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Abstract: This is only the original submission, for the final version download the file from the MDPI
Open Access Journal Condensed Matter. We calculate the spectral function of a boson ladder in
an artificial magnetic field by means of analytic approaches based on bosonization and Bogoliubov
theory. We discuss the evolution of the spectral function at increasing effective magnetic flux, from
the Meissner to the Vortex phase, focussing on the effects of incommensurations in momentum
space. At low flux, in the Meissner phase, the spectral function displays both a gapless branch and
a gapped one, while at higher flux, in the Vortex phase, the spectral functions display two gapless
branches and the spectral weight is shifted at a wavevector associated to the underlying vortex
spatial structure. While the Bogoliubov theory, valid at weak interactions, predicts sharp delta-like
features in the spectral function, at stronger interactions we find power-law broadening of the spectral
functions due to quantum fluctuations as well as additional spectral weight at higher momenta due
to backscattering and incommensuration effects. These features could be accessed in ultracold atom
experiments using radio-frequency spectroscopy techniques.

Keywords: bosonization, Bogoliubov approximation, artificial gauge field, spectral functions

1. Introduction

In quasi one-dimensional systems, analogues of the Meissner and Vortex phase have been
predicted for the bosonic two-leg ladder[1-4], the simplest system where orbital magnetic field effects
are allowed. It was shown that in this model, the quantum phase transition between the Meissner and
the Vortex phase is a commensurate-incommensurate transition[5-7]. Recently the advent of ultracold
atomic gases, have opened a route where to realize low dimensional strongly interacting bosonic
systems[8-10] where an artificial magnetic flux acting on the ladder can be simulated either using
geometric phases[11], or the spin-orbit coupling[12,13]. Indeed, there is a mapping of the two-leg
ladder bosonic model to a two-component spinor boson model in which the bosons in the upper leg
become spin-up bosons and the bosons in the lower leg spin-down bosons. Under such mapping, the
magnetic flux of the ladder becomes a spin-orbit coupling for the spinor bosons. Theoretical proposals
to realize either artificial gauge fields and artificial spin orbit coupling have been put forward[14,15],
and an artificial spin-orbit coupling has been achieved in a cold atoms experiment[16]. A two leg boson
ladder under a flux is known to display a commensurate-incommensurate transition[1-4] between
a low flux commensurate Meissner-like phase and a high flux incommensurate vortex-like phase.
The transition has been characterized using equal time correlation functions[3,17-19]. However, we
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expect a direct signature of the transition also in dynamical correlation functions. In one dimension,
the low energy modes are collective excitations[20,21], and in the two-leg ladder, there is a separation
between a total density (“charge”) and a density difference (“spin”) mode[2,4]. This is analogous to the
well-known spin charge separation in electronic systems[20] and two-component boson systems[22].
Except at commensurate filling[23-26] the “charge” mode is gapless. By contrast, the “spin” mode
is gapped in the Meissner phase and gapless in the Vortex phase, the transition as a function of flux
being in the commensurate-incommensurate class[5,6]. Thus, the two phases are characterized by
very different dynamical correlation functions. Among those correlation functions, one could for
example consider the “spin-spin” dynamical structure factor. This would display a well defined
gapped or gapless dispersion respectively in the Meissner and in the Vortex phase. However, such
correlation function would not be sensitive to the incommensuration in the weak interchain hopping
regime, although it displays incommensuration features at weak interactions and large interchain
hopping[4,27]. A better indicator of incommensuration in all regimes is provided by the spectral
function of the bosonic particles. In the Vortex phase, it always displays a shift in the position of the
minimum of the dispersion away from g = 0 as a consequence of the incommensuration whereas
in the Meissner state the minimum of the dispersion remains at ¢ = 0. A particular feature of the
single-particle spectral function is that it is incoherent[22,28] i.e. the low energy excitation branches
emerge as power law singularities instead of delta function singularities. From the experimental
point of view, single-particle spectral functions are accessible via radiofrequency (RF) spectroscopy
techniques [29,30]. In the present paper, we calculate the boson spectral function in the different phases
of the boson ladder at incommensurate filling in order to fully characterize the transition under flux.

