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ON THE K4 GROUP OF MODULAR CURVES

FRANÇOIS BRUNAULT

Abstract. We construct elements in the group K4 of modular curves using the polylog-
arithmic complexes of weight 3 defined by Goncharov and de Jeu. The construction is
uniform in the level and makes use of new modular units obtained as cross-ratios of division
values of the Weierstraß ℘ function. These units provide explicit triangulations of the Manin
3-term relations in K2 of modular curves, which in turn gives rise to elements in K4. Based
on numerical computations and on recent results of Weijia Wang, we conjecture that these
elements are proportional to the Beilinson elements defined using the Eisenstein symbol.

1. Introduction

The motivic cohomology of algebraic varieties is a fundamental invariant which appears, for
example, in the statement of Beilinson’s general conjectures on special values of L-functions.
However this invariant is very difficult to handle in general: no universal recipe is known
to produce non-trivial elements in motivic cohomology. At the same time, finite generation
results (for varieties defined over number fields, and in the right degree and twist) seem to
be completely out of reach in general.
Let us describe in more detail the situation for fields. Recall that for a field F , the mo-

tivic cohomology group H i
M(F,Q(n)) is isomorphic to the Adams eigenspace K

(n)
2n−i(F ) of

Quillen’s K-group K2n−i(F )⊗Q. The groups K0(F ) and K1(F ) are isomorphic to Z and F×

respectively. The group K2(F ) is described by Matsumoto’s theorem, which gives generators
and relations for this group:

K2(F ) =
F× ⊗Z F

×

〈x⊗ (1− x) : x ∈ F\{0, 1}〉
.

The class of x ⊗ y in K2(F ) is denoted by {x, y} and is called a Milnor symbol. The
relations {x, 1 − x} = 0 are called the Steinberg relations. The group K3(F ) has a Milnor
part, generated by symbols {x, y, z}, and an indecomposable part which is isomorphic, after
tensoring with Q, to the Bloch group of F (Suslin’s theorem; see [11, Theorem 1.13]).
It turns out that the higher K-groups of F are much more difficult to deal with, as they
are not described by generators and relations. However, for any weight n ≥ 1, Goncharov
has defined in [11] a polylogarithmic motivic complex Γ(F ;n) whose cohomology in degree
1 ≤ i ≤ n is expected to compute H i

M(F,Q(n)). In this direction, Goncharov has constructed
a map from motivic cohomology to the cohomology of Γ(F ;n)⊗Q when n ≤ 4 (see [11] for
n = 3 and [15] for n = 4).
These motivic complexes are quite explicit (at least in small weight) and can be used to
construct (potential) elements in motivic cohomology. In weight n = 3, de Jeu [8, Theorem
5.4] constructed a map from H2Γ(F ; 3)⊗Q to H2

M(F,Q(3)) for a field F of characteristic 0.

As a consequence, he was able to construct elements in H2
M(E,Q(3)) ∼= K

(3)
4 (E) for certain
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elliptic curves E over Q. He also checked that their images under Beilinson’s regulator map
are numerically related to L(E, 3), as predicted by Beilinson’s conjecture.
In this article, we construct elements in K4 of modular curves using Goncharov’s motivic
complex in weight 3. One key ingredient is a new construction of modular units which are
solutions to the S-unit equation for the function field of a modular curve, where S is the set
of cusps. Another ingredient is given by the Manin 3-term relations in K2 of modular curves,
proved in [4] and [14]. Here we make explicit the Steinberg relations underlying them, and
explain how to use this to build elements in K4.
We also devise a method to compute numerically using Pari/GP the image of our K4

elements under Beilinson’s regulator map. The approach is different from [7, 8] in that we
integrate the regulator 1-form along Manin symbols, instead of integrating it against a cusp
form. This enables us to check numerically Beilinson’s conjecture on L(E, 3) for elliptic
cuves E of small conductor.
Special elements in K4 of modular curves have already been defined by Beilinson [1] through
a different method, using his theory of the Eisenstein symbol. Our computations lead us
to conjecture that our elements coincide (up to a simple rational factor) with the Beilinson
elements. Since the regulators of the Beilinson elements are known to be related to L-values,
proving this conjecture would have interesting consequences, concerning for example the
Mahler measure of certain 3-variable polynomials like (1 + x)(1 + y) + z; see [6, Chapter 8]
and [18].
The outline of this paper is as follows. In Section 2, we recall Mason’s theorem giving a
bound on the degree of solutions to the S-unit equation for curves. Section 3 introduces
the modular units u(a, b, c, d) as cross-ratios of division values of the Weierstraß ℘ function.
Section 4 contains an “effective” proof of the Manin relations in K2(Y (N)) ⊗ Z[ 1

6N
], which

are then used in Sections 5 and 6 to construct the elements in K4(Y (N))⊗Q. In Sections 7
and 8, we explain how to compute numerically the regulators of these elements. Finally, we
formulate in Section 9 the conjecture relating our elements and the Beilinson elements.

Acknowledgements. I would like to thank Emmanuel Lecouturier for asking me for a more
natural proof of the Manin 3-term relation in K2, and for his help in the last step of the
proof of Theorem 4.1. I am also grateful to Spencer Bloch for asking me about an explicit
triangulation of the 3-term relation, and to Andrea Surroca for interesting discussions around
the S-unit equation. Finally, I would like to thank my colleagues for fruitful exchanges,
among them Vasily Golyshev and the International GdT in Paris, Matilde Laĺın, Riccardo
Pengo, Jun Wang, Weijia Wang and Wadim Zudilin.

2. The S-unit equation for curves

Let X be a smooth connected projective curve over C. Let S be a finite set of closed points of
X. The S-unit equation for X is the equation f+g = 1, where f, g are non-constant rational
functions on X whose zeros and poles are contained in S. Geometrically, this amounts to
find the non-constant morphisms f : X\S → P1\{0, 1,∞}.
Solving the S-unit equation for curves has two potential applications:

(1) Prove relations in K2 of curves;
(2) Construct elements in K4 of curves.
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Namely, each solution (f, g) to the S-unit equation provides the Steinberg relation {f, g} = 0
in the group K2(X\S). Moreover, as we shall see in the case of modular curves, relations in
K2 can be used to construct elements in K4; see Section 6.
We first recall the following bound on the degrees of the solutions to the S-unit equation,
due to Mason [19, p. 222].

Theorem 2.1. If (f, g) is a solution to the S-unit equation for X, then deg(f) ≤ 2gX − 2 +
|S|, where gX is the genus of X.

Corollary 2.2. The set of solutions to the S-unit equation for X is finite.

Proof of Corollary 2.2. By Theorem 2.1, there are only finitely many possibilities for the
divisors of f and g. Moreover, if (f, g) is a solution, then g must vanish at some point p ∈ S,
which implies f(p) = 1. This shows that for a given divisor D, there are only finitely many
solutions (f, g) such that div(f) = D. �

As I learnt from A. Javanpeykar [16], the finiteness of solutions to the S-unit equation for
curves can also be proved using the De Franchis-Severi theorem for hyperbolic curves.
The proof of Corollary 2.2 above actually provides an algorithm to find all the solutions to
the S-unit equation. I implemented this algorithm in Magma [3]. In the case of elliptic
curves, one may view this algorithm as an extension of Mellit’s technique of parallel lines
[20]. Namely, the rational functions appearing in [20] have degree at most 3, while here the
degree is arbitrary. Of course, looping over the possible divisors becomes impracticable when
the cardinality of S or the Mason bound is large.
Regarding the S-unit equation, here are some interesting situations:

• X = P1 and S = {0,∞} ∪ µN , where µN denotes the Nth roots of unity;
• X = E is an elliptic curve, and S is a finite subgroup of E;
• X is the Fermat curve with projective equation xN + yN = zN , and S is the set of

points with one coordinate equal to 0;
• X is a modular curve, and S is the set of cusps of X.

In this article, we will concentrate on the case of modular curves.

3. The modular units u(a, b, c, d)

We denote by H the Poincaré upper half-plane. Let N ≥ 1 be an integer. For any a =
(a1, a2) ∈ (Z/NZ)2, a 6= (0, 0), we define

℘a(τ) = ℘
(
τ,
a1τ + a2

N

)
(τ ∈ H),

where ℘ is the Weierstraß function. We have the transformation formula ℘a|2γ = ℘aγ for
any γ ∈ SL2(Z), where |2 denotes the slash action in weight 2. In particular ℘a is a modular
form of weight 2 on the principal congruence subgroup Γ(N).
Since the Weierstraß ℘-function has a double pole at the origin, we also set ℘0 = ∞. Note
that since ℘ is even, we have ℘−a = ℘a for every a ∈ (Z/NZ)2.

