
HAL Id: ensl-03014984
https://ens-lyon.hal.science/ensl-03014984

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the growth rate of geodesic chords
Simon Allais

To cite this version:
Simon Allais. On the growth rate of geodesic chords. Differential Geometry and its Applications,
2020, 73, pp.101668. �10.1016/j.difgeo.2020.101668�. �ensl-03014984�

https://ens-lyon.hal.science/ensl-03014984
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


ON THE GROWTH RATE OF GEODESIC CHORDS

SIMON ALLAIS

Abstract. We show that every forward complete Finsler manifold of infinite
fundamental group and not homotopy-equivalent to S1 has infinitely many geo-
metrically distinct geodesics joining any given pair of points p and q. In the special
case in which β1(M ;Z) ≥ 1 and M is closed, the number of geometrically distinct
geodesics between two points grows at least logarithmically.

1. Introduction

LetM be a forward complete Finsler manifold of infinite fundamental group (every
manifold M will be assumed to be connected). We are interested in the growth
rate of geodesics joining two arbitrarily given points p, q ∈ M , and especially in
asymptotic properties that only involve the topology ofM . Two paths γ : [0, 1]→M
and δ : [0, 1]→ M are said to be geometrically distinct if their images are distinct.
For ` > 0, we denote by n(`; p, q) the number of geometrically distinct geodesics
between p and q of length ≤ `. It is well known that for π1(M) “large enough” this
number tends to infinity without any further assumption. A precise statement is
the following:
Proposition 1.1. Let M be a manifold such that π1(M) has a polynomial growth of
degree d > 1. For each forward complete Finsler metric onM , there exist continuous
functions a : M → (0,+∞) and b : M → R such that

n(`; p, q) ≥ a(q)`d−1 + b(q), ∀p, q ∈M.

For the reader’s convenience, we add the proof of this result, which is certainly
well known to the experts. We are interested in the remaining case in which the
growth rate of π1(M) is linear. In fact, we show the following general result:
Theorem 1.2. Let M be a manifold of infinite fundamental group π1(M) and not
homotopy-equivalent to S1. Then, given any forward complete Finsler metric on M ,

n(`; p, q)→ +∞ as `→ +∞, ∀p, q ∈M.

Of course, the assertion of Theorem 1.2 does not hold for the flat cylinders S1 ×
Rn, which are homotopy-equivalent to S1. In his Ph.D. thesis, Mentges proved
Theorem 1.2 in the case where p = q and the universal cover ofM is not contractible
[11, Satz 2.2.1.]. We can be more specific when H1(M ;Z) has non-zero rank:
Theorem 1.3. Let M be a closed manifold not homotopy-equivalent to S1 (that is
any closed M of dimension ≥ 2) and with first Betti number β1(M ;Z) ≥ 1. Then,
given any Finsler metric on M , there exist a > 0 and b ∈ R such that

n(`; p, q) ≥ a log `+ b, ∀` > 0, ∀p, q ∈M.
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2 S. ALLAIS

Theorem 1.4. Let M be a manifold not homotopy-equivalent to S1 and with first
Betti number β1(M ;Z) ≥ 1. Then, given any forward complete Finsler metric on
M , there exists a continuous function b : M → R such that

n(`; p, q) ≥ log(log `)
2 log 2 + b(q), ∀` > 0,∀p, q ∈M.

When the universal cover of M is not contractible (that is M is not an Eilenberg-
MacLane space), Theorems 1.2, 1.3 and 1.4 are deduced from a min-max argument
inspired by Bangert-Hingston [1]. When M has a contractible universal cover, the
estimate is even stronger, since the growth is at least linear:

Lemma 1.5. Let M be a manifold not homotopy-equivalent to S1 and with a con-
tractible universal cover. Then, π1(M) has at least a quadratic growth rate.

We notice that any closed manifold of dimension ≥ 2 with a contractible universal
cover satisfies the above condition.