2. Model

In the following we use the notations and definitions of Ref. [19]. We consider a model of bosons
on a two-leg ladder in the presence of an artificial U(1) gauge field[13,31]:

; _; u (@)
H= —tjza(b;:aemvbj+1,g + b;+1,(7€ l)\gb]"g') + > ]Zalnjg(njg — 1) + ?],XZ‘B b}!-,tx (ax)txﬂbj,ﬁ- (1)

where o =1, | represents the leg index or the internal mode index[32-34], b; , annihilates a boson on
leg o on the j—th site, nj, = b;.rabja, t is the hopping amplitude along the chain, () is the tunneling
between the legs or laser induced tunneling between internal modes, A is the flux of the effective
magnetic field, U is the repulsion between bosons on the same leg. The low-energy effective theory
for the Hamiltonian (1), where () < t is treated as a perturbation, is obtained by using Haldane’s
bosonization.[35] By introducing[35] the fields ¢, (x) and I, (x) satisfying canonical commutation
relations [¢n(x),I14(y)] = i6(x — y) as well as the dual 6, (x) = 7 [*dyll,(y) of ¢u(x), and after
introducing the respective combinations of operators ¢.s = ¢ + ¢ we can represent the low-energy
Hamiltonian as H = H, + H;, where

" d c
H. = / % |:ucKc(7THc)2 + Ii(ax¢c)2:| (2)

describes the total density (or charge) fluctuations for incommensurate filling when umklapp terms
are irrelevant, and

dx
= [ 5

describes the antisymmetric density (or spin) fluctuations. In Eq. (2) and (3), us and u, are respectively
the velocity of antisymmetric and total density excitations, Ag is a non universal coefficient[20] while
Ks and K. are the corresponding Tomonaga-Luttinger (TL) exponents[36]. For two chains of hard
core bosons, we have u, = us = 2tsin(p’/2) where p° is the average number of bosons per site and

A 2
usKs <7THS + m) + 2(ax¢s)2] — ZQA%/dx Ccos \/EGS, (3)
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Ks=K.=1.
The phase diagram of the Hamiltonian has been determined by looking at the behavior of the chiral
current, i.e. the difference between the currents in upper and lower leg, which is defined as

]s(j//\) = _itza(b;,aei/\abj+l,a_b;r+1,ge_i/wbj,0), (4)
[
usKs A )
= 8 (9.0, + ). 5
7_[\/5 < xVs a\/i ( )

As a function of the flux A, the chiral current first increases linearly with A while being in the Meissner
phase and above a critical value of A it starts to decrease in the Vortex phase[2]. In this phase the
rung current starts to be different from zero. In Fig.1 the red-line is the phase boundary between the
Vortex and the Meissner phase for the non-interacting case, while the blue-line represents the phase
boundary in the hard-core limit[19]. The major difference with respect to the non-interacting case is
the persistence of the Meissner phase even for large values of the flux.

3
1 T y”
25+ Q175 a) / Meissner
" /  phase
05 - 7 !
ol ]
0 .
o 0.5 1
c 15 Mm) 3
7 1 T
1t Q=125  b)| |
Jg 05 - A
05 # Vortex b
phase  F o
P AMm)
0 - N 1 L
0 0.25 0.5 0.75 1

Figure 1. Phase diagram for a hard-core bosonic system on a ladder as a function of flux per plaquette A
and (), at the filling value n = 1. The black solid line that joins solid dots is the phase boundary between
the Meissner and the Vortex phase, while the dashed red line is the prediction for this boundary in the
non-interacting system. In the insets we show the different behavior of the spin-current Js(A) for two
values of interchain coupling () when there is the Meissner/Vortex transition and where there is not,
respectively panel b) for ) = 1.25 and a) for () = 1.75 DMRG simulation results at L = 64 in PBC.

