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Abstract

We present a detailed theoretical and experimental analysis of Engineered
Swift Equilibration (ESE) protocols applied to two hydrodynamically coupled
colloids in optical traps. The second particle disturbs slightly (10% at most)
the response to an ESE compression applied to a single particle. This effect is
quantitatively explained by a model of hydrodynamic coupling. Then we de-
sign a coupled ESE protocol for the two particles, allowing the perfect control
of one target particle while the second is enslaved to the first. The calibration
errors and the limitations of the model are finally discussed in detail.
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1 Introduction

Speeding-up an equilibration process is a delicate task, because the relaxation time is an
intrinsic property of a system which depends on parameters such as the dissipation, the
potential strength, the inertia, or the number of degrees of freedom. Furthermore, when
a control parameter is suddenly changed, the system may pass through states that differ
widely from the target one. One way of speeding up a specific transformation between well
defined equilibrium states is to apply complex protocols in which the time dependence of
one or several control parameters is tuned in a highly specific fashion, to reach the final
target in a selected short amount of time. This problem, related to optimal control theory,
can be traced back to Boltzmann [1–3]. It has recently received sustained attention within
the framework of the so-called “Shortcut To Adiabaticity” protocols, which study such
complex procedures for specific transformations [4, 5].

We are interested here in overdamped systems in contact with a thermostat, for which
we have defined protocols of Engineered Swift Equilibration (ESE) that have been applied
to the control of Brownian particles trapped by optical tweezers [6]. For example, one
can achieve the compression of a single particle trapped in an harmonic well by increasing
the potential stiffness K between an initial state in equilibrium at Ki and a final state in
equilibrium at Kf . After a sudden change in K (STEP protocol) the bead will equilibrate
in its natural relaxation time. Using an ESE protocol for the time evolution of K(t), the
same final state can be reached several orders of magnitude faster than STEP [6]. We will
refer to this fast compression protocol as the basic ESE. When designing these protocols,
one of the key questions lies in the stability against external perturbations. In this context,
we tackle in this article the case of two hydro-dynamically coupled particles trapped in
different potentials, to understand to what extent the equilibration dynamics imposed by
the basic ESE is modified by the hydrodynamic interactions with another bead. A deep
understanding of the physical consequences of the coupling on the particles behaviour
(correlation) is necessary to work out the consequences of this perturbation. The goal
here is twofold: on the one hand, it is a simple test bench to probe the robustness of
the basic ESE. Indeed, we can see the second particle as a perturbation to the first, and
monitor how far the protocol misses its target if we neglect this perturbation. And on
the other hand, it is a first step towards the control of more complex systems with several
degrees of freedom.

The article is organised as follows: in a first part, we investigate robustness of the
basic ESE to the coupling interaction. To do so, we conduct experiments using the exper-
imental set up described in section 2, and present the results in section 3. To support our
experimental results, we then use in section 4 a simple model from refs. [7–10] to describe
the coupled system, and predict the dynamics of the correlations at equilibrium and the
general dynamics of the moments. We subsequently turn to the second goal of the paper:
extending the scope of ESE protocols to more complex systems. The model used is precise
enough to provide a basis for the construction of new ESE protocols adapted to the cou-
pled system. In particular we explore in section 5 the construction of ESE protocols that
do not depend on the coupling intensity, and are thus very robust. Then we demonstrate
experimentally the validity of this extension. Finally we draw the experimental limits of
this new strategy in section 6.
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Figure 1: Two Brownian particles trapped by optical tweezers into two harmonic potentials
of stiffness K1 and K2. xj represents the position of the particle j = 1, 2 relative to the
trap center x0

j , and in the following, x̃j = xj +x0
j represents the absolute position. d is the

mean distance to contact between the two particles of radius r = 1µm: d = |x0
2−x0

1|−2r.

2 Experimental set up and method

To test the robustness of the basic ESE to the coupling interaction, we conduct experi-
ments on two silica beads of radius r = 1µm immersed in miliQ water (to avoid trapping
impurities) at a temperature T and trapped by two optical tweezers separated by the
distance d (see Fig. 1). We use a very small concentration of silica micro-spheres in water
and a specific design of the cell containing the particles, in order to have very few beads in
the measuring volume. This enables us to take long measurements without any spurious
perturbation. The two beads are trapped at 20 µm from the bottom plate of the cell.
The traps are realized using a near-infrared single mode DPSS laser (Laser Quantum,
λ = 1064 nm used at a power of 1 W) expanded and injected through an oil-immersed ob-
jective (Leica, 63 × NA 1.40) into the fluid chamber. An Acousto-Optic Deflector (AOD)
controls the intensity and the position of the trapping beams with the amplitude and
frequency of the control signal, respectively. We thus create two harmonic potentials at a
distance d along the x direction Uj(x̃j , t) = −Kj(t)(x̃j − x0

j )
2/2, with j = 1, 2, where x̃j

are the absolute particle positions. The potential minimum x0
j and stiffness Kj are con-

trolled respectively by the frequency and amplitude of the AOD input signal. As the AOD
responds linearly, a sum of sine waveforms of different frequencies results in two potentials
Uj=1,2 separated by a distance proportional to the difference between the sine frequencies.
We can also use a second version of the setup with two AODs (one for each trap) to have
two perfectly uncoupled static traps with orthogonally polarized beam (which is needed
in particular when K1(t) 6= K2(t)). The detection of the particle position is performed
using a fiber coupled single mode laser diode (Thorlabs, λ = 635 nm, power 1 mW low-
ered to 100µW with a neutral density filter) which is collimated after the fiber and sent
through the trapping objective. The forward-scattered detection beam is collected by a
condenser (Leica, NA 0.53), and its back focal-plane field distribution projected onto a
four quadrant detector (QPD from First Sensor with a bandpass of 1 MHz with custom
made electronic) which gives a signal proportional to the particle position. Before every
acquisition, a calibration procedure described in Appendix A.1 is conducted.

