
(k ⊗ k)πV̂ (k)2 δ(k·(v−v∗))

|ε(k,k·v;∇f)|2 , (1.5)

and the dispersion function is

ε(k, k · v;∇f) := 1 + V̂ (k)

ˆ
Rd

k·∇f(v∗)
k·(v−v∗)−i0 dv∗. (1.6)

Note that this function ε appears naturally when computing the resolvent of the Vlasov
operator linearized around the equilibrium f = f(v). In particular, the equilibrium is
linearly stable as long as ε does not vanish, which is referred to as the Penrose criterion [23].
This is in particular the case for Maxwellian equilibria.

The Lenard-Balescu equation (1.4) was formally derived in the early 60s independently
by Guernsey [13, 14], Lenard [19], and Balescu [2, 4]. The former two derivations rely
on the earlier work by Bogolyubov [8] and proceed by truncating the so-called BBGKY
hierarchy of equations for correlation functions and computing the Markovian limit. This
derivation, as presented e.g. in [22, Appendix A], is our main inspiration in the sequel.
Balescu’s derivation builds instead on Prigogine’s theory of irreversibility [26, 3] by means
of a diagrammatic approach. Another derivation was later proposed by Klimontovich [16]
(see also [20, Section 51]) based on fluctuations of the empirical measure associated with
the particle dynamics (1.1).

At a formal level, the Lenard-Balescu equation (1.4) preserves mass, momentum, and
kinetic energy, and satisfies an H-theorem,

∂t

ˆ
Rd
f log f = −

¨
Rd×Rd

(
(∇−∇∗)

√
ff∗
)
·B(v, v − v∗;∇f)

(
(∇−∇∗)

√
ff∗
)
≤ 0,

hence it should describe relaxation to Maxwellian equilibrium on the long timescale t� N .
For a thorough discussion of the relevance of this equation in plasma physics, we refer
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e.g. to [17, Section 11.11], [20, Section 47], [22, Chapter 5], or [9, Part 1]. A key feature
of this equation is to take into account collective screening effects in form of the nonlocal
nonlinearity of the kernel (1.5) via the dispersion function ε. As such, it can be viewed as
a corrected version of the celebrated (phenomenological) Landau equation, which indeed
amounts to neglecting collective effects, that is, setting ε ≡ 1.

From the mathematical viewpoint, this dynamical screening in form of the full nonlinear-
ity of the kernel (1.5) makes the study of the Lenard-Balescu equation (1.4) reputedly dif-
ficult. Even local well-posedness remains an open problem, while the only rigorous results
concern the relaxation of the linearized evolution at the Maxwellian equilibrium [21, 30].

In this context, any rigorous derivation from particle dynamics (1.1) has remained elu-
sive, apart from some partial attempts in [18, 32] (see also [6, 33] for corresponding at-
tempts at the derivation of the Landau equation in the weak-coupling regime). On top of
well-posedness issues, the difficulty is mainly twofold:
• proving a priori estimates on correlation functions that are uniform up to the long
timescale t ∼ N . A major problem here is that regularity is not uniformly propagated
by the Liouville equation (1.2).
• rigorously establishing the relaxation of the equation for the 2-particle correlation func-
tion in order to get a closed kinetic equation for the density f . The problem is that this
relaxation holds only in a weak sense corresponding to linear Landau damping for two
typical particles, and therefore it is not clear that the error term (which converges only
weakly to 0) will not contribute to the limiting dynamics.

In the present work, we proceed to a fully rigorous analysis under the following two key
simplifications:
(1) We focus on a linearized regime and consider two typical such settings:

— the evolution of tiny fluctuations around thermal equilibrium;
— the evolution of a tagged particle in a thermal equilibrium background.
We mainly focus on the latter setting, which is particularly relevant from a physical
point of view, while the former can be treated similarly and is briefly addressed in
Appendix A.

(2) We do not reach the relevant timescale t ∼ N , but rather obtain the (suitably lin-
earized) Lenard-Balescu evolution as aO( 1

N1−r ) correction on the intermediate timescale
t ∼ N r for r > 0 small enough.

The first simplification of course alleviates difficulties related to the nonlinear structure,
including the well-posedness issue for (1.4) and its rigorous derivation as a long-time limit.
In addition, this linearization allows us to rigorously establish as in [7] a weak version
of chaos and neglect many-particle correlations uniformly in time, cf. Section 2.1. The
second simplification is needed to avoid possibly delicate resonance questions related to
singularities of long-time propagators (filamentation), as pointed out in Section 3. Note
that the first simplification is relaxed in the companion article [11], where a new approach
to correlation estimates is developed away from equilibrium, but it requires to restrict to
even shorter timescales t� logN .

1.2. Main result. We focus on a linearized setting and consider the motion of a tagged
particle in a bath of N classical particles in the torus Td at thermal equilibrium (total
number of particles is now N + 1). More precisely, we denote by z0,N := (x0,N , v0,N ) ∈ D
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the position and velocity of the tagged particle, and by {zj,N := (xj,N , vj,N )}Nj=1 the
positions and velocities of the N background particles, the motion of which is governed by
Newton’s equations of motion,

d

dt
xj,N = vj,N ,

d

dt
vj,N = − 1

N

∑
0≤l≤N
l 6=j

∇V (xj,N − xl,N ), 0 ≤ j ≤ N, (1.7)

and we assume that the background particles are initially at thermal equilibrium, that is,
the initial positions and velocities {z◦j,N := (x◦j,N , v

◦
j,N )}Nj=0 are distributed according to the

following probability density on the (N + 1)-particle phase space DN+1 = (Td × Rd)N+1,

F ◦N (z0, . . . , zN ) := f◦(v0)MN,β(z1, . . . , zN ), (1.8)

where f◦ : Rd → R+ denotes the initial velocity distribution of the tagged particle (assumed
to be spatially homogeneous), and where the equilibrium background densityMN,β is given
by the Gibbs measure

MN,β(z1, . . . , zN ) := Z−1
N,β e

−β
2

∑N
j=1 |vj |2−

β
2N

∑
1≤j 6=l≤N V (xj−xl), (1.9)

with normalization factor ZN,β and with fixed inverse temperature β ∈ (0,∞). While the
mean-field force exerted by the equilibrium background vanishes for symmetry reasons,
the tagged particle is expected to display a Brownian trajectory in velocity space on the
timescale t ∼ N and to progressively acquire the Maxwellian velocity distribution as the
background itself,

Mβ(v) := ( β2π )
d
2 e−

β
2
|v|2 .

More precisely, as first predicted in [31] (see also [24, 25]), its time-rescaled velocity distri-
bution f1;Nt

N is expected to remain close to the solution f of the following Fokker-Planck
equation, which is obtained by replacing the time-dependent distribution f∗ in the Lenard-
Balescu equation (1.4) by the velocity distribution Mβ of the equilibrium background,

∂tf = ∇ ·
(
Dβ(∇f + βvf)

)
, (1.10)

in terms of the diffusion tensor

Dβ(v) :=
∑

k∈2πZd
(k ⊗ k) πV̂ (k)2

|εβ(k,k·v)|2

ˆ
Rd
δ(k · (v − v∗))Mβ(v∗) dv∗,

with

εβ(k, k · v) := 1− V̂ (k)

ˆ
Rd

βk·v∗
k·(v−v∗)−i0 Mβ(v∗) dv∗.

Equation (1.10) satisfies an H-theorem,

∂t

ˆ
Rd
Mβ

∣∣ f
Mβ

∣∣2 = −2

ˆ
Rd
Mβ∇( f

Mβ
) ·Dβ∇( f

Mβ
) ≤ 0,

hence it describes relaxation of the tagged particle velocity distribution to the Maxwellian
Mβ . The following main result provides a fully rigorous derivation of (1.10) starting from
particle dynamics, although only on an intermediate timescale t ∼ N r with r < 1 small
enough. The reason for this limitation is that we do not manage to rule out possible
resonant effects as described in Section 3. As the velocity distribution does not evolve on
this intermediate timescale, we simply obtain the Fokker-Planck operator applied to the
initial data, instead of a genuine evolution equation. The case of tiny fluctuations around
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thermal equilibrium is similarly addressed in Appendix A, while the nonlinear setting of
Section 1.1 is treated in the companion article [11]. A similar consistency result for the
Landau equation in the weak-coupling regime was obtained in [6].

Theorem 1 (Tagged particle in equilibrium bath). Let d ≥ 1 and assume that
— the interaction potential V : Td → R is even, positive definite (that is, V̂ ≥ 0), and

smooth enough (that is, V ∈W 4,∞(Td));
— the temperature of the initial background (1.9) is large enough (that is, β‖V ‖L∞ ≤ 1

C0

for some large enough universal constant C0);
— the initial velocity distribution has Maxwellian decay (that is, g◦ = f◦

Mβ
∈ L∞(Rd)).

Then, for 0 < r < 1
18 , the velocity distribution fN of the tagged particle satisfies on the

timescale t ∼ N r,

lim
N↑∞

N(∂tf
1;t
N )|t=Nrτ = ∇ ·

(
Dβ(∇f◦ + βvf◦)

)
,

as a function of (τ, v) in the weak sense of D′(R+ × Rd). ♦

Notation.

• We denote by C ≥ 1 any constant that only depends on d, ‖V ‖W 4,∞(Td), and on
‖f◦/Mβ‖L∞(Rd). We use the notation . (resp. &) for ≤ C× (resp. ≥ 1

C×) up to such a
multiplicative constant C. We write ' when both . and & hold. We add subscripts to
C,.,&,' in order to indicate dependence on other parameters. We denote by O(K) a
quantity that is bounded by CK.

• For 0 ≤ m ≤ n, we set [m,n] := {m, . . . , n} and we use the abbreviation [m] := [1,m] =
{1, . . . ,m}. For an index set σ = {i1, . . . , ik} we write zσ := (zi1 , . . . , zik).

• For a, b ∈ R we write a ∧ b := min{a, b} and 〈a〉 := (1 + a2)1/2.

2. Cumulant formalism and BBGKY hierarchy

This section is devoted to notation and basic results for the analysis of many-particle
correlations in the BBGKY formalism for a tagged particle in an equilibrium bath (1.7)–
(1.9). The label 0 is reserved for the tagged particle, while the labels 1, . . . , N are used for
the (exchangeable) background particles. We denote here by FN the probability density
on the (N + 1)-particle phase space DN+1, which satisfies the following Liouville equation,

∂tFN +

N∑
j=0

vj · ∇xjFN =
1

N

∑
0≤j 6=l≤N

∇V (xj − xl) · ∇vjFN . (2.1)

Note that FN is symmetric in its N last entries as it is initally, cf. (1.8), embodying the
exchangeability of the N background particles. In order to prove Theorem 1, we proceed
to a linear cumulant expansion of FN , which nicely splits correlations between subsets
of particles. Cumulants satisfy a system of coupled equations, which is a variant of the
celebrated BBGKY hierarchy. As in [7], in the present linear setting, suboptimal a priori
estimates on cumulants can be deduced by symmetry and yield a weak version of chaos,
which allows a rigorous truncation of the hierarchy, cf. Section 4.
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2.1. Cumulant expansion and estimates. Cumulants of a probability density are poly-
nomial combinations of marginals that encode many-particle correlations and allow to re-
cover the original distribution in form of a cluster expansion. In the present setting, as
the distribution of the N background particles is close to equilibrium MN,β , we naturally
linearize the definition of cumulants. While the equilibrium contains particle correlations
that are difficult to work with in practice, we rather choose to linearize the definition of
cumulants around the simpler Maxwellian proxy M⊗Nβ . Up to errors due to this simpli-
fication, the linear cumulant Gm+1

N below describes the correlation of the tagged particle
with m background particles. Since FN is symmetric in its N last entries, we note that the
marginal Fm+1

N and cumulant Gm+1
N are similarly symmetric in their m last entries. The

proof of the following key result is straightforward and can be found in [7, Proposition 4.2].

Lemma 2.1 ([7]). For 0 ≤ m ≤ N , let the (m+ 1)th-order marginal Fm+1
N : Dm+1 → R+

of FN be defined as

Fm+1
N (z[0,m]) :=

ˆ
DN−m

FN (z[0,N ]) dz[m+1,N ],

and define the corresponding cumulant Gm+1
N : Dm+1 → R as

Gm+1
N (z[0,m]) :=

m∑
j=0

(−1)m−j
∑
σ∈Smj

F j+1
N

M
⊗(j+1)
β

(z0, zσ), (2.2)

where Sm
j denotes the set of all subsets of [m] with j elements. Then, the following two

properties hold.

(i) Cluster expansion: for all 0 ≤ m ≤ N ,

Fm+1
N (z[0,m]) = M

⊗(m+1)
β (v[0,m])

m∑
j=0

∑
σ∈Smj

Gj+1
N (z0, zσ).

(ii) Orthogonality: for all 1 ≤ m ≤ N there holds
´
DG

m+1
N (z[0,m])Mβ(vl) dzl = 0 for

each l ∈ [m], hence

ˆ
DN

|FN |2

M
⊗(N+1)
β

=
N∑
m=0

(
N

m

)ˆ
Dm+1

|Gm+1
N |2M⊗(m+1)

β . ♦

As the above shows, for 0 ≤ m ≤ N , the so-defined cumulant Gm+1
N is an element of the

following Hilbert space,

L2
β(Dm+1) :=

{
G ∈ L2

loc(Dm+1) :

ˆ
Dm+1

|G|2M⊗(m+1)
β <∞,

G symmetric in the last m entries
}
,

endowed with the Hilbert norm

‖G‖2
L2
β(Dm+1)

:= 〈G,G〉L2
β(Dm+1), 〈H,G〉L2

β(Dm+1) :=

ˆ
Dm+1

H GM
⊗(m+1)
β ,
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and for 1 ≤ p ≤ ∞ we similarly define Lpβ(Dm+1) with

‖G‖Lpβ(Dm+1) :=
(ˆ

Dm+1

|G|pM⊗(m+1)
β

) 1
p
.

As in [7], the use of symmetry in Lemma 2.1(ii) in form of combinatorial factors leads to
a priori estimates on cumulants, which describe some decorrelation between particles and
can thus be seen as a weak version of chaos. An important feature is that these estimates
further hold uniformly in time, therefore playing a key role for rigorous long-time analysis.
Note however that they are only suboptimal: G2

N is for instance expected to be of order
O( 1

N ) instead of O( 1
N1/2 ), but these estimates serve as a starting point to be improved a

posteriori.