Investigations on the links between the number of geodesics joining two points and
the manifold topology go back to Morse seminal works [14, 13], where he proved that
any couple of points of a closed Riemannian manifold M can be joined by infinitely
many geodesics provided that the homology groups of the loop space of M have
a non trivial rank in infinitely many degrees. Serre proved that this assumption is
always satisfied for simply connectedM by studying the spectral sequence associated
to the fibration ev : P → M , where P is the space of paths γ ∈ C0([0, 1],M) such
that γ(0) = p is a fixed base point and ev(γ) := γ(1) [16, Prop. IV.11]. In the above
result, geodesics are not necessarily geometrically distinct. Proving that there are
infinitely many geometrically distinct geodesics with Morse theory is more subtle.
Inspired by Gromoll-Meyer (see below), Tanaka [17, Problem C] asked if it is enough
for a simply connected Riemannian manifold (M, g) to assume that the sequence of
Betti numbers of the loop space (βi(ΩM)) on some field is unbounded to get that
n(`; p, q) → ∞ for any pair of points p, q ∈ M . When p and q are non-conjugate,
he sketched the proof and Caponio-Javaloyes [3] gave a detailed proof in the more
general case of a connected, forward and backward complete Finsler manifold. When
p and q are conjugate, it is still an open problem.

For the related problem of closed geodesics in Riemannian manifold, one of the
first results in that direction was due to Gromoll-Meyer [6]: if the sequence of the
Betti numbers of the free loop space of a simply connected Riemannian manifold M
is unbounded, then there are infinitely many geometrically distinct closed geodesics
on M . As for the growth rate, Bangert and Hingston proved that it is at least
like the one of prime numbers (i.e. & `

log `) up to a multiplicative and an additive
constant when π1(M) is infinite abelian [1], or when M = S2 [8]. The obstruction
for us to find such a better growth seems to come from the lack of iteration map
γ 7→ (t 7→ γ(mt)), m ∈ N∗, in the space of geodesic chords joining p and q. This
result was extended by Tăımanov to a large class of infinite non-abelian fundamental
groups in [18]. Nevertheless, the existence of infinitely many geometrically distinct
closed geodesics in closed Riemannian manifolds with a general infinite fundamental
group is still an open problem.

Organisation of the paper. In Section 2, we fix the notation and the conventions
on the objects that we will use throughout the paper, and we briefly recall the
variational theory of geodesics for a Finsler manifold. In Section 3, we give a proof
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of Proposition 1.1 and Lemma 1.5. In Section 4, we prove Theorems 1.2, 1.3 and
1.4.

Acknowledgments. I am very grateful to my advisor Marco Mazzucchelli who
introduced me to min-max techniques and their relation to geodesics.

2. Preliminaries

2.1. Definitions and conventions on path spaces. Let M be a connected man-
ifold (every manifold will be assumed to be connected). We fix, once for all, an
auxiliary complete Riemannian metric g0 on M . By H1-path, we mean an abso-
lutely continuous function γ : [0, 1] → M such that the integral

∫ 1
0 g0(γ′, γ′) dt is

finite. For p, q ∈ M let Ωp,q be the set of H1-paths γ : [0, 1] → M with end-points
γ(0) = p and γ(1) = q and Ωp := Ωp,p. For γ, δ ∈ Ωp,q, we write γ ≈ δ if γ and δ
belong to the same path-connected component of Ωp,q. For γ ∈ Ωp,q and δ ∈ Ωq,r, we
denote by γ · δ ∈ Ωp,r the chained path t 7→ γ(2t) for t ∈ [0, 1/2] and t 7→ δ(2t− 1)
for t ∈ [1/2, 1]. We denote a · b · c = (a · b) · c so that a · b · c ≈ a · (b · c). For γ ∈ Ωp,q,
let γ−1 ∈ Ωq,p be the reversed path t 7→ γ(1 − t), so that γ · γ−1 ≈ p̄ where p̄ ∈ Ωp

denotes the constant path. If γ ∈ Ωq for some q ∈ M , [γ]π1 ∈ π1(M, q) denotes its
class in the fundamental group, or simply [γ] if there is no ambiguity on notation.