Definition 3.1. Let a, b, c, d be distinct elements of (Z/NZ)2/± 1. We define

u(a, b, c, d) = [℘a, ℘b, ℘c, ℘d] =
℘c − ℘a
℘c − ℘b

÷ ℘d − ℘a
℘d − ℘b

.

3



Recall that a modular unit for a congruence subgroup Γ ⊂ SL2(Z) is a non-zero meromorphic

function on Γ\H whose zeros and poles are concentrated at the cusps.

Lemma 3.2. The function u(a, b, c, d) is a modular unit for Γ(N).

Proof. It is a well-known fact from the theory of elliptic functions that ℘(τ, z) = ℘(τ, z′) if
and only if z′ = ±z mod Z + τZ. It follows that u(a, b, c, d) is holomorphic and non-vanishing
on H. The modularity of u(a, b, c, d) follows from that of the ℘a’s. �

Modular units of the form (℘a − ℘b)/(℘c − ℘d) are called Weierstraß units and have been
investigated in the literature [17]. Here u(a, b, c, d) is a quotient of two Weierstraß units but
is not a priori a Weierstraß unit.
Note the following transformation formula:

u(a, b, c, d)|γ = u(aγ, bγ, cγ, dγ) (γ ∈ SL2(Z)).

Notation 3.3. For any distinct elements a, b, c, d in (Z/NZ)/± 1, we write

u1(a, b, c, d) = u((0, a), (0, b), (0, c), (0, d)).

Since row vectors of the form (0, a) are fixed by the matrix ( 1 1
0 1 ), the function u1(a, b, c, d)

is a modular unit for the larger group Γ1(N).
The definition of u(a, b, c, d) as a cross-ratio makes it clear that

u(a, b, c, d) + u(a, c, b, d) = 1.

It follows that u(a, b, c, d) is a solution to the S-unit equation for the modular curve X(N),
where S is the set of cusps. Since a, b, c, d are arbitrary, this provides us with plenty of
solutions, of the order of N8/64 (taking into account that permuting a, b, c, d gives rise to 6
distinct units).
It turns out that these modular units have remarkably low degree. Here are a few facts in
the case of the modular curve X1(N).

(1) For N ≥ 5 prime, the Mason bound is equal to 2gX1(N) − 2 + |cusps| = (N2 − 1)/12.
(2) For N prime, 7 < N < 300, N 6= 31, the lowest degree among the units u1(a, b, c, d)

is attained for the quadruplet (a, b, c, d) = (1, 2, 3, 5).
(3) Up to composing by an homography, the unit u1(1, 2, 3, 5) is equal to the unit F7/F8

studied by van Hoeij and Smith in [25]; they prove that deg(F7/F8) = [11N2/840]
for N > 7 prime, where [·] denotes the nearest integer.

(4) In fact, for N > 7 prime, the unit u1(1, 2, 3, 5) yields the lowest known degree for a
non-constant map X1(N)→ P1 except for N ∈ {31, 67, 101}, where the lowest known
degree is one less [9, Table 1].

(5) For N prime, 7 < N < 300, the highest degree among the u1(a, b, c, d) is attained for
the quadruplet (0, 1, 3, 4), the degree being [N2/35].

We now return to the general case, namely the curve X(N), and explain how to express
u(a, b, c, d) in terms of Siegel units. For a = (a1, a2) ∈ Z2, a 6≡ (0, 0) mod N , consider the
following infinite product

(1) γa(τ) =
∏
n≥0

(
1− e

(
nτ +

a1τ + a2

N

))∏
n≥1

(
1− e

(
nτ − a1τ + a2

N

))
(τ ∈ H),
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with e(z) = exp(2πiz). To ease notations, we write qα = e(ατ) for any τ ∈ H and α ∈ Q.
We also denote ζN = e2πi/N . Yang considered in [27] the following function

(2) Ea(τ) = qB2(a1/N)/2γa(τ),

where B2(x) = x2 − x+ 1
6

is the Bernoulli polynomial. One can show that

(3) Ea1+N,a2 = −ζ−a2N Ea1,a2 , Ea1,a2+N = Ea1,a2 .

In the case 0 ≤ a1 < N , the function Ea is, by definition, nothing else but the Siegel unit
ga, where a is the image of a in (Z/NZ)2. However, it will be convenient to allow arbitrary
values of a1. The relation (3) gives immediately

(4) Ea1,a2 = (−ζ−a2N )ba1/Nc · ga1,a2 .

For any x ∈ (Z/NZ)2, x 6= (0, 0), it is known that g12N
x is a modular unit on X(N).

Proposition 3.4. Let ā, b̄, c̄, d̄ be distinct elements of (Z/NZ)2/± 1. We have

u(ā, b̄, c̄, d̄) =
Ec+aEc−aEd+bEd−b
Ec+bEc−bEd+aEd−a

= ζ · gc̄+āgc̄−āgd̄+b̄gd̄−b̄
gc̄+b̄gc̄−b̄gd̄+āgd̄−ā

,

where a, b, c, d are arbitrary representatives of ā, b̄, c̄, d̄ in Z2, and the root of unity ζ is
determined by (4).

Proof. By [23, Corollary I.5.6(a) and Theorem I.6.4], we have

℘a(τ)− ℘b(τ) = −(2πi)2qb1/Nζb2N
∏
n≥1

(1− qn)4 · γa+b(τ)γa−b(τ)

γa(τ)2γb(τ)2
.

It follows that the Weierstraß units can be expressed as

(5)
℘a − ℘b
℘c − ℘d

= ζb2−d2N

Ea+bEa−b
E2
aE

2
b

E2
cE

2
d

Ec+dEc−d
.

The definition of u(a, b, c, d) as a quotient of two Weierstraß units gives the result. �

Remark 3.5. We take this opportunity to point out a mistake in [4]: the first equation of
p. 288 is off by a root of unity. This root of unity can be determined from (4) and (5).

From now on, we will consider the modular curves Y (N) and Y1(N) as algebraic curves
defined over Q. We recall that the field of constants of Y (N) is Q(ζN), and that Y (N)(C)
is a disjoint union of copies of Γ(N)\H indexed by (Z/NZ)×.

Proposition 3.6. Let a, b, c, d be distinct elements in (Z/NZ)2/ ± 1. The unit u(a, b, c, d)
belongs to O(Y (N))×.

Proof. The group O(Y (N))× can be identified with the group of modular units for Γ(N)
whose Fourier expansion at ∞ has coefficients in Q(ζN). Proposition 3.4 shows that this
holds for u(a, b, c, d). �

Proposition 3.7. Let a, b, c, d be distinct elements in (Z/NZ)/ ± 1. The unit u1(a, b, c, d)
belongs to O(Y1(N))×.
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Proof. Since E0,a = g0,a, Proposition 3.4 shows that

(6) u1(a, b, c, d) =
g0,c+ag0,c−ag0,d+bg0,d−b

g0,c+bg0,c−bg0,d+ag0,d−a
.

Since the cusp 0 ∈ X1(N) is defined over Q, it suffices to show that the Fourier expansion
of u1(a, b, c, d) at the cusp 0 is Q-rational. By [5, Lemma 4], we have

g0,x

(
−1

τ

)
= −ieπix̃/Ngx,0(τ),

where x̃ is the representative of x satisfying 0 < x̃ < N . Replacing in (6) gives

u1(a, b, c, d)
(
−1

τ

)
= eπiα/N

gc+a,0gc−a,0gd+b,0gd−b,0
gc+b,0gc−b,0gd+a,0gd−a,0

(τ),

where α ∈ Z is congruent to 0 modulo N , hence eπiα/N = ±1. We conclude by noting that
gx,0 has rational Fourier coefficients. �

4. The Manin relations in K2

We begin by recalling the classical Manin relations in the homology of modular curves. For
any two cusps α 6= β in P1(Q), the modular symbol {α, β} is the hyperbolic geodesic from α
to β in H. For any congruence subgroup Γ of SL2(Z), the symbol {α, β} defines an element

of the first homology group of Γ\H relative to the cusps. It is known that this group is
generated by the Manin symbols ξ(g) = {g0, g∞} with g ∈ Γ\SL2(Z). They satisfy the
following relations:

ξ(g) + ξ(gσ) = 0, ξ(g) + ξ(gτ) + ξ(gτ 2) = 0,

where the matrices σ = ( 0 −1
1 0 ) and τ =

(
0 −1
1 −1

)
have order 4 and 3, respectively.