Lemma 2.2 (Time-uniform a priori estimates on cumulants). If for some q > 1 there hold
f◦

Mβ
∈ L2q

β (D) and β‖V ‖L∞(Td) <
4(q−1)
2q−1 ,

then for all 0 ≤ m ≤ N and t ≥ 0 we have

‖Gm+1;t
N ‖L2

β(Dm+1) .m,q,β N−
m
2

∥∥ f◦

Mβ

∥∥
L2q
β (D)

. ♦

Proof. Next to (1.9), define the full (N + 1)-particle Gibbs measure

M̃N,β(z0, z[N ]) := Z̃−1
N,β e

−β
2

∑N
j=0 |vj |2−

β
2N

∑
0≤j 6=l≤N V (xj−xl),

which is a global equilibrium of the Liouville equation (2.1). Hence, we find for 1 ≤ q <∞,

∂t

ˆ
DN

|F tN |
2q

|M̃N,β |2q−1
= 0.

For 1 < q <∞, setting q′ := q
q−1 , Lemma 2.1(ii), Hölder’s inequality, and this equilibrium

property lead to

‖Gm+1;t
N ‖2

L2
β(Dm+1)

≤
(
N

m

)−1 ˆ
DN

|F tN |
2

M
⊗(N+1)
β

≤
(
N

m

)−1(ˆ
DN+1

|F ◦N |
2q

|M̃N,β |2q−1

) 1
q
(ˆ

DN+1

|M̃N,β |q
′+1

|M⊗(N+1)
β |q′

) 1
q′
, (2.3)

and it remains to estimate the two right-hand side factors. Factoring out Maxwellians, we
split

MN,β = M⊗Nβ M ′N,β, M̃N,β = M
⊗(N+1)
β M̃ ′N,β, (2.4)

in terms of

M ′N,β(x[N ]) := (Z ′N,β)−1e−
β
2N

∑
1≤j 6=l≤N V (xj−xl),

M̃ ′N,β(x0, x[N ]) := (Z̃ ′N,β)−1e−
β
2N

∑
0≤j 6=l≤N V (xj−xl),

where Z ′N,β and Z̃ ′N,β are the corresponding normalization factors on (Td)N and (Td)N+1,
respectively. The definition (1.8) of F ◦N yields(ˆ

DN+1

|F ◦N |
2q

|M̃N,β |2q−1

) 1
q

=
∥∥ f◦

Mβ

∥∥2

L2q
β (D)

(ˆ
(Td)N+1

|M ′N,β |
2q

|M̃ ′N,β |2q−1

) 1
q

≤ e
2β‖V ‖

L∞(Td)
∥∥ f◦

Mβ

∥∥2

L2q
β (D)

(
Z̃′N,β
Z′N,β

)1+ 1
q′
,
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and similarly, ˆ
DN+1

|M̃N,β |q
′+1

|M⊗(N+1)
β |q′

=
Z′
N,(q′+1)β

(Z′N,β)q′+1 .

Inserting these estimates into (2.3) leads to

‖Gm+1;t
N ‖2

L2
β(Dk+1)

≤
(
N

m

)−1

e
2β‖V ‖

L∞(Td)
∥∥ f◦

Mβ

∥∥2

L2q
β (D)

(Z̃′N,β)
1+ 1

q′ (Z′
N,(q′+1)β

)
1
q′

(Z′N,β)
2(1+ 1

q′ )
. (2.5)

The problem is thus reduced to checking that the last factor is bounded uniformly inN for β
small enough. Rather than going through a direct tedious computation of the partition
functions, we appeal to standard large deviation theory for particle systems: it follows
from e.g. [5, Theorem B(ii)] that eNcβZ ′N,β → Z ′β ∈ (0,∞) and eNcβ Z̃ ′N,β → Z̃ ′β ∈ (0,∞)
as N ↑ ∞, where the constant cβ is characterized by

cβ := inf

{ˆ
Td

logµdµ+
β

2

¨
Td×Td

V (x− y) dµ(x)dµ(y) : µ ∈ P(Td)
}
,

whenever this infimum is reached at some µ0 and is non-degenerate in the sense that the
operator Σ on L2(Td, µ0) defined by Σf(y) := 2

´
Td f(x)V (x − y) dµ0(x) does not have 1

as an eigenvalue. As
´
Td V = V̂ (0) ≥ 0, the Csiszár-Kullback-Pinsker inequality yields

ˆ
Td

logµdµ+
β

2

¨
Td×Td

V (x− y) dµ(x)dµ(y)

=

ˆ
Td

logµdµ+
β

2

¨
Td×Td

V (x− y) (dµ(x)− dx)(dµ(y)− dy) +
β

2
V̂ (0)

≥
ˆ
Td

logµdµ− β

2
‖V ‖L∞(Td)‖µ− 1‖2TV +

β

2
V̂ (0)

≥
(
2− β

2 ‖V ‖L∞(Td)

)
‖µ− 1‖2TV +

β

2
V̂ (0).

Hence, for β‖V ‖L∞(Td) < 4, there holds cβ = β
2 V̂ (0) and the infimum is indeed nondegen-

erate, which entails eN
β
2
V̂ (0)Z ′N,β → Z ′β and eN

β
2
V̂ (0)Z̃ ′N,β → Z̃ ′β and implies that the last

factor in (2.5) is uniformly bounded as N ↑ ∞. �

Next, we compute the first three initial cumulants, based on the special form (1.8) of
the initial data F ◦N .

Lemma 2.3 (Initial cumulants). The initial first two cumulants are

G1;◦
N (z) = f◦

Mβ
(v) =: g◦(v), G2;◦

N = 0,

while the initial third cumulant can be written as G3;◦
N (z[0,2]) = 1

N g
◦(v0)H◦N,β(x1 − x2) for

some function H◦N,β with ‖H◦N,β‖L2(Td) .β 1. ♦

Proof. The computation of the first marginal F 1;◦
N = f◦ of F ◦N is obvious from (1.8). We

turn to the next marginals, and we splitMN,β as in (2.4). By translation invariance ofM ′N,β
on the torus, we find

F 2;◦
N

M⊗2
β

(z[0,1]) = g◦(v0)

ˆ
(Td)N−1

M ′N,β(x[N ]) dx[2,N ] = g◦(v0),
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hence by definition (2.2),

G2;◦
N (z[0,1]) =

F 2;◦
N

M⊗2
β

(z0, z1)− F 1;◦
N
Mβ

(z0) = 0.

Next, the third marginal takes the form

F 3;◦
N

M⊗3
β

(z[0,2]) = g◦(v0)

ˆ
(Td)N−2

M ′N,β(x[N ]) dx[3,N ],

hence by definition (2.2),

G3;◦
N (z[0,2]) = g◦(v0)

(ˆ
(Td)N−2

M ′N,β(x[N ]) dx[3,N ] − 1
)
.

By translation invariance, we can indeed write G3;◦
N (z[0,2]) = 1

N g
◦(v0)H◦N,β(x1 − x2) for

some function H◦N,β : Td → R. Applying Lemma 2.2 in the form

‖g◦‖L2
β(Rd)‖H

◦
N,β‖L2(Td) = ‖NG3;◦

N ‖L2
β(D3) .β ‖g

◦‖L∞(Rd),

the conclusion follows. �

2.2. BBGKY hierarchy. As is classical, the Liouville equation (2.1) for FN is equivalent
to the following BBGKY hierarchy of equations for the marginals, for 0 ≤ m ≤ N ,

∂tF
m+1
N +

m∑
j=0

vj · ∇xjFm+1
N =

1

N

∑
0≤j 6=l≤m

∇V (xj − xl) · ∇vjFm+1
N

+ N−m
N

m∑
j=0

ˆ
D
∇V (xj − x∗) · ∇vjFm+2

N (z0, z[m], z∗) dz∗, (2.6)

with the convention FN+2
N := 0. Note that the first right-hand side term of order O(m

2

N )
is precisely the one that creates correlations between initially independent particles and
deviates from the mean-field theory. This hierarchy (2.6) can alternatively be written as a
hierarchy of equations on the cumulants.

Lemma 2.4 (BBGKY hierarchy on cumulants). For 0 ≤ m ≤ N , the cumulant Gm+1
N

satisfies

∂tG
m+1
N + iLm+1G

m+1
N = Mm+1

m+2G
m+2
N + 1

N

(
Sm+1
m−1G

m−1
N + Sm+1

m GmN + Sm+1
m+1G

m+1
N

)
,

with the convention G−1
N , G0

N , G
N+2
N = 0, where we have set Lm+1 :=

∑m
j=0 L

(j)
m+1 and

iL
(j)
m+1G

m+1
N := vj · ∇xjGm+1

N + 1j 6=0
N+1−m

N βvj ·
ˆ
D
∇V (xj − x∗)

×Gm+1
N (z0, z[m]\{j}, z∗)Mβ(v∗) dz∗,

Mm+1
m+2G

m+2
N := N−m

N

m∑
j=0

ˆ
D
∇V (xj − x∗) · (∇vj − βvj)Gm+2

N (z0, z[m], z∗)Mβ(v∗) dz∗,

Sm+1
m−1G

m−1
N :=

∑
1≤j 6=l≤m

∇V (xj − xl) · (−βvj)Gm−1
N (z0, z[m]\{j,l}),
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Sm+1
m GmN :=

m∑
j=0

∑
1≤l≤m
j 6=l

∇V (xj − xl) · (∇vj − βvj + βvl)G
m
N (z0, z[m]\{l})

−
∑

1≤j 6=l≤m

ˆ
D
∇V (xj − x∗) · (−βvj)GmN (z0, z[m]\{j,l}, z∗)Mβ(v∗) dz∗,

Sm+1
m+1G

m+1
N :=

∑
0≤j 6=l≤m

∇V (xj − xl) · (∇vj − βvj)Gm+1
N

−
m∑
j=0

∑
1≤l≤m
j 6=l

ˆ
D
∇V (xj − x∗) · (∇vj − βvj)Gm+1

N (z0, z[m]\{l}, z∗)Mβ(v∗) dz∗. ♦

For later purposes, we compute the expression of the different above-defined operators
in Fourier space: denoting by kj ∈ 2πZd the Fourier variable associated with xj ∈ Td and
setting ẑj := (kj , vj) ∈ D̂ := 2πZd × Rd,

iL̂
(j)
m+1Ĝ

m+1
N := ikj · vj

(
Ĝm+1
N + 1j 6=0

N+1−m
N βV̂ (kj)〈Ĝm+1

N 〉vj
)
,

M̂m+1
m+2 Ĝ

m+2
N := N−m

N

m∑
j=0

∑
k∗∈2πZd

ik∗V̂ (k∗)

·(∇vj − βvj)
〈
Ĝm+2
N

(
ẑ[0,m]\{j}, (kj − k∗, vj), (k∗, v∗)

)〉
v∗
,

Ŝm+1
m−1Ĝ

m−1
N := −

∑
1≤j 6=l≤m

δ(kj + kl) ikj · vjβV̂ (kj)Ĝ
m−1
N (ẑ0, ẑ[m]\{j,k}),

Ŝm+1
m ĜmN := −

m∑
j=0

∑
1≤l≤m
j 6=l

iklV̂ (kl) · (∇vj − βvj + βvl) Ĝ
m
N

(
ẑ[0,m]\{j,l}, (kj + kl, vj)

)
+

∑
1≤j 6=l≤m

ikj · vjβV̂ (kj)
〈
ĜmN
(
ẑ0, ẑ[m]\{j,l}, (kj , v∗)

)〉
v∗
,

Ŝm+1
m+1Ĝ

m+1
N :=

∑
0≤j 6=l≤m

∑
k∗∈2πZd

ik∗V̂ (k∗)

·(∇vj − βvj)Ĝm+1
N

(
ẑ[0,m]\{j,l}, (kj − k∗, vj), (kl + k∗, vl)

)
−

m∑
j=0

∑
1≤l≤m
j 6=l

∑
k∗∈2πZd

ik∗V̂ (k∗) · (∇vj − βvj)
〈
Ĝm+1
N (ẑ[0,m]\{j,l}, (kj − k∗, vj), (k∗, v∗)

)〉
v∗
,

where for shortness we abusively use the implicit correct ordering of variables according to
the labels in velocity, and we use the short-hand notation

〈G(v)〉v :=

ˆ
Rd
G(v)Mβ(v) dv (2.7)

for averaging with respect to the Maxwellian distribution.
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Proof of Lemma 2.4. Combining the definition (2.2) of cumulants in terms of marginals
together with the equations of the BBGKY hierarchy (2.6) for marginals, we find

∂tG
m+1
N +

m∑
k=0

vk · ∇xkG
m+1
N = A+B,

where we have set

A :=

m∑
k=0

(−1)m−k
∑
σ∈Smk

1
N

∑
i,j∈σ∪{0}

i 6=j

∇V (xi − xj) · (∇vi − βvi)
Fk+1
N

M
⊗(k+1)
β

(z0, zσ),

and

B :=

m∑
k=0

(−1)m−k
(
N−k
N

) ∑
σ∈Smk

∑
i∈σ∪{0}

×
ˆ
D
∇V (xi − x∗) · (∇vi − βvi)

Fk+2
N

M
⊗(k+2)
β

(z0, zσ, z∗)Mβ(v∗) dz∗.

We consider the two right-hand side terms separately and we start with the first one.
Reorganizing the sums yields

A = 1
N

∑
0≤i,j≤m
i6=j

∇V (xi − xj) · (∇vi − βvi)
m∑
k=0

(−1)m−k
∑
σ∈Sm

k
i,j∈σ∪{0}

Fk+1
N

M
⊗(k+1)
β

(z0, zσ). (2.8)

Inserting the cluster expansion for marginals in terms of cumulants (cf. Lemma 2.1(i)), we
get

Tmij :=
m∑
k=0

(−1)m−k
∑
σ∈Sm

k
i,j∈σ∪{0}

Fk+1
N

M
⊗(k+1)
β

(z0, zσ) =
m∑
k=0

(−1)m−k
∑
σ∈Sm

k
i,j∈σ∪{0}

k∑
l=0

∑
τ∈Sσl

Gl+1
N (z0, zτ ).

