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On odd-periodic orbits in complex planar billiards

Alexey Glutsyuk ∗†‡§

April 8, 2014

Abstract

The famous conjecture of V.Ya.Ivrii (1978) says that in every bil-
liard with infinitely-smooth boundary in a Euclidean space the set of
periodic orbits has measure zero. In the present paper we study the
complex version of Ivrii’s conjecture for odd-periodic orbits in planar
billiards, with reflections from complex analytic curves. We prove pos-
itive answer in the following cases: 1) triangular orbits; 2) odd-periodic
orbits in the case, when the mirrors are algebraic curves avoiding two
special points at infinity, the so-called isotropic points. We provide
immediate applications to the partial classification of k-reflective real
analytic pseudo-billiards with odd k, the real piecewise-algebraic Ivrii’s
conjecture and its analogue in the invisibility theory: Plakhov’s invis-
ibility conjecture.

1 Introduction

The famous V.Ya.Ivrii’s conjecture [7] says that in every billiard with infinitely-
smooth boundary in a Euclidean space of any dimension the set of periodic
orbits has measure zero. As it was shown by V.Ya.Ivrii [7], it implies the
famous H.Weyl’s conjecture on the two-term asymptotics of the spectrum of
Laplacian [17]. A brief historical survey of both conjectures with references
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is presented in [6]. For triangular orbits Ivrii’s conjecture was proved in
[2, 11, 13, 16, 18]. For quadrilateral orbits in dimension two it was proved
in [5, 6].

Remark 1.1 Ivrii’s conjecture is open already for piecewise-analytic bil-
liards, and we believe that this is its principal case. In the latter case Ivrii’s
conjecture is equivalent to the statement saying that for every k ∈ N the set
of k-periodic orbits has empty interior. In the case, when the boundary is
analytic, regular and convex, this was proved for arbitrary period in [15].

In the present paper we study a complexified version of Ivrii’s conjecture
in complex dimension two for odd periods. More precisely, we consider the
complex plane C2 equipped with the complexified Euclidean metric, which
is the standard complex-bilinear quadratic form. This defines notion of
symmetry with respect to a complex line. Reflections of complex lines with
respect to complex analytic curves are defined by the same formula, as in the
real case. See [3, subsection 2.1] and Subsection 2.2 below for more detail.

Remark 1.2 Ivrii’s conjecture has an analogue in the invisibility theory:
Plakhov’s invisibility conjecture. It appears that both conjectures have the
same complexification. Thus, results on the complexified Ivrii’s conjecture
have applications to both Ivrii’s and Plakhov’s conjectures. See Section 5
for more details.

Main results and an application to the real Ivrii’s conjecture and the
plan of the paper are presented in Subsection 1.1.

1.1 Complex billiards, main results and plan of the paper.

Definition 1.3 A complex projective line l ⊂ CP2 ⊃ C2 is isotropic, if ei-
ther it coincides with the infinity line, or the complexified Euclidean quadratic
form dz21 + dz22 on C2 vanishes on l. Or equivalently, a line is isotropic, if it
passes through some of two points at infinity with homogeneous coordinates
(1 : ±i : 0): the isotropic points at infinity. In what follows we denote the
latter points by

I1 = (1 : i : 0), I2 = (1 : −i : 0).

Definition 1.4 The symmetry C2 → C2 with respect to a non-isotropic
complex line L ⊂ CP2 is the unique non-trivial complex-isometric involution
fixing the points of L. It extends to a projective transformation of the
ambient plane CP2.
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Definition 1.5 [3, definition 1.3] A planar complex analytic (algebraic) bil-
liard is a finite collection of complex irreducible1 analytic (algebraic) curves-
“mirrors” a1, . . . , ak ⊂ CP2. We assume that no mirror aj is an isotropic
line and set a0 = ak, ak+1 = a1. A k-periodic billiard orbit is a collection
of points Aj ∈ aj , Ak+1 = A1, Ak = A0, such that for every j = 1, . . . , k
one has Aj 6= Aj+1, the tangent line TAjaj is not isotropic and the complex
lines Aj−1Aj and AjAj+1 are transverse to it and symmetric with respect
to it. (Properly saying, we have to take points Aj together with prescribed
branches of curves aj at Aj : this specifies the line TAjaj in unique way, if
Aj is a self-intersection point of the curve aj .) The complex lines AjAj+1

are called the edges of the orbit.

