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The article [Phys. Rev. E 99, 032126 (2019)] studies heat rectification in a network of harmonic
oscillators which is periodically driven. Both the title and introduction stress the quantum nature
of the system. Here we show that the results are more general and are equally valid for a classical
system, which broadens the interest of the paper and may suggest further pathways for a basic
understanding of the phenomenon.
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Paper [1] investigates a new mechanism to induce heat
rectification in a physical system. In analogy to electri-
cal diodes, a thermal diode, which connects two thermal
baths at different temperatures, exhibits different ther-
mal conductivities if the temperatures of the baths are
exchanged. Earlier studies considered static systems, i.e.
systems with time-independent properties and some non-
linearity in the physics of the material. Theory has con-
sidered classical and quantum systems. In these static
systems the basic origin of heat rectification can sim-
ply be tracked down in some asymmetry in the design
of the device and in the temperature-dependence of the
thermal conductivity of the material [2]. Heat rectifiers
have been built [3] based on this simple idea. The con-
cept introduced in [1] is different because the authors
consider a system under generic linear interactions, but
they introduce some internal dynamics in the device with
time-dependent interactions. This is an interesting idea
and paper [1] shows that it is valid in a large variety of
configurations. Dynamic rectification had already been
considered in optics using a spatially and temporarilly
modulation of the index [4], however the context was
different because integrated photonics applications work
with deterministic signals, in a limited bandwidth. Ther-
mal rectification is more challenging, and this is why the
results of paper [1] are significant.

However, both in their title and in the introduction and
conclusion of their paper, the authors stress the quantum
nature of their analysis, which gives the impression that
the phenomenon that they exhibit is purely quantum.
This is misleading. Actually the results are equally valid
for a classical system, as in the optical case [4]. An an-
alytical treatment is harder in this case but a numerical
simulation of the classical equivalent of the simple exam-
ple studied in details in paper [1] shows that the results
of the article are preserved for the classical system. This
broadens the interest of the article by showing its generic
validity.
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To illustrate its general results with a specific case,
paper [1] studied a network of two oscillators, which is
schematically shown in Fig. 1. Its Hamiltonian is
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where X2 and X2 are the positions of the oscillators, P1,
P2 their momenta, C1(t) = ω2

1
+ 2v1 sinωdt is a time

dependent parameter which introduces a driving at fre-
quency ωd, while C2 = ω2

2
and C0 are constants. This

system in coupled to two thermostats Th1 and Th2 at
two different temperatures that we label Th (for the high-
est) and Tl (for the lowest). Paper [1] investigated this
system using a quantum formalism and showed that it
does exhibit some thermal rectification when the tem-
peratures Th and Tl are switched. The results are dis-
played in Fig. 3 of the paper for ω2

1
= 2ω2

0
[5], ω2 = ω0,

Th = 1.2 Tl, v1 = 0.1, for a range of C0 and ωd values.
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FIG. 1. Schematic picture of the simple device studied in [1]

To compare the quantum and classical properties of
the system, we investigated it with the same parame-
ters using numerical simulations in which the oscillators
are treated as Langevin oscillators. This is achieved by
adding damping forces −mγẊi (i = 1, 2) and fluctuating
terms mΓi(t) to the Hamiltonian equations of motions,

where Ẋi = dXi/dt and Γi(t) is a Gaussian random vari-
able such as 〈Γi(t)Γi(t

′)〉 = qiδ(t − t′) (δ(t) is the Dirac
delta function) and qi = 2γTi/m, Ti being the tempera-
ture (Th or Tl) of the thermostat connected to oscillator
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i, expressed in energy units. These classical equations
have been integrated with the Greenside-Helfand numer-
ical scheme for stochastic differential equations [6]. Ther-
mal rectification was investigated with two series of nu-
merical experiments for each set of system parameters.
In the first series of realizations, thermostat Th1 con-
nected to oscillator X1 was set to the high temperature
Th and thermostat Th2 was set to Tl. Reverse config-
urations, marked by the exponent r, were obtained by
switching Th and Tl. Each series comprised 200 realiza-
tions, which were used to compute averages over the sta-
tistical realizations and over more than 2.5 105 periods
2π/ωd, designated by 〈·〉.

In the simulations, to compute the heat powers Q̇1

and Q̇2 flowing into the systems from thermostats Th1
and Th2, it is convenient to introduce the local energies,
corresponding to each of the oscillators, defined as
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so that HS(t) = E1 + E2. Using the Hamiltonian equa-
tions of motion and taking into account the exchanges
with the thermostats leads to
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where Ẇ1 = v1ωdX
2

1
cosωdt is the power flowing towards

oscillator 1 due to the modulation of C1(t). From the
dynamical trajectories of the oscillators, dE1/dt, dE2/dt,

Ẇ1 and 1
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are easy to compute,

which determines Q̇1 and Q̇2.