First consider the case when m ≥ 2 and i, j 6= 0. We may then decompose

Tmij =
m∑
l=0

∑
τ∈Sm

l
i,j∈τ

Gl+1
N (z0, zτ )

m∑
k=l

(−1)m−k ]{σ ∈ Sm
k : τ ⊂ σ}

+

m−1∑
l=0

∑
τ∈Sm

l
i∈τ,j 6∈τ

Gl+1
N (z0, zτ )

m∑
k=l

(−1)m−k ]{σ ∈ Sm
k : τ ∪ {j} ⊂ σ}

+
m−1∑
l=0

∑
τ∈Sm

l
j∈τ,i6∈τ

Gl+1
N (z0, zτ )

m∑
k=l

(−1)m−k ]{σ ∈ Sm
k : τ ∪ {i} ⊂ σ}

+

m−2∑
l=0

∑
τ∈Sm

l
i,j 6∈τ

Gl+1
N (z0, zτ )

m∑
k=l

(−1)m−k ]{σ ∈ Sm
k : τ ∪ {i, j} ⊂ σ}.

Computing the cardinalities and using the identity
∑p

k=0(−1)p−k
(
p
k

)
= δp=0, we deduce

Tmij = Gm+1
N (z0, z[m]) +GmN (z0, z[m]\{j}) +GmN (z0, z[m]\{i}) +Gm−1

N (z0, z[m]\{i,j}).
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When i = 0 or j = 0, two terms in the previous sum obviously disappear. We conclude for
all 0 ≤ i, j ≤ m with i 6= j,

Tmij = Gm+1
N (z0, z[m]) +

(
GmN (z0, z[m]\{i})1i 6=0 +GmN (z0, z[m]\{j})1j 6=0

)
1m≥1

+Gm−1
N (z0, z[m]\{i,j})1i,j 6=0 1m≥2.

Inserting this identity into (2.8), since ∇V is odd, we find

A = 1
N

∑
0≤i,j≤m
i6=j

∇V (xi − xj) · (∇vi − βvi)Gm+1
N

+ 1m≥1
1
N

∑
0≤i≤m,1≤j≤m

i 6=j

∇V (xi − xj) · (∇vi − βvi + βvj)G
m
N (z0, z[m]\{j})

+ 1m≥2
1
N

∑
1≤i,j≤m
i 6=j

∇V (xi − xj) · (−βvi)Gm−1
N (z0, z[m]\{i,j}).

We turn to the second term B. Noting that
´
D∇V (xi − xm+1)Mβ(vm+1) dzm+1 = 0 and

reorganizing the sums, we can rewrite

B =
m∑
i=0

ˆ
D
∇V (xi − xm+1)

· (∇vi − βvi)
m+1∑
k=0

(−1)m+1−k(N+1−k
N

) ∑
σ∈Sm+1

k
i∈σ∪{0}

Fk+1
N

M
⊗(k+1)
β

(z0, zσ)Mβ(vm+1) dzm+1,

which we decompose as B = B0 +B1 in terms of

B0 :=

m∑
i=0

ˆ
D
∇V (xi − xm+1) · (∇vi − βvi)

×
m+1∑
k=0

(−1)m+1−k(N+1−k
N

) ∑
σ∈Sm+1

k

Fk+1
N

M
⊗(k+1)
β

(z0, zσ)Mβ(vm+1) dzm+1,

B1 :=
m∑
i=1

ˆ
D

(−βvi) · ∇V (xi − xm+1)

×
m∑
k=0

(−1)m−k
(
N+1−k
N

) ∑
σ∈Sm+1

k
i/∈σ

Fk+1
N

M
⊗(k+1)
β

(z0, zσ)Mβ(vm+1) dzm+1.

First, using the cluster expansion for marginals in terms of cumulants (cf. Lemma 2.1(ii)),
we find after straightforward combinatorial computations,

m+1∑
k=0

(−1)m+1−k(N+1−k
N

) ∑
σ∈Sm+1

k

Fk+1
N

M
⊗(k+1)
β

(z0, zσ)
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=

m+1∑
k=0

(−1)m+1−k(N+1−k
N

) ∑
σ∈Sm+1

k

k∑
j=0

∑
τ∈Sσj

Gj+1
N (z0, zτ )

=

m+1∑
j=0

(m+1∑
k=j

(−1)m+1−k(N+1−k
N

)(m+ 1− j
k − j

)) ∑
τ∈Sm+1

j

Gj+1
N (z0, zτ )

= N−m
N Gm+2

N (z0, z[m+1])− 1
N

∑
τ∈Sm+1

m

Gm+1
N (z0, zτ ),

which leads to the identity

B0 = N−m
N

m∑
i=0

ˆ
D
∇V (xi − xm+1) · (∇vi − βvi)Gm+2

N (z0, z[m+1])Mβ(vm+1) dzm+1

− 1
N

m∑
i=0

m∑
j=1

ˆ
D
∇V (xi − xm+1) · (∇vi − βvi)Gm+1

N (z0, z[m+1]\{j})Mβ(vm+1) dzm+1.

Second, for 1 ≤ i ≤ m, we similarly compute
m∑
k=0

(−1)m−k
(
N+1−k
N

) ∑
σ∈Sm+1

k
i/∈σ

Fk+1
N

M
⊗(k+1)
β

(z0, zσ)

= N+1−m
N Gm+1

N (z0, z[m+1]\{i})− 1
N

∑
τ∈Sm+1

m−1
i/∈τ

GmN (z0, zτ ),

which leads to

B1 = N+1−m
N

m∑
i=1

ˆ
D
∇V (xi − xm+1) · (−βvi)Gm+1

N (z0, z[m+1]\{i})Mβ(vm+1) dzm+1

− 1
N

∑
1≤i,j≤m
i 6=j

ˆ
D
∇V (xi − xm+1) · (−βvi)GmN (z0, z[m+1]\{i,j})Mβ(vm+1) dzm+1.

The conclusion follows. �

3. Formal argument and main difficulties

In this section, we describe at a formal level the string of arguments that lead to the
expected Fokker-Planck equation (1.10) for the tagged particle velocity density, and we
emphasize the main difficulties that arise. Since the mean-field force exerted by the equi-
librium bath vanishes, the phase-space probability density F 1

N = MβG
1
N of the tagged

particle satisfies the following equation (cf. Lemma 2.4),

(∂t + v · ∇x)G1
N = M1

2G
2
N := (∇v − βv) ·

ˆ
D
∇V (x− x∗)G2

N (z, z∗)Mβ(v∗) dz∗,

where the correction to pure transport is thus dictated by the correlation G2
N of the

tagged particle with the background. As we expect this correction to play a role on
long timescale, it is natural to filter out the oscillations created by the spatial transport on
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smaller timescales. We will therefore focus on the projection on the kernel of the transport,
that is, on the velocity distribution,

f1
N (v) :=

ˆ
Td
F 1
N (x, v) dx, g1

N (v) :=
f1
N

Mβ
(v) =

ˆ
Td
G1
N (x, v) dx,

∂tg
1
N =

ˆ
Td

(M1
2G

2
N )(x, ·) dx.

As we expect G2
N = O( 1

N ), we may either look for the correction O( 1
N ) on the mean-field

timescale t ∼ 1, or describe the leading behavior on the relevant long timescale t ∼ N . As
emphasized below, although the two questions are often confused in the physics literature,
they are mathematically not equivalent.

3.1. Formal analysis of correlations. We proceed to a formal examination of the
BBGKY hierarchy to capture the effects of correlations on the tagged particle dynam-
ics. A quick observation of the equations for successive cumulants in Lemma 2.4, starting
with the particular initial data (1.8), leads us to actually expect the following optimal
decay of correlations,

G1
N = O(1), G2k

N , G
2k+1
N = O

(
1
Nk

)
for k ≥ 1. (3.1)

Starting with the suboptimal a priori decay stated in Lemma 2.2 and using the equations
for cumulants, we can easily prove that these orders of magnitude indeed hold true in
weak topology on the mean-field timescale t ∼ 1 as a particular case of Lemma 4.5 be-
low. Surprisingly, the above scaling (3.1) entails that the second and third cumulants G2

N

and G3
N are expected to be of the same order O( 1

N ): as opposed to the nonlinear setting
described in Section 1.1 where it has higher order and can be neglected (cf. [11]), the
three-particle correlation G3

N can thus no longer be neglected here and indeed leads to a
nontrivial contribution of the same order as G2

N . This is due to the fact that linear cumu-
lants are conveniently defined in Lemma 2.1 by linearizing at the Maxwellian distribution
M⊗Nβ without taking into account the spatial correlations of the correct Gibbs measure
MN,β initially describing the equilibrium background. Due to this error, the corresponding
BBGKY hierarchy of equations for cumulants in Lemma 2.4 can only be truncated at G4

N

rather than G3
N , and it takes the form of the following Bogolyubov type equations [8],

(∂t + iL1)G1
N = 1

NM
1
2 (NG2

N ),

(∂t + iL2)(NG2
N ) = S2

1G
1
N +M2

3 (NG3
N ) +O( 1

N ),

(∂t + iL3)(NG3
N ) = S3

1G
1
N +O( 1

N ), (3.2)

which can be solved by means of Duhamel’s formula, with G2;◦
N = 0,

(∂t + iL1)G1
N = 1

N

ˆ t

0
M1

2 e
−iL2(t−t′)S2

1G
1;t′

N dt′

+ 1
N

ˆ t

0

ˆ t′

0
M1

2 e
−iL2(t−t′)M2

3 e
−iL3(t′−t′′)S3

1G
1;t′′

N dt′′dt′

+ 1
N

(ˆ t

0
M1

2 e
−iL2(t−t′)M2

3 e
−iL3t′dt′

)
(NG3;◦

N ) +O( 1
N2 ), (3.3)

where the spatial transport operator iL1 := v ·∇x drops when turning to the velocity distri-
bution g1

N . As shown in Proposition 4.1 below, this first-order correction to pure transport
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can be rigorously justified on the mean-field timescale t ∼ 1. Viewed as an equation on g1
N ,

this is however not very illuminating as the correction takes a complicated non-Markovian
form. Complicated memory effects are typically expected to become negligible on long
timescales t� 1 (e.g. [29]), and the above equation on g1

N would take the simpler form of
a diffusive equation on the relevant timescale t ∼ N , showing in particular that the tagged
particle trajectory becomes Brownian under the effect of the background. By means of
complex deformation computations, we show in Section 5 below that the long-time limit of
the O( 1

N ) correction in (3.3) precisely leads to the predicted Fokker-Planck operator (1.10).
To complete the argument, it remains to justify that (3.3) also holds with essentially the
same error estimate uniformly on longer timescales t� 1.

3.2. Justifying the Markovian limit: a question of timescales. While the problem
is reduced as above to propagating (3.3) on longer timescales t � 1, two main difficulties
show up:
• The orders of magnitude of the cumulants in (3.1) are a priori only rigorously established
on the unit timescale t ∼ 1 and should be extended uniformly on longer timescales.
• The operators M ’s and S’s in Lemma 2.4 involve v-derivatives, hence the error terms in
the truncated equations (3.2) involve v-derivatives of higher-order cumulants. While
cumulants are typically only controlled in L2

β (e.g. (2.2)), or even in weaker spaces
(e.g. Lemma 4.5), this lack of regularity of the errors may come in resonance with the
singularity of the long-time propagators for the linearized Vlasov operators L’s in (3.2),
leading to possibly diverging contributions.

The two difficulties appear to be closely related, as solving the former typically leads to
difficulties of the latter type. In order to illustrate the difficulty, let us consider a typical
error term from (3.2), that is,

RtN := 1
N2

ˆ t

0
M1

2 e
−iL2(t−t′)S2

2(NG2;t′

N ) dt′,

which we aim to analyze on the long timescale t = N rτ , τ ∼ 1, for some r > 0. This
is equivalently reformulated in terms of Laplace transform: with the notation R̃αN :=´∞

0 RN
rτ

N e−ατdτ , <α > 0, we compute

R̃αN = 1
N2M

1
2 (iL2 + α

Nr )−1S2
2(NG̃2;α

N ). (3.4)

In order to be negligible as desired in (3.3), this term needs to be shown of order o( 1
N ).

Assuming for simplicity that the linearized Vlasov operator iL2 is replaced by the pure
transport operator iL′2 := v0 ·∇x0 +v1 ·∇x1 , the long-time propagator is explicitly checked
to display violent oscillations in phase space, which is known as filamentation,

e−iN
rL′2τh(z0, z1) = h

(
(x0 −Nτv0, v0), (x1 −Nτv1, v1)

)
. (3.5)

Correspondingly, the resolvent (iL2 + α
Nr )−1 takes on the following form in Fourier space,(

ik0 · v0 + ik1 · v1 + α
Nr

)−1 N↑∞−−−→ πδ(k0 · v0 + k1 · v1)− ip.v. 1
k0·v0+k1·v1 , (3.6)

where the long-time limit t ∼ N r ↑ ∞ yields an unbounded operator on L2
β(D2) in view of

the Sokhotski-Plemelj formula. Provided that G2
N is of order o(1) in the smooth topology

on the timescale t ∼ N r, we would deduce that the error RN has negligible size o( 1
N ) when

averaged with a smooth test function. However, the only a priori estimates at hand for G2
N
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hold in L2
β(D2) (cf. Lemma 2.2): even if G2

N was known to be of the optimal order O( 1
N )

in that space uniformly in time, since the operator S2
2 contains a v-derivative, we easily

check that RN would a priori be at best of order O(N
3r/2

N2 ) when averaged with a smooth
test function. On the intermediate timescale t ∼ N r with r < 2

3 , RN is thus of order o( 1
N ),

hence negligible as desired. In contrast, on longer timescales, more information is required
on possible singularities of G2

N so as to ensure that those do not create resonances with
oscillations of the long-time propagator. Suitably unravelling such finer information is left
as an open question.