Beyond the chiral and rung current the Meissner to Vortex phase transition can be traced out by
looking at the behavior of the spectral function which is more sensitive to incommensurations.

For the case of lattice bosons the spectral function is defined as:
Adlg,w) = =i X [ dto(t = )@ [, (1)b5,(0)) ~ (b, (0)bio(1))] (6)
i

and can be experimentally accessed by, e.g. via radiofrequency (RF) spectroscopy techniques [29,30].
In the following we will focus on the positive-frequency part of the spectral function, given by the first
term in Eq. (6).
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0 k

Figure 2. Schematic representation of the spectral function in the Meissner phase. The colored regions

have a non-zero spectral weight. The violet region is the spectral weight coming only from the gapless
charge modes, the spin modes remaining in their ground state. The green region represents the region
where the gapped spin modes contribute to the spectral weight.

3. Spectral function in the Meissner phase for weak interchain hopping

Within the bosonization technique the boson annihilation operator to the lowest order
approximation can be represented as:

Yo(x,) = b (1)/Va ~ Aglé Vi) F %

where a is the lattice spacing, Ag is a non-universal constant and ¢ stands for 1 in the upper chain and
|} for the lower chain. Knowing the Green’s function for the single particle operators b one gets the
spectral function as:

1

ifs dxdt o 8K:
A \[ i(kx—wt)
(k) ~ ) / ((uc —iuct)? + xz) ’ ®)

where « is the theory cutoff taken equal to the lattice spacing. The result of the integral yields

&fewwﬁﬂ—mo, ©)

2 65 () 250a 2
Ak, w) ~ MK? Vi ‘ (w —k2> o
Y

The approximation (11) only yields the behavior of the spectral function at w lower than the gap A; in
the 0; modes. The actual correlation function can be obtained from the Form factor expansion[37-41].
The lowest contribution, from a soliton-antisoliton pair yields

.05 (x,7) -05(0,0) -0s (x,t)

(Tee' V2 e ' V2 ) =|(e' V2 )2+ O(e 205V (¥/us)?472y (10)

As a result, the Fourier transform of the full Matsubara Green’s function is the sum of the
contribution (9) and a second contribution analytic in a strip of the upper iv half plane of width
proportional to the gap. This implies that the analytic continuation to real frequencies of this
contribution is real until w = 2A;. There, a cut appears along the real frequency and the imaginary
part of that contribution to the Green’s function becomes nonzero. This behavior is represented
schematically on Fig. 2. As the flux increases, the gap decreases linearly until it becomes zero at the
commensurate-incommensurate point.
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4. Spectral function in the Vortex phase for weak interchain hopping

In the vortex phase the boson field to the lowest order reads:

Po(x, ) = bip(T)/V/a ~ Age P WTieVE Ve (11)

where go(A) is the incommensurate wavevector of the vortex phase.
Thus we find the Matsubara Green’s function of the bosons in the form

. — A2p—irqe(A)ja a? e a? s
(Tebi ()88, 0) = e onoie (o ) () )

and the spectral function is obtained by the integral:

1

97

98

29

100

101

102

105

106

1 1 1
dxdt _; o 8Ke n 8Ks « 8Ke & 8K
Alk ~ A2 —i(kx—wt)
(k) 0) 27 ¢ o —i(uct —x) a —i(ust —x) o —i(uct + x) o —i(ust + x) ’
(13)

where go(A) is absorbed into k. The Fourier transform of the Matsubara Green’s function (12) can be
calculated by the method outlined in [22,28] and after analytic continuation iv — w + i0 it reads:

1,1 T

e 1_%&_% 1 1 1 R S
Golgw) = (5)™ ™ ( L P A

2 1 1
T (st + o)

X

1 (1 1 1 1 1 1 1 1 u?liwz—ug(q+aqo()x))2

171711 -

T 8K, 8K, | 8Ky 2’7 8K, 8K:'8K. + 8Ky w2 w?—u2(q+aqo(A))?
S
where the function F; (4, by, by, ¢; 21, 22) is an Appell hypergeometric function[42], which has a series
representation in terms of two complex variables z; and z; when |z1| < 1 and |z;| < 1.