Let p, q, p′, q′ ∈ M , α ∈ Ωp,p′ and β ∈ Ωq,q′ , then f : Ωp,q → Ωp′,q′ and g : Ωp′,q′ →
Ωp,q defined by f(γ) = α−1 · γ · β and g(γ) = α · γ · β−1 are homotopy inverses, thus
Ωp,q and Ωp′,q′ are homotopy-equivalent spaces. For all h ∈ π1(M, q) let Ωh

q be the
path-connected component such that for all γ ∈ Ωh

q , [γ] = h. We fix an arbitrary
α ∈ Ωp,q once for all and we define Ωh

p,q := {γ ∈ Ωp,q | [α−1 · γ] = h}.

2.2. Background on Finsler geodesics. Let us recall some basic notion from
Finsler geometry. For a general reference, see [2].

Let M be a manifold, TM be its tangent bundle and π : TM → M be the base
projection. A continuous function F : TM → [0,+∞) is a Finsler metric if

• it is smooth on TM \ 0, where 0 ⊂ TM denotes the 0-section,
• it is fiberwise positively homogeneous of degree 1, i.e. F (λv) = λF (v) for
v ∈ TM and λ > 0,
• its square F 2 is fiberwise strongly convex, that is the fundamental tensor

gu(v, w) := 1
2
∂2

∂t∂s
F 2(u+ tv + sw)

∣∣∣∣∣
t=s=0

, ∀v, w ∈ Tπ(u)M,

is positive definite for every u ∈ TM \ 0.
A Finsler metric F on M induces a length on Ωp,q, given by

L(γ) :=
∫ 1

0
F (γ′(t)) dt, ∀γ ∈ Ωp,q.

and a (not necessarily symmetric) distance d on M , given by:
d(p, q) := inf

γ∈Ωp,q

L(γ), ∀p, q ∈M.

Since F (−v) = F (v) does not necessarily hold, d is not necessarily symmetric. A
sequence (xi) in M is called a forward Cauchy sequence if, for all ε > 0, there exists
a positive integer N such that N ≤ i < j implies d(xi, xj) < ε. The Finsler manifold
(M,F ) is said to be forward complete if every forward Cauchy sequence converges
in M .
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Similarly to the Riemannian case, where F is simply the associated Riemannian
norm, geodesics are the curves whose small portions are length minimizing. More-
over, they satisfy a differential equation inducing an exponential map between a
neighborhood of p ∈ M and a neighborhood of TpM . If F is forward complete,
the Hopf-Rinow Theorem from Riemannian geometry remains true in the Finsler
setting: the exponential map is onto and, for all p, q ∈M , there exists a geodesic in
Ωp,q minimizing the length.

Throughout the paper, all the geodesics γ will be considered parametrized with
constant speed equal to F (γ′) and we will often identify geodesics and reparametrized
geodesics when writing “δ · γ is a geodesic”. For p, q ∈M , geodesics in Ωp,q are then
exactly the critical points of the energy functional:

E(γ) :=
∫ 1

0
F 2(γ′(t)) dt, ∀γ ∈ Ωp,q.

If the Finsler metric is forward complete, then E : Ωp,q → [0,+∞) satisfies the
Palais-Smale condition (see for example [4, Section 3]). Given γ ∈ Ωp,q critical, we
denote by ind(γ) its index, which is the non-negative integer computed in the same
way as in the Riemannian case using Jacobi fields. The index of a geodesic chord
shares properties similar to the Riemannian case. In particular, for two geodesic
chords γ ∈ Ωp,q and δ ∈ Ωq,r:
(i) if ind(γ) = 0, then for s ∈ (0, 1), γ|[0,s] reparametrized by constant speed on

[0, 1] is a local minimum of E : Ωp,γ(s) → R,
(ii) If γ · δ is a geodesic, then ind(γ · δ) ≥ ind(γ) + ind(δ).

