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Abstract: This is only the original submission, for the final version download the file from the MDPI1

Open Access Journal Condensed Matter. We calculate the spectral function of a boson ladder in2

an artificial magnetic field by means of analytic approaches based on bosonization and Bogoliubov3

theory. We discuss the evolution of the spectral function at increasing effective magnetic flux, from4

the Meissner to the Vortex phase, focussing on the effects of incommensurations in momentum5

space. At low flux, in the Meissner phase, the spectral function displays both a gapless branch and6

a gapped one, while at higher flux, in the Vortex phase, the spectral functions display two gapless7

branches and the spectral weight is shifted at a wavevector associated to the underlying vortex8

spatial structure. While the Bogoliubov theory, valid at weak interactions, predicts sharp delta-like9

features in the spectral function, at stronger interactions we find power-law broadening of the spectral10

functions due to quantum fluctuations as well as additional spectral weight at higher momenta due11

to backscattering and incommensuration effects. These features could be accessed in ultracold atom12

experiments using radio-frequency spectroscopy techniques.13

Keywords: bosonization, Bogoliubov approximation, artificial gauge field, spectral functions14

1. Introduction15

In quasi one-dimensional systems, analogues of the Meissner and Vortex phase have been16

predicted for the bosonic two-leg ladder[1–4], the simplest system where orbital magnetic field effects17

are allowed. It was shown that in this model, the quantum phase transition between the Meissner and18

the Vortex phase is a commensurate-incommensurate transition[5–7]. Recently the advent of ultracold19

atomic gases, have opened a route where to realize low dimensional strongly interacting bosonic20

systems[8–10] where an artificial magnetic flux acting on the ladder can be simulated either using21

geometric phases[11], or the spin-orbit coupling[12,13]. Indeed, there is a mapping of the two-leg22

ladder bosonic model to a two-component spinor boson model in which the bosons in the upper leg23

become spin-up bosons and the bosons in the lower leg spin-down bosons. Under such mapping, the24

magnetic flux of the ladder becomes a spin-orbit coupling for the spinor bosons. Theoretical proposals25

to realize either artificial gauge fields and artificial spin orbit coupling have been put forward[14,15],26

and an artificial spin-orbit coupling has been achieved in a cold atoms experiment[16]. A two leg boson27

ladder under a flux is known to display a commensurate-incommensurate transition[1–4] between28

a low flux commensurate Meissner-like phase and a high flux incommensurate vortex-like phase.29

The transition has been characterized using equal time correlation functions[3,17–19]. However, we30
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expect a direct signature of the transition also in dynamical correlation functions. In one dimension,31

the low energy modes are collective excitations[20,21], and in the two-leg ladder, there is a separation32

between a total density (“charge”) and a density difference (“spin”) mode[2,4]. This is analogous to the33

well-known spin charge separation in electronic systems[20] and two-component boson systems[22].34

Except at commensurate filling[23–26] the “charge” mode is gapless. By contrast, the “spin” mode35

is gapped in the Meissner phase and gapless in the Vortex phase, the transition as a function of flux36

being in the commensurate-incommensurate class[5,6]. Thus, the two phases are characterized by37

very different dynamical correlation functions. Among those correlation functions, one could for38

example consider the “spin-spin” dynamical structure factor. This would display a well defined39

gapped or gapless dispersion respectively in the Meissner and in the Vortex phase. However, such40

correlation function would not be sensitive to the incommensuration in the weak interchain hopping41

regime, although it displays incommensuration features at weak interactions and large interchain42

hopping[4,27]. A better indicator of incommensuration in all regimes is provided by the spectral43

function of the bosonic particles. In the Vortex phase, it always displays a shift in the position of the44

minimum of the dispersion away from q = 0 as a consequence of the incommensuration whereas45

in the Meissner state the minimum of the dispersion remains at q = 0. A particular feature of the46

single-particle spectral function is that it is incoherent[22,28] i.e. the low energy excitation branches47

emerge as power law singularities instead of delta function singularities. From the experimental48

point of view, single-particle spectral functions are accessible via radiofrequency (RF) spectroscopy49

techniques [29,30]. In the present paper, we calculate the boson spectral function in the different phases50

of the boson ladder at incommensurate filling in order to fully characterize the transition under flux.51