We now state the main result of this section. Consider the modular curve Y (N). Recall that
the Siegel units ga with a ∈ (Z/NZ)2 belong to O(Y (N))× ⊗ Z[ 1

6N
] (by convention, we put

g0,0 = 1).

Theorem 4.1. For any a, b, c ∈ (Z/NZ)2 such that a+ b+ c = 0, we have

(7) {ga, gb}+ {gb, gc}+ {gc, ga} = 0 in K2(Y (N))⊗ Z
[ 1

6N

]
.

Theorem 4.1 was previously known with Q-coefficients; see [4] when (N, 3) = 1, and [14] in
general. The analogy with the Manin 3-term relations goes as follows: for any two row vectors

x, y in (Z/NZ)2, consider the matrix M =

(
x
y

)
with rows x and y, and let ρ(M) = {gx, gy}.

Then the relation (7) is equivalent to ρ(M) + ρ(τM) + ρ(τ 2M) = 0 with M =

(
a
−b

)
(here

we use the relation g−x = gx).
We will actually need a more precise version of Theorem 4.1, where the Steinberg relations
underlying (7) are made explicit. This will be a key ingredient in the construction of elements
in K4(Y (N)).

Notation 4.2. For any distinct elements a, b, c, d in (Z/NZ)2/± 1, define

δ(a, b, c, d) = u(a, b, c, d) ∧ u(a, c, b, d) ∈ Λ2O(Y (N))×.
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Since u(a, c, b, d) = 1−u(a, b, c, d), the image of δ(a, b, c, d) in K2(Y (N)) is trivial. If a, b, c, d
are not distinct, we put δ(a, b, c, d) = 0.
Theorem 4.1 will be a consequence of the following theorem.

Theorem 4.3. Let G be a subgroup of (Z/NZ)2, and let a, b, c ∈ G with a+ b+ c = 0. We
have the following equality in Λ2O(Y (N))× ⊗ Z

[
1

6N

]
:

ga ∧ gb + gb ∧ gc + gc ∧ ga =
1

|G|
∑
x∈G

δ(0, x, a− x, b+ x)

(8)

+
1

4|G|2
∑
x,y∈G

(
δ(0, a, b+ 2x, y)− δ(0, b, a+ 2x, y)− δ(0, a+ b, b+ 2x, y)

)
.

In the case |G| is odd, this simplifies to

(9) ga ∧ gb + gb ∧ gc + gc ∧ ga =
1

|G|
∑
x∈G

δ(0, x, a− x, b+ x).

We call (8) and (9) triangulations of the Manin 3-term relation in K2. Note that the group
G is arbitrary. For example, we may take G = {0}×Z/NZ when working with the modular
curve Y1(N).

Proof. Using Proposition 3.4 and expanding, we get

δ(a, b, c, d) = (gc+agc−a · gd+bgd−b) ∧ (gb+agb−a · gd+cgd−c)

+ (gb+agb−a · gd+cgd−c) ∧ (gc+bgc−b · gd+agd−a)

+ (gc+bgc−b · gd+agd−a) ∧ (gc+agc−a · gd+bgd−b)

= ϕ(a, b, c) + ϕ(c, d, a) + ϕ(b, a, d) + ϕ(d, c, b)(10)

where we have set

ϕ(x, y, z) = gz+xgz−x ∧ gy+xgy−x + gy+xgy−x ∧ gz+ygz−y + gz+ygz−y ∧ gz+xgz−x.
We can check that ϕ(σ(x, y, z)) = ε(σ)ϕ(x, y, z) for every permutation σ of (x, y, z). It
follows that δ(a, b, c, d) is also antisymmetric with respect to (a, b, c, d).

Lemma 4.4. For any y, z ∈ G, we have
∑

x∈G ϕ(x, y, z) = 0.

Proof of Lemma 4.4. A simple computation shows that the sum simplifies to∑
x∈G

ϕ(x, y, z) =
∑
x∈G

gz+xgz−x ∧ gy+xgy−x = 2
∑
x∈G

gz+x ∧ gy+x + gz+x ∧ gy−x.

Note that the expression S(a, b) =
∑

x∈G gx+a ∧ gx+b is antisymmetric in a and b. But
changing variables x′ = x+ a+ b, we have

S(a, b) =
∑
x′∈G

gx′−b ∧ gx′−a =
∑
x′∈G

g−x′−b ∧ g−x′−a = S(b, a).

Since S is both symmetric and antisymmetric, we conclude that S = 0. �

Lemma 4.5. For any a, b, c ∈ G, we have

ϕ(a, b, c) =
1

|G|
∑
d∈G

δ(a, b, c, d).
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Proof of Lemma 4.5. It follows from summing (10) over d ∈ G and using Lemma 4.4. �

Let ψ(a, b) = ga∧ gb + gb∧ gc + gc∧ ga, where c is chosen so that a+ b+ c = 0. Our next task
is to show that ψ(a, b) is a linear combination of values of ϕ. The definition of ϕ gives us

(11) ϕ(x, y, z) = ψ(z + x,−y − x) + ψ(z + x, y − x) + ψ(z − x,−y + x) + ψ(z − x, y + x).

Changing variables and putting a = z + x and b = −y − x, this becomes

ϕ(x,−b− x, a− x) = ψ(a, b) + ψ(a,−b− 2x) + ψ(a− 2x, b+ 2x) + ψ(a− 2x,−b)
= ψ(a, b)− ψ(−b− 2x, a) + ψ(b+ 2x,−a− b) + ψ(a− 2x,−b).

Here we used ψ(u, v) = ψ(v,−u− v) = −ψ(v, u). Summing over x ∈ G, we get

(12)
∑
x∈G

ϕ(x,−b− x, a− x) = |G| · ψ(a, b)−R−b(a) +Rb(−a− b) +Ra(−b),

where Ru(v) =
∑

x∈G ψ(u+ 2x, v).

Lemma 4.6. For any u, v ∈ G, we have Ru(v) = 1
4

∑
x∈G ϕ(0, v, u+ 2x).

Proof of Lemma 4.6. Taking x = 0 in (11), we obtain

ϕ(0, y, z) = 2(ψ(z, y) + ψ(z,−y)) = 2(ψ(z, y) + ψ(−z, y)).

Specialising to z = u+ 2x, y = v, and summing over x ∈ G gives∑
x∈G

ϕ(0, v, u+ 2x) = 2
∑
x∈G

ψ(u+ 2x, v) + ψ(−u− 2x, v)

= 2
∑
x∈G

ψ(u+ 2x, v) + ψ(u+ 2(−x− u), v) = 4Ru(v). �

Using Lemmas 4.5 and 4.6, the equation (12) becomes

ψ(a, b) =
1

|G|2
∑
x,y∈G

(
δ(x,−b− x, a− x, y) +

1

4
δ(0, a,−b+ 2x, y)

− 1

4
δ(0,−a− b, b+ 2x, y)− 1

4
δ(0,−b, a+ 2x, y)

)

Since δ(±a,±b,±c,±d) = δ(a, b, c, d), this can be rewritten

ψ(a, b) =
1

|G|2
∑
x,y∈G

δ(x, b+ x, a− x, y)(13)

+
1

4|G|2
∑
x,y∈G

δ(0, a, b+ 2x, y)− δ(0, a+ b, b+ 2x, y)− δ(0, b, a+ 2x, y).

We now wish to simplify the first sum. We will need some facts about the (pre-)Bloch group
[28, Section 2]. Let F be a field, and let Z[P1(F )] be the free abelian group generated by the
symbols {x}2 with x ∈ P1(F ).
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Definition 4.7. The Bloch group B2(F ) is the quotient of Z[P1(F )] by the subgroup R2(F )
generated by {0}2, {1}2, {∞}2 and the 5-term relations∑

i∈Z/5Z

{[ai, ai+1, ai+2, ai+3]}2, (ai) ∈ P1(F )Z/5Z,

where [·] is the cross-ratio, with the convention {[a, b, c, d]}2 = 0 is a, b, c, d are not distinct.