3.3. A full series expansion. We provide a formal argument suggesting that violent
oscillations of the long-time propagators in phase space never come in resonance with the
corresponding oscillations of cumulants. For that purpose, instead of aiming to truncate
the BBGKY hierarchy as in (3.3), we rather iteratively replace higher-order cumulants in
terms of the Duhamel formula for the full corresponding equations as given in Lemma 2.4.
This leads to the following closed equation for G1

N in form of an infinite series expansion,

(∂t + iL1)G1
N

=

∞∑
n=1

1
Nn

3n∑
`=n+1

ˆ
(R+)`

δ
(
t−
∑̀
j=1

tj

)( ∑
σ∈Jn`

Aσ1e−it1LAσ2 . . . Aσ`−1e−it`−1LAσ`G1;t`
N

+
∑
σ∈Kn

`

Aσ1e−it1LAσ2 . . . Aσ`e−it`L
(
Nσ`1−1G

σ`1+1;◦
N

))
dt1 . . . dt`, (3.7)

where the index sets Jn` ’s and K
n
` ’s are given by

Jn` :=
{
σ ∈ {−2,−1, 0, 1}` : σ`1 = 0, σj1 > 0 ∀1 ≤ j < `, γ(σ) = n

}
,

Kn
` :=

{
σ ∈ {−2,−1, 0, 1}` : σ`1 > 1, σj1 > 0 ∀1 ≤ j ≤ `, γ(σ) + σ`1 = n+ 1

}
,

with the short-hand notation σj1 := 1 +
∑j

l=1 σl and γ(σ) := #{j : σj ≤ 0}, and where the
operators A’s and L’s are given by

A−2 ∈ {Sm+2
m }m, A−1 ∈ {Sm+1

m }m, A0 ∈ {Smm}m, A1 ∈ {Mm−1
m }m, L ∈ {Lm}m,

while for notational simplicity we omit subscripts m’s, which are indeed anyway uniquely
determined for each term. Note that elements in the index sets Jn` ’s and Kn

` ’s can be
viewed as subsets of walks with steps −2, −1, 0, or 1, starting at site 0. The terms of
formal order O( 1

N ) obtained for n = 1 in (3.7) are checked to coincide with the right-hand
side terms in (3.3). If G1

N is controlled in the smooth topology and if for all m ≥ 2 the
initial data Gm+1;◦

N are similarly controlled by O( 1
Nm−1 ), then each term in the series (3.7)

can be checked to admit a well-defined long-time limit t ↑ ∞ when tested with a smooth
test function. While the direct analysis of error terms such as (3.4) was hindered by
possible resonances between G2

N and oscillations of the long-time propagator, the present
full expansion suggests that such resonances should not create diverging contributions,
at least term by term. However, although the index sets Jn` ’s and Kn

` ’s have moderate
(exponential) size, the following two issues prevent the summability of the series in the
long-time limit and obstruct any rigorous analysis:
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• Each occurrence of an operator A contains a v-derivative. Summability of the series then
requires to restrict to an analytic setting.

• The v-derivatives stemming from the operators A’s do not commute with the linearized
propagators e−itL’s, cf. (3.5). In order to compute the long-time limit in each term, we
must then first proceed to multiple integrations by parts, which generates a factorial
number of terms that do not seem to recombine nicely in the limit.

For those reasons, we do not know how to make this perturbative approach rigorous. Still,
it suggests that a compensation mechanism is hidden in the BBGKY hierarchy, which
would systematically avoid divergences. A diagrammatic approach to take advantage of
such compensations has been proposed by Prigogine and Balescu [27, 28], but the loss of
derivatives and the convergence issues are not addressed.

In the next sections, we rather focus on intermediate timescales t ∼ N r with r > 0 small
enough, for which propagators have tamer oscillations.

4. Truncation of the BBGKY hierarchy on intermediate timescale

This section is devoted to the rigorous truncation of the BBGKY hierarchy for cumulants
on intermediate timescales t ∼ N r with r > 0 small enough. More precisely, on such
timescales, we prove the following rigorous version of the integrated form (3.3) of the non-
Markovian Bogolyubov equations. Note that for t � N all occurrences of G1

N in the
right-hand side of (3.3) can indeed be replaced by the initial data g◦ to leading order.

Proposition 4.1. Let the assumptions of Theorem 1 hold for V, β, f◦. Given 0 ≤ r < 1
18 ,

there holds for all τ ≥ 0,∥∥∥∥N(∂tg
1
N )|t=Nrτ −

ˆ Nrτ

0

ˆ
Td

(
M1

2 e
−iL2(Nrτ−t′)S2

1g
◦)(x, ·) dx dt′

−
ˆ Nrτ

0

ˆ t′

0

ˆ
Td

(
M1

2 e
−iL2(Nrτ−t′)M2

3 e
−iL3(t′−t′′)S3

1g
◦)(x, ·) dx dt′′dt′

−
ˆ Nrτ

0

ˆ
Td

(
M1

2 e
−iL2(Nrτ−t′)M2

3 e
−iL3t′(NG3;◦

N )
)
(x, ·) dx dt′

∥∥∥∥
H−4
β (Rd)

.β 〈τ〉9N9r− 1
2 ,

where the negative Sobolev norm is defined for h ∈ C∞c (Rd) by

‖h‖H−4
β (Rd) :=

(ˆ
Rd
|〈∇v − βv〉−4h|2Mβ

) 1
2
. ♦

While the above is quantified in H−4
β (Rd), we define the whole string of Sobolev spaces

with respect to the Maxwellian distribution. For s ≥ 0, we first define Hs
β(Dm+1) as the

Hilbert subspace of L2
β(Dm+1) with the norm

‖G‖2Hs
β(Dm+1) =

ˆ
Dm+1

|〈(∇x,∇v)〉sG|2M⊗(m+1)
β ,

where we use the short-hand notation (x, v) = (x[0,m], v[0,m]) ∈ Dm+1. We denote by
H−sβ (Dm+1) the dual of Hs

β(Dm+1) with respect to the scalar product of L2
β(Dm+1), which
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is again a Hilbert space with the dual norm

‖G‖2
H−sβ (Dm+1)

=

ˆ
Dm+1

|〈(∇x,∇v − βv)〉−sG|2M⊗(m+1)
β .

We similarly write Hs
β((Rd)m+1) for the subspace of Hs

β(Dm+1) of functions that do not
depend on x. Note that 〈∇v − βv〉 and 〈∇v〉 are actually equivalent in these weighted
spaces.

4.1. Linearized Vlasov operators. We start with a spectral description of the linearized
Vlasov operator Lm+1 as defined in Lemma 2.4. We include an explicit computation of
the resolvent, although this is only needed in Section 5. The positivity property for the
(approximate) dispersion function ε◦β,m in (ii) is related to the stability of the Maxwellian
equilibrium (e.g. [17, Section 9.2]) and is further refined in Lemma 5.3. Note that a more
general situation is discussed in [10, Sections 1.1–1.2], where linearization is performed
around a non-Maxwellian equilibrium. We use the short-hand notation (2.7) for averaging
with respect to the Maxwellian distribution.

Lemma 4.2 (Linearized Vlasov operator). Given V ∈W 1,∞(Td) with V̂ ≥ 0, the following
hold for all 0 ≤ j ≤ m ≤ N and β ∈ (0,∞),

(i) The operator L(j)
m+1 is a bounded perturbation of a self-adjoint operator, hence it gen-

erates a C0-group {eitL
(j)
m+1}t∈R.

(ii) The resolvent of L(j)
m+1 takes on the following explicit form, for ω ∈ C \R and j 6= 0,

in Fourier space,

(L̂
(j)
m+1 − ω)−1Ĝ = Ĝ

kj ·vj−ω −
N+1−m

N
βV̂ (kj)

ε◦β,m(kj ,ω)
kj ·vj

kj ·vj−ω
〈

Ĝ
kj ·vj−ω

〉
vj
,〈

(L̂
(j)
m+1 − ω)−1Ĝ

〉
vj

= 1
ε◦β,m(kj ,ω)

〈
Ĝ

kj ·vj−ω
〉
vj
,

in terms of
ε◦β,m(k, ω) := 1 + N+1−m

N βV̂ (k)
〈

k·v
k·v−ω

〉
v
,

which satisfies for all ω ∈ C \ R and k ∈ Zd,

|ε◦β,m(k, ω)| ≥ 1− |<ω||ω| > 0.

(iii) The spectrum of L(j)
m+1 coincides with R, and is absolutely continuous with an eigen-

value embedded at 0 (with eigenspace {ψ ∈ L2
β(Dm+1) : ∇xjψ ≡ 0}).

(iv) The C0-group {eitL
(j)
m+1}t∈R is uniformly bounded, that is,

sup
t∈R

∥∥eitL(j)
m+1G

∥∥
L2
β(Dm+1)

. ‖G‖L2
β(Dm+1) for all G ∈ L2

β(Dm+1).

In addition, the operator Lm+1 =
∑m

j=0 L
(j)
m+1 is the sum of m + 1 commuting operators,

hence it also generates a uniformly bounded C0-group. ♦

Proof. Let 0 ≤ j ≤ m be fixed. We start with the proof of (i). The essentially self-adjoint
operator L(j),0

m+1 := vj · 1
i∇xj generates a C0-group of isometries on L2

β(Dm+1), which is
explicitly given by

eitL
(j),0
m+1G(z[0,m]) = etvj ·∇xjG(z[0,m]) = G

(
z[0,j−1], (xj + tvj , vj), z[j+1,m]

)
.
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Since the operator L(j)
m+1 takes the form L

(j)
m+1 = L

(j),0
m+1 + L

(j),1
m+1, where the perturbation

L
(j),1
m+1 is obviously bounded on L2

β(Dm+1), it follows from standard perturbation theory

(e.g. [15, Theorem IX.2.1]) that the perturbed operator L(j)
m+1 also generates a C0-group

on L2
β(Dm+1).

We turn to the resolvent computation (ii). Letting ω ∈ C \ R, j 6= 0, and G ∈ L2
β(Dm+1),

we aim to compute Hω := (L
(j)
m+1 − ω)−1G. By definition of L(j)

m+1 in Lemma 2.4, the
identity (L

(j)
m+1 − ω)Hω = G takes on the following form in Fourier variables,

Ĝ = (kj · vj − ω)Ĥω + N+1−m
N βV̂ (kj)kj · vj〈Ĥω〉vj ,

or equivalently, dividing by kj · vj − ω,

Ĝ
kj ·vj−ω = Ĥω + N+1−m

N βV̂ (kj)
kj ·vj

kj ·vj−ω 〈Ĥω〉vj . (4.1)

Averaging with respect to vj yields〈
Ĝ

kj ·vj−ω
〉
vj

= ε◦β,m(kj , ω)〈Ĥω〉vj ,

with ε◦β,m defined in the statement. Since V̂ is real-valued by assumption, we compute

|ε◦β,m(k, ω)|2 =
∣∣∣1 + N+1−m

N βV̂ (k)
〈

k·v
k·v−ω

〉
v

∣∣∣2
=
(

1 + N+1−m
N βV̂ (k)

〈 (k·v−<ω)2

(k·v−<ω)2+(=ω)2

〉
v

+ (<ω)N+1−m
N βV̂ (k)

〈
k·v−<ω

(k·v−<ω)2+(=ω)2

〉
v

)2

+
(

(=ω)N+1−m
N βV̂ (k)

〈
k·v

(k·v−<ω)2+(=ω)2

〉
v

)2
, (4.2)

and hence, in view of the inequality

(a+ b<ω)2 + (b=ω)2 ≥ (a2 + b2|ω|2)
(
1− |<ω||ω|

)
for all a, b ∈ R,

and recalling that V̂ is nonnegative by assumption, we deduce

|ε◦β,m(k, ω)|2 ≥ 1− |<ω||ω| > 0.

As in particular ε◦β,m does not vanish, the above becomes

〈Ĥω〉vj = 1
ε◦β,m(kj ,ω)

〈
Ĝ

kj ·vj−ω
〉
vj
,

which yields, once combined with (4.1),

Ĥω = Ĝ
kj ·vj−ω −

N+1−m
N

βV̂ (kj)
ε◦β,m(kj ,ω)

kj ·vj
kj ·vj−ω

〈
Ĝ

kj ·vj−ω
〉
vj
.

Examining carefully this resolvent computation leads to the characterization (iii) of the
spectrum.

Finally, property (iv) follows from the general characterization of the growth bound of C0-
groups in e.g. [1, Corollary A-III.7.11], together with the above resolvent computation. We
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also provide a more direct argument based on energy conservation. Define the following
modified scalar product on L2

β(Dm+1) (recall that V̂ ≥ 0),

〈H,G〉
L̃
2
β,j(Dm+1)

:= 〈H,G〉L2
β(Dm+1)

+ N+1−m
N

ˆ
Dm+2

V (xj − x∗)H(z[0,m])G(z[0,m]\{j}, z∗)M
⊗(m+2)
β (z[0,m], z∗) dz[0,m]dz∗,

note that the corresponding norm is Lipschitz-equivalent to the norm of L2
β(Dm+1),

‖G‖L2
β(Dm+1) ≤ ‖G‖L̃2

β,j(Dm+1)
≤
(
1 + ‖V ‖L∞(Td)

) 1
2 ‖G‖L2

β(Dm+1),

and denote by L̃
2

β,j(Dm+1) the Hilbert space L2
β(Dm+1) endowed with this new struc-

ture. Since a straightforward computation shows that L(j)
m+1 is essentially self-adjoint on

L̃
2

β,j(Dm+1), Stone’s theorem yields∥∥eitL(j)
m+1G

∥∥
L2
β(Dm+1)

≤
∥∥eitL(j)

m+1G
∥∥

L̃
2
β,j(Dm+1)

= ‖G‖
L̃
2
β,j(Dm+1)

. ‖G‖L2
β(Dm+1),

and the conclusion follows. �

Next, we establish the following estimate for the C0-group generated by the linearized
Vlasov operator Lm+1 in weak norms.

Lemma 4.3 (Weak bounds on linearized Vlasov evolution). Given V ∈ W 1,∞(Td) with
V̂ ≥ 0, there holds for all β ∈ (0,∞), 0 ≤ m ≤ N , s ≥ 0, and G ∈ C∞c (Dm+1),

‖eiLm+1tG‖H−sβ (Dm+1) .β,m,s 〈t〉
s‖G‖H−sβ (Dm+1). ♦

Proof. The estimate relies crucially on the following two observations:

[∇xl , iLm+1] = 0 , (4.3)

and
[∇vl − βvl, iLm+1] = ∇xl +R

(l)
m+1, (4.4)

where R(l)
m+1 is the bounded operator on L2

β(Dm+1) defined by

R
(l)
m+1G = 1l 6=0

N+1−m
N (β Id−βvl ⊗ βvl)

ˆ
D
∇V (xl − x∗)G(z0, z[m]\{l}, z∗)Mβ(v∗) dz∗.

We argue by induction: since the conclusion for s = 0 follows from Lemma 4.2(iv), we may
assume that the result holds for all 0 ≤ s ≤ s0, for some given s0 ≥ 0, and we shall deduce
that it also holds for s = s0 + 1. By duality, it suffices to prove for all G,H ∈ C∞c (Dm+1)
and 0 ≤ l ≤ m,〈
H, eiLm+1t(∇xl ,∇vl − βvl)

s0+1G
〉

L2
β(Dm+1)

.β,m,s0 〈t〉s0+1‖H‖
H
s0+1
β (Dm+1)

‖G‖L2
β(Dm+1).