2. Model52

In the following we use the notations and definitions of Ref. [19]. We consider a model of bosons53

on a two-leg ladder in the presence of an artificial U(1) gauge field[13,31]:54

H = −t ∑
j,σ
(b†

j,σeiλσbj+1,σ + b†
j+1,σe−iλσbj,σ) +

U
2 ∑

j,σ
njσ(njσ − 1) +

Ω
2 ∑

j,α,β
b†

j,α(σ
x)αβbj,β. (1)

where σ =↑, ↓ represents the leg index or the internal mode index[32–34], bj,σ annihilates a boson on55

leg σ on the j−th site, njα = b†
jαbjα, t is the hopping amplitude along the chain, Ω is the tunneling56

between the legs or laser induced tunneling between internal modes, λ is the flux of the effective57

magnetic field, U is the repulsion between bosons on the same leg. The low-energy effective theory58

for the Hamiltonian (1), where Ω � t is treated as a perturbation, is obtained by using Haldane’s59

bosonization.[35] By introducing[35] the fields φα(x) and Πα(x) satisfying canonical commutation60

relations [φα(x), Πβ(y)] = iδ(x − y) as well as the dual θα(x) = π
∫ x dyΠα(y) of φα(x), and after61

introducing the respective combinations of operators φc,s = φ↑ ± φ↓ we can represent the low-energy62

Hamiltonian as H = Hc + Hs, where63

Hc =
∫ dx

2π

[
ucKc(πΠc)

2 +
uc

Kc
(∂xφc)

2
]

(2)

describes the total density (or charge) fluctuations for incommensurate filling when umklapp terms64

are irrelevant, and65

Hs =
∫ dx

2π

[
usKs

(
πΠs +

λ

a
√

2

)2
+

us

Ks
(∂xφs)

2

]
− 2ΩA2

0

∫
dx cos

√
2θs, (3)

describes the antisymmetric density (or spin) fluctuations. In Eq. (2) and (3), us and uc are respectively66

the velocity of antisymmetric and total density excitations, A0 is a non universal coefficient[20] while67

Ks and Kc are the corresponding Tomonaga-Luttinger (TL) exponents[36]. For two chains of hard68

core bosons, we have uc = us = 2t sin(πρ0/2) where ρ0 is the average number of bosons per site and69
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Ks = Kc = 1.70

The phase diagram of the Hamiltonian has been determined by looking at the behavior of the chiral71

current, i.e. the difference between the currents in upper and lower leg, which is defined as72

Js(j, λ) = −it ∑
σ

σ(b†
j,σeiλσbj+1,σ − b†

j+1,σe−iλσbj,σ), (4)

=
usKs

π
√

2

(
∂xθs +

λ

a
√

2

)
. (5)

As a function of the flux λ, the chiral current first increases linearly with λ while being in the Meissner73

phase and above a critical value of λ it starts to decrease in the Vortex phase[2]. In this phase the74

rung current starts to be different from zero. In Fig.1 the red-line is the phase boundary between the75

Vortex and the Meissner phase for the non-interacting case, while the blue-line represents the phase76

boundary in the hard-core limit[19]. The major difference with respect to the non-interacting case is77

the persistence of the Meissner phase even for large values of the flux.78
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Figure 1. Phase diagram for a hard-core bosonic system on a ladder as a function of flux per plaquette λ

and Ω, at the filling value n = 1. The black solid line that joins solid dots is the phase boundary between
the Meissner and the Vortex phase, while the dashed red line is the prediction for this boundary in the
non-interacting system. In the insets we show the different behavior of the spin-current Js(λ) for two
values of interchain coupling Ω when there is the Meissner/Vortex transition and where there is not,
respectively panel b) for Ω = 1.25 and a) for Ω = 1.75 DMRG simulation results at L = 64 in PBC.

Beyond the chiral and rung current the Meissner to Vortex phase transition can be traced out by79

looking at the behavior of the spectral function which is more sensitive to incommensurations.80

81

For the case of lattice bosons the spectral function is defined as:82

Aσ(q, ω) = −i ∑
j

∫
dtθ(t− t′)ei(qxj−ωt)

[
〈bjσ(t)b†

0σ(0)〉 − 〈b†
0σ(0)bjσ(t)〉

]
, (6)

and can be experimentally accessed by, e.g. via radiofrequency (RF) spectroscopy techniques [29,30].83

In the following we will focus on the positive-frequency part of the spectral function, given by the first84

term in Eq. (6).85
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 0 k
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Figure 2. Schematic representation of the spectral function in the Meissner phase. The colored regions
have a non-zero spectral weight. The violet region is the spectral weight coming only from the gapless
charge modes, the spin modes remaining in their ground state. The green region represents the region
where the gapped spin modes contribute to the spectral weight.