Consider the Bloch–Suslin map

δ2 : Z[P1(F )]→ Λ2F×(14)

{x}2 7→

{
x ∧ (1− x) if x 6= 0, 1,∞
0 otherwise

It is known that δ2(R2(F )) = 0, so that δ2 induces a map B2(F )→ Λ2F×. Now let’s take F
to be the field generated by the modular forms ℘a, a ∈ (Z/NZ)2. Recall that the modular
units u(a, b, c, d) are defined as cross-ratios of the ℘a’s. Considering the associated 5-term
relations and applying the map δ2, we get∑

i∈Z/5Z

δ(ai, ai+1, ai+2, ai+3) = 0

for any family (ai)i∈Z/5Z of elements of (Z/NZ)2/± 1. In particular:

δ(x, b+ x, a− x, y) + δ(b+ x, a− x, y, 0) + δ(a− x, y, 0, x)(15)

+ δ(y, 0, x, b+ x) + δ(0, x, b+ x, a− x) = 0.

Lemma 4.8. For any α, β, z, t ∈ G, we have
∑

x∈G δ(α + x, β + x, z, t) = 0.

Proof. Denote this sum by S. The change of variables x→ −α− β − x gives

S =
∑
x∈G

δ(−β − x,−α− x, z, t) =
∑
x∈G

δ(β + x, α + x, z, t) = −S. �

Summing (15) over x ∈ G and using Lemma 4.8, we obtain∑
x∈G

δ(x, b+ x, a− x, y) = −
∑
x∈G

δ(0, x, b+ x, a− x) =
∑
x∈G

δ(0, x, a− x, b+ x).

Together with (13), this proves (8). Finally, let us suppose that |G| is odd. For any α ∈ G,
the map x 7→ α + 2x is a bijection of G. Therefore∑

x,y∈G

δ(∗, ∗, α + 2x, y) =
∑
x,y∈G

δ(∗, ∗, x, y) = 0

by antisymmetry with respect to (x, y). Therefore the second line of (8) vanishes. This
finishes the proof of Theorem 4.3. �

Remark 4.9. Thanks to the 5-term relation, every symbol {u(a, b, c, d)}2 is a linear combi-
nation of symbols of the form {u(0, x, y, z)}2. However, this breaks the symmetry.
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5. The Goncharov complex

We begin by recalling Goncharov’s theory of polylogarithmic complexes [10, Section 4]. Let F
be a field, and let n ≥ 1 be an integer. Goncharov has constructed a weight n polylogarithmic
complex Γ(F ;n) of the following shape:

Bn(F )→ Bn−1(F ) ⊗ F× → Bn−2(F )⊗ Λ2F× → · · · → B2(F )⊗ Λn−2F → ΛnF×,

where Bn(F ) is defined as the quotient Z[P1(F )] by a certain subgroup Rn(F ) related to the
functional equations of the n-th polylogarithm. For any x ∈ P1(F ), we denote by {x} the
associated basis element in Z[P1(F )], and by {x}n its image in Bn(F ).
The complex Γ(F ;n) sits in degrees 1 to n and, after tensoring with Q, it is expected to
compute the weight n motivic cohomology of SpecF . More precisely, Goncharov conjectures
that H iΓ(F ;n)⊗Q ∼= H i

M(F,Q(n)) for every 1 ≤ i ≤ n; see [10, Conjecture A].

Examples 5.1. • n = 1. We have B1(F ) ∼= F× ∼= H1
M(F,Z(1)).

• n = 2. The complex Γ(F ; 2) is the Bloch–Suslin map δ2 : B2(F )→ Λ2F× defined in
(14). The kernel of δ2 ⊗ Q is isomorphic to K ind

3 (F ) ⊗ Q ∼= H1
M(F,Q(2)) (Suslin’s

theorem), and the cokernel of δ2 is isomorphic to K2(F ) up to 2-torsion (Matsumoto’s
theorem).
• n = 3. The complex Γ(F ; 3) is

B3(F )→ B2(F )⊗ F× → Λ3F×.

Here we define B2(F ) = Z[P1(F )]/R2(F ) as in Definition 4.7. The differentials are
given by δ({x}3) = {x}2 ⊗ x and δ({x}2 ⊗ y) = x ∧ (1 − x) ∧ y for any x, y in
F× (by convention δ maps any expression containing {0}, {1} or {∞} to 0). We
will be interested in the cohomology in degree 2, which is expected to compute

H2
M(F,Q(3)) ∼= K

(3)
4 (F ).

• n ≥ 4. In this case Goncharov’s conjecture says that H2
M(F,Q(n)) ∼= K

(n)
2n−2(F )

should be isomorphic to a certain subquotient of Bn−1(F )⊗ F× ⊗Q.

In this article, we will be mainly concerned with the case n = 3, and F is the function field
of a smooth connected curve Y defined over a number field k. For every x ∈ Y , there is a
residue map from the complex Γ(F ; 3) to the complex Γ(k(x); 2) shifted by −1:

(16)

B3(F ) B2(F )⊗ F× Λ3F×

⊕
x∈Y

B2(k(x))
⊕
x∈Y

Λ2k(x)×.

Res Res

In degree 2, the residue map is given by the formula Resx({f}2 ⊗ g) = ordx(g){f(x)}2 for
any rational functions f, g on Y . Then Goncharov [11, 1.15] defines the motivic complex
Γ(Y ; 3) as the simple complex associated to the double complex (16). In particular, we have

H2Γ(Y ; 3) ∼= ker
(
H2Γ(F ; 3)

Res−−→
⊕
x∈Y

B2(k(x))
)
.

It is expected that the residue maps above are compatible with the localisation sequence in

motivic cohomology. In particular, we expect H2Γ(Y ; 3) ⊗ Q
?∼= H2

M(Y,Q(3)). In fact, de
10



Jeu [7, 8] has constructed a map

H2Γ(Y ; 3)⊗Q H2
M(Y,Q(3))

and Goncharov [12] has constructed a map in the other direction. Moreover, there exists a
regulator map for the complex Γ(Y ; 3) which is compatible with the Beilinson regulator map
on motivic cohomology; see [8] and [13].
We may now describe our strategy to construct elements in H2

M(Y,Q(3)). We assume that
Y = X\S where X is smooth projective, and S is finite. The idea is to approximate the
Goncharov complex Γ(Y ; 3) by a certain subcomplex where all the functions involved are
supported in S (that is, their zeros and poles are contained in S). In order for the differential
of the symbol {f}2 ⊗ g to make sense, we need the condition that both f and 1 − f are
supported in S. That is, the function f must be a solution to the S-unit equation for X.
The important point is that the subcomplex will consist of groups which are (essentially) of
finite rank, hence we may do the linear algebra.
In more detail, let F be the function field of X. We denote by O(Y )× the subgroup of F×

consisting of the functions that are supported in S. Let U be the set of rational functions f
on X such that both f and 1− f belong to O(Y )×. Consider the following complex:

ΓS(Y ; 3) : Z[U ] Z[U ]⊗O(Y )× Λ3O(Y )×

where, as above, the differentials are given by δ({f}3) = {f}2 ⊗ f and δ({f}2 ⊗ g) =
f ∧ (1 − f) ∧ g. Note that the set U is finite by Corollary 2.2. Moreover, after modding
out by the non-zero constants, the group O(Y )× is of finite rank. Therefore all the groups
occurring in ΓS(Y ; 3) are essentially of finite rank.
There is a natural morphism of complexes ΓS(Y ; 3)→ Γ(F ; 3) and since all the functions in-
volved are supported in S, this morphism takes values in the subcomplex Γ(Y ; 3). Therefore,
we get natural maps

(17) H2ΓS(Y ; 3)⊗Q H2Γ(Y ; 3)⊗Q H2
M(Y,Q(3)).

This strategy can already be implemented to construct elements in K4 of a given curve. In
the rest of the article, we will consider only the case of modular curves.

6. Construction of the elements in K4

In this section, we explain how to construct elements in K
(3)
4 (Y (N)) ∼= H2

M(Y (N),Q(3)).
We actually work in the following more general setting. Let G be any subgroup of (Z/NZ)2.
The group GL2(Z/NZ) acts by right multiplication on the set of row vectors (Z/NZ)2. Let

ΓG = {γ ∈ GL2(Z/NZ) : ∀g ∈ G, gγ = g}.
We may then consider the modular curve Y (ΓG) := ΓG\Y (N). For example, the group
G = {0}× (Z/NZ) gives rise to the usual modular curve Y1(N), since we have ΓG = {( ∗ ∗0 1 )}.
Let S be the set of cusps of Y (ΓG).