Remark 1.6 In a real billiard the reflection of a ray from the boundary
is uniquely defined: the reflection is made at the first point where the ray
meets the boundary. In the complex case, the reflection of lines with respect
to a complex analytic curve is a multivalued mapping (correspondence) of
the space of lines in CP2: we do not have a canonical choice of intersection
point of a line with the curve. Moreover, the notion of interior domain does
not exist in the complex case, since the mirrors have real codimension two.

Definition 1.7 [3, definition 1.4] A complex analytic billiard a1, . . . , ak is
k-reflective, if it has an open set of periodic orbits. In more detail this means
that there exists an open set of pairs (A1, A2) ∈ a1 × a2 extendable to k-
periodic orbits A1 . . . Ak. (Then the latter property automatically holds for
every other pair of neighbor mirrors aj , aj+1.)

Problem (Complexified version of Ivrii’s conjecture) [3, section
1]. Classify all the k-reflective complex analytic (algebraic) billiards.

It is known that there exist 4-reflective complex planar analytic and
even algebraic billiards, see [14, p.59, corollary 4.6] and [3, section 1]. Their
complete classification is given in [3, 4]. Their existence implies existence of
k-reflective algebraic billiards for all k ≡ 0(mod4), see [3, remark 1.5].

Conjecture. There are no k-reflective complex analytic (algebraic) pla-
nar billiards for odd k.

The next two theorems partially confirm this conjecture.

Theorem 1.8 Every planar complex analytic billiard with three mirrors is
not 3-reflective.

1By irreducible complex analytic curve in a complex manifold we mean an analytic
curve holomorphically parametrized by a connected Riemann surface.
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Theorem 1.9 Let a planar complex algebraic billiard have odd number k of
mirrors, and let each mirror contain no isotropic point at infinity. Then the
billiard is not k-reflective.

Theorem 1.8 is the complexification of the above-mentioned results by
M.Rychlik et al on triangular orbits in real billiards, see [2, 11, 13, 16, 18].
Theorem 1.9 has immediate application to the real Ivrii’s conjecture.

Corollary 1.10 Consider a real planar billiard with piecewise-algebraic bound-
ary. Let the complexifications of its algebraic pieces contain no isotropic
point at infinity. Then the set of its odd-periodic orbits has measure zero.

The corollary follows immediately from Theorem 1.9 and Remark 1.1.
Theorem 1.9 is proved in Section 3. Theorem 1.8 is proved in Section 4.
In Subsection 5.1 we present applications of Theorems 1.9 and 1.8 to

the so-called real analytic pseudo-billiards: the billiards where the reflection
preserves the angle, as in the usual billiard, but allows to cross the mirror.
In Subsection 5.2 we provide applications to a particular case of Plakhov’s
invisibility conjecture.

The proofs of Theorems 1.9 and 1.8 are based on the following elementary
fact.

Proposition 1.11 The symmetry with respect to a non-isotropic line per-
mutes the isotropic directions: the image of an isotropic line through the
isotropic point I1 at infinity passes through the other isotropic point I2.

Proposition 1.11 follows from [3, Proposition 2.4].

Corollary 1.12 Let a periodic orbit in a complex planar analytic billiard
have finite vertices, and at least one of its edges be isotropic. Then all the
edges are isotropic, and their directions (corresponding isotropic points at
infinity) are intermittent, see Fig.1. In particular, the period is even.

Given an irreducible analytic curve a ⊂ CP2, by â we denote the Riemann
surface parametrizing its maximal analytic extension bijectively, except for
self-intersections; it is called its maximal normalization, see Subsection 2.1
for more details.

For the proof of Theorems 1.8 and 1.9 we lift the open set U0 of periodic
billiard orbits to the product of the maximal normalizations â1×· · ·×âk and
consider its closure U = U0 in the latter product. This is an analytic subset
with only two-dimensional irreducible components, see Subsection 2.2. It is
non-empty, if and only if the billiard is k-reflective.
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Figure 1: A periodic orbit with isotropic edges of intermittent directions

We prove Theorem 1.9 by contradiction. Supposing the contrary, i.e.,
the existence of an open set of k-periodic orbits, or equivalently, U 6= ∅, we
take a one-parameter family Γ of k-gons A1 . . . Ak ∈ U with an isotropic edge
A1A2. Its existence follows immediately from algebraicity. We show that a
generic k-gon in Γ is a finite orbit with an isotropic edge, as in Corollary
1.12. To do this, it suffices to show that Aj 6≡ const and Aj 6≡ Aj+1 on
Γ for every j. This is the place we use the second technical assumption of
Theorem 1.9 that I1,2 /∈ aj . This together with Corollary 1.12 implies that
the period should be even, – a contradiction.