3. Spectral function in the Meissner phase for weak interchain hopping86

Within the bosonization technique the boson annihilation operator to the lowest order
approximation can be represented as:

ψσ(x, t) = bj,σ(τ)/
√

a ∼ A0〈e
i θs√

2 〉ei θc(ja,τ)√
2 , (7)

where a is the lattice spacing, A0 is a non-universal constant and σ stands for ↑ in the upper chain and
↓ for the lower chain. Knowing the Green’s function for the single particle operators b one gets the
spectral function as:

A(k, ω) ∼ A2
0|〈e

i θs√
2 〉|2

∫ dxdt
2π

e−i(kx−ωt)
(

α2

(α− iuct)2 + x2

) 1
8Kc

, (8)

where α is the theory cutoff taken equal to the lattice spacing. The result of the integral yields

A(k, ω) ∼ (A0α)2π

uc
|〈ei θs(x,t)√

2 〉|2 e2 ω
uc α

Γ2
(

1
8Kc

) ∣∣∣∣(ω2

u2
c
− k2

)
α2
∣∣∣∣

1
8Kc −1

θ(ω)θ

(
|ω|
uc
− |k|

)
, (9)

The approximation (11) only yields the behavior of the spectral function at ω lower than the gap ∆s in
the θs modes. The actual correlation function can be obtained from the Form factor expansion[37–41].
The lowest contribution, from a soliton-antisoliton pair yields

〈Tτei θs(x,τ)√
2 e−i θs(0,0)√

2 〉 = |〈ei θs(x,t)√
2 〉|2 + O(e−2∆s

√
(x/us)2+τ2

), (10)

As a result, the Fourier transform of the full Matsubara Green’s function is the sum of the87

contribution (9) and a second contribution analytic in a strip of the upper iν half plane of width88

proportional to the gap. This implies that the analytic continuation to real frequencies of this89

contribution is real until ω = 2∆s. There, a cut appears along the real frequency and the imaginary90

part of that contribution to the Green’s function becomes nonzero. This behavior is represented91

schematically on Fig. 2. As the flux increases, the gap decreases linearly until it becomes zero at the92

commensurate-incommensurate point.93
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4. Spectral function in the Vortex phase for weak interchain hopping94

In the vortex phase the boson field to the lowest order reads:

ψσ(x, t) = bj,σ(τ)/
√

a ∼ A0eiσq0(λ)xj ei θs(ja,τ)√
2 ei θc(ja,τ)√

2 , (11)

where q0(λ) is the incommensurate wavevector of the vortex phase.95

Thus we find the Matsubara Green’s function of the bosons in the form96

〈Tτbjσ(τ)b†
0σ(0)〉 = A2

0e−iσq0(λ)ja
(

a2

(ja)2 + (ucτ)2

) 1
8Kc
(

a2

(ja)2 + (usτ)2

) 1
8K∗s

(12)

and the spectral function is obtained by the integral:

A(k, ω) ∼ A2
0

∫ dxdt
2π

e−i(kx−ωt)
(

α

α− i(uct− x)

) 1
8Kc
(

α

α− i(ust− x)

) 1
8Ks
(

α

α− i(uct + x)

) 1
8Kc
(

α

α− i(ust + x)

) 1
8Ks

,

(13)
where q0(λ) is absorbed into k. The Fourier transform of the Matsubara Green’s function (12) can be97

calculated by the method outlined in [22,28] and after analytic continuation iν→ ω + i0+ it reads:98

Gσ(q, ω) =
( a

2

) 1
4Kc +

1
4K∗s

Γ
(

1− 1
8Kc
− 1

8K∗s

)
Γ
(

1
8Kc

+ 1
8K∗s

) |ω2 − us(q + σq0(λ))|
1

8Kc +
1

8K∗s
−1

e
iπ
(

1− 1
8Kc −

1
8K∗s

)
Θ(ω2 − us(q + σq0(λ))

2)

× 1

u
1

4Kc +
1

4K∗s
−1

s

F1

(
1

8Kc
,

1
8Kc

+
1

8K∗s
− 1

2
, 1− 1

8Kc
− 1

8K∗s
,

1
8Kc

+
1

8K∗s
; 1− u2

c
u2

s
, 1− ω2 − u2

c (q + σq0(λ))
2

ω2 − u2
s (q + σq0(λ))2

)
, (14)

where the function F1(a, b1, b2, c; z1, z2) is an Appell hypergeometric function[42], which has a series99

representation in terms of two complex variables z1 and z2 when |z1| < 1 and |z2| < 1.100