Singularities appear at w{ (g, A) = Fuc(q + 0go(A)) and at wy(g,A) = Fus(q + cqgo(A)) and the
power-law behavior of the spectral function near these points has been detailed in Ref. [28]. Some
attention should be paid to extract the analytic continuation for points outside the radius of convergence
of the Appell’s function resorting to its integral representation possible when Re[c — a] > 0 which in
our case is always true by construction: ¢ —a = 1/(8K?) The behavior of the Green’s function near the
singularity points can be simplified as:

Ga(q,w) ~ |w2_wv(q/A)2|1/(8KC)+1/(4K§)71 (15)
Gg(q,w) ~ |w2_wa(q/)\)2|1/(8K;‘)+1/(4Kc)71 (16)

In the Vortex phase, near the commensurate-incommensurate transition the spin velocity u} « /A — A,
so we stay with the case where the charge velocity is larger than the spin one: in this case 1 — u2/u2 < 0
and w§(q,A) < w{(q,A). In this phase K} > 1/2 and K, is near unity, when the hopping between
the chains is not too large, the imaginary part of the Greeen’s function, i.e. the spectral function
Ay (g, w) = —SmGy(g,w)/m, is divergent near the two poles w; and w, as shown in panel a) of Fig. 3.
In order to wash out at least one of the divergencies near the two poles small values of K, < 1/2 are
required, signalling that density wave correlations are becoming important and eventually bringing a
density-wave phase. The behavior of the spin resolved spectral function A, (g, w) for a fixed value of
the applied flux is schematically shown in Fig. 4 as a function of the g and w showing the contribution
to spectral weight coming from the different singularities.
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Figure 3. Spectral function A,(g,w) as a function of w/w{ (g, A) for uf/uc = 0.5 and K = 0.6. In
panel a) we show the typical situation in the Vortex phase (K, = 0.8) while in panel b) we show the
case K. = 0.3

-1 0 1 2 3
2q/qp(2)

Figure 4. Schematic representation of the spectral function A, (g, w) as a function of w and g for a fixed
applied field A inducing a finite qg(A) for u} /u. = 0.5. Finite spectral weights are present only in the
colored region. In the blue region there is only the contribution from the singularity at w, (g, A), while
in the green one the contribution from wy (g, A) adds up.

5. Spectral functions in the weakly interacting regime from bosonization

We adopt here an alternative bosonization scheme[4], valid at weak interactions but arbitrary
inter-leg tunnel coupling (). In this regime, one can bosonize starting from the exact single-particle
excitation spectrum [4] which displays a single minimum in the Meissner phase and two minima in the
Vortex phase. In the Meissner state, the result (9) is recovered, but by construction of the bosonization
scheme, the contribution of gapped modes at higher energy is not accessible.

In the Vortex phase, at low energy the field operators are approximated as [4]

bjr = ugPjre 'Y +vgp;- eV
bj, = voBjre 'Y +ugp;_e'Y 17)
where ug and vg are the single-particle amplitudes which diagonalize the non-interacting ladder

Hamiltonian, calculated at the minima +Q of the lower branch dispersion relation, and ;1 =
Xy e~iaja Bg+o with By being the destruction operator of the lower single-particle excitation branch.
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Then, the field operators are bosonized as B+ = /7 ¢%:(%) and the Luttinger liquid Hamiltonian
takes the usual quadratic form in the symmetric, antisymmetric sectors corresponding to the operators
95(6,) =0+ +6_)/ /2. The associated Luttinger parameters are called K;, vs K, v,.