As regards the acquisition process, the approach consists in comparing the situation
when the particles are strongly coupled (d . r), with the situation when the coupling
is negligible (d � r), in order to conclude on the perturbation induced by the coupling.
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Because the procedure is very sensitive to the instrument calibration and to the external
parameters, to compare properly the 2 cases described above, we apply the following
protocol: we start at small distance and record the particle position during a dozen of ESE
protocols, then we smoothly separate the 2 particles and record again a dozen protocols,
before bringing again the 2 particles closer and restart the cycle. Doing so enables us
to compare the response to the ESE protocol in the coupled and uncoupled cases in the
same experimental conditions. The recording lasts 10000 protocols to reduce statistical
uncertainty. The same approach can be adjusted for other comparisons, the point being
always to maintain the same working conditions between the two acquisitions.

3 Consequences of coupling perturbation on the basic ESE
protocol

This section aims to see to what extent the response of the particle to the basic ESE
deviates from the 0-coupling case successfully tested in ref. [6], when it is affected by the
coupling perturbation created by another particle at distance d.

Indeed, the basic ESE defined in ref. [6] is designed for a single particle trapped in the
potential U(t) = 1

2K(t)x2, and whose over-damped dynamics is described by a Langevin
equation that introduces the friction coefficient γ = 6πηr, η being the kinetic viscosity
and r = 1µm the radius of the particle. The basic ESE consists in changing the stiffness
over a period of time tf to reach a new equilibrium at Kf . The corresponding stiffness
profile is the following, using the dimensionless quantities k(t) = K(t)/Ki (in particular
kf = Kf/Ki), s = t/tf and Γ = γ/(Kitf ) (ratio of relevant timescales):

k(s) = 1 + (kf − 1)(3− 2s)s2 −
3Γ(kf − 1)(s− 1)s

1 + (kf − 1)(3− 2s)s2
. (1)

One may expect that if the ESE final time tf is small enough compared to the char-
acteristic correlation time τcorr, the particles will behave as in the free case. To test
this hypothesis we study the evolution of the variance of the first particle during what
we call the symmetric protocol: the stiffness of both wells is simultaneously driven
(K1(s) = K2(s) = K(s)) according to the basic ESE of eq. (1). In what follows we asso-
ciate with the first particle variance 〈x2

1〉 the dimensionless quantity σ11 = Ki〈x2
1〉/(2kBT ).

In the symmetric protocol context σ11 = σ22 = σ. We carry out this procedure for
an ESE time tf one order of magnitude smaller than the typical characteristic times
τcorr ∼ τrelax ∼ 15 ms. To cycle the procedure we use the stiffness profile of Fig. 2 (left)
for both traps: a simple step decompression followed by the basic ESE compression. The
experimental results are plotted in plain lines on Fig. 2 (right), in purple for a small dis-
tance and in black for a large distance. Since we look for tiny effects, all results in the
article are plotted using the normalised variance σn = (σ(t)− σf )/(σi − σf ). In response
to the step decompression, the particle reaches equilibrium in its natural relaxation time
τrelax. We notice that the coupling also affects this natural relaxation (by slightly slowing
it down). Then we apply the basic ESE protocol to both wells, and we observe that at
small d the coupling induces a rebound in the variance evolution (indicated by the red
arrow on the figure) and prevents the particle to reach equilibrium in the expected time.
The ESE is also very sensitive to other external perturbations, indeed a small drift in
calibration may be responsible for the very small slip of the black curve under its final
value at tf . These observations are very reproducible and one may see in Appendix A.2
complementary results highlighting the increase of the rebound height with the intensity
of the coupling.
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Figure 2: On the left, the stiffness profile applied to both wells: a STEP decompression
at t = −140 ms followed by a basic ESE protocol for compression for 0 < t < tf . This
procedure is called the symmetric protocol. At t = −140 ms, the stiffness jumps from
kf = 2.3 to ki = 1. At t = 0 the particle is thus in its initial equilibrium when we apply
an ESE protocol finishing at tf to bring back the particle to its final state at kf . The
ESE parameters are: tf = 2.5 ms, Ki = 4× 10−7 N/m, kf = 2.3, and Γ = 18.9. This
stiffness profile emphasizes the difference between the relaxation after a step function,
and the response to the ESE protocol. On the right, normalized variance of the first
particle σn = (σ(t) − σf )/(σi − σf ), corresponding to the symmetric protocol on the
left. The plain lines are the experimental results with their error bars. The dashed
curves are numerically computed from the theoretical analysis of section 4, plugging the
experimental parameters from the calibration. The same process is applied for particles
separated by d = 5µm (black) and d = 0.7µm (purple) corresponding respectively to a
coupling constant (introduced in section 4) ε = 0.21 and ε = 0.5. A small rebound (around
10% of the step) pointed by the red arrow and long relaxation time are visible for close
particles.