Singularities appear at ωσ
1 (q, λ) = ±uc(q + σq0(λ)) and at ω2(q, λ) = ±us(q + σq0(λ)) and the101

power-law behavior of the spectral function near these points has been detailed in Ref. [28]. Some102

attention should be paid to extract the analytic continuation for points outside the radius of convergence103

of the Appell’s function resorting to its integral representation possible when <e[c− a] > 0 which in104

our case is always true by construction: c− a = 1/(8K∗s ) The behavior of the Green’s function near the105

singularity points can be simplified as:106

Gσ(q, ω) ' |ω2 −ωσ
1 (q, λ)2|1/(8Kc)+1/(4K∗s )−1 (15)

Gσ(q, ω) ' |ω2 −ωσ
2 (q, λ)2|1/(8K∗s )+1/(4Kc)−1 (16)

In the Vortex phase, near the commensurate-incommensurate transition the spin velocity u∗s ∝
√

λ− λc,107

so we stay with the case where the charge velocity is larger than the spin one: in this case 1− u2
c /u2

s ≤ 0108

and ωσ
2 (q, λ) ≤ ωσ

1 (q, λ). In this phase K∗s > 1/2 and Kc is near unity, when the hopping between109

the chains is not too large, the imaginary part of the Greeen’s function, i.e. the spectral function110

Aσ(q, ω) = −=mGσ(q, ω)/π, is divergent near the two poles ω1 and ω2 as shown in panel a) of Fig. 3.111

In order to wash out at least one of the divergencies near the two poles small values of Kc < 1/2 are112

required, signalling that density wave correlations are becoming important and eventually bringing a113

density-wave phase. The behavior of the spin resolved spectral function Aσ(q, ω) for a fixed value of114

the applied flux is schematically shown in Fig. 4 as a function of the q and ω showing the contribution115

to spectral weight coming from the different singularities.116
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Figure 3. Spectral function Aσ(q, ω) as a function of ω/ωσ
1 (q, λ) for u∗s /uc = 0.5 and K∗s = 0.6. In

panel a) we show the typical situation in the Vortex phase (Kc = 0.8) while in panel b) we show the
case Kc = 0.3
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Figure 4. Schematic representation of the spectral function Aσ(q, ω) as a function of ω and q for a fixed
applied field λ inducing a finite q0(λ) for u∗s /uc = 0.5. Finite spectral weights are present only in the
colored region. In the blue region there is only the contribution from the singularity at ω2(q, λ), while
in the green one the contribution from ω1(q, λ) adds up.

5. Spectral functions in the weakly interacting regime from bosonization117

We adopt here an alternative bosonization scheme[4], valid at weak interactions but arbitrary118

inter-leg tunnel coupling Ω. In this regime, one can bosonize starting from the exact single-particle119

excitation spectrum [4] which displays a single minimum in the Meissner phase and two minima in the120

Vortex phase. In the Meissner state, the result (9) is recovered, but by construction of the bosonization121

scheme, the contribution of gapped modes at higher energy is not accessible.122

In the Vortex phase, at low energy the field operators are approximated as [4]123

bj↑ = uQβ j+e−iQj + vQβ j−eiQj

bj↓ = vQβ j+e−iQj + uQβ j−eiQj (17)

where uQ and vQ are the single-particle amplitudes which diagonalize the non-interacting ladder124

Hamiltonian, calculated at the minima ±Q of the lower branch dispersion relation, and β j± =125

∑q e−iqjaβq±Q with βk being the destruction operator of the lower single-particle excitation branch.126



Version November 6, 2020 submitted to Condens. Matter 7 of 10

Then, the field operators are bosonized as β j± =
√

n̄eiθ±(xj) and the Luttinger liquid Hamiltonian127

takes the usual quadratic form in the symmetric, antisymmetric sectors corresponding to the operators128

θs(a) = (θ+ ± θ−)/
√

2. The associated Luttinger parameters are called Ks, vs Ka, va.129

The Green’s function, calculated e. g. for the upper leg σ = 1/2 reads

G↑(j, 0) = 〈bj↑(t)b†
0↑(0)〉 = u2

Q〈β j+(t)β†
0+(0)〉e−iQj + v2

Q〈β j−β†
0−(0)e

iQj (18)

From bosonization we obtain

〈β j±(t)β†
0±(0)〉 = n̄

(
a2

(ja)2 − (vst)2

)1/(8Ks) ( a2

(ja)2 − (vat)2

)1/(8Ka)