Construction 6.1. Let a, b, c ∈ G with a + b + c = 0. Write the triangulation (8) (or (9)
when |G| is odd), as follows:

ga ∧ gb + gb ∧ gc + gc ∧ ga =
∑
i

mi · ui ∧ (1− ui)

11



with coefficients mi ∈ Q, and modular units ui ∈ O(Y (ΓG))×. Then the element

ξG(a, b) =
∑
i

mi{ui}2 ⊗
(gb
ga

)
is a cocycle in the Goncharov complex ΓS(Y (ΓG); 3)⊗Q. Indeed, we have

δξG(a, b) =
∑
i

mi · ui ∧ (1− ui) ∧
(gb
ga

)
=
(
ga ∧ gb + gb ∧ gc + gc ∧ ga

)
∧
(gb
ga

)
= gc ∧ ga ∧ gb − gb ∧ gc ∧ ga = 0.

Hence, using the map (17), ξG(a, b) defines an element in H2
M(Y (ΓG),Q(3)).

Note that the cohomology class ξG(a, b) depends a priori on the triangulation.

Notation 6.2. For a, b ∈ (Z/NZ)2, we write

ξ(a, b) := ξ(Z/NZ)2(a, b) ∈ H2
M(Y (N),Q(3)).

For a, b ∈ Z/NZ, we write

ξ1(a, b) := ξ{0}×(Z/NZ)((0, a), (0, b)) ∈ H2
M(Y1(N),Q(3)).

For example, if N is odd, we have

ξ1(a, b) =
1

N

∑
x∈Z/NZ

{u(0, x, a− x, b+ x)}2 ⊗
(gb
ga

)
,

with the convention {u(x, y, z, t)}2 = 0 if x, y, z, t are not distinct in (Z/NZ)/± 1.
We will show in the next sections that the elements ξ1(a, b) are non-trivial by computing
numerically their regulators.
We say that ξ1(a, b) extends to X1(N) if the residues of ξ1(a, b) at the cusps are trivial,
in other words ξ1(a, b) defines an element of H2

M(X1(N),Q(3)). We now give a sufficient
condition for ξ1(a, b) to extend to X1(N).

Lemma 6.3. If N = p or N = 2p with p prime, then ξ1(a, b) defines an element of
H2
M(X1(N),Q(3)) for every a, b ∈ Z/NZ.

Proof. Let N be arbitrary. A set of representatives of the Galois orbits of the cusps of X1(N)
is given by the cusps 1/v with 0 ≤ v ≤ N/2. Among them, the real cusps are given by v = 0,
v = N/2 (for even N), and the integers 0 < v < N/2 such that gcd(v,N) ∈ {1, 2}. It follows
that in the cases N = p and N = 2p with p prime, all the cusps are totally real. But for a
totally real number field k, we have H1

M(k,Q(2)) = 0 by Borel’s theorem, hence the residues
are automatically trivial. �

In general, the elements ξ1(a, b) do not always extend to X1(N), as can be shown in the
particular cases N = 15 and N = 21.
Nevertheless, we can modify the elements as follows. Let us return to the general situation
where G is any subgroup of (Z/NZ)2. To ease notation, write Y = Y (ΓG) and X = X(ΓG).
Denote by S the set of cusps, seen as a closed subscheme of X. We have the following
localisation exact sequence in motivic cohomology:

H0
M(S,Q(2))→ H2

M(X,Q(3))→ H2
M(Y,Q(3))→ H1

M(S,Q(2))→ H3
M(X,Q(3))

The first group is zero by Borel’s theorem, hence we may view H2
M(X,Q(3)) as a subspace

of H2
M(Y,Q(3)).
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Proposition 6.4. The map H2
M(X,Q(3))→ H2

M(Y,Q(3)) admits a natural retraction.

Proof. Let k be the field of constants of X, and let k′/k be the splitting field of S. Since
motivic cohomology with Q-coefficients satisfies Galois descent, it suffices to prove that
H2
M(Xk′ ,Q(3)) → H2

M(Yk′ ,Q(3)) has a retraction that is Gal(k′/k)-equivariant. Write
i : Sk′ ↪→ Xk′ and π : Xk′ → Spec k′. We have the following diagram

0 H2
M(Xk′ ,Q(3)) H2

M(Yk′ ,Q(3))
⊕

x∈S(k′)

H1
M(k′,Q(2)) H3

M(Xk′ ,Q(3))

H1
M(k′,Q(2))

Res i∗

Σ
π∗

where the first row is exact, and the diagonal arrow Σ is the sum map. Define

T = 〈H1
M(k′,Q(2)) ∪ O(Yk′)

×〉 ⊂ H2
M(Yk′ ,Q(3)).

We have Res(λ∪u) = λ⊗div(u) for any λ ∈ H1
M(k′,Q(2)) and any modular unit u ∈ O(Yk′)

×.
By the Manin–Drinfeld theorem, the cusps of X are torsion in the Jacobian of X. This
implies that Res(T ) = ker(Σ). We then claim that

H2
M(Yk′ ,Q(3)) = H2

M(Xk′ ,Q(3))⊕ T.
The fact that H2

M(Yk′ ,Q(3)) is generated by H2
M(Xk′ ,Q(3)) and T follows from the locali-

sation sequence above. Now consider the composite map

H1
M(k′,Q(2))⊗O(Yk′)

× ∪−→ T
Res−−→

⊕
x∈S(k′)

H1
M(k′,Q(2)).

The kernel of this map is H1
M(k′,Q(2))⊗ k′×. Therefore the intersection of H2

M(Xk′ ,Q(3))
and T is contained in H2

M(k′,Q(3)), which is zero by Borel’s theorem. Finally, we note that
T is stable under Gal(k′/k), hence the retraction descends. �

Notation 6.5. For a, b ∈ G, we denote by ξ′G(a, b) the image of ξG(a, b) under the retraction
H2
M(Y (ΓG),Q(3))→ H2

M(X(ΓG),Q(3)).

We now study how the elements ξG(a, b) and ξ′G(a, b) depend on the triangulation. Say we
have two triangulations

ga ∧ gb + gb ∧ gc + gc ∧ ga =
∑
i

mi · ui ∧ (1− ui) =
∑
j

nj · vj ∧ (1− vj).

Let F be the function field of Y (ΓG). Then

λ :=
∑
i

mi{ui}2 −
∑
j

nj{vj}2 ∈ H1
M(F,Q(2)).

Merkurjev and Suslin formulated a rigidity conjecture [21, Conjecture 4.10] which implies
the following statement.

Conjecture 6.6. We have an isomorphism H1
M(F,Q(2)) ∼= H1

M(k,Q(2)), where k ⊂ F is
the field of constants of F .

Remark 6.7. This statement is also implied by Beilinson’s conjecture for the L-value of the
motive h0(X(ΓG)) at s = 2, together with the localisation sequence.
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Assuming λ ∈ H1
M(k,Q(2)), we see that the element λ ∪ (gb/ga) is killed by the retraction

of Proposition 6.4. Therefore we have shown:

Proposition 6.8. Assuming Conjecture 6.6, the element ξ′G(a, b) ∈ H2
M(X(ΓG),Q(3)) does

not depend on the triangulation.

Finally, we investigate how our element ξ′G(a, b) depend on G. It will be convenient to work
with the tower of modular curves Y (N). First note that for (α, β) ∈ Z2, the Siegel unit
g(α,β) mod N depends only on the class of ( α

N
, β
N

) in (Q/Z)2. In this way, we may define the
Siegel unit gx for any x ∈ (Q/Z)2, which lives in the direct limit

O(Y (∞))× ⊗Q := lim−→
N≥1

O(Y (N))× ⊗Q,

where the transition maps are the pull-backs associated to the canonical projection maps
Y (N ′)→ Y (N) for N dividing N ′.
Now, let a, b be two elements of (Q/Z)2. Choose a finite subgroup G of (Q/Z)2 containing
a and b, and choose an integer N ≥ 1 such that G is killed by N . Then G identifies with
a subgroup of (Z/NZ)2, and we have defined above elements ξG(a, b) ∈ H2

M(Y (ΓG),Q(3))
and ξ′G(a, b) ∈ H2

M(X(ΓG),Q(3)). Since X(ΓG) is a quotient of X(N), this gives rise to an
element of

H2
M(X(∞),Q(3)) := lim−→

N≥1

H2
M(X(N),Q(3)),

where the transition maps are defined as above.

Proposition 6.9. Assuming Conjecture 6.6, the image of ξ′G(a, b) in H2
M(X(∞),Q(3)) does

not depend on G and N .

Proof. This follows from the independence of the triangulation proved in Proposition 6.8. �

The idea of taking the cohomology at infinite level will be used in Section 9, when trying to
compare with the elements in K4 constructed by Beilinson.
To conclude this section, let us mention that the elements ξ′G(a, b) also satisfy the analogue
of the Manin relations.