To put it in a nutshell, Fig. 2 highlights that even though the protocol is designed to
be much faster than the coupling characteristic time, the coupling perturbation impacts
the response to the basic ESE. Our sensitive experimental setup enables us to observe
experimentally the tiny effect of hydrodynamic coupling: the particle variance features a
rebound at tf and will not reach equilibrium before its natural relaxation time. Never-
theless the basic ESE is rather robust, as for moderate coupling, this bounce is modest
compared to the natural relaxation amplitude evolution. Indeed basic ESE still provides
correct results, with a 10% deviation to the 0-coupling case. Within this framework a
measure with a poor statistics will hide the effect inside the statistical error.

It remains to be seen whether this experimental results can be supported by a the-
oretical analysis. To this end we devote the next section to study the coupled system’s
dynamics, first in equilibrium and then when driven by the symmetric protocol.

4 Theoretical analysis

To describe the evolution of two trapped brownian particles which are hydrodynamically
coupled, we write the coupled Langevin equations,(

ẋ1

ẋ2

)
= H

(
F1

F2

)
, (2)

5



SciPost Physics Submission

where xj is the position of the particle j = 1, 2 relative to its trapping position (see Fig. 1),
ẋj is the time derivative of xj , and H is the hydrodynamic coupling tensor. The Langevin
equations govern the system evolution in general whether or not it is at equilibrium.
Besides, the Langevin equations (2) do not include any acceleration term: we assume the
over-damped regime which is fully justified for colloidal objects (see Appendix A.3). At
equilibrium the forces acting on the particles are:

Fj = −Kjxj + fj , (3)

where Kj is the stiffness of the trap j and fj is the Brownian random noise. For two
identical particles of radius r separated by a distance d (see Fig. 1), assuming that their
displacements are small compared to the mean distance between them, the hydrodynamic
coupling tensor reads [7–10]:

H =
1

γ

(
1 ε
ε 1

)
. (4)

In some approximations described in Appendix A.4 we can write ε = 3
2ν − ν3, where

ν = r/(2r + d).
Let us first study how the particles behave at equilibrium (Kj constant in time), and

in particular how they influence their neighbour. At equilibrium the two particles are
statistically independent: 〈x1x2〉eq = 0, 〈x2

1〉eq = kBT/K1, and 〈x2
2〉eq = kBT/K2 (with

kB the Boltzmann’s constant and T the bath temperature). However, the 2 particles are
coupled by eq. (2). Extending the computation of refs. [9, 11] to the more general case of
two potentials with different stiffnesses, we show in Appendix A.5 that, at equilibrium,
auto-correlations 〈xj(0)xj(t)〉 and cross-correlations 〈xj(0)xk(t)〉 (with j 6= k) of positions
read as:

〈x1(t)x1(0)〉 =
kBT

2K1κ

[
e
− t
τ+ (K1 −K2 + κ) + e

− t
τ− (K2 −K1 + κ)

]
, (5)

〈x2(t)x2(0)〉 =
kBT

2K2κ

[
e
− t
τ+ (K2 −K1 + κ) + e

− t
τ− (K1 −K2 + κ)

]
, (6)

〈x1(t)x2(0)〉 =
εkBT

κ

[
e
− t
τ+ − e−

t
τ−
]
, (7)

with

κ =
√

(K1 −K2)2 + 4ε2K1K2, (8)

τ− =
2γ

K1 +K2 − κ
, (9)

τ+ =
2γ

K1 +K2 + κ
. (10)

We report the computed behaviour in Fig. 3. Those correlation functions involve two
characteristic times τ+ and τ− that are very close to the natural relaxation time of the
harmonic well τrelax = γ/K1 ∼ 15 ms. We consequently introduce a slow mode and a fast
mode associated respectively with τ− and τ+. The slow mode vanishes when x1 ∝ x2, and
the fast mode when x1 ∝ −x2: ie correlation enhances the fast mode (correlated mode)
and anti-correlation the slow mode (anti-correlated mode). In the symmetric case, the
two modes may be interpreted as the barycentre of the system xM = (x1 + x2)/2, and
the particles separation xµ = (x2 − x1)/2. Naturally, xµ embodies the slow mode and xM
the fast one, as the evolution of xµ requires a fluid displacement between the particles,
while the barycentre evolution relies on the fact that one sphere tends to drag the other

6
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Figure 3: Auto- and cross-correlation functions normalized by 〈x2
1〉eq as a function of

time, when γ = 1.88× 10−8 sN/m, K1 = K2 = 10−6 N/m and d = 1µm, so that σ11,eq =
kBT/K1 = 4× 103 nm2 and ε = 0.46. We recover at t = 0 the values of the moments at
equilibrium, in particular σ12,eq = 0.

in its wake (details in [9]). As far as auto-correlation functions are concerned, the shape
of decaying exponential in Fig. 3 is rather common. The negative cross-correlation might
however be surprising. This feature stems first from the fact that the cross-correlation has
to vanish at t = 0 (a consequence of independence at equilibrium), and second from the
fact that the anti-correlated mode (associated with xµ) lives longer than the correlated
mode (associated with xM ).

We now focus on the dynamics of the particles when the potentials change with time. It
proves convenient to convert the coupled Langevin equations into equations describing the
dynamics of the moments 〈x2

1〉(t), 〈x2
2〉(t) and 〈x1x2〉(t). Using the dimensionless quantities

σjk = K1,i〈xjxk〉/(2kBT ), we obtain the following system to describe the evolution of the
moments (see Appendix A.6):

Γ
dσ11

ds
= −2k1σ11 − 2εk2σ12 + 1, (11)

Γ
dσ22

ds
= −2k2σ22 − 2εk1σ12 + 1, (12)

Γ
dσ12

ds
= −(k1 + k2)σ12 − ε(k2σ22 + k1σ11 − 1), (13)

where s = t/tf as before, kj(s) = Kj(s)/K1,i (K1,i being the initial stiffness of the first
well), and Γ = γ/(K1,itf ). The above equations contain all the information about the
dynamics of the system, as the joint probability distribution remains Gaussian out of
equilibrium (see Appendix A.7) and is thus fully described by σ11, σ22 and σ12. The
basic ESE in eq. (1) is defined in ref. [6] using eq. (11) without the cross term εσ12 term.
Therefore it cannot be operational for the coupled system.