We prove Theorem 1.8 also by contradiction. Given an analytic billiard a,
b, c, supposing its 3-reflectivity, we prove the existence of a one-dimensional
analytic family Γ of orbits ABC with one isotropic edge AB; the vertices A
and B vary along the curve Γ and A 6≡ B on Γ. This is the main technical
part of the proof. To this end, we show that each mirror is either a rational
curve, or a parabolic Riemann surface. This is done by considering the
neighbor edge correspondence (A,B) 7→ (B,C) defined by U and proving
its bimeromorphicity. Then we consider the two following cases:
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Case 1): the vertex C varies along the curve Γ. We show that A,B 6≡ C.
This implies that a generic triangle ABC ∈ Γ is a finite periodic orbit as in
Corollary 1.12, and we get a contradiction, as above.

Case 2): C ≡ const along the curve Γ. Then it follows immediately that
C is an isotropic point at infinity. This together with [3, proposition 2.14]
(recalled below as Proposition 2.8) implies that at least one of the edges AC
or BC should coincide with the tangent line TCc. This implies that all the
vertices A, B, C are constant along the curve Γ, – a contradiction.

2 Maximal analytic extension and complex reflec-
tion law

2.1 Maximal analytic extension

Recall that a germ (a,A) ⊂ CPn of analytic curve is irreducible, if it is the
image of a germ of analytic mapping (C, 0)→ CPn, 0 7→ A.

Definition 2.1 Consider two holomorphic mappings of Riemann surfaces
S1, S2 with base points s1 ∈ S1 and s2 ∈ S2 to CPn, fj : Sj → CPn, j = 1, 2,
f1(s1) = f2(s2). We say that f1 ≤ f2, if there exists a holomorphic mapping
h : S1 → S2, h(s1) = s2, such that f1 = f2 ◦ h. This defines a partial order
on the set of classes of Riemann surface mappings to CPn up to conformal
reparametrization respecting base points.

Proposition 2.2 Every irreducible germ of analytic curve in CPn has max-
imal analytic extension. In more detail, let (a,A) ⊂ CPn be an irreducible
germ of analytic curve. There exists an abstract Riemann surface â with
base point Â ∈ â (which we will call the maximal normalization of the
germ a) and a holomorphic mapping πa : â → CPn, πa(Â) = A with the
following properties:

- the image of germ at Â of the mapping πa is contained in a;
- πa is a maximal mapping with the above property in the sense of Defi-

nition 2.1.
Moreover, the mapping πa is unique up to composition with conformal

isomorphism of Riemann surfaces respecting base points.

Proof An irreducible germ of an analytic curve a in an affine chart Cn ⊂
CPn is locally the graph of a germ of a (multivalued) analytic function α :
C→ Cn−1. The Riemann surface â of the maximal meromorphic extension
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of the germ α (taken together with branching points), see [12, Encadré XI,
p.407], satisfies the statements of the proposition. 2

Example 2.3 The maximal normalization of a projective algebraic curve
is its usual normalization: a compact Riemann surface parametrizing the
curve bijectively, except for self-intersections.

2.2 Complex reflection law

The material presented in this subsection is contained in [3, subsection 2.1].
We fix an Euclidean metric on R2 and consider its complexification:

the complex-bilinear quadratic form dz21 + dz22 on the complex affine plane
C2 ⊂ CP2. We denote the infinity line in CP2 by C∞ = CP2 \ C2.

Definition 2.4 Let L be an isotropic line through a finite point x. A pair
of lines through x is called symmetric with respect to L, if it is a limit of
symmetric pairs of lines with respect to non-isotropic lines converging to L.

Lemma 2.5 [3, lemma 2.3] Let L be an isotropic line through a finite point
x. A pair of lines (L1, L2) through x is symmetric with respect to L, if and
only if some of them coincides with L.

Convention 2.6 Sometimes we identify a point (subset) in a with its preim-
age in the normalization â and denote both subsets by the same symbol. In
particular, given a subset in CP2, say a line l, we set â∩ l = π−1a (a∩ l) ⊂ â.
If a, b ⊂ CP2 are two curves, and A ∈ â, B ∈ b̂, πa(A) 6= πb(B), then for sim-
plicity we write A 6= B and the line πa(A)πb(B) will be referred to, as AB.
For every A ∈ â the local branch aA of the curve a at A is the irreducible
germ of analytic curve given by the germ of normalization parametrization
πa : (â, A) → (CP2, πa(A)). The tangent line Tπa(A)aA will be referred to,
as TAa.