However, E is only of class C1,1 in general and it can be very technical to make
this functional fit into the Morse apparatus. To overcome this issue, we can retract
{E < λ} to a finite dimensional subspace B of broken geodesics joining p and
q. We briefly recall the construction of B ⊂ {E < λ} and its retraction (rs) (a
comprehensive reference for the Riemannian case is [12, Part III, §16]). Let k ≥ 1
be large so that for all γ ∈ {E < λ} there exists a unique minimizing geodesic
joining γ(s) and γ(t) for |s− t| ≤ 1/k. Let

B :=
{
γ ∈ {E < λ} | γ|[i/k,(i+1)/k] is a geodesic, 0 ≤ i ≤ k − 1

}
be the subspace of k-broken geodesics ⊂ {E < λ}. It is a finite dimensional manifold
since it is diffeomorphic to an open subset of the (k−1)-fold productM×· · ·×M via
γ 7→ (γ(1/k), . . . , γ((1−k)/k)). The retraction homotopy rs : {E < λ} → {E < λ},
with r0 = id and Im(r1) = B, is defined as follows. For each γ ∈ {E < λ},
rs(γ) coincides with γ everywhere except on intervals of the form [i/k, (i + s)/k],
0 ≤ i ≤ k−1, and the restrictions of rs(γ) to such intervals are minimizing geodesics.
This retraction has the following properties:
(a) ∀s ∈ [0, 1], E ◦ rs ≤ E,
(b) if γ ∈ {E < λ} is a geodesic, rs(γ) ≡ γ,
(c) critical points of E|B are exactly the critical points of E|{E<λ}, E|B is smooth

in their neighborhood and their Morse index is equal to their index defined with
Jacobi fields.

3. growth rate of geodesic chords and growth rate of π1(M)

Throughout this section, M is a forward complete Finsler manifold.
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3.1. Growth rate of geodesic chords and growth of the fundamental group.
We suppose that π1(M, q) is a finitely generated group and denote by e ∈ π1(M, q)
its neutral element. Let S ⊂ π1(M, q) be a finite set of generators. We recall that
the word length of g ∈ π1(M, q) associated to S is

|g| := min
{
m ∈ N | ∃g1, . . . , gm ∈ S ∪ S−1 ∪ {e}, g = g1 · · · gm

}
∈ N

and we denote the associated ball of radius r ∈ N by Br := {g ∈ π1 | |g| ≤ r}. We
will say that π1(M, q) has at least a polynomial growth rate of degree d > 0 if there
exists some a > 0 such that #Br ≥ ard. This notion is indeed independent of the
choice of S.

For h ∈ π1(M, q), we fix an arbitrary γh ∈ Ωh
p,q minimizing the length, it gives us

a family of homotopically (but not geometrically) distinct geodesics (γh)h∈π1 (where
π1 = π1(M, q) by a slight abuse of notation).

Proof of Proposition 1.1. We suppose π1(M, q) has at least a polynomial growth
rate of degree d > 0. We take a finite generating part S := {s1, . . . , sn}, which is
symmetric: S = S−1 and contains the neutral element, and define the balls Br ⊂ XS

as above. Let c1, . . . , cn ∈ Ωq be such that [ci] = si and ci is minimizing length in its
homotopy class. We will first give a lower bound on the counting number N(`; p, q)
of geodesics between p and q not necessarily geometrically distinct.

Given r ∈ N, let g ∈ Br. There exist i1, . . . , ir ∈ {1, . . . , n} such that g =
si1 · · · sir , so that [α−1 ·γg] = [ci1 · · · cir ] (recall that α ∈ Ωp,q). Since γg is minimizing
length in its homotopy class,

L(γg) ≤ L(α · ci1 · · · cir) ≤ L(α) + rmax(L(cj)).
Therefore, since (γg)g∈Br is a family of distinct geodesics, there exists a > 0 depend-
ing only on the growth rate of π1(M, q) such that

N(`; p, q) ≥ a

(
`− L(α)

max(L(ci))

)d
, ∀` > 0.

