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harmonic oscillators which is periodically driven. Both the title and introduction stress the quantum nature of the system. Here we show that the results are more general and are equally valid for a classical system, which broadens the interest of the paper and may suggest further pathways for a basic understanding of the phenomenon.

Paper [1] investigates a new mechanism to induce heat rectification in a physical system. In analogy to electrical diodes, a thermal diode, which connects two thermal baths at different temperatures, exhibits different thermal conductivities if the temperatures of the baths are exchanged. Earlier studies considered static systems, i.e. systems with time-independent properties and some nonlinearity in the physics of the material. Theory has considered classical and quantum systems. In these static systems the basic origin of heat rectification can simply be tracked down in some asymmetry in the design of the device and in the temperature-dependence of the thermal conductivity of the material [START_REF] Peyrard | The design of a thermal rectifier[END_REF]. Heat rectifiers have been built [START_REF] Kobayashi | An oxide thermal rectifier[END_REF] based on this simple idea. The concept introduced in [1] is different because the authors consider a system under generic linear interactions, but they introduce some internal dynamics in the device with time-dependent interactions. This is an interesting idea and paper [1] shows that it is valid in a large variety of configurations. Dynamic rectification had already been considered in optics using a spatially and temporarilly modulation of the index [START_REF] Yu | Complete optical isolation created by indirect interband photonic transitions[END_REF], however the context was different because integrated photonics applications work with deterministic signals, in a limited bandwidth. Thermal rectification is more challenging, and this is why the results of paper [1] are significant.

However, both in their title and in the introduction and conclusion of their paper, the authors stress the quantum nature of their analysis, which gives the impression that the phenomenon that they exhibit is purely quantum. This is misleading. Actually the results are equally valid for a classical system, as in the optical case [START_REF] Yu | Complete optical isolation created by indirect interband photonic transitions[END_REF]. An analytical treatment is harder in this case but a numerical simulation of the classical equivalent of the simple example studied in details in paper [1] shows that the results of the article are preserved for the classical system. This broadens the interest of the article by showing its generic validity. * To whom correspondence should be addressed. Michel.Peyrard@ens-lyon.fr

To illustrate its general results with a specific case, paper [1] studied a network of two oscillators, which is schematically shown in Fig. 1. Its Hamiltonian is

H s (t) = 1 2m P 2 1 + P 2 2 + 1 2 C 1 (t)X 2 1 + 1 2 C 2 X 2 2 + 1 2 C 0 (X 1 -X 2 ) 2 , (1) 
where X 2 and X 2 are the positions of the oscillators, P 1 ,

P 2 their momenta, C 1 (t) = ω 2 1 + 2v 1 sin ω d t is a time dependent parameter which introduces a driving at fre- quency ω d , while C 2 = ω 2
2 and C 0 are constants. This system in coupled to two thermostats Th 1 and Th 2 at two different temperatures that we label T h (for the highest) and T l (for the lowest). Paper [1] investigated this system using a quantum formalism and showed that it does exhibit some thermal rectification when the temperatures T h and T l are switched. The results are displayed in Fig. 3 of the paper for To compare the quantum and classical properties of the system, we investigated it with the same parameters using numerical simulations in which the oscillators are treated as Langevin oscillators. This is achieved by adding damping forces -mγ Ẋi (i = 1, 2) and fluctuating terms mΓ i (t) to the Hamiltonian equations of motions, where Ẋi = dX i /dt and Γ i (t) is a Gaussian random variable such as Γ i (t)Γ i (t ′ ) = q i δ(t -t ′ ) (δ(t) is the Dirac delta function) and q i = 2γT i /m, T i being the temperature (T h or T l ) of the thermostat connected to oscillator i, expressed in energy units. These classical equations have been integrated with the Greenside-Helfand numerical scheme for stochastic differential equations [START_REF] Greenside | Numerical integration of stochastic differential equations The Bell[END_REF]. Thermal rectification was investigated with two series of numerical experiments for each set of system parameters. In the first series of realizations, thermostat Th 1 connected to oscillator X 1 was set to the high temperature T h and thermostat Th 2 was set to T l . Reverse configurations, marked by the exponent r , were obtained by switching T h and T l . Each series comprised 200 realizations, which were used to compute averages over the statistical realizations and over more than 2.5 10 5 periods 2π/ω d , designated by • .

ω 2 1 = 2ω 2 0 [5], ω 2 = ω 0 , T h = 1.2 T l , v 1 = 0.1,
In the simulations, to compute the heat powers Q1 and Q2 flowing into the systems from thermostats Th 1 and Th 2 , it is convenient to introduce the local energies, corresponding to each of the oscillators, defined as

E 1 (t) = P 2 1 2m + 1 2 C 1 (t)X 2 1 + 1 4 C 0 (X 1 -X 2 ) 2 (2) 
E 2 (t) = P 2 2 2m + 1 2 C 2 X 2 2 + 1 4 C 0 (X 1 -X 2 ) 2 (3) 
so that H S (t) = E 1 + E 2 . Using the Hamiltonian equations of motion and taking into account the exchanges with the thermostats leads to

dE 1 dt = Ẇ1 - 1 2 C 0 (X 1 -X 2 ) dX 1 dt + dX 2 dt + Q1 (4) dE 2 dt = 1 2 C 0 (X 1 -X 2 ) dX 1 dt + dX 2 dt + Q2 , (5) 
where Ẇ1 = v 1 ω d X 2 1 cos ω d t is the power flowing towards oscillator 1 due to the modulation of C 1 (t). From the dynamical trajectories of the oscillators, dE 1 /dt, dE 2 /dt, Ẇ1 and 1 2 C 0 (X 1 -X 2 ) dX1 dt + dX2 dt are easy to compute, which determines Q1 and Q2 .

