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Convergence to the Landau equation from the truncated BBGKY hierarchy in the weak-coupling limit

, where the singular region has been removed artificially. Since the singularity appears in the Landau equation due to the geometry of particle interactions, it is an intrinsic physical property of the weak-coupling limit which is crucial to the understanding of the transition from particle systems to the Landau equation.

Introduction

The derivation of the Landau equation in the so-called weak-coupling limit of interacting particles is an open problem in kinetic theory. In the following we prove that the derivation is valid for short times, if we truncate the BBGKY hierarchy under the assumption of propagation of chaos. This requires the stability of the leading order nonlinear evolution up to macroscopic times of order one. A similar result has been proved for microscopic times in [START_REF] Bobylev | From particle systems to the Landau equation: a consistency result[END_REF], showing consistency with the desired limit. Furthermore, in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF] the result is proved for short macroscopic times, putting a cutoff on the interaction of particles with small relative velocity. The objective of this paper is to prove the result without this cutoff.

To introduce the equations under consideration, we first recall the weak-coupling limit. Consider a countable collection ( , ) ∈ of particles in the three dimensional phase space ℝ 3 × ℝ 3 , randomly distributed according to a Poisson point process with intensity measure (d d ) = 0 ( ) d d . Here 0 ( ) is a probability density and > 0 is the scaling parameter. In particular, the random distribution of particles is homogeneous in space and there are on average many particles in a spatial unit volume.

We fix a rotationally symmetric potential ( ), and define the rescaled potential ( ) = ( ∕ ). Now consider the following Newtonian dynamics:

̇ ( ) = ( ), ̇ ( ) = - 1 2 ∑ ∈ ∇ ( ( ) -( )).
If we rescale the density of particles as = -3 , the trajectories of particles are governed by a large number of small deflections. It is expected that a central limit theorem for the collisions holds, so that in the limit we observe diffusion in the velocity variable. More precisely, let ( , , ) be the rescaled density of particles defined through the expected number ( , ) of particles in a set ⊂ ℝ 3 × ℝ Due to the homogeneity of the intensity measure in space, we have ( , , ) = ( , ). It is believed that in the scaling limit → 0 as introduced above, we have → , where is a solution to the spatially homogeneous Landau equation:

( , ) = 3 ∑ , =1
ˆℝ3 , ( -′ )( -′ ) ( , ) ( , ′ ) d ′ (0, ) = 0 ( ).

(1.2)

For physical and mathematical justifications of this equation we refer to [START_REF] Bobylev | From particle systems to the Landau equation: a consistency result[END_REF][START_REF] Landau | Die kinetische Gleichung für den Fall Coulombscher Wechselwirkung[END_REF][START_REF] Lifshitz | Course of Theoretical Physics[END_REF][START_REF] Spohn | Kinetic equations from Hamiltonian dynamics: Markovian limits[END_REF]. The matrix can be explicitly expressed by the interaction potential :

, ( ) = 2 4 ˆℝ3 ( ⋅ )| ̂ ( )| 2 d = Λ | | , - | | 2
for some Λ > 0.

(1.3)

Contrary to the case of the Boltzmann equation, a rigorous proof of the convergence → to the Landau equation has not been obtained so far. The heuristic justification of the weak-coupling limit to the Landau equation is based on the propagation of chaos principle. The principle, which is also crucial in the theory of the Boltzmann equation, asserts that with a high probability particles are uncorrelated prior to collision, and thereby experience a sequence of independent random deflections. More precisely, one can generalize the function defined in (1.1) to functions , describing the (rescaled) distribution of -tuples of particles. The functions , are related through the so-called BBGKY hierarchy of equations:

, + ∑ =1 ∇ , - 1 2 ∑ =1 ˆ∇ ( -+1 )∇ , +1 d +1 d +1 = 1 2 ∑ ≠ ∇ ( -)∇ , .
(1.4)

Then the propagation of chaos principle can be stated as:

, ( , 1 , 1 , … , , ) ≈ ∏ =1 ( , , ). (1.5) 
Of course, (1.5) only holds for → 0, since particles will develop correlations through interaction.

A more detailed analysis of correlations can be done by iteratively introducing truncated correlation functions , :

,2 ( [1,2] ) = ⊗2 ,1 ( [1,2] ) + ,2 ( [1,2] ) ,3 ( [1,3] ) = ⊗3 ,1 ( [1,3] ) + ∑ 1≤ ≤3 ,2 ( [1,3]⧵ ) ,1 ( ) + ,3 ( [1,3] ) … (1.6) 
Here we use the notation = ( , ) for phase space variables and [1, ] = ( 1 , … ). Formally the truncated correlation functions , vanish in the limit → 0 and we have a separation of orders of magnitudes ,1 ≫ ,2 ≫ ,3 ≫ …. The infinite hierarchy (1.4) can be truncated by approximating , +1 by the right-hand side of (1.6) with , +1 = 0. If we truncate the system on the level of correlations of + 1-tuples of particles, we obtain an approximation of the one-particle density in the weak-coupling limit that is expected to be accurate to the -th order in → 0, for details see [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF]. In the following we would like to describe the first order correction of ,1 in → 0, so we truncate the hierarchy by dropping terms which are formally of higher order, i.e. we approximate ,3 by zero.

Controlling the propagation of chaos is a crucial step to obtain a full derivation of the Landau equation, but we will not attempt to prove this rigorously here. We remark that the linear Landau equation can be derived rigorously starting from the motion of a test particle in a random environment (cf. [START_REF] Basile | A diffusion limit for a test particle in a random distribution of scatterers[END_REF][START_REF] Desvillettes | A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions[END_REF][START_REF] Dürr | Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model[END_REF][START_REF] Nota | On the theory of Lorentz gases with long range interactions[END_REF]). There has been recent progress in establishing propagation of chaos in a weak sense for scaling limits in the linearized setting (see [START_REF] Duerinckx | Lenard-Balescu correction to mean-field theory[END_REF]).

Following the reasoning above, we obtain the first order correction in → 0 to the weak-coupling limit, which is given by the following dynamics:

= 1 ∇ ⋅ ˆ 0 [ ( )] -, ∇ ( , ) -[ ( )] -, ( , ) d (0, ) = 0 ( ), [ ]( , ) ∶= ˆˆ∇ ( ) ⊗ ∇ ( -( -′ )) ( ′ ) d ′ d [ ]( , ) ∶= ∇ ⋅ ( , ) = ˆˆ∇ ( ) ⊗ ∇ ( -( -′ ))∇ ( ′ ) d ′ d .
(1.7)

The equation (1.7) has been considered in [START_REF] Bobylev | From particle systems to the Landau equation: a consistency result[END_REF] in the spatially inhomogeneous case. The paper proves convergence of solutions to (1.7) to a solution of the Landau equation for microscopic times, that is for ≤ as → 0. The result is valid for a general class of potentials and away from equilibrium.

Our goal here is to show that the solutions of (1.7) converge to a solution of the Landau equation (1.2) for short macroscopic times. In [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF] the convergence is shown removing the "Coulomb" singularity of the kernel, that is modifying by putting cutoff function which removes the region -′ = 0.