We remark that there exists some positive number b(p) > 0 depending only on the
Finsler metric on M such that any k-iterate closed geodesic containing p has length
≥ b(p)k (one can take b(p) to be twice the injectivity radius at p). Since a geodesic
in Ωp,q whose image appears multiple times can be uniquely written d · ck with a
primitive closed geodesic c ∈ Ωq and a specific choice of geodesic chord d ∈ Ωp,q

(look at the definition of a primitive geodesic chord in Section 4.1 for the precise
statement),

n(`; p, q) ≥ b

2`N(`; p, q) ≥ a′`d−1 + b′, ∀` > 0,

where a′ > 0 and b′ ∈ R depend only on the metric and the growth rate of π1(M)
and can be made continuous in p ∈M . �

3.2. Growth rate of the fundamental group of K(π1, 1) closed manifolds.
LetM be a K(π1, 1) manifold with an infinite fundamental group and a contractible
universal cover. According to Smith’s theorem (see for instance [9, Theorem 16.1,
page 287]), π1(M) is torsion-free. We suppose that every finitely generated subgroup
of π1(M) grows strictly less than any quadratic polynomial. Then according to a
deep result of Gromov [7], π1(M) must be virtually isomorphic to Z: that is π1(M)
has a subgroup of finite index which is isomorphic to Z. Alternatively, the reader



6 S. ALLAIS

can find an elementary proof of this statement in the finitely generated case in [19].
For a precise proof of the case where π1(M) is a priori infinitely generated, see [10,
Theorem 2] (with notations of this theorem, since G is torsion-free, L is trivial and
G is virtually N ' Z).

The following algebraic lemma is certainly well known, but we add its proof here
for the reader’s convenience, as we could not find it in the literature.

Lemma 3.1. Let G be a torsion-free group, if G is virtually isomorphic to Z ( i.e.
there exists a subgroup of finite index H < G which is isomorphic to Z) then G ' Z.

Proof. Since G is virtually isomorphic to a finitely generated group, G is a finitely
generated group. Let S = {s1, . . . , sn} be a set of generators of G and let H < G be
a subgroup of finite index isomorphic to Z. If C(s) := {g ∈ G | gs = sg} denotes
the centralizer of s ∈ G, then C(s) ∩ H is not trivial. Indeed, C(s) is infinite (it
contains 〈s〉 which is infinite by hypothesis for s 6= e and C(e) = G) and there exists
a finite sequence (gi) in G such that G = ⋃

i giH, thus there exists some g = gi such
that C(s) ∩ gH is infinite. Let c, c′ ∈ C(s) ∩ gH be distinct. There are h, h′ ∈ H
such that c = gh and c′ = gh′, then c−1c′ = h−1h′ 6= 1 is in C(s) ∩H.

Since a finite intersection of non-trivial subgroups of H ' Z has a finite index,⋂
iC(si) ∩H has a finite index in H. Thus the centralizer Z = ⋂

iC(si) of G has a
finite index in G. According to a theorem of Schur, it implies that the commutator
subgroup D := [G,G] is finite [15, Theorem 5.32]. Since G is torsion-free, D is trivial
and G is abelian. An abelian torsion-free finitely generated group is isomorphic to
Zr and Z is the only one virtually isomorphic to Z. �

Proof of Lemma 1.5. Let M be a K(π1, 1) manifold. We assume that π1(M) grows
less than a quadratic polynomial, so that it is virtually isomorphic to Z. Since
π1(M) is torsion-free, Lemma 3.1 implies that π1(M) ' Z. Since M is a K(Z, 1)
manifold, it is homotopy-equivalent to S1. �

4. Growth rate when the universal cover is not contractible

Throughout this section,M is a forward complete Finsler manifold with an infinite
fundamental group and a non-contractible universal cover.