Definition 2.7 [3, definition 2.13] Let a1, . . . , ak ⊂ CP2 be an analytic
(algebraic) billiard, and let â1, . . . , âk be the maximal normalizations of
its mirrors. The set Pk of k-periodic orbits lifted to the latter product is
contained in the subset Qk ⊂ â1 × · · · × âk of (not necessarily periodic)
k-orbits: the k-gons A1 . . . Ak such that for every 2 ≤ j ≤ k − 1 one has
Aj 6= Aj±1, the line TAjaj is not isotropic and the lines AjAj−1, AjAj+1 are
symmetric with respect to it. Let U0 = Int(Pk) denote the interior of the
subset Pk ⊂ Qk. The closure

U = U0 ⊂ â1 × · · · × âk
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in the product topology will be called the k-reflective set.

Proposition 2.8 [3, proposition 2.14] The k-reflective set U is analytic
(algebraic). The billiard is k-reflective, if and only if U 6= ∅. In this case each
irreducible component of the set U is two-dimensional and each projection
U → âj × âj+1 is a submersion on an open dense subset (epimorphic, if the
billiard is algebraic). For every point A1 . . . Ak ∈ U and every j such that
Aj±1 6= Aj the complex reflection law holds:

- if the tangent line lj = TAjaj is not isotropic, then the lines Aj−1Aj
and AjAj+1 are symmetric with respect to lj;

- otherwise, if lj is isotropic (finite or infinite), then at least one of the
lines Aj−1Aj or AjAj+1 coincides with lj.

3 Algebraic billiards: proof of Theorem 1.9

Definition 3.1 Let a1, . . . , ak be a complex planar analytic (algebraic) bil-
liard. A point A ∈ aj is marked, if it is either a cusp2, or an isotropic
tangency point of the mirror aj . A point A ∈ CP2 is double, if it is either a
self-intersection of a mirror, or an intersection point of two distinct mirrors.
A point A ∈ âj is marked, if it is a marked point of the local branch of the
curve aj at A, see Convention 2.6.

Suppose the contrary to Theorem 1.9: there exist an odd k and a k-
reflective algebraic billiard a1, . . . , ak with I1,2 /∈ aj for every j. Let U ⊂
â1 × · · · × âk denote its k-reflective set, which is an algebraic set with only
two-dimensional irreducible components (Proposition 2.8).

Proposition 3.2 There exists an irreducible algebraic curve Γ of k-gons
A1 . . . Ak ∈ U such that A1 6≡ A2, A1, A2 6≡ const along the curve Γ, and
for every A1 . . . Ak ∈ Γ with A1 6= A2 the line A1A2 is isotropic through the
point I1.

Proof Recall that the projection U → â1 × â2 is epimorphic (Proposition
2.8): each pair (A1, A2) ∈ â1× â2 lifts to a k-gon A1 . . . Ak ∈ U . The mirrors
a1 and a2 do not coincide with one and the same line, since otherwise, there
would exist no k-periodic orbit in the sense of Definition 1.5, as in [3, proof
of Corollary 2.19]. Therefore, a generic line through the isotropic point I1

2Everywhere in the paper by cusp we mean the singularity of an arbitrary irreducible
singular germ of analytic curve, not necessarily the one given by equation x2 = y3 + . . .
in appropriate coordinates.
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at infinity intersects a1 and a2 in at least two distinct points A1 and A2

respectively. The closure of liftings to â1 × â2 of the latter pairs (A1, A2)
is an algebraic curve H. Its projection preimage in U obviously contains
an irreducible component Γ with non-constant projection to H. This Γ
obviously satisfies the statements of the proposition. 2

Proposition 3.3 Let Γ be as in the above proposition. Then for every
j = 1, . . . , k one has Aj 6≡ Aj+1, Aj 6≡ const along the curve Γ. For every
A1 . . . Ak ∈ Γ with Aj 6= Aj+1 the line AjAj+1 is an isotropic line through
I1 (I2) if j is odd (respectively, even).