A crucial feature of the weak-coupling limit is the singularity | | -1 of the interaction kernel , , see (1.3). We stress the fact that the singularity appears in the limit, independent of the choice of interaction potential . This can be explained considering the momentum transfer of two interacting particles with velocities , ′ . The duration of this transfer is proportional to the inverse relative velocity | -′ | -1 , hence diverges for particles with very small relative velocity. This singularity is a key technical problem in the theory of the Landau equation and of the weak-coupling limit, see [START_REF] Bobylev | From particle systems to the Landau equation: a consistency result[END_REF][START_REF] Guo | The Landau equation in a periodic box[END_REF][START_REF] Silvestre | Upper bounds for parabolic equations and the Landau equation[END_REF]. Furthermore, similar singularities appear in grazing collision limits from the Boltzmann equation to the Landau equation, and a number of equations with varying exponents of the singularity have been studied in the literature (see: [START_REF] Alexandre | On the Landau approximation in plasma physics[END_REF][START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness[END_REF][START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. II. -theorem and applications[END_REF][START_REF] Villani | On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations[END_REF][START_REF] Villani | On the spatially homogeneous Landau equation for Maxwellian molecules[END_REF]).

In this paper, we prove the limit from (1.7) to the Landau equation (1.2), keeping this important physical property of the system. The technique presented here shows that singular operators of the form appearing in the non-Markovian system (1.7) can be controlled using only the average-in-time dissipation of the equation that was proved and used in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF].

As in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF], we assume the system is initially close to the Maxwellian ( ) and take the explicit potential with Fourier transform:

̂ ( ) = 1 (1 + | | 2 ) 3 2
.

(

The main result of this paper reads as follows. For the precise definition of the function spaces, see Subsection 2.1.

Theorem 1.1 Let 0 , > 0 and ( 2 , 0 ) be the Maxwellian distribution with mass 0 and standard deviation :

( 2 , 0 )( ) ∶= 0 -1 2 | | 2 2 ( √ 2 ) 3
.

(1.9)

Let ≥ 12 and 0 ∈ satisfy:

0 ≤ 0 ( ) ≤ -1 2 | | .
There exist 1 , 0 ∈ (0, 1 2 ] such that for all , 2 ∈ (0, 0 ] > 0 the equation

= 1 ∇ ⋅ ˆ 0 [ ( )] -, ∇ ( , ) d - 1 ∇ ⋅ ˆ 0 [ ( )] -, ( , ) d (0, ⋅) = 0 (⋅) = ( ) + 2 0 ( ) (1.10)
has a strong solution ∈ 1 ([0, 1 ]; -2 ) up to time 1 . Furthermore, along a sequence → 0 the converge weakly to ⇀ * in  ′ , and the function ∈ 1 ([0, 1 ]; -4 ) solves the Landau equation up to times 0 ≤ ≤ 1 :

= ∇ ⋅ ([ ]∇ ) -∇ ⋅ ([ ] ) (0, ) = ( ) + 2 0 ( ) [ ]( ) = 2 4 ˆ( ⊗ )| ̂ ( )| 2 ( ⋅ ( -′ )) ( ′ ) d d ′ [ ]( ) = 2 4 ˆ( ⊗ )| ̂ ( )| 2 ( ⋅ ( -′ ))∇ ( ′ ) d d ′ .
(1.11)

An analogous result can be found in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF], however the interactions of particles with small relative velocity is cut. More precisely, the result is shown for modified kernels , , ,  with a cutoff function ( -′ ) in the integrals in ′ , where is a smooth function that cuts off at the origin. We now discuss the difficulty associated to removing this cutoff. Heuristically, our technique for proving an a priori estimate for solutions of (1.10), independent of > 0, works as follows. We multiply the equation

= 1 ∇ ⋅ ˆ 0 [ ( )] -, ∇ ( , ) -[ ( )] -, ( , ) d
with ( , ) and integrate in time and space. This yields an estimate for ∈ 2 (ℝ + × ℝ 3 ), provided we can estimate two terms of the form:

1 = 1 ˆ∞ 0 ˆℝ3 ∇ ( , ) ˆ 0 [ ( )] -, ∇ ( , ) d d (1.12) 2 = - 1 ˆ∞ 0 ˆℝ3 ∇ ( , ) ˆ 0 ∇ ⋅ [ ( )] -, ( , 
) d d . (1.13)
The key point in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF] is to prove an estimate of the form 1 ≥ 1 > 0, where 1 is the square of some (relatively weak) weighted 2 (ℝ × ℝ 3 ) norm for the Laplace-transform of ∇ . We stress the fact that such an estimate does not hold for general kernels , but is a feature very specific to the kernel emerging from the weak-coupling limit. Since we prove 1 to have the good sign, this part of the argument is not affected by removing the cutoff.

It turns out that we can extract an a priori estimate for , if we can show that for ∈ (0, 1) there exists > 0 such that

| 2 | ≤ 1 + ‖ ‖ 2 (ℝ + ×ℝ 3 )
. Such an estimate is difficult to obtain without the cutoff in the space of relative velocities. The problem can be illustrated using limit kernel  in (1.11) as an example, which yields terms of the form

∇ ⋅ [ ( , ⋅)]( ∕ , ) ∼ ˆ ( ∕ , -′ ) ( , ′ ) | -′ | 2 d ′ . (1.14)
Here ( , -′ ) is some smooth vector-valued function. Since we only expect ( , ) ∈ 2 (ℝ + × ℝ 3 ) the integral in (1.14) cannot be expected to be in ∞ . Instead we use that 2 (cf. (1.13)) involves an integral in time. To obtain a bound for 2 we therefore carefully study the properties of time integrals of products of: 1) ∇ which has Laplace transform bounded in the weighted 2 norm given by 1 , 2) ∇⋅ [ ( )], which is a vector-valued function of the form (1.14), and 3) the function ∈ 2 (ℝ + ×ℝ 3 ). This is the key step of this paper and the subject of Section 3.

Structure of the proof

In this section we present the steps of the proof of Theorem 1.1. The proofs of the individual steps are carried out in the main body of this paper. The crucial novelty in our result is the a priori estimate for the system with the full singularity, which we prove in Section 3. Results that are only minor adaptations of the result in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF] can be found in the Appendix. Only Lemmas whose proofs are not affected by the singularity of the kernel will be taken from [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF] without repeating the proof. We start by introducing the framework of function sets and spaces that we will use throughout the paper.

Functional setting and notation

Notation 2.1 Let , > 0 be a standard mollifier sequence on ℝ 3 . We set ∇ ( ) ∶= ∇( * ) for ∈ (0, 1], and 0 ∇ = ∇ . With as in (1.7) we set:

= ∇ ⋅ . (2.1)
For the Laplace and the Fourier transform we use the conventions:

( )( ) = ˆ∞ 0 ( ) -d , (2.2) 
̂ ( ) = 1 (2 ) 3∕2 ˆℝ3 ( ) -⋅ d . ( 2.3) 
We recall Plancherel's identity for Laplace transforms:

Lemma 2.2 Let ≥ 1 and (d ) ∶= -d . Then for , ∈ 2 ( ) we have:

(2 )

1 2 ˆ∞ 0 - ( ) ( ) (d ) = ˆℝ ( ) 2 + ( ) 2 + d . (2.4)
Furthermore, we will write ⟨⋅, ⋅⟩ for the complex scalar product given by:

⟨ , ⟩ = ∑ =1 ∑ =1 , , , for , ∈ ℂ × . (2.5)
For the one-particle function we will use the following spaces.