4.1. A sequence of min-max geodesics. Since the universal cover of M is not
contractible, there is some n > 1 such that πn(M, q) 6= 0, we fix such an n > 1. For
all h ∈ π1(M, q), we recall that γh ∈ Ωh

p,q denotes a minimizing geodesic. We take a
non-zero class ν ∈ πn−1(Ωq, q̄) ' πn(M, q) and, for all h ∈ π1(M, q), let νh := (γh)∗ν
be the induced non-zero class of πn−1(Ωh

p,q, γh).
To be more precise on the definition of νh, let x0 ∈ Sn−1 be the base point and d be

the round distance on Sn−1. Let f : (Sn−1, x0)→ (Ωq, q̄) be a smooth function in the
class ν such that f(s) = q̄ for all s ∈ Sn−1 such that d(x0, s) < 1. For h ∈ π1(M, q),
let fh : (Sn−1, x0) → (Ωh

p,q, γh) be essentially defined by fh(s) := γh · f(s) for all
s ∈ Sn−1. To be more specific, in order to have fh(x0) = γh, let fh(s) := γh · f(s) for
all s ∈ Sn−1 such that d(x0, s) ≥ 1 and

∀t ∈ [0, 1], fh(s)(t) :=
{
γh(t/λ(s)), if t ∈ [0, λ(s)],
q, otherwise, (1)

for all s ∈ Sn−1 such that d(x0, s) < 1, with λ(s) = 1 − d(x0,s)
2 ∈ [1/2, 1]. Then we

define νh as the homotopy class of fh.
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We suppose that E : Ωp,q → R has a discrete set of critical points (otherwise the
conclusions of Theorems 1.2, 1.3 and 1.4 are clearly true) and consider the min-max:

τh = inf
f∈νh

max
s∈Sn−1

E(f(s)). (2)

Then τh is a critical value of E and there exists a critical point δh ∈ Ωp,q of value
τh which is not a local minimum and satisfies ind(δh) ≤ n − 1. This is a classical
result if E is C2 in the neighborhood of its critical points and satisfies Palais-Smale
(see for instance [5, Chapter II]). Even though E is not C2 in any neighborhood
of its critical points for a general Finsler metric, we can apply a retraction (rs) of
{E < λ} for some λ > τh to a finite dimensional subspace B of broken geodesics, as
explained above. We thus see that τh satisfies (2) restricted to the finite dimensional
subspace B, according to property (a) of (rs). Now property (c) allows us to find
δh ∈ Ωp,q among the critical points of E|B which is C2 in the neighborhood of its
critical points.

The following estimate will be useful in Section 4.2:
Lemma 4.1. There exists a constant C > 0 such that, for all h ∈ π1(M, q),

L(γh)2 ≤ τh ≤ 2L(γh)2 + C.

Proof. Given fh ∈ νh, for all s ∈ Sn−1, fh(s) ≈ γh and γh is minimizing length with
a constant velocity, thus E(γh) ≤ E(fh(s)) which gives L(γh)2 ≤ τh.

Let x0 ∈ Sn−1 be the base point and d be the round distance on Sn−1. Let
f : (Sn−1, x0) → (Ωq, q̄) be a smooth function in the class ν such that f(s) = q̄ for
all s ∈ Sn−1 such that d(x0, s) < 1 and define fh ∈ νh by (1). Then, for all s ∈ Sn−1,

E(fh(s)) ≤ 2E(γh) + 2E(f(s)),
thus τh ≤ 2E(γh) + C with C := 2 maxE ◦ f independent of h. �

We recall that a geodesic loop c ∈ Ωq is primitive if there does not exist any
geodesic loop c0 ∈ Ωq and any positive integer k > 1 such that c = ck0. We will say
that a geodesic chord d ∈ Ωp,q is primitive if there does not exist any geodesic loop
c ∈ Ωq such that Im(d) = Im(c) or if it is a primitive geodesic loop (which is only
possible in the case p = q). For all geodesic chord β ∈ Ωp,q, there exists a unique
primitive geodesic chord d ∈ Ωp,q such that β = d · ck, where c ∈ Ωq is either q̄ or
the primitive geodesic loop containing d and k ∈ N. We will say that the geodesic
chord β ∈ Ωp,q carries the primitive chord d ∈ Ωp,q. Thus if the family (δh) carry
m distinct primitive chords d1, . . . , dm and p 6= q, then d1, . . . , dm are geometrically
distinct geodesic chords joining p and q. In the special case p = q, it is possible that
dr = d−1

s for some r 6= s so that at least dm/2e of them are geometrically distinct.
We now study the number of times chords carrying the same primitive chord

d ∈ Ωp,q can appear in the infinite family (δh)h∈π1 . Let d ∈ Ωp,q be a primitive
geodesic chord. Let (δ′i)1≤i≤N := (δhi