We compute numerically the evolution of the first particle variance corresponding to
the symmetric protocol where the stiffness of both wells is simultaneously driven according
to the basic ESE. The results of these computations are summarized in Fig. 4: it should
be recalled that in the symmetric protocol context (K1 = K2 = K), the above equations
simplify and σ11 = σ22 can be written σ.

The theoretical predictions of Fig. 4 seem to be consistent with with the experimental
conclusions drawn in section 3. To confirm that the model prediction and the experimental
curves match, we superimpose in dashed lines on Fig. 2 the theoretical curves obtained
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Figure 4: Evolution of the normalized variance σn = (σ(t)−σf )/(σi−σf ) of one particle
in response to the symmetric protocol for different values of the distance d between the
particles. The parameters of the ESE protocol (shaped as in Fig. 2) are the following:
tf = 2 ms, kf = Kf/Ki = 1.5, Ki = 10−6 N/m, and Γ = 9.42. Without coupling (when
d = ∞) the response to the ESE is shortcut to tf . The hydrodynamic coupling results
in a rebound on the variance curve, which no longer reaches its equilibrium value at tf ,
but after a few natural relaxation times τrelax ≈ 15 ms. As expected from experimental
results, the smaller the distance d, the higher the rebound and so the deviation from the
0-coupling case.

using the same ESE parameters and the external parameters from calibration. We see
that the results are in very good accordance. Besides, the validity of the theory during the
STEP to prepare the system at Ki confirms that the calibration is relevant to estimate
the external parameters during the experiment.

The model of the hydrodynamic coupling proves to be precise enough to be used for
ESE computations. We are thus equipped to propose a new strategy to drive a coupled
system without any compromise on the shortcut efficiency. Indeed we can take into account
the hydrodynamic coupling in the construction of a new ESE protocol thereby eliminating
the small although spurious bounce identified above.

5 Coupled ESE protocol

Our strategy to design a coupled protocol is now to look for an ESE scheme that would drive
the first particle from (ti = 0,Ki) to (tf ,Kf ) while being robust to coupling interaction.
A solution to achieve this requirement is to design a protocol that does not depend on the
coupling intensity (ie independent of the ε parameter). This strong constraint can be met
if we require particle independence at all time, that is to say 〈x1x2〉(t) = 0 during all the
process and not only at equilibrium states. Indeed insofar as we require independence, the
results no longer depend on the strength of the coupling.

As detailed in Appendix A.8, the independence requirement (σ12 = 0 during the pro-
cess) enables us to simplify the evolution equations eq. (11)-(13) and to find an ESE
protocol that meets the requirements detailed above: we find a shape for k1(s) and k2(s)
independent of ε that satisfies the equilibrium at tf of both particles (see Fig. 5). The
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Figure 5: (Left) Profiles k1(s) and k2(s) computed for the coupled ESE protocol that
maintains independence between the particles for parameters: kf = 1.4, Ki = K2,i =
1.8× 10−6 N/m, tf = 2.5 ms, and Γ = 4.19. While k1 (red) reaches the target value at
s = 1, the second well stiffness k2 (blue) has to adapt itself. In particular its final stiffness
value is determined by the other parameters of the ESE: k2f = k2ikf/(k2ikf + kf − k2i).
This protocol does not depend on the coupling constant ε and so works for any distance d
between the particles. (Right) Result of the computation for the dimensionless variances
of the two particles using the ESE protocol on top: σ11 in red, and σ22 in blue. The plot
confirms that Boltzmann equilibrium (horizontal grey lines) is reached for both particles
at initial and final times. Let us remind that σ12 = 0 all along.

expression of k1(s) is therefore the same as in the single particle case, but the second
potential has to be driven appropriately with a different stiffness profile k2(s).

The price to pay to drive the particle 1 from K1,i to K1,f is to enforce a nearly opposite
profile on the second potential. In particular the final value of the second well stiffness
K2,f is imposed by the parameters chosen for the first particle and is therefore not chosen
a priori. Besides, a sum rule ensues, such that k1σ11 + k2σ22 is conserved. To maintain
independence, the two wells tend to evolve in opposition because of the correlation due
to the coupling. Indeed the coupling term εF1 in eq. (2) can be interpreted as an extra
random noise:

γẋ2 = −K2x2 + f2 + εF1. (14)

This coupling term behaves as the random noises with the following characteristics (at
equilibrium),

〈εF1〉 = −εK1〈x1〉+ ε〈f1〉 = 0, (15)

〈ε2F 2
1 〉 = ε2k2

1〈x2
1〉+ ε2〈f2

1 〉 = ε2kBTk1 + ε2〈f2
1 〉. (16)

Thus if k1 increases, the noise imposed to particle 2 by the coupling increases as well,
and consequently so does the variance of particle 2. To pretend that the two particles are
independent and that this increase in the particle 2 variance is not due to the behaviour of
the particle 1, the second well should open up. That is why to maintain a vanishing cross
term σ12 = 0 the second well should behave in opposition to the first one (see Fig. 5).