Definition 2.3 Let ( ), ̃ ( ) be defined by ( ) ∶= | | , ̃ ( ) ∶= | | 1+| | .
For ∈ ℕ and = , ̃ , we define as the closure of ∞ ℝ 3 with respect to the norm:

‖ ‖ 2 ∶= ∑ ∈ℕ 3 ,| |≤ ‖ 1 2 (⋅)∇ (⋅)‖ 2 2 . (2.6)
For time-dependent functions ( , ), define the space , as the closure of ∞ [0, ∞) × ℝ 3 ) with respect to:

‖ ‖ 2 , ∶= ˆ∞ 0 - ∑ =1 ‖ ( , ⋅)‖ 2 d , where ≥ 1.
(2.7)

Definition 2.4 (Domain of the fixed point mapping)

Fix ∈ ℕ with ≥ 12. We define the norms:

‖ ‖ = sup ∈ℝ 3 , ∈ℂ∶ℜ( )= ∕2,| |≤ -6 | ( )( , )(1 + | | 2 )| 1 2 | | , (2.8) ‖ ‖ , = sup ∈ℝ 3 , ∈ℂ∶ℜ( )= 2 ,| |≤ -6 | ( )( , ) (1 + | | 2 )(1 + | |) | | | 1 2 | | , (2.9) ‖ ‖ , = sup ∈ℝ 3 , ∈ℂ∶ℜ( )= 2 ,| |≤ -6 | ( )( , )(1 + | | 2 )(1 + | |)| 1 2 | | , (2.10) ‖ ‖ = ‖ ‖ , ̃ + ‖ ‖ -2 , ̃
.

(2.11)

Let Γ , 1 ⊂ , ̃ be the set given by

Γ , 1 = { ∈ , ̃ ∶ ˆℝ3 ( , ) d = 0, supp ⊂ [0, 2 1 ] × ℝ 3 }. (2.12)
Let Ω , ̃ , 1 , , ⊂ , ̃ be the set of functions given by: is an intersection of convex sets, hence convex. Furthermore, it contains the zero function, hence it is nonempty. To see that the set is also closed, we first remark that

Ω , ̃ , 1 , , = { 1 + 2 = ∈ Γ , 1 , ‖ ‖ ≤ 1, sup ∈[0,1] ‖ ( , ⋅)‖ -4 ̃ ≤ ̃ , ‖ ‖ , ≤ , ‖ 2 ‖ , ≤ , ‖ 1 ‖ ≤ }.
Γ , 1 is closed. Now take a sequence ∈ Ω , ̃ , 1 , , which is convergent in , ̃ , that is: → in , ̃ for some ∈ , ̃ . We now observe that ‖ ‖ ≤ , sup ∈[0,1] ‖ ( , ⋅)‖ -4 ̃ ≤ ̃ , ‖ ‖ , ≤
by weak-* sequential compactness of the spaces generated by these norms. Furthermore, every element of the sequence can be decomposed into = ,1 + ,2 with

‖ ,1 ‖ ≤ , ‖ ,2 ‖ , ≤ .
Now weak-* sequential compactness implies that such a decomposition also exists for the limit , so we have ∈ Ω , ̃ , 1 , , as claimed. □

We proceed by introducing weight functions, that will allow us later to keep track of the fine regularity and decay properties emerging from the evolution (1.7). The definitions can also be found in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF], we include them here to keep the analysis self-contained. Notation 2.6 For ∈ ℂ and ∈ ℝ 3 define:

( , ) ∶= |ℑ( )| 1 + | | , ( , ) ∶= |ℜ( )| 1 + | | . (2.14)
Further we define positive functions 1 and 2 by: 2 (2.15)

1 ( , ) = 1 (1 + | |)(1 + ( , ))
2 ( , ) = ( , ) + ( , ) 2 (1 + | |)(1 + ( , )) 4 .
(2.16)

Let 0 ≠ ∈ ℝ 3 , , ∈ ℂ 3 .
We define the anisotropic norm and weight functions 1 ( , )( , ), 2 ( , )( , ) by

| | ∶= | ⟂ | + | | 1 + | | , ( 2.17 
1 ( , ) = 1 ( , )| | | | + 2 ( , )| || |, (2.18) 2 ( , ) = 1 ( , )| | | | + 3 ( , )| || |. (2.19)
Finally, in order to localize to short times, we introduce a family of cutoff functions.

Definition 2.7 Let ∈ ∞ (ℝ; [0, 1]) be a cutoff function with ( ) = 1 for ∈ [-1, 1] and ( ) = 0 for | | ≥ 2.
We set 1 to be the rescaled functions given by

1 ( ) ∶= 1 .
(2.20)

Proof of the main result

Proof of Theorem 1.1. We start by restating the existence of a solution to equation (1.10) as a fixed point problem. To this end, we introduce = -0 , so (1.10) can be rewritten as:

= 1 ∇ ⋅ ˆ 0 [ 0 + ( )] -, ∇ ( , ) d - 1 ∇ ⋅ ˆ 0 [ 0 + ( )] -, ( , ) d (0, ⋅) = 0 (⋅).
(2.21)

Finding a solution of (1.10) is equivalent to finding a fixed point of the mapping ↦ -0 , where is the solution of (2.21) for given. Since we cannot show the existence of (2.21) directly, we first consider a mollified version of the equation. With ∇, as introduced in Notation 2.1, consider the mollified equation:

= 1 ∇ ⋅ ˆ 0 [ 0 + ( )] -, ∇ ( , ) d - 1 ∇ ⋅ ˆ 0 [ 0 + ( )] -, ( , ) d (0, ⋅) = 0 (⋅).
(2.22)

The existence of solutions to (2.22) can be proved in a straightforward fashion making use of the smoothness provided by the mollified gradient ∇. For the details of the argument we refer to [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF]. The result is stated in the following lemma, in the functional setting introduced in Subsection 2.1.

Notice that this only establishes the existence of solutions for , > 0, but does not include an a priori estimate that is independent of these parameters. ) to (2.22).

Recall the definitions introduced in Subsection 2.1. We set up the mapping 1 defined as:

Ψ 1 ∶ Ω , ̃ , 1 , , ⟶ , ↦ ( -0 ) 1 , solution to (2.22).
(2.23)

The intuition to the various parameters appearing in (2.23) is the following: the paramater ≥ 1 determines the exponential weight for large times and will be chosen large later. The parameters ̃ , , > 0 (cf. Definition 2.7) determine an a priori smallness assumption on the Laplace transform of . Finally, 1 > 0 is used to cut off to short times and can be used as an additional small parameter.