), N ≥ 2, be a sequence included in (δh),
h ∈ π1, such that each δ′i carries d. Since N ≥ 2, the primitive chord d is included
in some primitive geodesic loop c ∈ Ωq and there exists a sequence of non-negative
integers (ki)1≤i≤N such that δ′i = d · cki . Since each δ′i belongs to a different path-
connected component Ωhi

p,q ⊂ Ωp,q, the ki’s are distinct.
Now we remark that ind(δ′i) ≥ 1 for i = 1 or i = 2: otherwise if one supposes k2 >

k1 then δ′1 must be a local minimum of E, according to property (i) of Section 2.2.
If one supposes k2 > k1, then ind(d · ck2) ≥ 1 implies that ind(d · cn(k2+1)) ≥ n
(property (ii) of Section 2.2) thus ki < n(k2 + 1) for all i.



8 S. ALLAIS

Proof of Theorem 1.2. The case of a contractible universal cover is a consequence of
Lemma 1.5.

In our present setting, the theorem follows from the fact that a same primitive
chord joining p and q can only be carried a finite number of time in the infinite family
(δh)h∈π1 . Indeed, let (δ′i)1≤i≤N be a sequence inside the family with N ≥ 2 possibly
infinite, each δ′i carrying the same primitive chord and let (ki) be the associated
injective sequence in N. Since the ki’s are distinct, N ≤ n(max(k1, k2) + 1). �

4.2. Logarithmic growth when β1(M ;Z) ≥ 1. Let M be a forward complete
Finsler manifold with first Betti number β1(M ;Z) ≥ 1 and which is not K(π1, 1).

Let h ∈ π1(M, q) be such that its image under the Hurewicz map π1(M, q) →
H1(M ;Z) is of infinite order (in particular the order of h is also infinite). Here, for
m ∈ Z, Ωm

p,q := {γ ∈ Ωp,q | [α−1 · γ]π1 = hm}, where α ∈ Ωp,q is fixed once for all.
Let γm := γhm be a global minimizer of E on Ωm

p,q and δm := δhm .

Lemma 4.2. If M is closed, there are a, a′ > 0 and b, b′ ∈ R such that

∀m ∈ N, am+ b ≤ L(δm) ≤ a′m+ b′.

The inequality L(δm) ≤ a′m+ b′ still holds when M is not closed.

Proof. According to Lemma 4.1, it suffices to prove these inequalities for L(γm)
instead of L(δm) = √τhm .

Let c := α−1 · γ1 ∈ Ωq, then [cm] = [α−1 · γ1]m = hm = [α−1 · γm] so α · cm ∈ Ωm
p,q

and, since γm is minimizing the length, L(γm) ≤ L(cm) + L(α) = mL(c) + L(α).
For the lower bound, it comes from the fact that L(α−1 · γm) ≥ m‖[h]‖s, where

‖[h]‖s > 0 is the stable norm of [h] ∈ H1(M,R). To show that directly, one can take
a 1-form ω such that 〈ω, [h]〉 6= 0 (it exists since [h] 6= 0 on H1(M,R) by hypothesis)
and remark that

m| 〈ω, [h]〉 | = | 〈ω, [hm]〉 | =
∣∣∣∣∫
α−1·γm

ω
∣∣∣∣ ≤

(
sup
x∈M
‖ωx‖

)
L(α−1 · γm).

Since M is closed, supx∈M ‖ωx‖ is finite. �

Thanks to the estimate on L(δm) given by Lemma 4.2, we can be more specific
on the number of times a same primitive chord can be carried in (δm):

Lemma 4.3. If M is closed, there exist some a, b > 0 such that if δm1 and δm2 carry
the same primitive chord d for some m1 < m2, then for all m > am2 + b the chord
δm does not carry d.