Since ∇xl obviously commutes with the group {eiLm+1t}t (cf. (4.3)), it remains to establish
for all G,H ∈ C∞c (Dm+1) and 0 ≤ l ≤ m,〈
H, eiLm+1t(∇vl − βvl)

s0+1G
〉

L2
β(Dm+1)

.β,m,s0 〈t〉s0+1‖H‖
H
s0+1
β (Dm+1)

‖G‖L2
β(Dm+1). (4.5)
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Writing

∂t
(
(∇vl − βvl)

s0+1eiLm+1tG
)

= iLm+1(∇vl − βvl)
s0+1eiLm+1tG+

[
(∇vl − βvl)

s0+1, iLm+1

]
eiLm+1tG,

Duhamel’s formula yields

eiLm+1t(∇vl − βvl)
s0+1G = (∇vl − βvl)

s0+1eiLm+1tG

−
ˆ t

0
eiLm+1(t−t′)[(∇vl − βvl)s0+1, iLm+1

]
eiLm+1t′Gdt′,

hence,〈
H, eiLm+1t(∇vl − βvl)

s0+1G
〉

L2
β(Dm+1)

≤ ‖H‖
H
s0+1
β (Dm+1)

‖eiLm+1tG‖L2
β(Dm+1)

−
ˆ t

0

〈
H, eiLm+1(t−t′)[(∇vl − βvl)s0+1, iLm+1

]
eiLm+1t′G

〉
L2
β(Dm+1)

dt′. (4.6)

The commutator for s0 = 0 takes the explicit form (4.4). Expanding

[
(∇vl − βvl)

s0+1, iLm+1

]
=

s0∑
j=0

(∇vl − βvl)
s0−j [∇vl − βvl, iLm+1](∇vl − βvl)

j ,

inserting (4.4), using that ∇xl commutes with Lm+1 (cf. (4.3)), noting that there holds
R

(l)
m+1(∇vl−βvl) = 0, and noting that the operator norm of R(l)

m+1 on L2
β(Dm+1) is bounded

by Cmβ (cf. ‖(βv)⊗2‖L2
β(D) . β), we find for all t, t′,

〈
H, eiLm+1t

[
(∇vl − βvl)

s0+1, iLm+1

]
eiLm+1t′G

〉
L2
β(Dm+1)

.m,s0
(
‖(eiLm+1t)∗∇xlH‖Hs0

β (Dm+1) + β‖(eiLm+1t)∗H‖Hs0
β (Dm+1)

)
‖eiLm+1t′G‖L2

β(Dm+1),

where (·)∗ denotes duality with respect to the scalar product of L2
β(Dm+1). Note that the

induction assumption yields by duality for all 0 ≤ s ≤ s0,

‖(eiLm+1t)∗H‖Hs
β(Dm+1) .β,m,s 〈t〉s‖H‖Hs

β(Dm+1),

so that the above becomes〈
H, eiLm+1t

[
(∇vl − βvl)

s0+1, iLm+1

]
eiLm+1t′G

〉
L2
β(Dm+1)

.β,m,s0 〈t〉s0‖H‖Hs0+1
β (Dm+1)

‖G‖L2
β(Dm+1).

Inserting this into (4.6), the conclusion (4.5) follows. �

Finally, we show that the operators M ’s and S’s as defined in Lemma 2.4 amount to
the loss of (at most) one v-derivative.
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Lemma 4.4 (Bounds on operators M ’s and S’s). Given V ∈ C∞(Td), there holds for all
β ∈ (0,∞), 0 ≤ m ≤ N , s ≥ 0, and Gm+r ∈ C∞c (Dm+r) with r ∈ {−1, 0, 1, 2},

‖Mm+1
m+2G

m+2‖H−s−1
β (Dm+1) .β,m,s ‖G

m+2
N ‖H−sβ (Dm+2),

‖Sm+1
m+1G

m+1‖H−s−1
β (Dm+1) .β,m,s ‖G

m+1
N ‖H−sβ (Dm+1),

‖Sm+1
m Gm‖H−s−1

β (Dm+1) .β,m,s ‖G
m
N‖H−sβ (Dm),

‖Sm+1
m−1G

m−1‖H−sβ (Dm+1) .β,m,s ‖G
m−1
N ‖H−sβ (Dm−1),

where the multiplicative constants Cβ,m,s further depend on ‖∇V ‖W s,∞(Td). ♦

Proof. Set A := 〈(∇x,∇v−βv)〉. By duality, it suffices to show for all Hm+1 ∈ C∞c (Dm+1),〈
Hm+1,Mm+1

m+2A
sGm+2

〉
L2
β(Dm+1)

.m,s ‖Hm+1‖Hs+1
β (Dm+1)‖G

m+2‖L2
β(Dm+2),〈

Hm+1, Sm+1
m+1A

sGm+1
〉

L2
β(Dm+1)

.m,s ‖Hm+1‖Hs+1
β (Dm+1)‖G

m+1‖L2
β(Dm+1),〈

Hm+1, Sm+1
m AsGm

〉
L2
β(Dm+1)

.m,s ‖Hm+1‖Hs+1
β (Dm+1)‖G

m‖L2
β(Dm)

+
√
β ‖Hm+1‖Hs

β(Dm+1)‖Gm‖L2
β(Dm)〈

Hm+1, Sm+1
m−1A

sGm−1
〉

L2
β(Dm+1)

.m,s
√
β ‖Hm+1‖Hs

β(Dm+1)‖Gm−1‖L2
β(Dm−1).

These estimates follow from the definitions of Mm+1
m+2 , S

m+1
m−1 , S

m+1
m , and Sm+1

m+1 together
with integrations by parts and with the bound ‖βv‖L2

β(D) .
√
β. �

Lemma 4.3 implies that, for fixed N , marginals and cumulants are smooth globally in
time. Then, by Lemma 4.4, all terms in the cumulant equations make sense, although it
is not yet clear at this stage whether they are uniformly bounded or not.

4.2. Truncation of the BBGKY hierarchy. This section is devoted to the proof of
Proposition 4.1. We start by rigorously truncating the BBGKY hierarchy of Lemma 2.4,
leading to a closed system of equations on G1

N , G
2
N , G

3
N . This is based on the uniform a

priori estimates of Lemma 2.2, and constitutes a rigorous version of (3.2). In addition,
this justifies the optimal orders of magnitude in (3.1). Although we focus here on the first
three cumulants, the estimates are easily pursued to higher order.

Lemma 4.5. Let the assumptions of Theorem 1 hold for V, β, f◦. Given 0 ≤ r < 1
4 , there

holds for all τ ≥ 0,

N(∂tg
1
N )|t=Nrτ (v) =

ˆ
Td

(
M1

2NG
2;Nrτ
N

)
(x, v) dx, (4.7)

and ∥∥∥∥NG2;Nrτ
N −

ˆ Nrτ

0
e−iL2(Nrτ−t′)(S2

1G
1;t′

N +M2
3 (NG3;t′

N )
)
dt′
∥∥∥∥
H−1
β (D2)

.β 〈τ〉2N2r− 1
2 ,

∥∥∥∥NG3;Nrτ
N − e−iNrL3τ (NG3;◦

N )−
ˆ Nrτ

0
e−iL3(Nrτ−t′)S3

1G
1;t′

N dt′
∥∥∥∥
H−1
β (D3)

.β 〈τ〉2N2r− 1
2 .

In particular, this implies

‖G2;Nrτ
N ‖H−1

β (D2) + ‖G3;Nrτ
N ‖H−1

β (D2) .β 〈τ〉
2N2r−1. ♦
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Proof. Averaging in space the equation for G1
N in Lemma 2.4 directly yields (4.7). We turn

to the description of NG2
N . The corresponding equation in Lemma 2.4 takes the form

∂t(NG
2
N ) + iL2(NG2

N ) = S2
1G

1
N +M2

3 (NG3
N ) + 1

N S
2
2(NG2

N ),

hence, by Duhamel’s formula, with G2;◦
N = 0 (cf. Lemma 2.3),

NG2;Nrτ
N =

ˆ Nrτ

0
e−iL2(Nrτ−t′)(S2

1G
1;t′

N +M2
3 (NG3;t′

N )
)
dt′

+ 1
N

ˆ Nrτ

0
e−iL2(Nrτ−t′)S2

2(NG2;t′

N ) dt′.

Successively applying Lemmas 4.3 and 4.4, we deduce∥∥∥∥NG2;Nrτ
N −

ˆ Nrτ

0
e−iL2(Nrτ−t′)(S2

1G
1;t′

N +M2
3 (NG3;t′

N )
)
dt′
∥∥∥∥
H−1
β (D2)

≤ 1
N

ˆ Nrτ

0

∥∥e−iL2(Nrτ−t′)S2
2(NG2;t′

N )
∥∥
H−1
β (D2)

dt′

.β N r−1〈τ〉
ˆ Nrτ

0
‖S2

2(NG2;t′

N )‖H−1
β (D2) dt

′

.β N r−1〈τ〉
ˆ Nrτ

0
‖NG2;t′

N ‖L2
β(D2) dt

′,

and the stated estimate then follows from the a priori estimate of Lemma 2.2 in the form
‖NG2

N‖L2
β(D2) .β N

1
2 . It remains to establish the corresponding description of NG3

N . In
view of Duhamel’s formula, the equation for NG3

N in Lemma 2.4 yields

NG3;Nrτ
N = e−iN

rL3τ (NG3;◦
N ) +

ˆ Nrτ

0
e−iL3(Nrτ−t′)S3

1G
1;t′

N dt′

+

ˆ Nrτ

0
e−iL3(Nrτ−t′)(M3

4 (NG4;t′

N ) + 1
N S

3
2(NG2;t′

N ) + 1
N S

3
3(NG3;t′

N )
)
dt′. (4.8)

Appealing again to Lemmas 4.3 and 4.4, and to the a priori estimate of Lemma 2.2 in
the forms ‖NG4

N‖L2
β(D2) .β N−

1
2 , ‖NG2

N‖L2
β(D2) .β N

1
2 , and ‖NG3

N‖L2
β(D2) .β 1, the

conclusion similarly follows. �

Solving the expressions for NG2
N and NG3

N in terms of g1
N and inserting them into the

equation for g1
N , we are led to a closed equation on g1

N , and Proposition 4.1 follows.

Proof of Proposition 4.1. Since Lemmas 4.3 and 4.4 yield for all H ∈ L∞(R+;C∞c (D3)),∥∥∥∥ˆ Nrτ

0
e−iL2(Nrτ−t′)M2

3H
t′ dt′

∥∥∥∥
H−2
β (D2)

.β 〈τ〉3N3r sup
0≤t′≤Nrτ

‖Ht′‖H−1
β (D3),
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we may insert the approximate expression for NG3
N inside that for NG2

N in Lemma 4.5,
to the effect of∥∥∥∥NG2;Nrτ

N −
ˆ Nrτ

0
e−iL2(Nrτ−t′)M2

3 e
−iL3t′(NG3;◦

N ) dt′ −
ˆ Nrτ

0
e−iL2(Nrτ−t′)S2

1G
1;t′

N dt′

−
ˆ Nrτ

0

ˆ t′

0
e−iL2(Nrτ−t′)M2

3 e
−iL3(t′−t′′)S3

1G
1;t′′

N dt′′dt′
∥∥∥∥
H−2
β (D2)

.β 〈τ〉5N5r− 1
2 .

Next, we argue that we can replace G1
N by its initial condition g◦ (cf. Lemma 2.3) in the

last two left-hand side terms. For that purpose, we appeal to (4.7) in the time-integrated
form of

G1;Nrτ
N = g◦ + 1

N

ˆ Nrτ

0
e−iL1(Nrτ−t′)M1

2 (NG2;t′

N ) dt′, (4.9)

which yields, in view of Lemmas 4.3 and 4.4 and of the a priori estimate of Lemma 2.2 in
the form ‖NG2

N‖L2
β(D2) .β N

1
2 ,

‖G1;Nrτ
N − g◦‖H−1

β (D) . 〈τ〉
2N2r− 1

2 . (4.10)

Since Lemmas 4.3 and 4.4 yield for all H ∈ L∞(R+;C∞c (D)),∥∥∥∥ˆ Nrτ

0
e−iL2(Nrτ−t′)S2

1H
t′ dt′

∥∥∥∥
H−2
β (D2)

.β 〈τ〉3N3r sup
0≤t′≤Nrτ

‖Ht′‖H−1
β (D),

and similarly,∥∥∥∥ˆ Nrτ

0

ˆ t′

0
e−iL2(Nrτ−t′)M2

3 e
−iL3(t′−t′′)S3

1H
t′′ dt′′dt′

∥∥∥∥
H−3
β (D2)

.β 〈τ〉7N7r sup
0≤t′≤Nrτ

‖Ht′‖H−1
β (D),

we may insert (4.10) into the above approximate expression for NG2
N , to the effect of∥∥∥∥NG2;Nrτ

N −
ˆ Nrτ

0
e−iL2(Nrτ−t′)M2

3 e
−iL3t′(NG3;◦

N ) dt′ −
ˆ Nrτ

0
e−iL2(Nrτ−t′)S2

1g
◦ dt′

−
ˆ Nrτ

0

ˆ t′

0
e−iL2(Nrτ−t′)M2

3 e
−iL3(t′−t′′)S3

1g
◦ dt′′dt′

∥∥∥∥
H−3
β (D2)

.β 〈τ〉9N9r− 1
2 .

Finally inserting this into the equation (4.7) for g1
N , and using Lemma 4.4 once again, the

conclusion follows. �

5. Markovian limit of the truncated hierarchy

The present section is devoted to the computation of the long-time limit of the different
terms in the integrated truncated BBGKY hierarchy of Proposition 4.1, showing that
it coincides with the expected linearized Lenard-Balescu operator (1.10). The proof of
Theorem 1 is concluded in Section 5.6.
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5.1. Laplace transform. The long-time propagators in Proposition 4.1 are best com-
puted formally by means of Laplace transforms. In such terms, we reformulate as follows
the result of Proposition 4.1.