The crucial point of the proof and the main content of this paper is the priori estimate for 1 , uniform in both the scaling parameter → 0 and the mollifying parameter → 0. In [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF], we proved the estimate after artificially removing the singular part of the appearing integral. We prove the following a priori estimate in this paper. Theorem 2.9 (A priori estimate) Let ≥ 12 and assume 0 ∈ satisfies:

1 | |≤4 ( ) ≤ 0 ( ) ≤ -1 2 | | .
Then there exist , , 0 > 0 s.t. for all , ̃ > 0, 1 ∈ (0, 0 ) there is an 0 > 0 such that for all ∈ (0, 1 2 ] and ∈ (0, 0 ) the mapping 1 introduced in (2.23) is well-defined and continuous with respect to the topologies of , ̃ , , . Moreover, the mapping Ψ 1 satisfies:

‖Ψ 1 ( )‖ , ≤ 1, ‖ Ψ 1 ( )‖ -2 , ≤ 1. 
(2.24)

The theorem above ensures that (2.22) has a solution for a given function and provides an a priori estimate that is uniform in , > 0. In the next step, we prove the existence of a solution to

= 1 ∇ ⋅ ˆ 0 [ ( )] -, ∇ ( , ) d - 1 ∇ ⋅ ˆ 0 [ ( )] -, ( , ) d (0, ⋅) = 0 (⋅), (2.25) 
by applying Schauder's fixed point theorem to the mapping 1 . To this end we need to show that, for an appropriate choice of the parameters, the mapping 1 defined in (2.23) leaves the set Ω , Lemma 2.10 (Invariance of the domain) Let 0 ∈ , ≥ 12 be a function bounded above and below as 0 ≤ 0 ( ) ≤ -1 2 | | , and 0 = ( ) + 2 0 ( ) for some 2 > 0. Then there exist constants , , 1 , 0 , , ̃ > 0 such that for all 2 , ∈ (0, 0 ], ∈ (0, 1] the mapping Ψ 1 defined in (2.23) leaves the set Ω , ̃ , 1 , , invariant.

The final ingredient to apply Schauder's fixed point theorem is the following compactness lemma. We do not perform the proof here, but refer to Lemma 2.5 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF].

Lemma 2.11 (Compactness) Let ∈ ℕ and let ( ) ∈ℕ ⊂ +1

, be a bounded sequence, such that the sequence ( ) ⊂ +1

, is bounded as well. Then the sequence ( ) ∈ℕ is precompact in , ̃ . With Lemma 2.11 and Lemma 2.10 at hand, the proof of the main result Theorem 1.1 quickly follows. By Lemma 2.5, the set Ω , ̃ , 1 , , is nonempty and convex. Further, by Lemma 2.10 it is left invariant by the mapping 1 . Furthermore, for > 0, the mapping is compact by Lemma 2.11, so by Schauder's theorem there is a fixed point of 1 . This yields the existence of solutions of (2.25), which by Theorem 2.9 are uniformly bounded in the parameters , . Theorems 1.1 now simply follows from the compactness shown in Lemma 2.11, see also Section 5 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF].

Our proof of Theorem 1.1 is subject to the validity of Theorem 2.9 and Lemma 2.10. The proof of Theorem 2.9 is the content of the next section, the proof of Lemma 2.10 can be found in the appendix. □

Proof of the a priori estimate

Proof of Theorem 2.9. In order to obtain uniform estimates for solutions of (2.22), we differentiate the equation by . We then multiply with - , ≥ 1 and the weight function ( ) (cf. Definition 2.3), and integrate in time to obtain:

ˆ 0 ˆ ( )| ( , )| 2 -d d ≤ -2 , [ 0 + ]( 1 [0, ] ) + ‖ 1 2 0 ‖ 2 2 .
(2.26)

Here , is an operator that decomposes into:

, [ ]( ) = ∑ ≤ , , [ ]( ), (2.27) , , [ ]( ) = ˆ∞ 0 ˆ - ∇( ( ) ) ˆ 0 - [ ( )]( -) ∇ ( ) d d d (2.28) - ˆ∞ 0 ˆ - ∇( ( ) ) ˆ 0 -∇ ⋅ [ ( )]( -) ( ) d d d . ( 2 

.29)

We observe that the operators , , [ ]( ) are linear in the first argument and quadratic in the second argument. Using the linearity in the first argument, we rewrite , [ 0 + ]( ) as:

, [ 0 + ]( ) = , , [ 0 ]( ) + , , [ ]( ) + ∑ < , , [ 0 ]( ) + ∑ < , , [ ]( ). (2.30)
Then we show that the first term has the correct sign, i.e. it yields a dissipative term after integrating in time, and the other terms can be handled as a perturbation. More precisely, the a priori estimate in Theorem 2.9 is a corollary of the following results. Lemma 2.12 Let ≥ 12 and 0 ∈ be a function that is bounded above and below by

1 | |≤4 ( ) ≤ 0 ( ) ≤ -1 2 | | , ‖ 0 ‖ ≤ , for some constants , > 0. (2.

31)

Let ≥ 1, ∈ (0, 1 ], ∈ (0, 1] and ∈ ℕ 3 be a multi-index of absolute value at most ∈ ℕ. Set = 2 and let , be given by ( = + ):

, ( ) ∶= ˆℝ ˆℝ3 1 ( , )[ ∇ ( )( , ), ∇ ( )( , )] ( ) d d . ( 2 

.32)

Then for some constants , > 0 independent of , , we have:

, , [ 0 ]( ) ≥ , ( ) -‖ ‖ 2 , .
(2.33)

The proof of Lemma 2.12 can be executed exactly as the proof of Lemma 3.7 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF]. We therefore omit the proof here, and only shortly discuss the idea below.

Lemma 2.13

Let ≥ 1, ≥ 12, a multi-index with | | ≤ and > 0 arbitrary be given. There exists 0 ( , , ) > 0 such that for all ∈ (0, 0 ] and , ̃ > 0, 1 ∈ (0, 1) we can estimate:

(2 )

1 2 | , , [ ]( )| ≤ , ( ) + ‖ ‖ 2 , , (2.34 
)

for all ∈ Ω , ̃ , 1 , , , when 0 < ≤ 0 ( , , ̃ , 1 , , , ) is small.
The proof of Lemma 2.13 requires only minor modifications from the one in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF] and can therefore be found in the appendix.

Lemma 2.14 Let ≥ 12 and > 0 an arbitrarily small constant. There exists > 0 such that for all ≥ 1, ∈ ℕ 3 , | | ≤ there exists 0 ( , , ) > 0 such that for all , 1 ∈ (0, 0 ] and all ̃ , > 0, we can estimate:

∑ < | , , [ 0 ]( )| ≤ , ( ) + ‖ ‖ 2 , , (2.35) 
∑ < | , , [ ]( )| ≤ , ( ) + ‖ ‖ 2 , , (2.36 
)

for all ∈ Ω , ̃ , 1 , , , when 0 < ≤ 0 ( , 1 , , ̃ , , 1 , ) is small.
When keeping the full singularity of the kernel , the critical terms are the , , with ≈ , since then the derivatives act on the singular kernel . Therefore, the proof of Lemma 2.14 requires new ideas and is a key point of this paper. The proof is carried out in Section 3.

Since the dissipativity proved in Lemma 2.12 is crucial to the understanding of the a priori estimate, we briefly sketch the idea of the proof here. We rewrite , , as:

, , [ 0 ]( ) = ˆ∞ 0 ˆ - ∇ ( ) ˆ 0 [ 0 ]( -) ∇ ( ) d d d + ˆ∞ 0 ˆ - ( ) ∇( ) ˆ 0 [ 0 ]( -) ∇ ( ) d d d - ˆ∞ 0 ˆ - ∇( ( ) ) ˆ 0 ∇ ⋅ [ 0 ]( -) ( ) d d d .
The crucial point to handle , , is the first term on the right-hand side above. Using Lemma 2.2, the time integration transforms into ( = ( , ) = ( ∇ )( , )):

(2 )

1 2 ˆ∞ 0 ˆℝ3 - ∇ ( ) ˆ 0 [ 0 ]( -) ∇ ( ) d d d = ˆℝ ˆℝ3 ⟨ , ( )[ 0 ]( ) ⟩ d d
where = + = ∕2 + . Since the function ( ) is pointwise a symmetric matrix, we can symmetrize the expression above and obtain:

(2 )

1 2 ˆ∞ 0 ˆ - ∇ ( ) ˆ 0 [ 0 ]( -) ∇ ( ) = ˆℝ ˆ⟨ , ℜ(( ))[ 0 ]( ) ⟩ d d .
The particular kernel ( ) given by the identity (2.39) has the property that the real part ℜ(( )) is complex coercive if 0 is a positive function. A careful analysis of this coercivity property yields a lower bound for , , [ 0 ]( ) in terms of the anisotropic weight functional introduced in (2.18) and yields Lemma 2.12.