The rectification coefficient defined in paper [1] is derived from the fluxes Q1 and Qr 1 in the direct and reverse configurations

R Q = Q1 + Qr 1 max Q1 , Qr 1 . (6) 
Paper [1] also introduces the static quasi-current É1 = Q1 + Ẇ1 . According to (4), we have

É1 = dE 1 dt + 1 2 C 0 (X 1 -X 2 ) dX 1 dt + dX 2 dt , (7) 
so that, when we take the time and statistical averages after a steady state has been established in the system i.e. dE 1 /dt = 0, we simply get In this two-oscillator system, É1 has a simple interpretation in terms of the power J flowing through the coupling link C 0 . The force F 1 exerted on particle 1 due to the coupling is F 1 = -C 0 (X 1 -X 2 ) and therefore the power P 1 transmitted to particle 1 due to the coupling is

É1 = 1 2 C 0 (X 1 -X 2 ) dX 1 dt + dX 2 dt . (8) 
P 1 = F 1 dX1 dt = -C 0 (X 1 -X 2 ) dX1
dt . Similarly the force F 2 due to the coupling is F 2 = C 0 (X 1 -X 2 ) and the power transmitted to particle 2 is

P 2 = F 2 dX2 dt = C 0 (X 1 -X 2 ) dX2
dt . Therefore the average power transfer from particle 1 to particle 2 is

J = -P 1 + P 2 = C 0 (X 1 -X 2 ) dX 1 dt + dX 2 dt = 2 É1 (9)
Therefore the rectification coefficient of paper [1] defined in terms of the static quasi-currents

R É = É1 + Ér 1 max É1 , Ér 1 (10) 
should coincide with the rectification coefficient R J defined from the calculations of the fluxes J and J r in the simulations Nevertheless the equality between R J and R É shows up clearly, giving a direct meaning to the rectification defined in terms of the static quasi-currents by showing that, as expected, it is due to the transfer along the coupling link.

R J = | J + J r | max | J | , | J r | . (11) 
The analogies with the results of paper [1] are clear. In particular, as in the quantum case, the regions with non-zero rectification correspond to a driving at combinations of the eigenfrequencies of the system. There are nevertheless some differences between the classical and quantum cases. In [1], the authors point out that the rectification coefficient R É computed with the quasi-static heat currents does not show the regions of high rectification corresponding to ω d = 2ν 1 , 2ν 2 which are detected with R Q derived from the fluxes Q1 and Qr 1 . They analyze this in terms of normal mode interactions. In the classical case, we do find that R É is significantly lower than R Q for ω d = 2ν 1 (Fig. 2-b), but it does not fully vanish, and we do not find a similar effect for ω d = 2ν 2 . This suggests that the effect of the classical heat bath on mode interactions is not the same as in the quantum case. Moreover we can also expect different laws for the temperature dependence of the rectification effect when the system obeys classical or quantum statistics.

Although there are some differences between the classical and quantum cases, the results show that the concept of dynamically induced heat rectification, introduced in paper [1] is not confined to the quantum case, and is instead a phenomenon of general validity. Therefore its understanding should not be specifically sought in quantum effects but in general features of the system. In the classical case the mechanism that leads to the rectification may be related to a kind of parametric resonance because the calculation of Ẇ1 also exhibits large peaks at combinations of the eigenfrequencies of the system of coupled oscillators.
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 1 FIG.1. Schematic picture of the simple device studied in[1] 
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 2 FIG. 2. (Color on-line) Rectification coefficients versus the modulation frequency ω d for two values of the coupling constant C0: (a) C0/ω0 = 1.0, (b) C0/ω0 = 0.4. Brown full line RQ, blue full line, with error bars RJ , red dash line RÉ. The vertical lines show some of the combination of the eigenfrequencies ν1/ω0, ν2/ω0 of the system of two oscillators.

Figure 2

 2 Figure 2 shows the rectification coefficients R Q , R J , and R É versus the driving frequency ω d for two values of the coupling coefficient C 0 . The calculations have been made with γ = 0.1 for the Langevin equation, i.e. a moderate strength of the coupling with the thermostats. Decreasing γ makes the peaks sharper. The horizontal scale for ω d /ω 0 is the same as on Fig. 3 of paper [1] to allow an easier comparison. The coefficients R Q and R É , which involve the evaluation of the heat fluxes from the thermostats, show fluctuations which result from an averaging over 200 realizations only. Their error bars are not shown to preserve the readability of the figure, but they are significantly larger than the error bars on R J .