(19)

while 〈β j±(t)β†
0∓(0)〉 = 0. This can be Fourier transformed as done in Sec.4, yielding a spectral130

function with two incoherent contributions at q = ±Q, each with a power law singularity at the two131

excitation branches ω = vs,a|q±Q|. The same result is obtained in the lower leg, up to an exchange of132

u2
Q and v2

Q.133

6. Spectral function in the Bogoliubov theory134

In the previous sections we have derived the expressions for the spectral function with the135

bosonization technique, valid at intermediate and strong interactions. In the regime of very weak136

interactions and large filling of the lattice, a complementary approach is provided by the Bogoliubov137

theory [27]. The system is described by a two-component Bose-Einstein condensate with wavefunction138

Ψ(0)
jσ and small fluctuations on top of it. The condensate wavefunction Ψ(0)

jσ is obtained by solving the139

coupled discrete non-linear Schroedinger equations140

µΨ(0)
l,1 = −tΨ(0)

l+1,1eiλ − tΨ(0)
l−1,1e−iλ

− (Ω/2)Ψ(0)
l,2 + U|Ψ(0)

l,1 |
2Ψ(0)

l,1

µΨ(0)
l,2 = −tΨ(0)

l+1,2e−iλ − tΨ(0)
l−1,2eiλ

− (Ω/2)Ψ(0)
l,1 + U|Ψ(0)

l,2 |
2Ψ(0)

l,2 , (20)

where µ is the chemical potential. The field operator is approximated by

bjσ(t) ' Ψ(0)
jσ + ∑

ν

hσ
νjγν −Qσ

νj
∗γ†

ν, (21)

where hσ
νj and Qσ

νj are the Bogoliubov mode wavefunctions with energy ων and γν are the quasiparticle141

creation and destruction field operators, satisfying bosonic commutation relations (see [27] for the full142

expressions).143

Using the definition (6) for the spectral function together with the mode expansion of the bosonic
field operators (21) we obtain

A(q, ω) = −∑
ν

[|h̃σ
νq|2δ(ω−ων)− |Q̃σ

νq|2δ(ω + ων)] (22)

where h̃σ
νq = ∑j e−ikajhσ

νj and Q̃σ
νq = ∑j e−ikajQσ

νj.144

The spectral function in the Bogoliubov approximation is illustrated in Figure...145

7. Conclusion146

We have obtained the spectral functions of a two-leg boson ladder in an artificial gauge field. The147

bosonization approach, describing the regime of sufficiently strong interactions, predicts that in the148

Meissner phase, the low energy spectral weight is located near ω = 0, q = 0. In the Vortex phase,149
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it is located near ω = 0,±q0(λ). In both cases, the spectral weight is incoherent and characterized150

by power law singularities at ω = uc|q| (Meissner phase) or ω = uc|q± q0(λ)| (Vortex phase) with151

known exponents, and a specific incommensuration effect due to the shift of the spectral weight for152

q ' q0(λ). In the Meissner phase, the gap in the antisymmetric density fluctuations translates as a153

power law singularity of the spectral function at frequency ω > 2∆s. The Bogoliubov approximation,154

valid at weak interactions predicts delta-like spectral function, still keeping the main features: a155

single gapless excitation branch and a gapped one in the Meissner phase and two gapless excitation156

branches displaying incommensuration effects in the Vortex phase. The Bogoliubov theory misses the157

backscattering contributions to the spectral function, consistently with the bosonization predictions158

that their spectral weight is very small at weak interactions.159

The present work could be extended in different directions. Exactly at the160

commensurate-incommensurate transition, the antisymmetric excitations are described by a161

gapless theory[43] with dynamical exponent z = 2. The finite temperature correlation function has a162

known scaling form[44,45], and the spectral function at the commensurate-incommensurate transition163

can be obtained by convolution of that correlation function with the one of the charge modes. Such164

calculation is left for future work. Another possible extension is to consider the interleg interaction.165

Previous work has shown[36,46] that it splits the commensurate incommensurate transition point166

into an Ising transition point, a disorder point and a Berezinskii-Kosterltz-Thouless (BKT) transition167

point. An intermediate atomic density wave exists etween the Ising and the BKT point, and it168

develops incommensuration at the disorder point. The atomic density wave could be characterized169

using the spectral functions as done in the present manuscript, both in its commensurate and in its170

incommensurate regime. A final possible extension is to consider the spectral functions in the presence171

of the second incommensuration[19,47] at λ = πn.172
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