Due to the explicit choice of the potential (cf. (1.8)), some integrals appearing in this analysis become explicit. More precisely, we make use of the subsequent lemma, for the computation we refer to [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF].

Lemma 2.15 Define matrix-valued functions

1 ( , ), 2 ( , ) by 1 ( , ) ∶= 2 4| | 1 1 + | | ⟂ , 2 ( , ) ∶= 2 4| | | | (1 + | | ) 2
, for ℜ( ) ≥ 0, ∈ ℝ 3 .

(2.37)

Further let ∈ ̃ (cf. (2.6)), then the following identity holds:

ˆ( ⊗ )| ̂ ( )| 2 2 + ( ⋅ ) 2 d = 1 ( , ) + 2 ( , ) (2.38) ( [ ])( , ) = ˆ( 1 + 2 )( , -′ ) ( ′ ) d ′ .
(2.39)

The following Proposition is the analog of Lemma 3.3 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF], here however with the singularity in kept.

Proposition 2.16

Let ∈ ℕ 3 be a multi-index and , = 1, 2 as introduced in (2.37). Then there exists a constant | | > 0, such that for , ∈ ℂ 3 arbitrary complex vectors, ∈ ℂ with ℜ( ) ≥ 0 and ∈ ℝ 3 we have: 

|⟨ , ( ( , )) ⟩| ≤ | | | || | | | | |+1 (1 + ( , )) . ( 2 
| | | | ˆℝ3 ⟨ , ( 1 + 2 )( , -′ ) ⟩| ( ′ ) d ′ | | | | ≤ (1 + ( , )) 2 ( , )( , ) (2.41) 
| | | | ˆℝ3 ⟨ , ( 1 + 2 )( , -′ ) ⟩ ( ′ ) d ′ | | | | ≤ (1 + ( , )) (1 + | |) | | 1 ( , )| || |. (2.42) 
With the Lemmas above at hand, we can conclude the proof of Theorem 2.9: There exists a > 0 such that for all ≥ 1 and there exist , 0 > 0 s.t. for all , ̃ > 0, 1 ∈ (0, 0 ) there is an 0 > 0 such that

| , ( 0 + )( )| ≤ ‖ ‖ 2 , .
Then the identity (2.26) implies (possibly changing )

‖ ‖ 2 , ≤ ‖ ‖ 2 , + ‖ 0 ‖ 2 .
(2.43)

On the other hand, we can use the equation (2.22) to find an estimate for the time derivative. For any multi-index with | | ≤ we have:

( ) = ∑ ≤ ∇ ⋅ ˆ( 1 + 2 )( , -′ ) 0 ( ′ ) ∇( - 2 1 )( , ) d ′ - ∇ ⋅ ˆ ∇( 1 + 2 )( , -′ ) 0 ( ′ )( - 2 1 )( , ) d ′ 
+ ∇ ⋅ ˆ( 1 + 2 )( , -′ ) ∇( (⋅, ′ ) - 2 1 (⋅, ))( ) d ′ - ∇ ⋅ ˆ ∇( 1 + 2 )( , -′ )( (⋅, ′ ) -(⋅, ))( ) d ′ .
(2.44)

Since ‖ ‖ ≤ 1, we can estimate uniformly in time as:

‖ ( , ⋅)‖ ̃ ≤ , for ≤ -2.
Bringing this to the equation (2.44) and using | 1 ( ,

)| + | 2 ( , )| ≤ ∕| | gives ‖ ‖ , ≤ ‖ ‖ , , for ≤ -4.
For 0 < 1 ≤ 1∕ and ≤ -4 this yields:

‖ 2 1 ( , ⋅)‖ ≤ ‖ ‖ , We assume ≥ 12, so we know | | ≤ -4 or | -| ≤ -4.
This allows to use (2.44) and infer

‖ ( -0 )‖ -2 , ≤ ‖ ‖ , .
Furthermore, Poincaré inequality yields

‖ (( -0 ) 1 )‖ -2 , ≤ ‖ ( -0 )‖ -2 , , (2.45) 
with a constant independent of 1 > 0. With (2.43) we conclude that we can pick ≥ 1 large enough such that (2.24) holds. □ 3 A priori estimate for the non-Markovian system with the full kernel

Toolbox

We start by providing some lemmas that will enable us to use equation (2.22) in Laplace variables to bootstrap estimates on the solution . To this end, we introduce the following notation.

Notation 3.1

The convolution * is to be understood as ( = + ):

( * )( ) = ( * )( + ) = 1 2 ˆℝ ( ) ( + ( -)) d . (3.1) Lemma 3.2 Let ≥ 1, 1 ∈ (0, 1∕ ), ∈ Γ , 1 (cf. (2.12)) with ‖ ‖ , ̃
≤ 1, and assume solves equation (2.22). Then for ≤ -4 we have:

‖‖( ( -0 ) 2 1 )( , )‖ 2 ‖ 1 ℜ( )=0 ≤ ‖ ‖ , . (3.2) 
Proof: By Plancherel's identity (cf. (2.4)) and the assumption 0 < 1 < 1∕ we have:

‖‖( 2 1 )‖ ‖ 2 ( ℝ) + ‖‖( 2 1 )‖ ‖ ∞ ( ℝ) ≤ ‖ ‖ , . (3.3) 
Since supp ⊂ [0, 2 1 ] × ℝ 3 and ‖ ‖ , ̃
≤ 1, we also have:

‖‖( )‖ ̃ ‖ 2 ( ℝ) + ‖‖( )‖ ̃ ‖ ∞ ( ℝ) ≤ . ( 3.4) 
We transform equation (2.22) to Laplace variables (recall the notation * introduced in (3.1)):

( -0 ) =∇ ⋅ ˆ( 1 + 2 )( , ′ ) ( 0 + )(⋅, -′ ) * ∇( 2 1 )(⋅, ) ( ) d ′ -∇ ⋅ ˆ( 1 + 2 )( , ′ ) ∇( 0 + )(⋅, -′ ) * ( 2 1 )(⋅, ) ( ) d ′ .
Here we have taken advantage of the fact that is compactly supported to localize . We use that the matrices 1 , 2 (cf. (2.37)) satisfy

|( 1 + 2 )( , )| ≤ 1∕| |.
Hence we can estimate as follows: 

| |‖(( -0 ))( )‖ -2 ≤ ‖( 2 1 )‖ + ‖( )(⋅)‖ * ℜ( ) ‖( 2 
‖‖(( -0 ))( )‖ -2 ‖ 3 2 ℜ( )=0 ≤ ‖ ‖ , . (3.6) 
We observe that the cutoff functions 2 1 satisfy:

‖ ( 2 1 )(⋅)‖ 1 (ℝ) ≤ . (3.7)
Hence we can infer from (3.6) that also satisfies:

‖‖(( -0 ) 2 1 )( )‖ -2 ‖ 3 2 ℜ( )=0 ≤ ‖ ‖ , . (3.8) 
Plugging (3.8) back into (3.5), and using (3.7) we find

‖‖( ( -0 ) 2 1 )( , )‖ 2 ‖ 1 ℜ( )=0 ≤ ‖ ‖ , , for ≤ -4,
which concludes the proof of the Lemma. □

We have shown the proof of Theorem 1.1 in Section 2.2, provided the validity of Lemma 2.14. Proving this result is the crucial part of the paper and the content of this section.