Proposition 6.10. Let G be a finite subgroup of (Q/Z)2. Assuming Conjecture 6.6, we have

ξ′G(a, b) = ξ′G(±a,±b) = ξ′G(b, a) (a, b ∈ G)

ξ′G(a, b) + ξ′G(b, c) + ξ′G(c, a) = 0 (a, b, c ∈ G, a+ b+ c = 0).

Proof. We give the proof for the 3-term relation, as the others are treated similarly. Write

T (a, b) := ga ∧ gb + gb ∧ gc + gc ∧ ga =
∑
i

mi · ui ∧ (1− ui).

Note that T (a, b) = T (b, c) = T (c, a). Therefore

ξG(a, b) + ξG(b, c) + ξG(c, a) =
∑
i

mi · {ui}2 ⊗
(gb
ga

gc
gb

ga
gc

)
= 0.

Projecting onto H2
M(X(∞),Q(3)) gives the result. �

Proposition 6.10 gives some hope to find an inductive procedure to construct motivic elements

in the higher K-groups K
(n)
2n−2(X(∞)) ∼= H2

M(X(∞),Q(n)).
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7. Computation of the regulator

Goncharov has defined in [13] explicit regulator maps on the polylogarithmic complexes,
which are compatible with the regulator maps on motivic cohomology defined by Beilinson.
In this section we explain how to compute numerically Goncharov’s regulator maps in the
case of modular curves. We implemented this computation in Pari/GP [22].
We first show that Goncharov’s regulator integrals are absolutely convergent in the case of
curves (Proposition 7.2 and Corollary 7.3). Then, we explain how to compute them in the
case of modular curves, using generalised Mellin transforms.

7.1. Convergence of Goncharov’s integrals. Let X be a smooth connected projective
curve over C, and let F be the function field of X. Let n ≥ 3. According to Goncharov’s
theory, the motivic cohomology group H2

M(F,Q(n)) should be isomorphic to a certain sub-
quotient of Bn−1(F )⊗ F×. Goncharov constructs in [13, Theorem 2.2] a regulator map

rn(2) : Bn−1(F )⊗ F× −→ A1(ηX)(n− 1)

where A1(ηX)(n − 1) is the space of (2πi)n−1R-valued differential 1-forms on X which are
regular outside a finite subset of X. Concretely, for f ∈ F\{0, 1} and g ∈ F×, we have

rn(2)({f}n−1 ⊗ g) = iL̂n−1(f) darg g − 2n−1Bn−1

(n− 1)!
α(1− f, f) · logn−3 |f | log |g|(18)

−
n−2∑
k=2

2kBk

k!
L̂n−k(f) logk−2 |f | dlog |f | · log |g|,

where L̂m : P1(C)→ (2πi)m−1R is the single-valued polylogarithm defined in [13, 2.1], B2 =
1
6
, B3 = 0. . . are the Bernoulli numbers, and

α(f, g) = − log |f | dlog |g|+ log |g| dlog |f |.

For m ≥ 2, the function L̂m is real-analytic outside {0, 1,∞} and is continuous on P1(C)

with L̂m(0) = L̂m(∞) = 0 (see [28, p. 413-414], where L̂m = Pm for odd m, and L̂m = iPm
for even m). It follows that the 1-form rn(2)({f}n−1⊗ g) is defined and real-analytic outside
the set of zeros and poles of f , 1− f and g.

Lemma 7.1. Let f, g be non-zero rational functions on X. Let z = reiθ be a local coordinate
at p ∈ X. In a neighbourhood of the point p, we have

α(f, g) =
(
− log |∂p(f, g)|

r
+O(log r)

)
· dr +O(r log r)dθ

where ∂p(f, g) = (−1)ordp(f) ordp(g)
(
f ordp(g)/gordp(f)

)
(p) is the tame symbol of (f, g) at p.

Proof. Write f(z) ∼ azm, g(z) ∼ bzn with a, b ∈ C× and m,n ∈ Z. A direct computation
gives

dlog f = (m+O(z))
dz

z
= (m+O(z))

dr

r
+ (im+O(z))dθ.

Taking the real and imaginary parts, we get

dlog |f | = (
m

r
+O(1))dr +O(r)dθ,(19)

darg f = O(1)dr + (m+O(r))dθ.(20)
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On the other hand log |f | = log |a|+m log r +O(r). Putting things together, we arrive at

α(f, g) =
(
−1

r
log
∣∣∣an
bm

∣∣∣+O(log r)
)
dr +O(r log r)dθ. �

Proposition 7.2. Let f ∈ F\{0, 1} and g ∈ F×. Let S be the set of zeros and poles of the
functions f , 1− f and g. Let γ : [0, 1]→ X be a C∞ path such that

(a) γ avoids S except possibly at the endpoints;
(b) If an endpoint p of γ belongs to S, then the argument of γ(t) with respect to a local

coordinate at p is of bounded variation when γ(t) approaches p.

Then for every n ≥ 3, the integral
∫
γ
rn(2)({f}n−1 ⊗ g) converges absolutely.

Proof. As noted above, the integrand is C∞ outside S. We are going to show the convergence
of the integral at the endpoint t = 0 (the case t = 1 is identical). Let z = reiθ be a local
coordinate at p = γ(0). Assumption (b) means that the form dθ is (absolutely) integrable
along γ near t = 0. Moreover dr = e−iθdz− irdθ, so that dr is also integrable along γ. Using
(20), we deduce that darg g and the first term of (18) are integrable. Regarding the second
term, Lemma 7.1 and the fact that ∂p(1− f, f) = 1 give

α(1− f, f) = O(log r)dr +O(r log r)dθ.

It follows that the second term in (18) has at worst logarithmic singularities, hence is inte-
grable. Finally, the integrability of the third term in (18) can be proved similarly, noting

that L̂m(z) = O(|z| logm−1 |z|) when z → 0 for any m ≥ 2, and using the functional equation

L̂m(1/z) = (−1)m−1L̂m(z) to get the asymptotic behaviour when z →∞. �

Corollary 7.3. Let X = Γ\H be a modular curve, and let u, v be modular units such that
1 − u is also a modular unit. Then for any n ≥ 3 and any two cusps α 6= β in P1(Q), the
integral of rn(2)({u}n−1 ⊗ v) along the modular symbol {α, β} converges absolutely.

Proposition 7.2 also holds for n = 2; in fact in this case we don’t need to include the function
1 − f in the definition of S. This follows from a similar computation, the regulator being
defined by (f, g) 7→ log |f | darg g − log |g| darg f . As a consequence, Corollary 7.3 also holds
in the case n = 2, without assuming that 1− u is a modular unit.

Remark 7.4. We emphasize that the integral considered in Proposition 7.2 depends on the
direction from which γ approaches the endpoints. This is because the differential 1-form
rn(2)({f}n−1 ⊗ g) may have non-trivial residues at the points of S. As a consequence, in

the setting of Corollary 7.3, the formula
∫ γ
α

=
∫ β
α

+
∫ γ
β

does not always hold. A convenient

framework to deal with this issue is Stevens’s theory of extended modular symbols [24].

7.2. Generalised Mellin transforms. Let u, v be modular units for Γ(N) such that 1−u
is also a modular unit. Let n ≥ 3. For any two cusps α 6= β in P1(Q), we would like to
compute the integral

(21)

∫ β

α

rn(2)({u}n−1 ⊗ v).

The modular symbol {α, β} may be written as a linear combination
∑

i{γi0, γi∞} for some
elements γi ∈ SL2(Z). Therefore the computation of (21) reduces to the case α = γ0 and
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β = γ∞ with γ ∈ SL2(Z), together with the computation of some residues at the cusps.
Moreover, we have ∫ γ∞

γ0

rn(2)({u}n−1 ⊗ v) =

∫ ∞
0

rn(2)({u|γ}n−1 ⊗ v|γ)

and the functions u|γ, v|γ are also modular units. We are thus reduced to the case α = 0
and β =∞. In this case, let us write∫ ∞

0

rn(2)({u}n−1 ⊗ v) =

∫ ∞
0

φ(y)dy,

where φ : (0,+∞)→ C is a C∞ function. We have seen in Corollary 7.3 that φ is absolutely
integrable. We are going to show that φ belongs to a specific class of functions, for which
the (generalised) Mellin transform can be computed rapidly.