Proof Induction on j.
Induction base: A1 6≡ A2, A1, A2 6≡ const along the curve Γ, by Propo-

sition 3.2, and the line A1A2 is isotropic through I1, by definition.
Induction step. Let we have already shown that Aj−1 6≡ Aj and Aj−1 6≡

const along the curve Γ, and for every A1 . . . Ak ∈ Γ with Aj−1 6= Aj
the line Aj−1Aj is isotropic, say, through I1. Let us show that Aj 6≡ const,
Aj 6≡ Aj+1 and the line AjAj+1 is isotropic through I2, whenever Aj 6= Aj+1.
Indeed, the isotropic line Aj−1Aj is non-constant along Γ, as is Aj−1, and
passes through the fixed isotropic point I1. Therefore, its intersection points
with the curve aj vary, since I1 /∈ aj by assumption. This implies that
Aj 6≡ const. Now suppose, by contradiction, that Aj ≡ Aj+1 on Γ; then
aj = aj+1. Fix a k-gon x = A1 . . . Ak ∈ Γ with Aj−1 6= Aj such that the
tangent line TAjaj is not isotropic. The k-gon x ∈ U is a limit of k-periodic
billiard orbits An1 . . . A

n
k . By definition, Ans 6= Ans+1 for every s. The vertices

Anj and Anj+1 collide to the same limit Aj , hence the line AnjA
n
j+1 tends

to the tangent line TAjaj . On the other hand, AnjA
n
j+1 tends to the line

through Aj symmetric to Aj−1Aj with respect to TAjaj . Hence, the latter
limit line is isotropic through I2 (Proposition 1.11), and at the same time, it
coincides with a non-isotropic line TAjaj . The contradiction thus obtained
implies that Aj 6≡ Aj+1 along Γ. The above argument also implies that if
Aj 6= Aj+1, then the latter limit isotropic line through I2 coincides with
AjAj+1. The induction step is over. The proposition is proved. 2

The curve Γ from Proposition 3.2 contains a finite k-periodic orbit with
isotropic edges of intermittent directions, by Proposition 3.3. But then k
should be even by Corollary 1.12. The contradiction thus obtained proves
Theorem 1.9.
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4 Triangular orbits: proof of Theorem 1.8

We prove Theorem 1.8 by contradiction. Suppose the contrary: there exists
a 3-reflective analytic billiard a, b, c in CP2, let U ⊂ â × b̂ × ĉ be its 3-
reflective set. The analytic subset U ⊂ â × b̂ × ĉ defines a correspondence
ψb : â × b̂ → b̂ × ĉ: (A,B) 7→ (B,C) for every ABC ∈ U . First we show in
the next proposition that the correspondence ψb extends to a bimeromorphic
isomorphism â × b̂ → b̂ × ĉ. This implies (Corollary 4.3) that each mirror
is either a rational curve, or a parabolic Riemann surface. Afterwards we
deduce that the mirrors are distinct (Proposition 4.4) and there exists a
one-dimensional family Γ of triangles ABC ∈ U with isotropic edges AB
(Corollary 4.5). This will bring us to a contradiction analogously to the
above proof of Theorem 1.9.

Proposition 4.1 Let a, b, c, U and ψb be as above. The correspondence ψb
extends to a bimeromorphic3 isomorphism â× b̂→ b̂× ĉ.

Proof It suffices to show that the mapping ψb is meromorphic: the proof
of the meromorphicity of its inverse is analogous. Consider the auxiliary
mapping Qab : â × b̂ → CP2 defined as follows. Take an arbitrary pair
(A,B) ∈ â × b̂ with A 6= B, non-isotropic tangent lines TAa, TBb and such
that AB 6= TAa, TBb. Set Qab(A,B) to be the point of intersection of two
lines: the images of the line AB under the symmetries with respect to the
tangent lines TAa and TBb. The mapping Qab extends to a meromorphic
mapping â × b̂ → CP2, by the algebraicity of the reflection law. (Possible
indeterminacies correspond to isolated points where either A = B is a double
point, or one of the tangent lines TAa or TBb is isotropic and coincides with
AB.) Note that Qab(A,B) ∈ c for every (A,B) from the domain of the
mapping Qab, since this holds for an open set of pairs (A,B) that extend
to triangular orbits ABC: the third vertex C is found as the intersection
point of the above symmetric images of the line AB. This implies that the
mapping ψb extends to a meromorphic mapping â× b̂→ b̂× ĉ by the formula
ψb(A,B) = (B, π−1c ◦Qab(A,B)). The proposition is proved. 2

Corollary 4.2 The projection U → â× b̂ is bimeromorphic and in particu-
lar, the 3-reflective set U is irreducible. The complement to its image is at
most discrete.