Henceforth we will use that 1 | | is, up to a constant, the fundamental solution to the Laplace equation on the whole space. This implies that the convolution operator appearing in the Landau equation (1.2), as well as the operators appearing in the non-Markovian equation (1.7) can be studied in terms of the inverse of the Laplacian. In the following, we collect the corresponding estimates in the weighted space introduced in Definition 2.3. From the theory of the Laplace equation, we have the following straightforward result. Lemma 3.3 For ∈ ∞ (ℝ 3 ), let [ ] be given by the convolution operator

[ ]( ) = ˆℝ3 ( ′ ) | -′ | d ′ . (3.9)
Then can be extended to a continuous operator ∶ 2 (ℝ 3 ) ⟶ ̇ 2 (ℝ 3 ), i.e. for some > 0 we have:

‖ [ ]‖ ̇ 2 ≤ ‖ ‖ 2 .
Remark 3. [START_REF] Desvillettes | A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions[END_REF] We write ̇ (ℝ 3 ) = ̇ for the homogeneous Sobolev space of -th order, i.e. the closure of ∞ (ℝ 3 ) with respect to the norm:

‖ ‖ ̇ ∶= ‖∇ ‖ 2 (ℝ 3 ) .
Lemma 3. [START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness[END_REF] We have a Sobolev embedding for ̇ 1 :

‖ ‖ 6 ≤ ‖ ‖ 1 . (3.10)
Furthermore, there is a constant > 0 such that for all ∈ 1 we have 

‖ (⋅) 1 2 |⋅| ‖ 6 ≤ ‖ ‖ 1 . ( 3 
‖ ̃ ‖ 1 ≤ ‖ ‖ 1 .
Now the claim follows from (3.10). □

The main tool to handle the full singularity of the Landau kernel is contained in the following Lemma.

Here we combine the classical results in the Lemmas above with the weighted spaces given by the weight functions defined in Notation 2.6, to obtain 6 loc estimates that are compatible with the structure of the dissipation functional , ( ) in (2.32).

Lemma 3.6

Recall the weight function introduced in Notation 2.6. For ∈ ℂ, let ( , ⋅) ∈ 1,1 (ℝ 3 ) be a function satisfying the estimate:

| ( , )| ≤ | |(1 + ( , )) , |∇ ( , )| ≤ | | 2 (1 + ( , ))
.

(3.12)

For ∈ 2 ̃ define the function:

( )( , ) ∶= ˆℝ3 ( ′ ) ( , -′ ) d ′ . (3.13)
Then the following holds

‖(1 + | |) 2 (1 + ( , ))∇ ( )‖ ( 1 ( * )) ≤ ‖ ‖ 2 ̃ , for 1 ≤ ≤ 6, * ∈ ℝ 3 . (3.

14)

Proof: We decompose the velocity space ℝ 3 ⧵ {0} into annuli

∶= { ∈ ℝ 3 ∶ 2 ≤ | | < 2 +1 }, ∈ ℤ. (3.15)
For ∈ ℝ 3 a given vector, let ( ) be such that ∈ ( ) and:

( ) = { ( ) -1, ( ), ( ) + 1} ⊂ ℤ. (3.16) 
A function ∈ 2 ̃ we write as

( ) = ̃ ( ) -1 2 | | . Notice that ̃ satisfies: ‖ ‖ ‖ ‖ ‖ ‖ ̃ ( ) (1 + | |) 1 2 ‖ ‖ ‖ ‖ ‖ ‖ 2 = ‖ ‖ 2 ̃ . ( 3.17) 
Then we can estimate the derivative of using (3.12):

|∇ ( )( , )| ≤ ∑ ∈ℤ ˆ | ( ′ )| | -′ | 2 (1 + ( , -′ )) d ′ ≤ ∑ ∈ℤ⧵ ( ) ˆ | ̃ ( ′ )| -1 2 | ′ | | -′ | 2 (1 + ( , -′ )) d ′ + ∑ ∈ ( ) ˆ | ̃ ( ′ )| -1 2 | ′ | | -′ | 2 (1 + ( , -′ )) d ′ =∶ 1 + 2 .
We estimate the terms 1 and 2 separately. Due to the dyadic scaling we have:

1 | -′ | 2 (1 + ( , -′ )) ≤ (1 + | ′ |) 1 | | 2 (1 + ( , )) on with > ( ) + 1, 1 | -′ | 2 (1 + ( , -′ )) ≤ 1 | | 2 (1 + ( , )) on with < ( ) -1.
Hence we can estimate:

1 | -′ | 2 (1 + ( , -′ )) ≤ 1 + | ′ | | | 2 (1 + ( , ))
, for ′ ∈ , ∉ ( ).

(3.18)

We use (3.18) to obtain an upper bound for 1 :

| 1 ( , )| ≤ ∑ ∈ℤ⧵ ( ) ˆ | ̃ ( ′ )| exp(-2 -3 ) (1 + | |) 2 (1 + ( , -′ )) d ′ ≤ ∑ ∈ℤ⧵ ( ) exp(-2 -3 ) (1 + | |) 2 (1 + ( , )) ˆ (1 + | ′ |)| ̃ ( ′ )| d ′ .
For ∈ ℤ ⧵ ( ) we estimate with Young's inequality:

ˆ (1 + | ′ |)| ̃ ( ′ )| d ′ ≤ ‖ ‖ ‖ ‖ ‖ ‖ ̃ ( ) (1 + | |) 1 2 ‖ ‖ ‖ ‖ ‖ ‖ 2 ‖(1 + | ′ |) 3 
2 )‖ 2 ( )

≤ (1 + 2 ) 2 2 3 2 ‖ ‖ ‖ ‖ ‖ ̃ (1 + | |) ‖ ‖ ‖ ‖ ‖ 2 .
We use the identity (3.17) for ̃ to find

| 1 ( , )| ≤ ∑ ∈ℤ⧵ ( ) exp(-2 -3 ) (1 + | |) 2 (1 + ( , )) ((1 + 2 )2 ) 3 2 ‖ ‖ ‖ ‖ ‖ ‖ ̃ (1 + | |) 1 2 ‖ ‖ ‖ ‖ ‖ ‖ 2 ≤ ‖ ‖ 2 ̃ (1 + | | 2 )(1 + ( , )) . (3.19)
It remains to estimate the term 2 . To this end, for ′ ∈ , ∈ ( ) we have

1 4 | | ≤ | ′ | ≤ 4| |.
This yields that the weight function satisfies, for , ′ as above:

1 1 + ( , -′ ) ≤ 1 1 + ( , ) . (3.20) 
Furthermore, for ′ ∈ , ∈ ( ) there holds: 