Definition 7.5. Let P be the class of functions φ : (0,+∞)→ C such that

(22) φ(y) =

j∞∑
j=0

yj
∞∑
n=0

a(j)
n e−2πny/N , and φ

(1

y

)
=

j0∑
j=0

yj
∞∑
n=0

b(j)
n e−2πny/N ,

for some integers j∞, j0 ≥ 0, and where the sequences (a
(j)
n )n≥0 and (b

(j)
n )n≥0 have polynomial

growth when n→∞.

By considering the asymptotic expansion, it is easy to see that the coefficients a
(j)
n and b

(j)
n

are uniquely determined by φ. Moreover, the function φ is absolutely integrable on (0,+∞)

if and only if a
(j)
0 = 0 for j ≥ 0 and b

(j)
0 = 0 for j ≥ 1.

Recall that the generalised Mellin transform of a function φ ∈ P is defined as follows

M(φ, s) =

∫ ∞
0

φ(y)ys
dy

y
:= a.c.

(∫ ∞
1

φ(y)ys
dy

y

)
+ a.c.

(∫ 1

0

φ(y)ys
dy

y

)
= a.c.

(∫ ∞
1

φ(y)ys
dy

y

)
+ a.c.

(∫ ∞
1

φ
(1

y

)
y−s

dy

y

)
,

where s ∈ C and “a.c.” means analytic continuation with respect to s. Note that the first
integral converges for Re (s) � 0 while the second integral converges for Re (s) � 0; both
have a meromorphic continuation to s ∈ C thanks to (22).
In the case φ is absolutely integrable, the integral

∫∞
0
φ =M(φ, 1) is given by the following

series with exponential decay:
(23)∫ ∞

0

φ =
∞∑
n=1

j∞∑
j=0

a(j)
n

( N

2πn

)j+1

Γ
(
j + 1,

2πn

N

)
+
∞∑
n=1

j0∑
j=0

b(j)
n

( N

2πn

)j−1

Γ
(
j − 1,

2πn

N

)
+ b

(0)
0 ,

where Γ(s, x) is the incomplete gamma function. So the integral of φ over (0,+∞) can be

computed efficiently, provided sufficiently many coefficients a
(j)
n and b

(j)
n are known.

The class P is a C-algebra stable under the differentiation d
dy

. However it is not stable under

taking primitive (e.g. consider a constant function). In fact, given a function φ ∈ P , we
have the following equivalence:

φ has a primitive in P ⇔ ∀n ≥ 0, b(0)
n = b(1)

n = 0.
17



We denote by P ′ the image of the operator d
dy

. The criterion above shows that P ′ is an ideal

of P .

7.3. Modular regulators. We are now going to show, in the case of modular curves, that
the regulators defined by Goncharov belong to P .

Lemma 7.6. For any modular unit u for Γ(N), we have log u ∈ P. In particular log |u| ∈ P,
and the forms dlog |u| and darg u belong to dP = P ′dy.

Proof. Here log u is any determination of the logarithm of u on H. Since the group of
modular units is generated by the Siegel units ga modulo the constants, it suffices to prove
the result for them. For the asymptotic expansion of log ga(iy) when y → +∞, this follows
from taking the logarithm of (1) and (2), and expanding as a power series in e−2πy/N . The
expansion when y → 0 also has the correct shape since ga(−1/τ) is (a root of) a modular
unit for Γ(N). �

Proposition 7.7. Let u be a modular unit for Γ(N) such that 1− u is also a modular unit.

For every n ≥ 2, we have L̂n(u) ∈ P.

Proof. We will prove this by complete induction on n. For n = 2, we have L̂2 = iD, where
D is the Bloch-Wigner dilogarithm [28, Section 2]. We have

dD(u) = log |u| darg(1− u)− log |1− u| darg(u).

From Lemma 7.6, it follows that dD(u)(iy) ∈ dP , hence D(u) ∈ P .
Now let n ≥ 3. By the commutative diagram in [13, Theorem 2.2], we have

dL̂n(u) = rn(2)({u}n−1 ⊗ u)

= iL̂n−1(u) darg u− 2n−1Bn−1

(n− 1)!
α(1− u, u) · logn−2 |u|

−
n−2∑
k=2

2kBk

k!
L̂n−k(u) logk−1 |u| dlog |u|

By the induction hypothesis L̂m(u) belongs to P for m < n. The result now follows from
Lemma 7.6 and the fact that P ′ is an ideal of P . �

Note that the proof of Proposition 7.7 provides a way to compute the Fourier coefficients of

L̂n(u) (inductively on n): we first compute the Fourier expansions of dL̂n(u) at 0 and ∞,
and then integrate term by term. The constant of integration is determined by computing

the value of L̂n(u) at ∞ (note that this value is always finite), which should be equal to the

coefficient a
(0)
0 of the expansion.

Theorem 7.8. Let n ≥ 3. Let u, v be two modular units for Γ(N) such that 1− u is also a
modular unit. Write

rn(2)({u}n−1 ⊗ v)|{0,∞} = φ(y)dy.

Then φ belongs to P.

Proof. This follows from (18), Lemma 7.6 and Proposition 7.7. �
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In the case u = u(a, b, c, d) and v = ge, Proposition 3.4, the equation (18) and the proof
of Proposition 7.7 actually provide an algorithm to compute the asymptotic expansion of
rn(2)({u}n−1 ⊗ v) at 0 and ∞, and thus the associated regulator integral by (23).

8. Numerical verification of Beilinson’s conjecture

Let E be an elliptic curve of conductor N . Using his theory of Eisenstein symbols, Beilinson
has constructed elements in H2

M(E,Q(3)) whose regulators are proportional to L(E, 3),
confirming his conjecture for this L-value.
In this section, we investigate the regulators of our elements ξ1(a, b) with a, b ∈ Z/NZ. We
explain how to compute them numerically and show that they are numerically related to
L(E, 3). According to Goncharov’s theory, we should look at the following integrals

(24)

∫
γ

r3(2)(ξ1(a, b))

with γ ∈ H1(Y1(N)(C),Z).

Lemma 8.1. The differential 1-form r3(2)(ξ1(a, b)) is invariant under complex conjugation
acting on Y1(N)(C).

Proof. Let u, v ∈ O(Y1(N))×. We have

(25) r3(2)({u}2 ⊗ v) = −D(u) darg v − 1

3
α(1− u, u) · log |v|.

Let c denote the complex conjugation on Y1(N)(C). Since u and v are defined over Q, we
have c∗D(u) = D(u ◦ c) = D(u) = −D(u) and c∗ darg v = darg v = − darg v. The other
term involving α(1− u, u) is dealt with similarly. �

By Lemma 8.1, we should restrict in (24) to cycles γ that are invariant under complex
conjugation.
Also, we will not integrate over closed cycles in Y1(N)(C), but rather over Manin symbols
{γ0, γ∞} with γ ∈ SL2(Z). This means that we need to choose a representative of the
regulator of ξ1(a, b). We do this by writing ξ1(a, b) as the class of a cocycle

∑
i{ui}2⊗vi, and

choosing (25) as representative for the regulator of each term. Once the differential 1-form
has been fixed, we integrate it over a cycle γ+

E which lies in the eigenspace corresponding to
E. Let us write

γ+
E =

∑
j

nj{γj0, γj∞} ∈ H1(X1(N)(C),Z)+.

We obtain γ+
E using Magma [3]. Here is a sample code for the elliptic curve E = 11a3:

N := 11;

M := ModularSymbols(Gamma1(N), 2, +1);

Snew := NewSubspace(CuspidalSubspace(M));

Mf := NewformDecomposition(Snew);

IntegralBasis(Mf[1])[1];

This returns

-1*{-1/2, 0} + {-1/4, 0} + -1*{7/15, 1/2}
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which means that

γ+
E = −

(
0 −1
1 2

)
{0,∞}+

(
0 −1
1 4

)
{0,∞}−

(
1 7
2 15

)
{0,∞}.

Returning to the general situation, we then compute the regulator integral (24) as follows:∫
γ+E

r3(2)(ξ1(a, b)) =
∑
i,j

nj

∫ ∞
0

r3(2)
(
{ui|γj}2 ⊗ vi|γj

)
We know that the integral

∫∞
0

is absolutely convergent, and we can compute it numerically
thanks to Section 7.3. Note that ui|γj and vi|γj are modular units for Γ(N) but in general
not for Γ1(N).
The results of our computations can be summarised in the following theorem.