The Green’s function, calculated e. g. for the upper leg o = 1/2 reads

G1(j,0) = (bj(1)b31(0)) = u (B (DB (0))e ™Y + vy (BBl (0)e'Y (18)

From bosonization we obtain

2 1/(8Ks) 2 1/(8K,)
w0 =0 (Grtem)  (Grten) )

while (B;+(t) g¥(0)> = 0. This can be Fourier transformed as done in Sec.4, yielding a spectral
function with two incoherent contributions at ¢ = +Q, each with a power law singularity at the two
excitation branches w = v 4|q = Q|. The same result is obtained in the lower leg, up to an exchange of
ué and vé.

6. Spectral function in the Bogoliubov theory

In the previous sections we have derived the expressions for the spectral function with the
bosonization technique, valid at intermediate and strong interactions. In the regime of very weak
interactions and large filling of the lattice, a complementary approach is provided by the Bogoliubov
theory [27]. The system is described by a two-component Bose-Einstein condensate with wavefunction

‘i’]( O) and small fluctuations on top of it. The condensate wavefunction ‘I’( i

coupled discrete non-linear Schroedinger equations

is obtained by solving the

0 i
:qul(,l) = 7t\Pl(+)1 1‘3 t\Fl( )1 1€ A
~ (Q/2)¥) +u|‘1fl1 2!
0
V‘Yl(,z) = 7t\Ijl(+>1 2‘3 tTl( )1 »¢
— (/) +uy Py, (20)

where y is the chemical potential. The field operator is approximated by
bio(t) ~ ¥ + Zhum o (21)

where hgj and ng are the Bogoliubov mode wavefunctions with energy w, and v, are the quasiparticle
creation and destruction field operators, satisfying bosonic commutation relations (see [27] for the full
expressions).

Using the definition (6) for the spectral function together with the mode expansion of the bosonic
field operators (21) we obtain

Alg,w) = — Z[Ih ?6(w — wy) — |Qf, Po(w + wy)] (22)

where fzgq =) e’ik”jhgj and ng =Y e~ kaj Ql‘fj.
The spectral function in the Bogoliubov approximation is illustrated in Figure...

7. Conclusion

We have obtained the spectral functions of a two-leg boson ladder in an artificial gauge field. The
bosonization approach, describing the regime of sufficiently strong interactions, predicts that in the
Meissner phase, the low energy spectral weight is located near w = 0,4 = 0. In the Vortex phase,
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it is located near w = 0, £4p(A). In both cases, the spectral weight is incoherent and characterized
by power law singularities at w = u.|q| (Meissner phase) or w = u.|q £ go(A)| (Vortex phase) with
known exponents, and a specific incommensuration effect due to the shift of the spectral weight for
g ~ go(A). In the Meissner phase, the gap in the antisymmetric density fluctuations translates as a
power law singularity of the spectral function at frequency w > 2A;. The Bogoliubov approximation,
valid at weak interactions predicts delta-like spectral function, still keeping the main features: a
single gapless excitation branch and a gapped one in the Meissner phase and two gapless excitation
branches displaying incommensuration effects in the Vortex phase. The Bogoliubov theory misses the
backscattering contributions to the spectral function, consistently with the bosonization predictions
that their spectral weight is very small at weak interactions.

The present work could be extended in different directions. Exactly at the
commensurate-incommensurate transition, the antisymmetric excitations are described by a
gapless theory[43] with dynamical exponent z = 2. The finite temperature correlation function has a
known scaling form[44,45], and the spectral function at the commensurate-incommensurate transition
can be obtained by convolution of that correlation function with the one of the charge modes. Such
calculation is left for future work. Another possible extension is to consider the interleg interaction.
Previous work has shown[36,46] that it splits the commensurate incommensurate transition point
into an Ising transition point, a disorder point and a Berezinskii-Kosterltz-Thouless (BKT) transition
point. An intermediate atomic density wave exists etween the Ising and the BKT point, and it
develops incommensuration at the disorder point. The atomic density wave could be characterized
using the spectral functions as done in the present manuscript, both in its commensurate and in its
incommensurate regime. A final possible extension is to consider the spectral functions in the presence
of the second incommensuration[19,47] at A = 7tn.
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