Corollary 5.1. Let the assumptions of Theorem 1 hold for V, β, f◦. Given 0 ≤ r < 1
18 ,

there holds for all φ ∈ C∞c (R+),∥∥∥∥ˆ ∞
0

φ(τ) (N∂tg
1
N )|t=Nrτ dτ

−
ˆ
R
gφ(α)

( ˆ
Td

(
M1

2

(
iL2 + iα+1

Nr

)−1
S2

1g
◦
)

(x, ·) dx

+

ˆ
Td

(
M1

2

(
iL2 + iα+1

Nr

)−1
M2

3

(
iL3 + iα+1

Nr

)−1
S3

1g
◦
)

(x, ·) dx

+ iα+1
Nr

ˆ
Td

(
M1

2

(
iL2 + iα+1

Nr

)−1
M2

3

(
iL3 + iα+1

Nr

)−1
(NG3;◦

N )
)

(x, ·) dx
)
dα

∥∥∥∥
H−4
β (Rd)

.β,φ N9r− 1
2 ,

where gφ(α) := 1
2π

´∞
0

e(iα+1)τ

iα+1 φ(τ) dτ belongs to C∞b (Rd) and satisfies

|gφ(α)| .φ 〈α〉−2 and
ˆ
R
gφ =

ˆ ∞
0

φ. ♦

Integrating the result of Proposition 4.1 with a test function φ in time, this corollary
directly follows from applying Laplace transform in form of the following product formula.

Lemma 5.2 (Product formula for Laplace transform). For all φ ∈ C∞c (R+), there holds
for all n ≥ 1 and all generators R1, . . . , Rn of uniformly bounded C0-groups on a Hilbert
space H,
ˆ ∞

0
φ(τ)

ˆ
(R+)n

1τ1≤...≤τn≤Nτ e
−iRn(Nτ−τn) ⊗ . . .⊗ e−iR1(τ2−τ1)dτ1 . . . dτn dτ

=

ˆ
R
gφ(α)

(
iRn + iα+1

N

)−1 ⊗ . . .⊗
(
iR1 + iα+1

N

)−1
dα,

where the transformation gφ is as in the statement of Corollary 5.1 above. ♦

Proof. Inserting the formula δ(τ0+. . .+τn−Nτ) = 1
2π

´
R e
−iα(τ0+...+τn−Nτ)dα and invoking

the uniform boundedness of the C0-groups, we can writeˆ ∞
0

φ(τ)

ˆ
(R+)n

1τ1≤...≤τn≤Nτ e
−iRn(Nτ−τn) ⊗ . . .⊗ e−iR1(τ2−τ1)dτ1 . . . dτn dτ

=

ˆ ∞
0

φ(τ)

ˆ
(R+)n+1

δ(τ0 + . . .+ τn −Nτ) e−iRnτn ⊗ . . .⊗ e−iR1τ1dτ0 . . . dτn dτ

=

ˆ ∞
0

eτφ(τ)

ˆ
(R+)n+1

δ(τ0 + . . .+ τn −Nτ)

× e−(iRn+ 1
N

)τn ⊗ . . .⊗ e−(iR1+ 1
N

)τ1 e−
1
N
τ0 dτ0 . . . dτn dτ

=
1

2π

ˆ
R

(ˆ ∞
0

e(iα+1)τφ(τ) dτ
)(

1
N

ˆ ∞
0

e−
1
N

(iα+1)τ0dτ0

)
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×
(ˆ ∞

0
e−(iRn+ iα+1

N
)τndτn

)
⊗ . . .⊗

(ˆ ∞
0

e−(iR1+ iα+1
N

)τ1dτ1

)
dα

=
1

2π

ˆ
R

(ˆ ∞
0

e(iα+1)τ

iα+ 1
φ(τ) dτ

)(
iRn + iα+1

N

)−1 ⊗ . . .⊗
(
iR1 + iα+1

N

)−1
dα.

It remains to analyze the integral in bracket, that is, gφ(α) := 1
2π

´∞
0

e(iα+1)τ

iα+1 φ(τ) dτ . Note
that

(1 + α2)

ˆ ∞
0

e(iα+1)τ

iα+ 1
φ(τ) dτ = 2

ˆ ∞
0

e(iα+1)τφ(τ)dτ +

ˆ ∞
0

(−∂τ )e(iα+1)τφ(τ)dτ

= 2

ˆ ∞
0

e(iα+1)τφ(τ)dτ +

ˆ ∞
0

e(iα+1)τφ′(τ)dτ + φ(0),

where the right-hand side is uniformly bounded in α for φ ∈ C∞c (R+), hence gφ(α) is
bounded by Cφ(1 + α2)−1. Moreover, a straightforward computation by means of Fourier
transforms yields the identity

´
R gφ =

´∞
0 φ. �

5.2. Preliminary estimates. We establish the following uniform estimates, which are
useful for application of Lebesgue’s dominated convergence theorem when computing the
limit of the different terms appearing in Corollary 5.1. In particular, the bound on the
dispersion function ε◦β,m improves on the positivity statement of Lemma 4.2(ii).

Lemma 5.3. The following hold for all β ∈ (0,∞) and k ∈ 2πZd \ {0},
(i) Decay estimate: for all =ω > 0,∣∣〈 1

k·v−ω
〉
v

∣∣+ 1
|k|
∣∣〈 k·v
k·v−ω

〉
v

∣∣ .β 1
1+|<ω| ;

(ii) Lower bound on ε◦β,m: given V ∈ L∞(Td) with V̂ ≥ 0 and β‖V ‖L∞ ≤ 1
C0

for some
large enough constant C0 ' 1, there holds for 1 ≤ m ≤ N and =ω > 0,

|ε◦β,m(k, ω)| & 1;

(iii) Uniform bounds: for all =ω,=η > 0,〈∣∣ 1
k·v−ω

∣∣〉
v

+ 1
|k|
〈∣∣ k·v
k·v−ω

∣∣〉
v
.β 1 + log(1 + 1

=ω ),∣∣〈 1
(k·v−η)(k·v−ω)

〉
v

∣∣+ 1
|k|
∣∣〈 k·v

(k·v−η)(k·v−ω)

〉
v

∣∣ .β 1. ♦

Proof. We start with the proof of (i). Setting k̂ := k/|k| and splitting the v-integral over
k̂R and over (k̂R)⊥, we can write〈

1
k·v−ω

〉
v

=
( β

2π|k|2
) 1

2

ˆ
R

1
y−ω e

− β

2|k|2
y2
dy.

Decomposing the real and imaginary parts of 1
y−ω , and noting that an elementary compu-

tation yields for all r, c > 0 and y0 ∈ R,∣∣∣c 1
2

ˆ
R

y−y0
(y−y0)2+r2

e−cy
2
dy
∣∣∣+ c

1
2

ˆ
R

r
(y−y0)2+r2

e−cy
2
dy

.
(

1
|y0| + c

1
2 e−

c
2
y20
)
∧
(
1 + c

1
2
)
. 1
|y0| ∧

(
1 + c

1
2
)
, (5.1)

we deduce ∣∣〈 1
k·v−ω

〉
v

∣∣ . 1
|<ω| ∧

(
1 + β

|k|2
) 1

2 .β
1

1+|<ω| ,
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and the same bound holds for 〈 k·v
k·v−ω 〉v.

We turn to the lower bound (ii) for ε◦β,m. Since V̂ is nonnegative, we deduce from (4.2)
that

|ε◦β,m(k, ω)| ≥ 1− N+1−m
N V̂ (k)|<ω|

∣∣〈 β(k·v−<ω)
(k·v−<ω)2+(=ω)2

〉
v

∣∣,
hence, in view of (5.1),

|ε◦β,m(k, ω)| ≥ 1− CβV̂ (k) ≥ 1− C(2π)dβ‖V ‖L∞(Td),

and the claim follows.

It remains to establish the bounds in (iii) and we start with the first one. Writing〈∣∣ 1
k·v−ω

∣∣〉
v
.
( β

2π|k|2
) 1

2

ˆ
R

1
|y−<ω|+|=ω| e

− β

2|k|2
y2
dy,

and separately estimating the contribution of the y-integral for |y − <ω| ≤ =ω, for =ω ≤
|y −<ω| ≤ L, and for |y −<ω| ≥ L, we deduce for all L ≥ =ω,〈∣∣ 1

k·v−ω
∣∣〉
v
. β

1
2 + 1

L + β
1
2

ˆ
=ω≤|y−<ω|≤L

1
|y−<ω| dy . β

1
2 + 1

L + β
1
2 log L

=ω ,

and the first part of (iii) follows after optimizing in L. We turn to the second part of (iii).
Writing 〈

1
(k·v−η)(k·v−ω)

〉
v

=
( β

2π|k|2
) 1

2

ˆ
R

1
(y−η)(y−ω) e

− β

2|k|2
y2
dy,

and slightly deforming the integration path for y close to <η and to <ω in order to ensure
that |y − η| and |y − ω| are uniformly bounded below by 1 (note that η and ω are on the
same complex half-plane), the result follows. �

5.3. Contribution from 2-particle correlations. This section is devoted to the explicit
computation of the contribution of 2-particle correlations in the formula of Corollary 5.1,
which formally takes the form M1

2 (iL2 + 0)−1S2
1g
◦.

Proposition 5.4. Given V ∈ W 1,∞(Td) and β ∈ (0,∞), the following convergence holds
in H−1

β (Rd), uniformly for N ≥ 1,

lim
ω→0
=ω>0

ˆ
Td

(
M1

2 (iL2 − iω)−1S2
1g
◦)(x, v) dx

= (∇v − βv) ·
( ∑
k∈2πZd

(k ⊗ k)πV̂ (k)2〈δ(k·(v∗−v))〉v∗
|ε◦β,1(k,k·v+i0)|2

)
∇vg◦(v)

+ (∇v − βv) ·
( ∑
k∈2πZd

βV̂ (k) (k ⊗ k)πV̂ (k)2〈δ(k·(v∗−v))〉v∗
|ε◦β,1(k,k·v+i0)|2

)
(∇v − βv)g◦(v),

where in addition the argument of the limit can be written as (∇v − βv) · GωN,β(v) where
GωN,β(v) is bounded pointwise by Cβ|〈∇v − βv〉g◦(v)| uniformly for =ω > 0. ♦

We first need to find a way to explicitly compute the resolvent of L2 = L
(0)
2 + L

(1)
2 . As

the resolvents of both summands are explicitly given in Lemma 4.2(ii), the resolvent of
their sum can be deduced from the following useful general identity, which we essentially
borrow from Nicholson’s physics textbook [22, equation (A.16)].
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Lemma 5.5 (Resolvent of sums of commuting operators). Let iH1 and iH2 denote two
generators of uniformly bounded commuting C0-groups on a Hilbert space H. Then, for all
0 < =η < =ω,

(H1 +H2 − ω)−1 =
1

2πi

ˆ
R

(H1 + α− ω + η)−1(H2 − α− η)−1 dα. ♦

Proof. As the two generators commute, their sum also generate a C0-group, and its resol-
vent is given as the Laplace transform of the generated group,

(iH1 + iH2 − iω)−1 =

ˆ ∞
0

e−(iH1+iH2)teiωt dt =

ˆ ∞
0

e−iH1te−iH2teiωt dt,

hence, for all η,

(iH1 + iH2 − iω)−1 =

ˆ ∞
0

e−(iH1−iω+iη)te−(iH2−iη)t dt.

Inserting the formula δ(t− t′) = 1
2π

´
R e
−iα(t−t′)dα and invoking the uniform boundedness

of the C0-groups, we can write for 0 < =η < =ω,

(iH1 + iH2 − iω)−1 =
1

2π

ˆ
R

(ˆ ∞
0

e−(iH1+iα−iω+iη)t dt
)(ˆ ∞

0
e−(iH2−iα−iη)t′ dt′

)
dα,

and the conclusion follows. �

With this useful trick at hand, we may explicitly compute the resolvent of L2 as required
for the proof of Proposition 5.4.

Proof of Proposition 5.4. By definition of M1
2 in Lemma 2.4, we can write in Fourier vari-

ables,
ˆ
Td

(
M1

2 (iL2 − iω)−1S2
1g
◦)(x, v) dx =

(
M̂1

2 (iL̂2 − iω)−1Ŝ2
1g
◦)(0, v)

=
∑

k∈2πZd
ikV̂ (k) · (∇v − βv)

〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))

〉
v∗
,

hence, by symmetry,
ˆ
Td

(
M1

2 (iL2 − iω)−1S2
1g
◦)(x, v) dx

= − 1
2i

∑
k∈2πZd

kV̂ (k) · (∇v − βv)
〈(

(iL̂2 − iω)−1Ŝ2
1g
◦)((−k, v), (k, v∗))

−
(
(iL̂2 − iω)−1Ŝ2

1g
◦)((k, v), (−k, v∗))

〉
v∗
. (5.2)

In view of Lemma 5.5 with L2 = L
(0)
2 + L

(1)
2 , we can write

(iL̂2 − iω)−1Ŝ2
1g
◦ = − 1

2π

ˆ
R

(
L̂

(1)
2 + α− ω

2

)−1(
L̂

(0)
2 − α− ω

2

)−1
Ŝ2

1g
◦ dα.
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Inserting formulas for resolvents as given in Lemma 4.2(ii), we deduce〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))

〉
v∗

=
1

2π

ˆ
R

1
ε◦β,1(k,ω

2
−α)

1
k·v+α+ω

2

〈
Ŝ2
1g
◦((−k,v),(k,v∗))
k·v∗+α−ω2

〉
v∗
dα. (5.3)

As =ω > 0, we note that the integrand

α 7→ 1
ε◦β,1(k,ω

2
−α)

〈
Ŝ2
1g
◦((−k,v),(k,v∗))
k·v∗+α−ω2

〉
v∗

is analytic on the lower complex half-plane =α < 1
2=ω. In addition, in view of Lemma 5.3

and in view of the definition of S2
1 in Lemma 2.4 in the form

Ŝ2
1g
◦((−k, v), (k, v∗)) = −ikV̂ (k) · (∇v − βv + βv∗) g

◦(v),

the integrand is bounded by∣∣∣ 1
ε◦β,1(k,ω

2
−α)

〈
Ŝ2
1g
◦((−k,v),(k,v∗))
k·v∗+α−ω2

〉
v∗

∣∣∣ .β 1
1+|<(α−ω

2
)|
(
|(∇v − βv)g◦(v)|+ |g◦(v)|

)
.