3Recall that a meromorphic mapping M → N between complex manifolds is a mapping
holomorphic on the complement of an analytic subset in M such that the closure of its
graph is an analytic subset in M ×N .
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Proof The first statement of the corollary follows immediately from the
proposition. Let us prove the second statement. The inverse of the pro-
jection being induced by a meromorphic mapping Qab : â × b̂ → CP2, it
is holomorphic outside the indeterminacy locus of the mapping Qab. The
latter locus is at most discrete, see the above proof. The corollary is proved.

2

Corollary 4.3 Let a, b, c be a 3-reflective analytic billiard in CP2. Then
the maximal normalization of each its mirror is either parabolic (having
universal cover C), or conformally equivalent to the Riemann sphere.

Proof A Riemann surface has one of the two above types, if and only
if it admits a nontrivial holomorphic family of conformal automorphisms.
Thus, it suffices to show that the maximal normalization of each mirror
has a nontrivial holomorphic family of automorphisms, or equivalently, has
a nontrivial holomorphic family of conformal isomorphisms onto a given
Riemann surface. Fix a non-marked point B ∈ b̂ that represents a finite
point in CP2. For every A ∈ â set φB(A) = π−1c ◦Qab(A,B) ∈ ĉ. This yields
a family of conformal isomorphisms φB : â → ĉ depending holomorphically
on B from an open and dense subset in b̂, by bimeromorphicity (Proposition
4.1). In particular, the Riemann surfaces â and ĉ are conformally equivalent.
Similarly, S = â ' b̂ ' ĉ. If the family φB is nontrivial (non-constant in
B), then the Riemann surface S is either parabolic, or the Riemann sphere,
by the statement from the beginning of the proof. We claim that in the
contrary case, when φB is independent on B, one has b ' C. Indeed, let
φ = φB be independent on B. Fix an arbitrary finite point A ∈ â, set
C = φ(A). Then for every B ∈ b̂ the lines AB and BC are symmetric with
respect to the tangent line TBb. Hence, b is either a line, or a conic, by [3,
proposition 2.32]. Thus, b ' C. This proves the corollary. 2

Proposition 4.4 Let a, b, c be a 3-reflective analytic billiard in CP2. Then
its mirrors are pairwise distinct: one is not analytic extension of another.

Proof Suppose the contrary, say, a = b. Then the 3-reflective set U con-
tains an irreducible one-dimensional analytic subset Γ such that for every
ABC ∈ Γ one has A = B, and A,B 6≡ const along the curve Γ. This follows
from the second statement of Corollary 4.2: the image of the projection
U → â× b̂ covers the diagonal with at most a discrete subset deleted.

Case 1): A ≡ B 6≡ C on Γ. Then AC ≡ BC ≡ TAa on Γ, as in [3, proof
of corollary 2.19]. Indeed, every triangle ABC ∈ Γ with the tangent line
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TAa being non-isotropic is a limit of triangular orbits AnBnCn with distinct
colliding vertices An, Bn → A. Thus, AnBn → TAa, hence AnCn, BnCn →
TAa = AC = BC by reflection law. This implies that C 6≡ const along the
curve Γ, being the intersection point of the curve c with the tangent line to
a at a variable point A. Therefore, the curve Γ contains triangles ABC such
that C 6= A = B and A, B, C are not marked points. This contradicts [3,
proposition 2.18].

Case 2): A ≡ B ≡ C on Γ. Then we similarly get a contradiction to the
same proposition (cf. [15]). This proves Proposition 4.4. 2

Corollary 4.5 There exists a one-dimensional irreducible analytic subset
Γ ⊂ U such that A 6≡ B, A,B 6≡ const along the curve Γ and for every
ABC ∈ Γ with A 6= B the line AB is isotropic through I1.

Proof There exists a line L through I1 intersecting the curves a and b in
at least two distinct finite points A and B respectively. Or equivalently,
the projection CP2 \ I1 → CP1 from the point I1 sends some two distinct
points A ∈ a and B ∈ b to the same point. Indeed, for every g = a, b its
composition with the normalization parametrization πg : ĝ → CP2 extends
to a non-constant holomorphic mapping ĝ → C = CP1. The non-constance
follows from the assumption that g is not an isotropic line. The Riemann
surface ĝ being either parabolic or Riemann sphere (Corollary 4.3), the
latter mapping ĝ → C takes all the values except for at most two (Picard’s
Theorem). This together with the inequality a 6= b implies the existence of
the above L, A and B. Deforming the isotropic line L one can achieve that
(A,B) be the projection of a triangle ABC ∈ U (the second statement of
Corollary 4.2). The condition that either A = B, or the line AB is isotropic
through I1 defines a one-dimensional analytic subset in U containing ABC.
The curve Γ we are looking for is its one-dimensional irreducible component
containing ABC. The corollary is proved. 2