The rectification coefficient defined in paper [1] is de-

rived from the fluxes Q̇1 and Q̇r
1
in the direct and reverse

configurations
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Paper [1] also introduces the static quasi-current Q̇1 =

Q̇1 + Ẇ1. According to (4), we have
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so that, when we take the time and statistical averages
after a steady state has been established in the system
i.e. 〈dE1/dt〉 = 0, we simply get

〈Q̇1〉 =
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FIG. 2. (Color on-line) Rectification coefficients versus the
modulation frequency ωd for two values of the coupling con-
stant C0: (a) C0/ω0 = 1.0, (b) C0/ω0 = 0.4. Brown full line
RQ, blue full line, with error bars RJ , red dash line R

Q

. The
vertical lines show some of the combination of the eigenfre-
quencies ν1/ω0, ν2/ω0 of the system of two oscillators.

In this two-oscillator system, 〈Q̇1〉 has a simple inter-
pretation in terms of the power J flowing through the
coupling link C0. The force F1 exerted on particle 1 due
to the coupling is F1 = −C0(X1 − X2) and therefore
the power P1 transmitted to particle 1 due to the cou-
pling is P1 = F1

dX1

dt
= −C0(X1 −X2)

dX1

dt
. Similarly the

force F2 due to the coupling is F2 = C0(X1 − X2) and
the power transmitted to particle 2 is P2 = F2

dX2

dt
=
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dX2

dt
. Therefore the average power transfer

from particle 1 to particle 2 is
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Therefore the rectification coefficient of paper [1] defined
in terms of the static quasi-currents
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should coincide with the rectification coefficient RJ de-
fined from the calculations of the fluxes 〈J〉 and 〈Jr〉 in
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the simulations

RJ =
|〈J〉+ 〈Jr〉|

max
(

|〈J〉| , |〈Jr〉|
) . (11)

Figure 2 shows the rectification coefficients RQ, RJ ,
and R

Q

versus the driving frequency ωd for two values of
the coupling coefficient C0. The calculations have been
made with γ = 0.1 for the Langevin equation, i.e. a mod-
erate strength of the coupling with the thermostats. De-
creasing γ makes the peaks sharper. The horizontal scale
for ωd/ω0 is the same as on Fig. 3 of paper [1] to al-
low an easier comparison. The coefficients RQ and R

Q

,
which involve the evaluation of the heat fluxes from the
thermostats, show fluctuations which result from an av-
eraging over 200 realizations only. Their error bars are
not shown to preserve the readability of the figure, but
they are significantly larger than the error bars on RJ .
Nevertheless the equality between RJ and R

Q

shows up
clearly, giving a direct meaning to the rectification de-
fined in terms of the static quasi-currents by showing
that, as expected, it is due to the transfer along the cou-
pling link.

The analogies with the results of paper [1] are clear.
In particular, as in the quantum case, the regions with
non-zero rectification correspond to a driving at combi-
nations of the eigenfrequencies of the system. There are

nevertheless some differences between the classical and
quantum cases. In [1], the authors point out that the rec-
tification coefficient R

Q

computed with the quasi-static
heat currents does not show the regions of high rectifica-
tion corresponding to ωd = 2ν1, 2ν2 which are detected
with RQ derived from the fluxes Q̇1 and Q̇r

1
. They an-

alyze this in terms of normal mode interactions. In the
classical case, we do find that R

Q

is significantly lower
than RQ for ωd = 2ν1 (Fig. 2-b), but it does not fully
vanish, and we do not find a similar effect for ωd = 2ν2.
This suggests that the effect of the classical heat bath
on mode interactions is not the same as in the quantum
case. Moreover we can also expect different laws for the
temperature dependence of the rectification effect when
the system obeys classical or quantum statistics.

Although there are some differences between the classi-
cal and quantum cases, the results show that the concept
of dynamically induced heat rectification, introduced in
paper [1] is not confined to the quantum case, and is
instead a phenomenon of general validity. Therefore its
understanding should not be specifically sought in quan-
tum effects but in general features of the system. In the
classical case the mechanism that leads to the rectifica-
tion may be related to a kind of parametric resonance
because the calculation of Ẇ1 also exhibits large peaks
at combinations of the eigenfrequencies of the system of
coupled oscillators.
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