Complex deformation can then be applied to (5.3) in the lower complex half-plane and we
are led to the residue at α = −k · v − ω

2 ,〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))

〉
v∗

= −i
ε◦β,1(k,k·v+ω)

〈
Ŝ2
1g
◦((−k,v),(k,v∗))
k·(v∗−v)−ω

〉
v∗
. (5.4)

Using the definition of ε◦β,1 in Lemma 4.2(ii) in the form

1
ε◦β,1(k,k·v+ω) = 1

|ε◦β,1(k,k·v+ω)|2
(
1 + βV̂ (k)

〈
k·v∗

k·(v∗−v)−ω̄
〉
v∗

)
, (5.5)

inserting the above definition of S2
1 , and reorganizing the term, we find〈(

(iL̂2 − iω)−1Ŝ2
1g
◦)((−k, v), (k, v∗))

〉
v∗

= − V̂ (k)
|ε◦β,1(k,k·v+ω)|2

(
1 + βV̂ (k)

〈
k·v∗

k·(v∗−v)−ω̄
〉
v∗

)
×
(〈

1
k·(v∗−v)−ω

〉
v∗
k · ∇g◦(v) +

〈 k·(v∗−v)
k·(v∗−v)−ω

〉
v∗
βg◦(v)

)
.

We note that Lemma 5.3 yields the following bound, uniformly for =ω > 0,∣∣∣〈((iL̂2 − iω)−1Ŝ2
1g
◦)((−k, v), (k, v∗))

〉
v∗

∣∣∣ .β V̂ (k)
(
|(∇− βv)g◦(v)|+ |g◦(v)|

)
,

which implies the stated estimate. Letting ω → 0 with =ω > 0, we find

lim
ω→0
=ω>0

〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))

〉
v∗

= − V̂ (k)
|ε◦β,1(k,k·v+i0)|2

(
1 + βV̂ (k)

〈
k·v∗

k·(v∗−v)+i0

〉
v∗

)(〈
1

k·(v∗−v)−i0
〉
v∗
k · ∇g◦(v) + βg◦(v)

)
,
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where all terms indeed make sense. Noting that ε◦β,1(−k,−k · v + i0) = ε◦β,1(k, k · v + i0),
we can write by symmetry

lim
ω→0
=ω>0

1
2i

〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))−

(
(iL̂2 − iω)−1Ŝ2

1g
◦)((k, v), (−k, v∗))

〉
v∗

= − V̂ (k)
|ε◦β,1(k,k·v+i0)|2=

[(
1 + βV̂ (k)

〈
k·v∗

k·(v∗−v)+i0

〉
v∗

)(〈
1

k·(v∗−v)−i0
〉
v∗
k · ∇g◦(v) + βg◦(v)

)]
.

Decomposing 〈 βk·v∗
k·(v∗−v)+i0

〉
v∗

= β + βk · v
〈

1
k·(v∗−v)+i0

〉
v∗
,

and using the Sokhotski-Plemelj formula in the form

=
〈

1
k·(v∗−v)−i0

〉
v∗

= π
〈
δ
(
k · (v∗ − v)

)〉
v∗
,

we find after straightforward simplifications,

lim
ω→0
=ω>0

1

2i

〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))−

(
(iL̂2 − iω)−1Ŝ2

1g
◦)((k, v), (−k, v∗))

〉
v∗

= −πV̂ (k)〈δ(k·(v∗−v))〉v∗
|ε◦β,1(k,k·v+i0)|2

[
k · ∇g◦(v) + βV̂ (k)k · (∇v − βv)g◦(v)

]
.

Inserting this into (5.2) yields the conclusion. �

5.4. Contribution from 3-particle correlations. We turn to the explicit computation
of the contribution of 3-particle correlations in the formula of Corollary 5.1, which formally
takes the form M1

2 (iL2 + 0)−1M2
3 (iL3 + 0)−1S3

1g
◦.

Proposition 5.6. Given V ∈ W 1,∞(Td) and β ∈ (0,∞), the following convergence holds
in H−1

β (Rd), uniformly for N ≥ 1,

lim
ω→0
=ω>0

ˆ
Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1S3

1g
◦)(x, v) dx

= −(∇v − βv) ·
( ∑
k∈2πZd

βV̂ (k)(k ⊗ k)πV̂ (k)2〈δ(k·(v∗−v))〉v∗
|ε◦β,1(k,k·v+i0)|2

(
N−1
N

1+βV̂ (k)

1+N−1
N

βV̂ (k)

))
× (∇v − βv)g◦(v),

where in addition the argument of the limit can be written as (∇v − βv)GωN,β(v) where
GωN,β(v) is bounded pointwise by Cβ|(∇v − βv)g◦(v)| uniformly for =ω > 0. ♦

Proof. By definition of M1
2 in Lemma 2.4, we can write in Fourier variables,

ˆ
Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1S3

1g
◦)(x, v) dx (5.6)

=
(
M̂1

2 (iL̂2 − iω)−1M̂2
3 (iL̂3 − iω)−1Ŝ3

1g
◦)(0, v)

=
∑

k∈2πZd
ikV̂ (k) · (∇v − βv)

〈(
(iL̂2 − iω)−1M̂2

3 (iL̂3 − iω)−1Ŝ3
1g
◦)((−k, v), (k, v∗))

〉
v∗
,
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while the definition of M2
3 yields(

M̂2
3 (iL̂3 − iω)−1Ŝ3

1g
◦)((−k, v), (k, v∗)) (5.7)

= N−1
N

∑
k′∈2πZd

ik′V̂ (k′) · (∇v − βv)
(〈(

(iL̂3 − iω)−1Ŝ3
1g
◦)((−k − k′, v), (k, v∗), (k

′, w∗)
)〉
w∗

+
〈(

(iL̂3 − iω)−1Ŝ3
1g
◦)((−k, v), (k − k′, v∗), (k′, w∗)

)〉
w∗

)
.

In view of the prefactors k, k′, we can restrict the sums to k, k′ 6= 0. We start with the
evaluation of the resolvent (iL̂3 − iω)−1. For that purpose, we note that the definitions of
S3

1 and L3 in Lemma 2.4 yield for k, k′ 6= 0,

(Ŝ3
1g
◦)
(
(−k − k′, v), (k, v∗), (k

′, w∗)
)

= −δ(k + k′) ik · (v∗ − w∗)βV̂ (k)g◦(v),

(Ŝ3
1g
◦)
(
(−k, v), (k − k′, v∗), (k′, w∗)

)
= δ(k) ik′ · (v∗ − w∗)βV̂ (k′)g◦(v) = 0,

and for Ĝ = Ĝ((0, v), (k, v∗), (−k,w∗)),

L̂3Ĝ = k · v∗
(
Ĝ+ N−1

N βV̂ (k)〈Ĝ〉v∗
)
− k · w∗

(
Ĝ+ N−1

N βV̂ (k)〈Ĝ〉w∗
)
.

Hence, for

Ĥ3
(
(k0, v0), (k1, v1), (k2, v2)

)
:=

β
2

(V̂ (k1)+V̂ (k2))

1+N−1
N

β
2

(V̂ (k1)+V̂ (k2))
g◦(v0),

comparing the above formulas for S3
1 and L3 yields

(L̂3Ĥ
3)
(
(0, v), (k, v∗), (−k,w∗)

)
= k · (v∗ − w∗)βV̂ (k)g◦(v)

= i(Ŝ3
1g
◦)
(
(0, v), (k, v∗), (−k,w∗)

)
.

Inserting these computations into (5.7), we obtain for k 6= 0,(
M̂2

3 (iL̂3 − iω)−1Ŝ3
1g
◦)((−k, v), (k, v∗))

= N−1
N ikV̂ (k) · (∇v − βv)

〈(
(iL̂3 − iω)−1iL̂3Ĥ

3
)(

(0, v), (k, v∗), (−k,w∗)
)〉
w∗
. (5.8)

We now turn back to (5.6): repeating the computation of the resolvent of L2 as in (5.4),
we findˆ

Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1S3

1g
◦)(x, v) dx

= (∇v − βv) ·
∑

k∈2πZd

kV̂ (k)
ε◦β,1(k,k·v+ω)

〈
(M̂2

3 (iL̂3−iω)−1Ŝ3
1g
◦)((−k,v),(k,v∗))

k·(v∗−v)−ω

〉
v∗
,

hence, inserting (5.8),ˆ
Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1S3

1g
◦)(x, v) dx

= (∇v − βv) ·
∑

k∈2πZd

N−1
N

i(k⊗k)V̂ (k)2

ε◦β,1(k,k·v+ω)

〈
1

k·(v∗−v)−ω (∇v − βv)

×
(
(iL̂3 − iω)−1iL̂3Ĥ

3
)(

(0, v), (k, v∗), (−k,w∗)
)〉

v∗,w∗
. (5.9)

Decomposing
(iL̂3 − iω)−1iL̂3Ĥ

3 = Ĥ3 + iω(iL̂3 − iω)−1Ĥ3, (5.10)
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spectral calculus ensures that (iL̂3−iω)−1iL̂3Ĥ
3 converges to Ĥ3−Ĥ3

◦ in L2
β(D3) as ω → 0

with =ω > 0, where
Ĥ3
◦ := δ(k0)δ(k1)δ(k2)Ĥ3

is the orthogonal projection of Ĥ3 onto KerL3 = {ψ ∈ L2
β(D3) : ∇xjψ ≡ 0 ∀j}, and we note

that the contribution of Ĥ3
◦ in (5.9) vanishes. The singularity of the prefactor 1

k·(v∗−v)−ω
in (5.9) however forces us to proceed to a more careful analysis. Explicitly computing the
resolvent of L3 based on Lemmas 4.2(ii) and 5.5, and inserting the definition of H3, we
find〈

1
k·(v∗−v)−ω (∇v − βv)

(
(iL̂3 − iω)−1Ĥ3

)(
(0, v), (k, v∗), (−k,w∗)

)〉
v∗,w∗

= βV̂ (k)

1+N−1
N

βV̂ (k)
(∇v − βv)g◦(v)

(
− i
〈

1
ε◦β,2(−k,ω−k·v∗)

1
k·(v∗−v)−ω

〈
1

k·(v∗−w∗−ω)

〉
w∗

〉
v∗

+ N−1
N βV̂ (k) 1

2π

ˆ
R

1
ε◦β,2(−k,ω

2
−α)ε◦β,2(k,ω

2
+α)

〈
k·v∗

(k·v∗−α−ω2 )(k·(v∗−v)−ω)

〉
v∗

×
〈

1
k·v∗−α−ω2

〉
v∗

〈
1

−k·w∗+α−ω2

〉
w∗
dα

)
,

hence, in view of Lemma 5.3,∣∣∣∣〈 1
k·(v∗−v)−ω (∇v − βv)

(
(iL̂3 − iω)−1Ĥ3

)(
(0, v), (k, v∗), (−k,w∗)

)〉
v∗,w∗

∣∣∣∣
.β 〈k〉V̂ (k)|(∇v − βv)g◦(v)|

(
log(2 + 1

=ω ) +

ˆ
R

1
1+|α+<ω

2
|

1
1+|α−<ω

2
|dα
)

.β log(2 + 1
=ω )〈k〉V̂ (k)|(∇v − βv)g◦(v)|, (5.11)

where we note that the right-hand side tends to 0 when multiplied by =ω in the limit ω → 0
with =ω > 0. Inserting this bound into (5.9) together with the decomposition (5.10), the
stated estimate easily follows, and passing to the limit yields in H−1

β (Rd),

lim
ω→0
=ω>0

ˆ
Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1S3

1g
◦)(x, v) dx

= (∇v − βv) ·
∑

k∈2πZd

N−1
N

βV̂ (k)

1+N−1
N

βV̂ (k)

i(k⊗k)V̂ (k)2

ε◦β,1(k,k·v+i0)

〈
1

k·(v∗−v)−i0
〉
v∗

(∇v − βv)g◦(v).

Rewriting 1
ε◦β,1

as in (5.5), using the symmetries in k, and appealing to the Sokhotski-
Plemelj formula as at the end of the proof of Proposition 5.4, the conclusion follows after
straightforward simplifications. �

5.5. Contribution from initial correlations. We finally show by a direct computation
that thanks to the prefactor iω = − iα+1

Nr the contribution of initial correlations NG3;◦
N

vanishes in the formula of Corollary 5.1.

Proposition 5.7. Given V ∈ W 2,∞(Td) and β ∈ (0,∞), the following convergence holds
in H−1

β (Rd), uniformly for N ≥ 1,

lim
ω→0
=ω>0

iω

ˆ
Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1(NG3;◦

N )
)
(x, v) dx = 0,
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where in addition the argument of the limit can be written as (∇v − βv)GωN,β(v) where
GωN,β(v) is bounded pointwise by Cβ|(∇v − βv)g◦(v)| uniformly for =ω > 0. ♦

Proof. In view of Lemma 2.3, we can write NG3;◦
N (z[0,2]) = g◦(v0)H◦N,β(x1 − x2) with

‖H◦N,β‖L2(Td) .β 1, hence

NĜ3;◦
N (ẑ[0,2]) = δ(k1 + k2) g◦(v0) Ĥ◦N,β(k1). (5.12)

Combining this with the definitions of M1
2 and M2

3 in Lemma 2.4, and repeating the
computation of the resolvent of L2 as in (5.4), we find
ˆ
Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1(NĜ3;◦

N )
)
(x, v) dx

= (∇v−βv)·
∑

k∈2πZd

kV̂ (k)
ε◦β,1(k,k·v+ω)

〈
1

k·(v∗−v)−ω
(
M̂2

3 (iL̂3−iω)−1(NĜ3;◦
N )
)
((−k, v), (k, v∗))

〉
v∗
,

and for k 6= 0,(
M̂2

3 (iL̂3 − iω)−1(NĜ3;◦
N )
)
((−k, v), (k, v∗))

= −N−1
N ikV̂ (k) · (∇v − βv)

〈(
(iL̂3 − iω)−1(NĜ3;◦

N )
)(

(0, v), (k, v∗), (−k,w∗)
)〉
w∗
.

Explicitly computing the resolvent of L3 based on Lemmas 4.2(ii) and 5.5, and insert-
ing (5.12), a direct estimate based on Lemma 5.3 yields as in (5.11),∣∣∣∣〈 1

k·(v∗−v)−ω (∇v − βv)
(
(iL̂3 − iω)−1(NĜ3;◦

N )
)(

(0, v), (k, v∗), (−k,w∗)
)〉

v∗,w∗

∣∣∣∣
.β log(2 + 1

=ω )〈k〉|Ĥ◦N,β(k)| |(∇v − βv)g◦(v)|.