The experimental implementation of the coupled protocol is illustrated in Fig. 6. The
distance between the particles is set to d = 0.8µm to ensure strong coupling. We compare
the response of the system to the symmetric protocol in which the two potentials are driven
similarly, with the response to the coupled ESE.
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Figure 6: Normalized variance σn = (σ(t) − σf )/(σi − σf ) of the first particle when the
potentials are driven by the symmetric protocol (purple) or by the coupled ESE protocol
(black). The parameters of the experiment are: kf = 1.4, K1,i = K2,i = 1.8× 10−6 N/m,
tf = 2.5 ms, d = 0.8µm, and thus ε = 0.49 and Γ = 4.19. The symmetric protocol leads
to the rebound predicted in section 4. On the contrary the coupled protocol designed to
cancel the correlations between the particles works as expected: the rebound is essentially
suppressed and the particle reaches equilibrium at tf . Furthermore, the experimental
results (plain lines) are again consistent with the theoretical predictions (dashed lines)
based on measured parameters only and not on adjustable ones.

In this new set of experiments, the rebound in response to the symmetric protocol
is naturally still present, but disappears when applying the coupled ESE protocol. This
result validates the efficiency of enforcing independence for coupled particles. Indeed this
protocol is very stable against the coupling interaction because it does not depend on the
strength of the coupling (ε in our model). Thanks to this process we achieve the same
efficiency of shortcut to equilibrium we had for a single particle, but now for coupled ones.
This extension of the validity of ESE protocol has nevertheless a cost: the second particle,
coupled to the particle of interest, has to be driven to a final equilibrium state defined by
the other parameters of the protocol (K2i and kf ).

6 Limits and other approaches

We are experimentally facing two limitations in the implementation of the Coupled ESE.
First, stiffnesses have to remain positive (ie attractive potentials), and second they cannot
exceed maximum values above which the particles can be damaged. Actually it is possible
to mimic repulsive potentials and go beyond the first constraint [12], but considering our
basic optical tweezers set up, it is far more convenient to stick to positive stiffness. In the
case of the Coupled ESE, assuming that k2,i = 1 and kf > 1, these limitations translate
into k2 > 0 and k1 < kmax.
Using the expression of k2(s) and k1(s) the first limit can be expressed as a constraint
on the acceleration factor Γ, or equivalently on tf and Ki as Γ = γ/(Kitf ). Indeed
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Figure 7: Experimental limits of the coupled ESE protocol in terms of the speed-up pa-
rameter Γ for a compression of the first particle (kf > 1). The yellow line represents the
higher limit Γ should not exceed to maintain k2 > 0, the red one to maintain k1 < 5 and
the blue one to maintain k1 < 10. The requirement k2 > 0 being the most restrictive,
the limit to respect during experiments is the yellow line that corresponds to Γlim,1. In
other words, the working region where all the constraints are met is the green region. The
yellow, red and blue regions delineate the domains where the respective requirements are
not met anymore.

maintaining k2 > 0 requires

Γ < Γlim,1 = min[− 1

σ̇11(s)
, 0 < s < 1]. (17)

Γlim,1 depends on kf (yellow curve in Fig. 7): the more one wants to compress the well,
the smaller Γ should be, and so the higher tf will be.
Concerning the second limit k1 < kmax a similar computation gives us the corresponding
constraint on Γ. We introduce:

Γlim(s) =
((kf − 1)s2(2s− 3)− 1)(kmax − 1 + (kf − 1)s2(2s− 3))

3(kf − 1)s(s− 1)
, (18)

Then,
Γlim,2 = min[Γlim(s), 0 < s < 1]. (19)

To summarize, we plot in the Fig. 7 the maximum boundary Γlim to comply with the
constraints k2 > 0 (yellow curve) and k1 < kmax for kmax = 5 (red curve) and kmax = 10
(blue curve). As expected, the stronger is the compression, the smaller is the region
accessible for Γ, because it has to remain under Γlim. The limit k2 > 0 is the most
restrictive, and that is why Γlim,1 in yellow delimits the working region. To provide
shortcuts outside the accessible region, some new strategies should be developed such as
what has been done in ref. [13] for the basic ESE.

Enforcing independence through the coupled ESE protocol is a successful strategy to
extend the family of ESE protocols to more complex systems which cannot be managed
with full efficiency by the basic ESE. Within the limits we highlighted above, this particular
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solution independent of ε turns out to be very powerful. Yet, the solution panel to the
coupled case problem is wide, and there is more to find in this direction. In particular, it is
possible to guide the two particles with the same stiffness profile to a chosen target state.
This symmetric coupled ESE protocol detailed in Appendix A.9 has nevertheless a cost:
cross-correlations appear during the process and vanish only at equilibrium. Therefore, the
independency is no longer required in this protocol, which makes it depend on the coupling
intensity. That is why this ε dependent protocol is harder to implement experimentally.
Further work is required to extend ESE protocols to more complex systems, and every
solutions will have specific advantages and limits.