-1 2 | ′ | ≤ -1 8 | | , 0 < ≤ 1 + | ′ | 1 + | | ≤ . ( 3 
| 2 ( , )| ≤ -1 8 | | (1 + | |) 1 2 1 + ( , ) ∑ ∈ ( ) ˆ | ̃ ( ′ )|∕(1 + | ′ |) 1 2 | -′ | 2 d ′ . (3.22)
The convolution can be estimated using Lemma 3.3 and (3.17):

‖ ‖ ‖ ‖ ‖ ‖ ∑ ∈ ( ) ˆ | ̃ ( ′ )|∕(1 + | ′ |) 1 2 | ⋅ -′ | 2 d ′ ‖ ‖ ‖ ‖ ‖ ‖ ̇ 1 ≤ ‖ ‖ ‖ ‖ ‖ ‖ ̃ ( ) (1 + | |) 1 2 ‖ ‖ ‖ ‖ ‖ ‖ 2 = ‖ ‖ 2 ̃ .
Then the Sobolev embedding (3.10) yields:

‖ ˆ | ̃ ( ′ )|∕(1 + | ′ |) 1 2 | ⋅ -′ | 2 d ′ ‖ 6 ≤ ‖ ‖ 2 ̃ . ( 3 

.23)

Bringing this estimate to (3.22), we obtain: Proof: We start by estimating the integral in . We introduce the function ( , ) given by:

‖(1 + | |) 2 (1 + ( , )) 2 ( , )‖ ( 1 ( * )) ≤ ‖ ‖ 2 ̃ , for 1 ≤ ≤ 6, * ∈ ℝ 3 . ( 3 
( , ) = ˆ Λ[ ]( , )( ( -0 ))( ( -)) d = ˆ Λ[ ]( , )( ( -0 ) 2 1 )( ( -)) d .
Furthermore, Corollary 3.9 gives an estimate for Λ[ ]:

‖(1 + ( , ′ ))(1 + | ′ | 2 ) Λ[ ]( , , ′ )‖ 6 ( 1 ( )) ≤ ‖( )( , ⋅)‖ ̃ . (3.32)
Now we pick a Vitali covering of the space ℝ 3 . More precisely, we cover the space with the collection of balls given by . By Vitali's covering Lemma there is a sequence of balls ,

( 1 ( )) ∈ℕ ⊂ ℝ 3 such that .

ℝ 3 = ⋃ ∈ℕ 1 ( ),
On each ball we apply Young's inequality and obtain: (4.21)

‖ ‖ ‖ ‖ (1 + )(1 + | | 2 ) Λ[ ]( , )( ( -0 ) 2 1 )( -) 1 2 | | ‖ ‖ ‖ ‖
Note that we can localize 1 in time using the Volterra structure of the equation. We will make use of the equation above to bootstrap the apriori estimate on ( ) to pointwise estimates and thus show invariance of the set Ω , ̃ , 1 , , under 1 . For our choice of , > 0 we have:

‖ ‖ , + ‖ ‖ -2 , ≤ .
Using the compact support of ∈ Ω , ̃ , 1 , , Step 3: Picking 1 , > 0

3

 3 at time ≥ 0: ˆ ( , , ) d d = -1 [ ( , )]. (1.1)

(2. 13 ) 2 . 5 (

 1325 Lemma Properties of the domain) For all ∈ ℕ, ≥ 12 and all ≥ 1, , ̃ , 1 , , > 0, the domain Ω , ̃ , 1 , ,⊂, ̃ is closed, convex and nonempty.Proof: The set Ω , ̃ , 1 , ,

  )

Lemma 2 . 8 ( 1 2

 281 Existence of a solution to the mollified equation) Let ∈ ℕ, , > 0 and 0 ∈ . Further assume ∈ 1 loc , supp ⊂ [0, 1], and let > 0 such that | ( , )| ≤ -| | . Then there exists a (unique) global solution ∈ 1 ([0, ∞);

  1 )(⋅)‖ ( ) . (3.5) Inserting the estimates (3.3) and (3.4) above yields:

. 11 )

 11 Proof: The estimate (3.10) is the classical Gagliardo-Nierenberg inequality. For the proof of (3.11) we write ∈ 1 as = ̃ ( ) -1 2 | | . Since the weight function satisfies |∇ -1 2 | | | ∼ -1 2 | | , we have

  .21) Combining the estimates (3.20) and (3.21), we obtain a bound for 2 :

≤

  estimating ( , ). With the estimate (3.33) we obtain (here = + , = ∕2):‖‖(1 + ( , ))(1 + | | 2 ) ( , ‖ ˆℝ ‖(1 + )(1 + | | 2 ) Λ[ ]( , )( ( -0 ) 2 1 )+ )(1 + | | 2 ) Λ[ ]( , )( ( -0 ) 2 1 )

≤mapping 1 maps into Γ , 1 .

 1 . Using | | ≤ -5 and the estimates (3.32) and (3.34) on each ball we get:‖‖(1 + ( , ))(1 + | | 2 ) ( , ‖ ˆℝ ‖( )( )‖ ̃ ∑ ‖(( -0 ) 2 1 )( ( -))We will pick the remaining coefficients in the order ̃ , 1 , , and finally 2 , small enough to show that Ω , ̃ , 1 , , is left invariant by 1 . The invariance is proved using equation(2.22) in Laplace variables (dropping the smoothing parameter > 0 for brevity): )( , -′ ) ∇ (⋅, ′ ) (⋅, ) 1 ( ) d ′ .

and 1 Step 2 :

 12 we conclude, possibly changing ( , ):In particular we can bound:‖‖( )( , ⋅)‖ -2 ‖ 1 ℜ( )=0 ≤ ( , ), ‖‖(( -0 ) 1 )( , ⋅)‖ -2 ‖ 1 ℜ( )=0 ≤ ( , ).Using the Laplace representation (4.21) we conclude:|‖(( -0 ) 1 )( , ⋅)‖ -2 ‖ 1 ℜ( )=0 + ‖‖(( -0 ) 1 )( , ⋅)‖ -2 ‖ ∞ ℜ( )=0 ≤ ( , ).(4.22) Picking ̃ > 0 With the notation introduced in (3.1) we have (⋅, ′ ) (⋅, ) 1 ( ) = ( )(⋅, ′ ) * ( 1 )(⋅, ) ( ).Now plugging (4.22) into (4.21) and applying Young's inequality yields: Now since (0, ⋅) -0 (⋅) = 0, we can pick ̃ such that: sup ∈[0,1]

‖ 1 (

 1 )( , ⋅)‖ -4 ̃ ≤ ̃ .(4.23)

  ∈ ℂ 3 be complex vectors. Further let ≥ 1 and ∈ ̃ satisfy | | ≤ | | . Recall 1 , 2 as defined in (2.18)-(2.19) and 1 defined in (2.15). Then for | | ≤ 1, there holds

		-1 2
		.40)
	Proof: Using that	| | ,

⟂

| | are functions with homogeneity -1, the estimate follows by explicit differentiation of the remaining function. □ Lemma 2.17 Let ∈ ℂ with 0 ≤ ℜ( ) ≤ 1 and be a multi-index. Let ,

̃ , 1 , , invariant. With the a priori estimate in Theorem 2.9 at hand, the proof works similar to the corresponding proof in[START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF], and can therefore be found in the appendix.