Proof of Theorem 1.8. Let Γ be the same, as in Corollary 4.5. We
consider the two following cases:

Case 1): C 6≡ const along the curve Γ. One has A,B 6≡ C, since a, b 6= c,
by Proposition 4.4. Then there exists a triangular billiard orbit ABC ∈
Γ with finite vertices that are not marked points. Its edges are isotropic
lines with intermittent directions, since AB is isotropic and by Corollary
1.12. Hence, the period of the triangular orbit should be even, by the same
corollary, – a contradiction.

Case 2): C ≡ const along the curve Γ. For every ABC ∈ Γ with A, B
being not marked points of the curves a and b, A 6= B and A,B 6= C the
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line AC is isotropic through I2, being the reflection image of the isotropic
line AB through I1 with respect to TBb (Proposition 1.11). This implies
that C = I2, since A 6≡ const, C ≡ const on the curve Γ and the curve a is
not an isotropic line. Thus, the projective tangent line TCc contains I2 and
hence, is isotropic. This implies that for every ABC as above one of the
lines AC or BC coincides identically with TCc (Proposition 2.8, see Fig.2),
and hence, some of the vertices A or B is constant along the curve Γ, – a
contradiction to Corollary 4.5. The proof of Theorem 1.8 is complete. 2

                                                                       B 

     

a

b
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A

        
     

                                 
         

CP 

  I  =C

c

           2

Figure 2: Triangular orbits with isotropic vertex C

5 Applications to pseudo-billiards and invisibility

5.1 On k-reflective analytic pseudo-billiards with odd k

Here by real analytic curve we mean a curve a ⊂ RP2 analytically parametrized
by either R, or S1 that is not the infinity line. If a curve a has singularities
(cusps or self-intersections), we consider its maximal real analytic extension
πa : â → a, where â is either R, or S1, see [6, lemma 37, p.302]. The
parametrizing curve â will be called here the real normalization. The affine
plane R2 ⊂ RP2 is equipped with Euclidean metric.

Definition 5.1 [3, remark 1.6] A triple of points A,B,C ∈ R2, A 6= B,
B 6= C, and a line L ⊂ R2 through B satisfy the usual real reflection law
(skew real reflection law), if the lines AB and BC are symmetric with respect
to L, and also the points A and C lie in the same half-plane (respectively,
different half-planes) with respect to the line L.
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Remark 5.2 (loc.cit). A triple of real points A,B,C ∈ R2, A 6= B, B 6= C
and a line L ⊂ R2 through B satisfy the complex reflection law, i.e., the
complex lines AB and BC are symmetric with respect to the line L, if and
only if they satisfy either usual, or skew real reflection law.

Definition 5.3 [3, definition 6.1] A real planar analytic (algebraic) pseudo-
billiard is a collection of k real irreducible analytic (algebraic) curves a1, . . . , ak ⊂
RP2. Its k-periodic orbit is a k-gon A1 . . . Ak, Aj ∈ aj ∩R2, such that for ev-
ery j = 1, . . . , k one has Aj 6= Aj±1, AjAj±1 6= TAjaj and the lines AjAj−1,
AjAj+1 are symmetric with respect to the tangent line TAjaj . The latter
means that for every j the triple Aj−1, Aj , Aj+1 and the line TAjaj satisfy
either usual, or skew real reflection law; we then say that usual (skew) re-
flection law is satisfied at Aj . See Fig.3 for k = 3. Here we set ak+1 = a1,
Ak+1 = A1, a0 = ak, A0 = Ak. A real pseudo-billiard is called k-reflective,
if it has an open set (i.e., a two-parameter family) of k-periodic orbits.

Theorem 5.4 Let in a real algebraic planar pseudo-billiard a1, . . . , ak the
number k be odd and the complexification of each mirror aj contain no
isotropic point at infinity. Then the pseudo-billiard is not k-reflective.

Theorem 5.5 There are no 3-reflective real planar analytic pseudo-billiards.

The latter theorems follow from Theorems 1.9 and 1.8 respectively and
the fact that the complexification of a k-reflective planar analytic pseudo-
billiard is a k-reflective complex billiard [3, remark 6.2].