Proof. Let (δ′i) = (d · cki)i be the sub-sequence (δmi
) of (δm) carrying the primitive

chord d with (mi) being increasing and let κ := max(k1, k2) ≥ 1. We have seen
that ind(d · cκ) ≥ 1, thus ind(d · cn(κ+1)) ≥ n which implies that the finite sequence
(ki) is bounded by n(κ + 1). According to Lemma 4.2, for i = 1 and i = 2,
L(δ′i) = L(d) + kiL(c) ≤ a′mi + b′ ≤ a′m2 + b′ so κ ≤ a′m2+b′

L(c) .
Then the lower bound of Lemma 4.2 together with ki ≤ n(κ+ 1) implies that

mi ≤
n

a
κL(c) + nL(c) + L(d)− b

a
.

Since κ is non-zero, L(c) +L(d) ≤ a′m2 + b′ and finally mi ≤ 2a′
a
nm2 + 2n b′

a
− b

a
. �
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Proof of Theorem 1.3. Let AN be the number of distinct primitive chords carried in
(δm) for m ∈ {0, . . . , N}. According to Lemma 4.3, there exist a > 0 and b ∈ R
such that AaN+b ≥ AN + 1. Let a′ > a, then for sufficiently large N , a′N > aN + b
and Aa′N ≥ AN + 1. Thus, for all k ≥ 1, A(a′)kN ≥ AN + k and there exists c0 > 0
such that

Am ≥
logm
log a′ − c0, ∀m ∈ N.

Paths in (δm) for m ∈ {0, . . . , N} have length ≤ cN + d for some c > 0 and d ∈ R
according to Lemma 4.2 (and they are longer than the primitive chords they carry)
therefore,

2n(`; p, q) ≥ Ab(`−d)/cc ≥
log `
log a′ − c1, ∀` > 0,

for some constant c1 > 0 (in the case p = q, a primitive chord and its inverse are
geometrically identical, hence the factor of 2). �

We go back to the general case where M is not assumed to be closed.

Lemma 4.4. There exists a quadratic polynomial P ∈ R[X] such that if δm1 and
δm2 carry the same primitive chord d for some m1 < m2, then for all m > P (m2)
the chord δm does not carry d. Coefficients of P can be made continuous in the base
point q ∈M .

Proof. Let (δ′i) = (d · cki)i be the sub-sequence (δmi
) of (δm) carrying the primitive

chord d with (mi) being increasing and let κ := max(k1, k2). Similarly to the proof
of Lemma 4.3, the finite sequence (ki) is bounded by n(κ+1) with κ ≤ am2+b

L(c) , where
a, b ∈ R are given by the upper-bound of Lemma 4.2. We fix any linear projection
H1(M,Z) → 〈h〉 ' Z, β 7→ [β]. By definition of mi, [α−1 · d] + ki[c] = mi. Let
u := [α−1 · d] ∈ Z and v := [c] ∈ Z. Since (k2 − k1)v = m2 −m1 and m1 < m2, one
has |v| ≤ m2 and thus |u| ≤ m2 + k2m2. Finally,

mi ≤ |u|+ ki|v| ≤ m2 + κm2 + n(κ+ 1)m2

≤ m2 + am2 + b

r
+ n

(
am2 + b

r
+ 1

)
m2 =: P (m2),

where r := infγ∈Ωq , [γ] 6=0 L(γ) > 0 depends continuously in q ∈M . �

Proof of Theorem 1.4. This is the same proof as for Theorem 1.3 but now, for suf-
ficiently large N , there exists some a > 1 such that AaN2 ≥ AN + 1 with the same
notations. Thus A(aN)2k ≥ AN + k and there exists c0 > 0 such that

∀m ∈ N, Am ≥
log(logm)

log 2 − c0.

Since the upper-bound given by Lemma 4.2 is still true, we can conclude similarly.
�
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