7 Conclusion

In conclusion, we explored shortcut to adiabadicity schemes for coupled systems: in par-
ticular two hydro-dynamically coupled particles. The first objective of this paper was to
test the stability of the basic ESE protocol designed for single systems against the cou-
pling interaction. Our experiments, in very good accordance with the model, proved its
relative robustness: the coupling perturbation deviates the response of a dozen of percents
compared to the 0-coupling case. It is nevertheless possible to work out explicitly ESE
solutions that take due account of the coupling, and are therefore immune to it: this is the
second message of this article. The model used to describe the coupling proved reliable
enough to build a new family of ESE solutions with the same method of retro-computing
used to find the single particle ESE protocol. We thus propose a very robust protocol, be-
cause ε independent, that enforces independence between the particles. Experimental tests
confirm the efficiency of this shortcut strategy within the experimental limits described
in the last part of the paper. Other solutions can be investigated such as a symmetric
protocol designed for coupled particles (more difficult to implement because ε dependent).
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A Appendix

A.1 Calibration procedure

As the effect under scrutiny is tiny, a very accurate calibration is necessary to observe it.
Thus we detail in this section the calibration procedure conducted before the experimental
tests of ESE protocols. It is performed as follows: first we have to find the connection
between the amplitude A of the sine wave driving the AOD and the stiffness K applied by
the optical trap to the particle. To do so, we acquire the position variance (σ2 = kBT/K)
for different amplitudes A. This calibration curve enables us to convert the ESE protocol
in driving amplitude for the AOD. Then, the only dependence on external parameters
of the ESE protocol lies in the parameter Γ = γ/(Kitf ). To estimate Γ we conduct
the acquisition of the cut off frequency [14] (f0 = K/(2πγ)) when the particle is in the
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initial state of the ESE, f0,i, through the particle’s Brownian noise spectrum in position
corresponding to the initial value of amplitude Ai. Then we deduce Γ = 1/(2πf0,itf ).

One may now wonder to what extent small drifts in calibration may impact the exper-
imental results. Indeed during the typical time of our experiments (up to a few hours), we
observe that the stiffness K and the parameter Γ decrease by a small amount: 4% at most.
The stiffness variation can be a consequence of the variation of the AOD efficiency because
the AOD warms up with time. On the other side, Γ is modified because of the following
phenomena: the stiffness variation, the water viscosity dependency on the temperature,
and the damping coefficient correction due to the distance h to the cell walls. Indeed at
first order in r/h we can expand [15] γ(T, h) = 6πrη0(T ) × (1 + 9/16 × r/h), with η0(T )
decreasing of 2% per Kelvin, and the term in r/h leading to an additional 1% per 5µm in
h.

Those variation in K and Γ are small, leading to a small error on the ESE protocols
themselves. Moreover, our cycle procedure of acquisition makes the comparison of pro-
tocols in equivalent experimental conditions. Drifts in Γ have the same consequences on
the different responses we compare: the relative differences between the curves are only
weakly sensitive to variations in Γ. Finally, drifts in Ki, Kf (thus σi, σf ) are wiped out
by plotting the normalised variance.

Furthermore, the local drift of the bath temperature due to the power of the lasers
(measuring laser and trapping laser), amplifies the deviation of the particle variance also
affected by the stiffness drift. Indeed the standard deviation σ can increase up to 2%
during an acquisition. As we are studying σ jumps of 20% with ESE, it is better to get
rid of the 2% error due to external parameters small deviations. To do so, we normalize
the results at regular time intervals to minimize the drift effect in the results.

A.2 Complementary experimental results
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Figure 8: Same as Fig. 2 but with three distances: d = 5µm in black, d = 0.83µm in
green and d = 0.7µm in purple.

As a complement to the results presented in Fig. 2, we propose another experimental
result in Fig. 8. All the parameters are the same as in Fig. 2 but the experiment is
performed with 3 different distances between the particles. From it, we can affirm first
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that the results are very reproducible and always consistent with the theory, and second
that the rebound decreases with the coupling as pointed at in Fig. 4.

A.3 Over-damped regime

The influence of the inertia lasts on a characteristic time τinertia = m/γ = 2µr2/(9η), with
µ being the volumic mass of the particles. As we consider usual fluids such as water,
η = 10−3 Pa s, and µ = 103 kg m−3. The point is then to compare τinertia with the time
needed for the particle to diffuse over a distance equivalent to its diameter, τdiff . In a usual
diffusion process we have, τdiff = (2r)2/D, using the diffusion coefficient D = kBT/(6πηr).
Therefore, on the one hand, the r region where τinertia � τdiff corresponds to r � 0.01 pm.

On the other hand, to get an upper limit, we compare τinertia to the characteristic
time of the experiment τESE = 1 ms. Indeed in the context of shortcuts, the time of
the ESE is more restrictive than the natural relaxation time τrelax = γ/K ∼ 15 ms. The
assumption τinertia � τESE remains valid while r � 70µm. To conclude, the r region of
the over-damped regime is 0.01 pm� r � 70µm.

We are thus working in the r region where the inertia faded too fast as compared to
the other phenomena to be noticed (indeed for r = 1µm, τinertia ∼ 0.2µs and τdiff ∼ 20 s):
the regime is over-damped.

A.4 Model for Hydrodynamic coupling

The hydrodynamic interactions of the particles with the surrounding fluid are described
with by their mobility matrix H (eq. (4)), which is also known as the Rotne-Prager dif-
fusion tensor [7–9]. The Rotne-Prager diffusion tensor consists in adding third order
correction in (r/d)3 to the off-diagonal elements of the Oseen tensor. Under our experi-
mental conditions, this corrections is always smaller than 3.5%. The form of the coupling
parameter ε depends on different approximations. Here we assume ε to be constant: it
involves only the distance between the wells d and not the distance between the particles
(x1 − x2)(t). This assumption is supported by the following order of magnitudes: one
particle can diffuse up to its rms displacement δxrms =

√
kBT/k ∼ 60 nm � d. So that

in first approximation |x1 − x2| = d and ε = f(d). The expression of ε = f(d) is given by
the Rotne-Prager approximation: for particle distances larger than d = r, we can write
ε = 3

2ν − ν
3, where ν = r

d . The term ν becomes more important when particles are close
to each other. At very short distances, when d . r/10, lubrication forces would have to
be taken into account explicitly. On the contrary, in the small ν limit, we reach the Oseen
approximation where ε = 3

2ν.