Figure 3: Triangular orbits of pseudo-billiards with three mirrors: their open
sets are forbidden by Theorem 5.5.

Remark 5.6 The 4-reflective real planar analytic pseudo-billiards are clas-
sified in [3, 4].
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5.2 Application to Plakhov’s invisibility conjecture

This subsection is devoted to Plakhov’s invisibility conjecture: the analogue
of Ivrii’s conjecture in the invisibility theory [8, conjecture 8.2]. We recall
it below and show that it follows from a conjecture saying that no finite
collection of germs of smooth curves can form a k-reflective pseudo-billiard
with only two skew reflection laws at two neighbor mirrors. This shows
that both invisibility and Ivrii’s conjectures have the same complexification.
For simplicity we present this relation in dimension two. We state and
prove Corollaries 5.13 and 5.15 of Theorems 5.5 and 5.4 for planar Plakhov’s
invisibility conjecture.

Definition 5.7 Consider an arbitrary perfectly reflecting (may be discon-
nected) closed bounded body B in a Euclidean space. For every oriented
line (ray) R take its first intersection point A1 with the boundary ∂B and
reflect R from the tangent hyperplane TA1∂B. The reflected ray goes from
the point A1 and defines a new oriented line. Then we repeat this procedure.
Let us assume that after a finite number of reflections the output oriented
line coincides with the input line R and will not hit the body any more.
Then we say that the body B is invisible for the ray R, see Fig.4. We call
R a ray of invisibility, and the finite piecewise-linear curve bounded by the
first and last reflection points will be called its complete trajectory.

    2

   R

R

B
B

A
   1

   

     

A
     k

      
 

 A

Figure 4: A body invisible in one direction.
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Invisibility Conjecture (A.Plakhov, [8, conjecture 8.2, p.274].) There
is no body with piecewise C∞ boundary for which the set of rays of invisibility
has positive measure.

Remark 5.8 As is shown by A.Plakhov in his book [8, section 8], there exist
no body invisible for all rays. The same book contains a very nice survey
on invisibility, including examples of bodies invisible for a finite number of
(one-dimensional families of) rays. See also papers [1, 9, 10] for more results.
The Invisibility Conjecture is open even in dimension 2. It is equivalent to
the statement saying that there are no k-reflective bodies for every k, see
the next definition.

Definition 5.9 A body B with piecewise-smooth boundary is called k-
reflective, if the set of invisibility rays with k reflections has positive measure.

Definition 5.10 Let a1, . . . , ak be a collection of (germs of) planar smooth
curves. A k-gon A1 . . . Ak with Aj ∈ aj , Ak+1 = A1, A0 = Ak is said to be
a k-invisible orbit, if

- Aj 6= Aj+1 for every j = 1, . . . , k;
- the tangent line TAjaj is the exterior bisector of the angle ∠Aj−1AjAj+1

whenever j 6= 1, k, and it is its interior bisector for j = 1, k, see Fig.5.
We say that the collection a1, . . . , ak is a k-invisible billiard, if the set of

its k-invisible orbits has positive measure.

Proposition 5.11 Let k ∈ N and B ⊂ R2 be a body such that no collection
of k germs of its boundary forms a k-invisible billiard. Then the body B is
not k-reflective.

Proposition 5.11 is implicitly contained in [8, section 8].

Remark 5.12 A k-invisible billiard a1, . . . , ak with analytic mirrors is a k-
reflective planar analytic pseudo-billiard. It has an open set of k-periodic
orbits with skew reflection law only at the mirrors a1 and ak.

Corollary 5.13 There are no 3-reflective bodies in R2 with piecewise-analytic
boundary.

Remark 5.14 Corollary 5.13 is known to specialists. As it is stated in
A.Plakhov’s book [8] (after conjecture 8.2), Corollary 5.13 can be proved by
adapting the proof of Ivrii’s conjecture for triangular orbits. A.Plakhov’s
unpublished proof of Corollary 5.13 follows [18].
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Figure 5: A k-invisible k-gon: skew reflection law at A1 and Ak.

Corollary 5.15 Let B ⊂ R2 be a body with piecewise-algebraic boundary,
and let the complexifications of its algebraic pieces contain no isotropic point
at infinity. Then B is not k-reflective for every odd k.

Corollaries 5.13 and 5.15 follow from Proposition 5.11, Remark 5.12 and
Theorems 5.5 and 5.4.
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