Theorem 8.2. For every elliptic curve E of conductor N ≤ 50, there exists a, b ∈ Z/NZ
and r ∈ Z\{0} such that ξ1(a, b) extends to X1(N) and∫

γ+E

r3(2)
(
ξ1(a, b)

) ?
=
rπ2

N
· L′(E,−1)

to at least 40 decimal places. In particular ξ1(a, b) is a non-zero element of H2
M(X1(N),Q(3)).

The integer r in Theorem 8.2 is always equal to ±3, except for the curves 38a1 (r = 9) and
the curves 42a1, 43a1 (r = ±6). This property depends of course on how Magma normalises
the cycle γ+

E . In any case, we have no explanation to offer.
Theorem 8.2 provides non-trivial elements in H2

M(E,Q(3)) for every elliptic curve E of
conductor ≤ 50. Moreover, their regulators are numerically related to L(E, 3), as predicted
by Beilinson.

9. Comparison with Beilinson’s elements and applications

In this section, we will see that our elements ξ1(a, b) seem to be related to the Beilinson
elements defined using Eisenstein symbols.
Let us recall the definition of the Beilinson elements. Let p : E1(N) → Y1(N) denote the
universal elliptic curve. In [1, Section 3], Beilinson constructs Eisenstein symbols

Eis1(0, a) ∈ H2
M(E1(N),Q(2)) (a ∈ Z/NZ).

Taking cup-product and applying push-forward, one gets

Eis0,0,1(a, b) := p∗
(
Eis1(0, a) ∪ Eis1(0, b)

)
∈ H2

M(Y1(N),Q(3)).

for any a, b ∈ Z/NZ.
We may compare the elements ξ1(a, b) and Eis0,0,1(a, b) by computing numerically their
regulators. More precisely, we use Magma to find a basis of H1(X1(N)(C),Q)+, and we
integrate the regulators over this basis. The integral of the regulator of ξ1(a, b) is computed
as in Section 8. The integral of the regulator of Eis0,0,1(a, b) is computed thanks to the
following recent result of W. Wang [26, Theorem 0.1.3].

Theorem 9.1. For any integer N and any a, b ∈ (Z/NZ)\{0}, we have∫ ∞
0

r3(2)
(
Eis0,0,1(a, b)

)
= −36π2

N3
L′(s̃as̃b,−1),
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where the s̃x are Eisenstein series of weight 1 and level Γ1(N) defined by

s̃x(τ) =
1

2
−
{ x
N

}
+

∑
m,n≥1

n≡x mod N

qmn −
∑
m,n≥1

n≡−x mod N

qmn (q = e2πiτ ),

where {·} denotes the fractional part.

The proof of Theorem 9.1 uses the Rogers–Zudilin method. In fact, Wang proves a much
more general statement concerning the regulators of the motivic classes Eisk1,k2,j(u1, u2) for
every k1, k2, j ≥ 0; the formula involves the completed L-function of a modular form of
weight k1 + k2 + 2 evaluated at s = −j [26, Chapter 6].
The Eisenstein series s̃x appear in the work of Borisov and Gunnells [2, 3.18]. Moreover, the
Fricke involution WN(s̃x) is a multiple of the Eisenstein series denoted by sx in [2, 3.5]. From
this, we can use the standard WN -trick to compute numerically the L-value L′(s̃as̃b,−1), and
thus the regulator of Eis0,0,1(a, b).
The result of our computation is as follows.

Theorem 9.2. For every integer N ≤ 28 and every a, b ∈ Z/NZ, we have∫
γi

r3(2)
(
ξ1(a, b)

) ?
=
N2

6

∫
γi

r3(2)
(
Eis0,0,1(a, b)

)
(1 ≤ i ≤ g(X1(N)))

to at least 40 decimal places, where (γi)i is the basis of H1(X1(N)(C),Q)+ computed by
Magma.

Based on Theorem 9.2, we formulate the following conjecture.

Conjecture 9.3. For every integer N ≥ 1 and every a, b ∈ Z/NZ, we have

ξ1(a, b) =
N2

6
Eis0,0,1(a, b).

Conjecture 9.3 relates two motivic elements Eis0,0,1(a, b) and ξ1(a, b) whose constructions are
technically quite different. However, both constructions are of modular nature, so we expect
a modular proof of the relation between them.
Here is one way to approach Conjecture 9.3. Let a, b ∈ Z/NZ. We saw in Section 6 that
conjecturally, the image of ξ′1(a, b) in the cohomology at infinite level H2

M(X(∞),Q(3))
depends only of the image of a and b in Q/Z (where the image of x ∈ Z/NZ is defined as the
class of x/N). In fact, we may choose any level N ′ divisible by N , and consider the element

ξ′G((0, a), (0, b)) ∈ H2
M(X(∞),Q(3))

with G = (Z/N ′Z)2. This class should not depend on N ′. It is defined as a sum over G;
assuming N ′ odd for simplicity, we have

(26) ξ′G(a, b) =
∑
x∈G

{u(0, x, a− x, b+ x)}2 ⊗
(gb
ga

)
,

where a, b, x are seen as elements of (Q/Z)2. Note that one may view G as the full N ′-torsion
subgroup of the universal elliptic curve E1(N) over Y1(N). Applying the regulator map and
taking the limit when N ′ → ∞, this transforms the sum (26) into an integral along the
fibres of E1(N)→ Y1(N). This is reminiscent of the definition of Eis0,0,1(a, b), which is also
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obtained by integrating along the fibres of the universal elliptic curve. However, it remains
to relate these two integrals.
We finally come to one possible application of the motivic elements ξ1(a, b), namely for the
Mahler measure of the polynomial (1 + x)(1 + y) + z. Recall that the (logarithmic) Mahler
measure of a polynomial P ∈ C[x1, . . . , xn] is defined by

m(P ) =
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1

x1

∧ · · · ∧ dxn
xn

,

where Tn is the n-torus |x1| = · · · = |xn| = 1. The following conjecture was formulated by
Boyd and Rodriguez Villegas; see [6, Section 8.4] and [18].

Conjecture 9.4. We have m
(
(1 + x)(1 + y) + z

)
= −2L′(E,−1), where E = 15a8 is the

elliptic curve of conductor 15 defined by

E : (1 + x)
(

1 +
1

x

)
(1 + y)

(
1 +

1

y

)
= 1.

Laĺın has shown in [18] that

m
(
(1 + x)(1 + y) + z

)
=

1

4π2

∫
γ+E

r3(2)
(
{−x}2 ⊗ y − {−y}2 ⊗ x

)
,

where γ+
E is a generator of H1(E(C),Z)+. The symbol ξ := {−x}2 ⊗ y − {−y}2 ⊗ x defines

an element of H2
M(E,Q(3)). Moreover, the curve E is isomorphic to X1(15) and one can

show that
−x = u(1, 2, 3, 7), −y = u(2, 4, 6, 1).

It would be interesting to express ξ in terms of the symbols ξ1(a, b) with a, b ∈ Z/15Z.
Conjecture 9.4 would then follow from Theorem 9.1 and Conjecture 9.3.

References

[1] A. A. Beilinson, Higher regulators of modular curves, in Applications of algebraic K-theory to algebraic
geometry and number theory, Part I, II (Boulder, Colo., 1983), Contemp. Math., 55 (Amer. Math. Soc.,
Providence, RI, 1986), 1–34.

[2] L. A. Borisov and P. E. Gunnells, Toric modular forms and nonvanishing of L-functions, J. Reine
Angew. Math. 539 (2001), 149–165.

[3] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language. Compu-
tational algebra and number theory (London, 1993), J. Symbolic Comput. 24 (1997), no. 3-4, 235–265.

[4] F. Brunault, Beilinson-Kato elements in K2 of modular curves, Acta Arith. 134 (2008), no. 3, 283–298.
[5] F. Brunault, Regulators of Siegel units and applications, J. Number Theory 163 (2016), 542–569.
[6] F. Brunault and W. Zudilin, Many Variations of Mahler Measures: A Lasting Symphony, Australian

Mathematical Society Lecture Series 28 (Cambridge University Press, Cambridge, 2020).

[7] R. de Jeu, On K
(3)
4 of curves over number fields, Invent. Math. 125 (1996), no. 3, 523–556.

[8] R. de Jeu, Towards regulator formulae for the K-theory of curves over number fields, Compositio Math.
124 (2000), no. 2, 137–194.

[9] M. Derickx and M. van Hoeij, Gonality of the modular curve X1(N), J. Algebra 417 (2014), 52–71.
[10] A. B. Goncharov, Polylogarithms in arithmetic and geometry, in Proceedings of the International
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