A.5 Auto and Cross-Correlation

We start from the coupled Langevin equations (2):

γẋ1 = −K1x1 − εK2x2 + f1 + εf2, (20)

γẋ2 = −K2x2 − εK1x1 + f2 + εf1, (21)

and we use the Laplace Transform:

x̂(s) =

∫ +∞

0
x(t)e−stdt. (22)

After having Laplace transformed the system (20), (21) we obtain (to simplify we stop
indicating variables s and t, x̂ transformed functions implies s variable, and x functions
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t):

γ(sx̂1 − x1(0)) = −k1x̂1 − εk2x̂2 + f̂1 + εf̂2, (23)

γ(sx̂2 − x2(0)) = −k2x̂2 − εk1x̂1 + f̂2 + εf̂1. (24)

We then multiply the two above equations by x2(0) and take the mean value:

γ(s〈x̂1x2(0)〉 − σ2
12) = −k1〈x̂1x2(0)〉 − εk2〈x̂2x2(0)〉,

γ(s〈x̂2x2(0)〉 − σ2
22) = −k2〈x̂2x2(0)〉 − εk1〈x̂1x2(0)〉.

This system is now easy to solve (knowing the values of σ22 and σ12 at equilibrium at t = 0).
The last step only consists in taking the Inverse Laplace Transform of the expressions
obtained, that leads to the expression of 〈x1(t)x2(0)〉 and 〈x2(t)x2(0)〉 of eqs. (7) and (6).
We can reproduce the procedure by multiplying this time by x1(0) to obtain the expression
of 〈x1(t)x1(0)〉 of eq. (5).

A.6 Evolution of the moments

To meet the Boltzmann equilibrium prediction the random noises fj in eq. (2) and in
eqs. (20)- (21) should verify:

〈f1(0)f1(t)〉 = 2kBTγ
1

1− ε2
δ(t) = 〈f2(0)f2(t)〉, (25)

〈f1(0)f2(t)〉 = −2kBTγ
ε

1− ε2
δ(t). (26)

Then, starting with the coupled Langevin equation (2), we want to deduce the evolution
of the moments of the joint probability in position. To do so we follow the Ito prescription
(〈f1(t)x1(t)〉 = 0) and apply the Ito chain rule on x2

1(t). Combined with equation (2), and
after taking the mean value, we obtain:

γ〈x1
dx1

dt
〉 = −K1〈x2

1〉 − εK2〈x1x2〉+ ε2〈f2
2 〉+ 〈f2

1 〉+ 2ε〈f1f2〉. (27)

Using the auto-correlation values of the fj ’s in (25) and (26), we readily obtain:

γ

2

d〈x2
1〉

dt
= −K1〈x2

1〉 − εK2〈x1x2〉+ kT. (28)

Finally we reproduce the procedure for the other moments and using again dimensionless
quantities (σjk = 〈xjxk〉

K1,i

2kBT
) we obtain the system to describe the dynamics of the

moments given above in eqs. (11), (12) and (13).

A.7 Gaussian behaviour of the coupled particles joint probability dis-
tribution

Similarly to the single particle case, we can describe the system through the evolution
of its probability density to find the first particle in x1 and the second in x2 at time t,
P (x1, x2, t). The time evolution of the joint Probability P (x1, x2, t) is governed by the
Fokker-Planck equation:

∂P

∂t
= −

j=2∑
j=1

∂gjP

∂xj
−
j,k=2∑
j,k=1

θjk
∂2P

∂xj∂xk
, (29)
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where,

g1 = −1

γ
K1x1 −

ε

γ
K2x2, (30)

g2 = −1

γ
K2x2 −

ε

γ
K1x1, (31)

θjj =
kBT

γ
, (32)

θjk =
kBTε

γ
for j 6= k. (33)

In order to prove the Gaussian behaviour of the joint Probability, we propose a 2D gen-
eralisation of the computation made in ref. [16]. We introduce the 2D Fourier Transform:

G(p1, p2, t) =

∫∫ +∞

−∞
eip1x1eip2x2P (x1, x2, t)dx1dx2. (34)

We apply this Fourier Transform to Fokker-Plank eq. (29)

∂G

∂t
= −K1(p1 + εp2)

γ

∂G

∂p1
− K2(p2 + εp1)

γ

∂G

∂p2
− kBT

γ
G[(p2

1 + p2
2) + εp1p2], (35)

∂ lnG

∂t
= −K1(p1 + εp2)

γ

∂ lnG

∂p1
− K2(p2 + εp1)

γ

∂ lnG

∂p2
− kBT

γ
[(p2

1 + p2
2)− 2εp1p2]. (36)

On the one hand, the expansion of G generates the moments µn,m = 〈xn1xm2 〉, since
G(p1, p2, t) =

∑+∞
n,m=0(ip1)n(ip2)mµn,m(t)/n!m!. On the other hand the expansion of

ln(G) generates the cumulants χn,m(t):

lnG(p1, p2, t) =
+∞∑
n,m=1

(ip1)n(ip2)m

n!m!
χn,m(t). (37)