+

( , -′ ) - ( , ′ ) d d ′ .(3.25)
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Using the Plancherel identity (2.4) the functionals , , can be expressed as:

(2 ) (3.26)

We now prove that (3.14) yields an estimate for quadratic functionals of a certain form. This will allow us to obtain a bound for the functionals , , in terms of the dissipation , (cf. (2.32)) and the average-in-time norm , .

Corollary 3.8 There exists > 0 such that for all * ∈ ℝ 3 , ∈ ℂ with ℜ( ) ≥ 0 and | | = 1:

(3.27)

Proof: By the identity (2.39) we have:

where 1 , 2 are given by (2.37). We now use (2.40) to infer that ( , ) ∶= ( 1 + 2 )( , -′ ) satisfies the assumptions of Lemma 3.6, which proves (3.27). □ Corollary 3.9 For all ≥ 1 and * ∈ ℝ with ≥ 1, , ̃ > 0, , , 1 ∈ (0, 1). Further let | | ≤ -6. Then we can estimate:

, the estimate above holds for ∈ ℂ with ℑ( ) = -= -∕2. 

)

By assumption, ∈ Ω , ̃ , 1 , , , therefore:

We insert the estimates (3.36) and (3.33) into (3.35):

.

2), we conclude

We recall the definition of the dissipation function , (cf. (2.32)) and observe that:

Finally, combining the estimates (3.37) and (3.38) yields:

as claimed. □ Lemma 3.12 (Estimate for large) Let ( ) be a function satisfying

For > 0 given, there exists > 0 such that for all ≥ 1 there is a 0 ( ) > 0 small, such that ∀ ∈ (0, 0 ), > 0 we can choose > 0 small enough such that

)

, the estimate (2.40) and Lemma 3.10 allow to choose 0 ( ) such that for ∈ (0, 0 ), and > 0 we have

, provided > 0 is small enough. This implies that we can bound

as was claimed. □

Proof of Lemma 2.14

Proof of Lemma 2.13. We split the left-hand side of (2.36) as:

We start by estimating 1 . To this end, rewrite the quadratic functionals , , [ ]( ) using Plancherel's theorem:

where , 1 is given by

(3.42)

We apply Lemma 3.11 to infer

The bound for , 2 follows similarly. By assumption 0 ∈ , and Corollary 3.9 gives:

It remains to prove the same estimate for 2 . We write , , [ ]( ) as:

By assumption ≥ 12, hence we can apply Lemma 3.12 to get: Proof of Lemma 2.13. To prove a bound for the functional , , [ ] in terms of the dissipation , (cf. (2.32)), we make use of its symmetry properties. The proof and the lemmas contained therein is similar to the proof of Lemma 4.9 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF].

We start by introducing some notation. For > 0, ∈ ℝ 3 , = + , = + ∈ ℂ, define the matrices 1 , 2 :

and the symmetrized kernel Λ by (again writing = + , = + ):

We split the kernel 2 into two terms:

Further define Λ 0 ( , ) by

We will make use of the following straightforward estimates (compare Lemma 4.6 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF]).

Lemma 4.1 Let > 0 and = + , = + , and 0 < ≤ 1 . For , ∈ ℂ 3 and 1 as introduced in (4.1), we have

Similarly we have an estimate for 2 :

For the terms involving 1 , we can extract extra decay from the fact that any ∈ Ω , ̃ , 1 , , has zero average. For > 0, ∈ (0, 1 ], = + , = + ∈ ℂ we have:

(4.9)

Similarly, for 1 and 2 we have the bounds:

(4.11)

Proof: The estimates (4.10) and (4.11) follow directly from (4.6) and (4.7) respectively. In order to prove (4.9), we use the mean zero property (4.8) to obtain:

we estimate the difference above using the mean value theorem:

.

We plug this estimate and the assumption |ℎ( )| ≤ 1 -1 2 | | into (4.12) to conclude the proof. □ Lemma 4. [START_REF] Bobylev | From particle systems to the Landau equation: a consistency result[END_REF] The following integral bound holds:

we have:

Proof: Follows from Lemma 3.10 and the explicit form of 1 and 2 (cf. (2.37)). □
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Now we are in the position to finish the proof of Lemma 2.13. We use the representation of , , [ ]( ) in (3.26) and split it into three parts:

(2 )

The proof is very similar to the proof of Lemma 4.9 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF]. We estimate the terms 1 , 3 , 2 separately, starting with 1 To this end, we write = ∇ ( ) and recall Λ 0 (cf. (4.5)) and Λ 1 , Λ 2 introduced in (4.2). We symmetrize in , , making use of the fact that the integrals are real valued:

The first term can be bounded by the dissipation functional , (cf. (2.32)) using Lemma 4.4. Choosing ( ) > 0 and ( , , , ) > 0 small enough, (4.13) yields:

We write the second term in terms of Λ 1 , Λ 2 introduced in (4.2):

We use (4.10) and Lemma 3.10 to estimate:

Choosing ( ) > 0 and ( , , , ) > 0 small enough, (4.13) yields: 

Next we estimate 3 . After an integrating by parts (we use the shorthand ( , ) = ( )( , )) the term reads:

The first two lines are bounded by 1 4 ‖ ‖ 2

, by Lemma 3.12. For the estimate of the last line we use

Then we recall the definition of Λ (cf. (3.25)) and apply (2.41) and Lemma 3.10 to get:

With Young's inequality and choosing , > 0 small enough, we estimate 3 by:

To bound 2 we apply Lemma 3.12 to obtain:

Finally, we return to the decomposition (4.14). From the estimates (4.20), (4.19) and (4.17) we get the estimate:

(2 )

as claimed in the statement of the Lemma. □

Proof of Lemma 2.10

Proof of Lemma 2.10. The proof presented here follows along the same lines as the proof of Theorem 4.10 in [START_REF] Velázquez | From a Non-Markovian System to the Landau Equation[END_REF].

Step 1: Picking , > 0 We start by picking , , 0 > 0 as in Theorem 2.9. Then for all , ̃ > 0, 1 ∈ (0, 0 ), for ∈ (0, 0 ) small enough and , 2 ∈ (0, 1 2 ) arbitrary the mapping 1 satisfies

We now define the functions , given by:

(4.24)

Making use of the explicit Laplace transform:

we infer the identity

Further, we observe that plugging the estimate (4.22) into (4.21) yields:

, ≤ -6. (4.27)

In particular we can estimate:

To estimate , we decompose it further. To this end, let be the function given by:

which satisfies the equation 

.30)

By construction, = ∇ ⋅ then satisfies:

, ) = 0 (0, ) = 0.

If 0 = ( ) is a Maxwellian distribution, the boundary layer vanishes. To see this, we note that ∇ ( ) = -2 ( ), hence

Computing the second time derivative of , we find:

by assumption, we obtain for ≤ -6:

Combined with the lemma above this shows:

) 1 , for ∈ [0, 1].

After integrating by parts twice this allows to bound the Laplace transform by:

)

This on the other hand implies that on the line ℜ( ) = we have:

Now we first pick 1 > 0 such that:

and secondly > 0 depending on 1 as the largest constant appearing on the right-hand sides of (4.26)-(4.27).

Step 4: Picking 2 > 0 Finally, we consider the explicitly given function . Since we consider initial data of the form 0 = + 2 0 , we can make use of the fact that the Maxwellian does not contribute to the boundary layer (cf. Then we decompose 1 ( ) into the functions:

Then for the choice of , , ̃ ,