Inserting this into the above, we deduce∥∥∥∥ˆ
Td

(
M1

2 (iL2 − iω)−1M2
3 (iL3 − iω)−1(NĜ3;◦

N )
)
(x, ·) dx

∥∥∥∥
H−1
β (Rd)

.β log(2 + 1
=ω )

∑
k∈2πZd

〈k〉3V̂ (k)2|Ĥ◦N,β(k)| |(∇v − βv)g◦(v)|

.β log(2 + 1
=ω )|(∇v − βv)g◦(v)|,

and the conclusion follows. �

5.6. Proof of Theorem 1. Propositions 5.4, 5.6, and 5.7 allow to pass to the limit in the
different terms in Corollary 5.1 with iω = − iα+1

Nr . For 0 < r < 1
18 , for all φ ∈ C

∞
c (R+), we

deduce that the following convergence holds in H−4
β (Rd),

lim
N↑∞

ˆ ∞
0

φ(τ) (N∂tg
1
N )|t=Nrτ dτ

=
( ˆ

R
gφ

)
(∇v − βv) ·

( ∑
k∈2πZd

(k ⊗ k)πV̂ (k)2〈δ(k·(v∗−v))〉v∗
|εβ,1(k,k·v+i0)|2

)
∇vg◦(v),

and the conclusion follows from the identity
´
R gφ =

´∞
0 φ.
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Appendix A. Other setting: fluctuations around thermal equilibrium

In this appendix, we briefly explain how the techniques developed in this work can be
adapted for a rigorous derivation of the linearized Lenard-Balescu equation for fluctua-
tions around the mean-field approximation in a linearized regime at thermal equilibrium.
More precisely, for the system (1.1), we start from a global equilibrium for the Liouville
equation (1.2), as given by the Gibbs measure

MN,β(z[N ]) := Z−1
N,β e

− β
2N

∑N
i 6=j V (xi−xj)−β2

∑N
i=1 |vi|2 ,

with normalization factor ZN,β and with fixed inverse temperature β ∈ (0,∞). We consider
chaotic initial data for (1.2) of the form

F ◦N,δ = MN,β(1 + δg◦)⊗N , (A.1)

for some given g◦ : Rd → R, in the tiny perturbation regime

δ � 1
N ,

and we consider its time evolution FN,δ under the Liouville flow (1.2). Note that the
assumption

´
Rd g

◦(v)Mβ(v) dv = 0 ensures that F ◦N,δ has mass 1 for all δ. In the present
perturbative regime δ � 1

N , the initial data F ◦N,δ is expanded as follows,

F ◦N,δ = MN,β + δH◦N +O(δ2N2)MN,β, H◦N (z) := MN,β(z)
N∑
i=1

g◦(vi). (A.2)

We are thus reduced to analyzing the time evolution HN of the linearized initial data H◦N
under the Liouville flow (1.2), and we focus on the velocity distribution of a typical particle,

h1;t
N (v) :=

ˆ
Td
H1;t
N (x, v) dx, (A.3)

where H1
N denotes the first marginal of HN . Note that the linearized initial data H◦N is

no longer a probability density: in particular there holds
´
DN H

◦
N = 0 and this property is

preserved along the flow. In this context, we expect the time-rescaled linearized velocity
density h1;Nt

N to remain close to the solution of the linearization of the Lenard-Balescu
equation (1.4) at the Maxwellian equilibrium Mβ . Writing the Lenard-Balescu collision
operator as

LB(f) := Q(f, f ; f),

in terms of

Q(f, g;h) := ∇ ·
ˆ
Rd
B(v, v − v∗;∇h)

(
f∗∇g − g∇∗f∗

)
dv∗

B(v, v − v∗;∇h) :=
∑
k∈Zd

(k ⊗ k) V̂ (k)2 δ(k·(v−v∗))
|ε(k,k·v;∇h)|2

ε(k, k · v;∇h) := 1 + V̂ (k)

ˆ
Rd

k·∇h(v∗)
k·(v−v∗)−i0 dv∗,

and noting that Q(Mβ,Mβ;h) = 0 for any h, the linearized Lenard-Balescu operator atMβ

takes on the following guise (cf. [21, 30]),

LLBβh := Q(h,Mβ;Mβ) +Q(Mβ, h;Mβ),
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that is, more explicitly, after some simplifications,

LLBβh := ∇ ·
(ˆ

Rd
B(v, v − v∗;∇Mβ)

(
(Mβ)∗(∇+ βv)h−Mβ(∇∗ + βv∗)h∗

)
dv∗

)
.

Note that the Fokker-Planck operator in (1.10) coincides with this full linearized Lenard-
Balescu operator without loss term. Proceeding to a similar cumulant analysis as for
Theorem 1, we are led to the following.

Theorem A.1. Let the same assumptions hold as in Theorem 1 with h◦ := Mβg
◦. Then,

for 0 < r < 1
18 , the velocity distribution h1

N of a typical particle (cf. (A.3)) satisfies on the
timescale t ∼ N r, in the above linearized regime,

lim
N↑∞

N(∂th
1
N )|t=Nrτ = LLBβh

◦,

as a function of (τ, v) in the weak sense of D′(R+ × Rd). ♦

Idea of the proof. We only indicate the main differences with the proof of Theorem 1 and
we omit the detail. We split the proof into three main steps.

Step 1. Cumulant expansion.
For all 1 ≤ m ≤ N , denoting byHm

N themth-order marginal ofHN , itsmth-order cumulant
is naturally defined as follows,

GmN (z[m]) =
m∑
j=1

(−1)m−j
∑
σ∈Smj

Hj
N

M⊗jβ
(zσ),

which indeed corresponds to the definition in Lemma 2.1 once the tagged particle is re-
moved. The a priori estimates of Lemma 2.2 then take the following form, for 1 ≤ m ≤ N ,

‖Gm;t
N ‖L2

β(Dm) .β,m N−
m−1

2 .

Next, similarly as in Lemma 2.4, the cumulant GmN satisfies

∂tG
m
N + iLmG

m
N = Mm

m+1G
m+1
N + 1

N

(
Smm−2G

m−2
N + Smm−1G

m−1
N + SmmG

m
N

)
,

where the operators Lm, Mm
m+1, Smm−2, Smm−1, and Smm act similarly as the corresponding

operators Lm+1, Mm+1
m+2 , S

m+1
m−1 , S

m+1
m , and Sm+1

m+1 in Lemma 2.4 when restricted to the last
m exchangeable variables. In particular, we now define Lm =

∑m
j=1 L

(j)
m+1 with L(j)

m+1 as in
Lemma 2.4. This new hierarchy of equations can be truncated on intermediate timescale
similarly as in Section 4, and it remains to compute its Markovian limit.

Step 2. Contribution from 2-particle correlations.
The contribution of 2-particle correlations to N(∂tg

1
N )|t=Nrτ as N ↑ ∞ with 0 < r < 1

18

takes the formM1
2 (iL2+0)−1S2

1g
◦ with the new notation for the operatorsM1

2 , L2, and S2
1 ,
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and we prove in H−1
β (Rd) that

lim
N↑∞, ω→0
=ω>0

ˆ
Td

(
M1

2 (iL2 − iω)−1S2
1g
◦)(x, v) dx

= (∇v − βv) ·
∑

k∈2πZd
(k ⊗ k) πV̂ (k)2

|ε◦β,2(k,k·v+i0)|2

(〈
δ
(
k · (v∗ − v)

) (
∇vg◦(v)−∇v∗g◦(v∗)

)〉
v∗

+ βV̂ (k)
〈
δ
(
k · (v∗ − v)

)(
(∇v − βv)g◦(v)− (∇v∗ − βv∗)g◦(v∗)

)〉
v∗

)
.

By definition of M1
2 , we can write in Fourier variables, as in (5.2),

ˆ
Td

(
M1

2 (iL2 − iω)−1S2
1g
◦)(x, v) dx

= − 1
2i

∑
k∈2πZd

kV̂ (k) · (∇v − βv)
〈(

(iL̂2 − iω)−1Ŝ2
1g
◦)((−k, v), (k, v∗))

−
(
(iL̂2 − iω)−1Ŝ2

1g
◦)((k, v), (−k, v∗))

〉
v∗
,

while the resolvent of L2 now takes on the following guise,〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))

〉
v∗

= −i
ε◦β,2(k,k·v+ω)

〈
Ŝ2
1g
◦((−k,v),(k,v∗))
k·(v∗−v)−ω

〉
v∗

(A.4)

− N−1
N βV̂ (k) 1

2π

ˆ
R

1
ε◦β,2(k,ω

2
−α)ε◦β,2(−k,α+ω

2
)

k·v
k·v+α+ω

2

〈
Ŝ2
1g
◦((−k,v),(k,v∗))

(k·v+α+ω
2

)(k·v∗+α−ω2 )

〉
v,v∗

dα,

which is obtained from Lemmas 4.2(ii) and 5.5 together with a complex deformation ar-
gument as in (5.4). The first right-hand side term has the same structure as in (5.4),
while the second one is new and cannot be computed by complex deformation due to the
presence of poles in both complex half-planes. Formally passing to the limit and noting
that ε◦β,2(−k, α+ i0) = ε◦β,2(k,−α+ i0) and ε◦β,2(k, ω)→ ε◦β,1(k, ω), we are led to

lim
N↑∞, ω→0
=ω>0

〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))

〉
v∗

= −i
ε◦β,1(k,k·v+i0)

〈
Ŝ2
1g
◦((−k,v),(k,v∗))
k·(v∗−v)−i0

〉
v∗

− 1
2π

ˆ
R

βV̂ (k)
|ε◦β,1(k,−α+i0)|2

k·v
k·v+α+i0

〈
Ŝ2
1g
◦((−k,v),(k,v∗))

(k·v+α+i0)(k·v∗+α−i0)

〉
v,v∗

dα, (A.5)

The definition of S2
1 yields

Ŝ2
1g
◦((−k, v), (k, v∗)) = −iV̂ (k)

(
Sk(v, v∗)− Sk(v∗, v)

)
with Sk(v, v∗) := k · (∇v−βv+βv∗)g

◦(v). The main difference with the case of the tagged
particle is that now v and v∗ play a symmetric role. In particular, we deduce from this
symmetry that〈

Ŝ2
1g
◦((−k,v),(k,v∗))

(k·v+α+i0)(k·v∗+α−i0)

〉
v,v∗

= 2V̂ (k)=
〈

Sk(v,v∗)
(k·v+α+i0)(k·v∗+α−i0)

〉
v,v∗
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is purely real. Also noting that exchanging k and −k in the right-hand side of (A.5)
amounts to taking the complex conjugate, the above computations yield

lim
N↑∞, ω→0
=ω>0

1
2i

〈(
(iL̂2 − iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))−

(
(iL̂2 − iω)−1Ŝ2

1g
◦)((k, v), (−k, v∗))

〉
v∗

= lim
N↑∞, ω→0
=ω>0

=
〈(

(iL̂2 − iω)−1Ŝ2
1g
◦)((−k, v), (k, v∗))

〉
v∗

= −=
(

V̂ (k)
ε◦β,1(k,k·v+i0)

〈
Sk(v,v∗)−Sk(v∗,v)

k·(v∗−v)−i0

〉
v∗

)
− 1
π

ˆ
R

βV̂ (k)2

|ε◦β,1(k,−α+i0)|2=
(

k·v
k·v+α+i0

)
=
〈

Sk(v,v∗)
(k·v+α+i0)(k·v∗+α−i0)

〉
v,v∗

dα.

Now appealing to the Sokhotski-Plemelj identity in the form = k·v
k·v+α+i0 = −πδ(k · v + α),

this becomes

lim
N↑∞, ω→0
=ω>0

1
2i

〈(
(iL̂2−iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))−

(
(iL̂2−iω)−1Ŝ2

1g
◦)((k, v), (−k, v∗))

〉
v∗

= −=
(

V̂ (k)
ε◦β,1(k,k·v+i0)

〈
Sk(v,v∗)−Sk(v∗,v)

k·(v∗−v)−i0

〉
v∗

)
+ βV̂ (k)2(k·v)
|ε◦β,1(k,k·v+i0)|2 =

〈
Sk(v∗,w∗)

(k·(v∗−v)+i0)(k·(w∗−v)−i0)

〉
v∗,w∗

.

Expanding
1

ε◦β,1(k,k·v+i0) = 1
|ε◦β,1(k,k·v+i0)|2

(
1 + βV̂ (k) + βV̂ (k)(k · v)

〈
1

k·(v∗−v)+i0

〉
v∗

)
,

and appealing to the definition of Sk and to the choice 〈g◦(v)〉v = 0 in form of〈
Sk(v,v∗)−Sk(v∗,v)

k·(v∗−v)−i0

〉
v∗

= k ·
〈
∇vg◦(v)−∇v∗g◦(v∗)

k·(v∗−v)−i0

〉
v∗

+ βg◦(v),〈
Sk(v∗,w∗)

(k·(v∗−v)+i0)(k·(w∗−v)−i0)

〉
v∗,w∗

= k ·
〈
∇v∗g◦(v∗)
k·(v∗−v)+i0

〉
v∗

〈
1

k·(v∗−v)−i0
〉
v∗

+ β
〈

g◦(v∗)
k·(v∗−v)+i0

〉
v∗
,

we find after straightforward simplifications,

lim
N↑∞, ω→0
=ω>0

1
2i

〈(
(iL̂2−iω)−1Ŝ2

1g
◦)((−k, v), (k, v∗))−

(
(iL̂2−iω)−1Ŝ2

1g
◦)((k, v), (−k, v∗))

〉
v∗

= − V̂ (k)(1+βV̂ (k))
|ε◦β,1(k,k·v+i0)|2=

〈
k·(∇vg◦(v)−∇v∗g◦(v∗))

k·(v∗−v)−i0

〉
v∗
− β2V̂ (k)2(k·v)
|ε◦β,1(k,k·v+i0)|2=

〈
g◦(v)−g◦(v∗)
k·(v∗−v)+i0

〉
v∗
,

and the claim follows from the Sokhotski-Plemelj identity.

Step 3. Contribution from 3-particle correlations.
The contribution of 3-particle correlations takes the formM1

2 (iL2+0)−1M2
3 (iL3+0)−1S3

1g
◦,

and we prove in H−1
β (Rd) that

lim
N↑∞, ω→0
=ω>0

ˆ
Td

(
M1

2 (iL2 + 0)−1M2
3 (iL3 + 0)−1S3

1g
◦)(x, v) dx

= −(∇v − βv) ·
∑

k∈2πZd
βV̂ (k)(k ⊗ k) πV̂ (k)2

|ε◦β,1(k,k·v+i0)|2

×
〈
δ
(
k · (v∗ − v)

)(
(∇v − βv)g◦(v)− (∇v∗ − βv∗)g◦(v∗)

)〉
v∗
.
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The explicit computation of (iL3 + 0)−1S3
1g
◦ is performed similarly as in the proof of

Proposition 5.6, while the resolvent of L2 is computed as in Step 2, and the claim easily
follows. �
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