In particular, the two first cumulants in n are the mean and the variance of the first
particle position: χ1,0 = µ1,0 = 〈x1〉 = 0 and χ2,0 = µ2,0 − µ2

1,0 = 〈x2
1〉 − 〈x1〉2 = 〈x2

1〉.
Thus we identify the power of p1 and p2 in eq. (36) and we deduce:

γχ̇nm =− (nK1 +mK2)χnm − ε(mK1χn+1,m−1 + nK2χn−1,m+1)

+ 2kBT (δn,2δm,0 + δm,2δn,0 + εδm,1δn,1). (38)

For (n,m) = (2, 0) (that corresponds to σ11), (n,m) = (0, 2) (σ22), and (n,m) = (1, 1)
(σ12), we recover the evolution equations eq. (11)-(13). But in addition, eq. (38) for
(n+m) > 2 entails that an initially Gaussian distribution remains Gaussian at all times.
Indeed it can be easily deduced that if χn,m(0) = 0 for all (n+m) > 2 in the equilibrium
state, we have χn,m(t) = 0 for all time for all (n+m) > 2.

A.8 Coupled ESE enforcing independence

Requiring particle independence at all times consists in demanding σ12 = 0. The evolution
eqs. (11)-(13) can then be simplified into:

Γ
dσ11

ds
= −2k1σ11 + 1, (39)

Γ
dσ22

ds
= −2k2σ22 + 1, (40)

1 = k2σ22 + k1σ11. (41)
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We straightforwardly deduce how the second particle variance is linked to the first and
how the two stiffness profiles are related,

σ22(s) = −σ11(s) +
1

2
+

1

k2i
, (42)

k2(s) =
2k2i(1− k1(s)σ11(s))

k2i − 2k2iσ11(s) + 2
. (43)

Moreover, we observe that eq. (39) that describes the σ11 evolution is the same as in the
single particle case. Thus if the same ESE profile is imposed on k1(s), the equilibrium
requirements on the 1st particle will be met. The corresponding k2(s) can be deduced
from eq. (43). We finally obtain for the coupled particles ESE protocol:

k1(s) = 1 + (k1f − 1)(3− 2s)s2 −
3Γ(k1f − 1)(s− 1)s

1 + (k1f − 1)(3− 2s)s2
, (44)

k2(s) = 1 + (k1f − 1)(3− 2s)s2

+
3Γ(k1f − 1)(s− 1)s

1 + (k1f − 1)(3− 2s)s2

k2i

1 + (1 + k2i)(k1f − 1)(3− 2s)s2
. (45)

A.9 Symmetric coupled ESE solution

We explored a new family of ESE solutions adapted to the coupled system by proposing
the coupled ESE that enforces independence between the particles. But it was at the
expense of having the evolution of particle 2 enslaved to that of particle 1, and thereby
not a priori controlled. This results in the fact that the two particles cannot be treated
symmetrically. It is thus interesting to look for another solution to the coupled problem:
an ESE protocol that jointly drives the two potentials and treats the two particles in a
symmetric fashion. Contrary to the coupled ESE, such a protocol will introduce cross-
correlations between particles.
Now that we require for all time K1(t) = K2(t) = K(t) (and so σ11(t) = σ22(t)), two
modes now arise from evolution equations, u = σ11 + σ12 and v = σ11 − σ12 that satisfy
the following decoupled system:

Γ
du

ds
= −2k(s)(1 + ε)u(s) + (1 + ε), (46)

Γ
dv

ds
= −2k(s)(1− ε)v(s) + (1− ε). (47)

The modes evolve following the same form of equation with 2 different time scales τu < τv
that correspond to the τ− and τ+ appearing into the correlation functions for the symmetric
case. Indeed one may notice that u = σ11 + σ12 = 2〈x2

M 〉 and v = σ11 − σ12 = 2〈x2
µ〉. We

naturally recover the modes corresponding to the barycentre and the particles separation
evolution, with the barycentre moving faster because it does not require displacement of
the fluid between the particles to do so.
The strategy to outline an ESE protocol from eqs. (46)-(47) is the following: first we
propose a fifth order polynomial form of v(s) with one degree of freedom (called parameter
p) satisfying initial and final conditions of equilibrium. Secondly, we find the expression
of u(s) as a function of v(s, p):

u(s) =
1

I(s)

(
1 +

2(1 + ε)

Γ

)∫ s

0
I(y)dy, (48)
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with

I(y) = exp

{
2(1 + ε)

Γ

∫ y

0
k(x)dx

}
= exp

{
1 + ε

1− ε

∫ y

0

(1− v̇(x))

v(x)
dx

}
. (49)

Finally, we tune the parameter p of the ansatz of v(s) to satisfy boundary conditions
for u(s) from eq. (48). A simple procedure of dichotomy that iterates on the value of the
p parameter does the job. Knowing the expression of u(s) and v(s), the stiffness profile
can be easily deduced from eq. (46).
Fig. 9 plots an example of symmetric coupled ESE protocol obtained with this procedure.
It is important to point out that this protocol which guides jointly the two particles of
a coupled system depends on the coupling intensity (ε). This property makes it hard to
implement experimentally.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

1

2
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Figure 9: Stiffness profile for the symmetric coupled ESE treating particles distant by
d = 0.7µm (coupling constant ε = 0.5). Both potentials are controlled by the same
protocol which is meant to drive the particles from Ki to Kf = kf × Ki in the desired
time tf . The parameters of the ESE plotted here are: tf = 3 ms, Ki = 2.5× 10−6 N/m,
kf = 1.4 and Γ = 2.5
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