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Improvement and generalization
of Papasoglu’s lemma
Simon Allais

Abstract

We improve an isoperimetric inequality due to Panos Papasoglu.
We also generalize this inequality to the Finsler case by proving an
optimal Finsler version of the Besicovitch’s lemma which holds for
any notion of Finsler volume.

MSC 2010. Primary: 53C23; Secondary: 53C60.

1 Introduction

In [Pap09, Prop. 2.3], Panos Papasoglu shows the
Lemma 1.1. Let (S2, g) be a Riemannian 2-sphere and
denote by A its Riemannian area. Then for any ε > 0
there exists a closed curve γ dividing (S2, g) into two
disks D1 and D2 of area at least A(S2,g)

4 and whose length
satisfies

length(γ) ≤ 2
√

3A(S2, g) + ε.

This lemma has several deep consequences in met-
ric geometry: using it, Papasoglu gives estimates of
the Cheeger constant of surfaces, Liokumovich, Nabu-
tovsky and Rotman use it to answer a question asked
by Frankel, Katz and Gromov in [LNR15] whereas Bal-
acheff uses it to estimate 2-spheres width in [Bal15].
In this article, we give two different ways to improve
Papasoglu’s estimate. First by a factor of

√
2 by using

directly the coarea formula, then by a factor of 2
√

2
π

by using Pu’s inequality (an argument suggested by an
anonymous reviewer and already used by Gromov to
give the filling radius of S1 in the simply connected
case). It gives automatically better estimates: for in-
stance, in [Lio14], the constants 52 and 26, given by
Liokumovich in the abstract, could be divided by 2

√
2
π ,

thus
Corollary 1.2. There exists a Morse function f : M →
R, which is constant on each connected component of
a Riemannian 2-sphere with k ≥ 0 holes M and has
fibers of length no more than 26

√
π
2A(M).

Corollary 1.3. On every 2-sphere there exists a simple
closed curve of length ≤ 13

√
π
2A(S2) subdividing the

sphere into two discs of area ≥ 1
3A(S2).

In his original proof, Papasoglu used the so-called
Besicovitch’s lemma. This lemma asserts that, given
a parallelotope P ⊂ Rn endowed with a Riemannian
metric g, one has

v(P, g) ≥
n∏
i=1

di,

where v denotes the Riemannian volume of (P, g) and
the di denote the Riemannian distances between two
opposite sides of P (see for instance [Gro01, Section
4.28]). In this article, we give a natural generalization
of Besicovitch’s lemma extending it to Finsler paral-
lelotopes – that is parallelotopes continuously endowed
with a norm at each of their points. As for such a man-
ifold, there is not one good definition of volume, we
prove an optimal inequality satisfied by any Finsler vol-
ume in the sense of [BBI01, §5.5.3] such as the Busemann-
Hausdorff and Holmes-Thompson ones. Our proof is
based on the Gromov one given in [Gro01]. We then
use it in order to extend the Papasoglu lemma to Finsler
2-spheres.
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2 Improvements of Papasoglu’s lemma

We remind the reader of the following simple version of
the coarea formula:
Proposition 2.1 (Coarea formula). Let (M, g) be a
Riemannian surface with boundaries and denote by A
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δ

a

b
D1

γ1

γ2

Fig. 1: δ cannot be an ε-shortcut

its Riemannian area. Let x0 ∈ M , then ∂B(x0, r) is
a smooth curve (not necessarily connected) for almost
every r > 0 and

A(B(x0, R)) =
∫ R

0
length(∂B(x0, r)) dr.

This is the simplest case of a much more general
formula that can be found in [Fed96, Section 3.2]. The
coarea formula gives us a way to improve Papasoglu’s
isoperimetric inequality:
Proposition 2.2. Let (S2, g) be a Riemannian 2-sphere
and denote by A its Riemannian area. Then for any
ε > 0 there exists a closed curve γ dividing (S2, g) into
two disks D1 and D2 of area at least A(S2,g)

4 and whose
length satisfies

length(γ) ≤
√

6A(S2, g) + ε.

Proof. Let Γ be the set of simple closed curves divid-
ing (S2, g) into two disks of area ≥ A(S2,g)

4 . Let L =
infγ∈Γ length(γ). Now if we fix an ε > 0, we can take
γ ∈ U such as length(γ) < L+ ε and denote by D1 and
D2 the two disks bounded by γ with A(D1) ≥ A(D2)
(which implies A(D1) ≥ A(S2,g)

2 ).
Then γ cannot be ε-shortcut on D1 – that is there

does not exist any δ ⊂ D1 joining two points a and b
of γ of length length(δ) < length(γ1)− ε where γ1 ⊂ γ
is the shortest curve between a and b on γ. In the
contrary either δ ∪ γ1 or δ ∪ γ2 would bound a disk of
area ≥ A(S2,g)

4 with a length < L (calling γ2 = γ \ γ1),
a contradiction.

Now fix ε > 0 and rather take γ ∈ U a curve of
length length(γ) < L + ε

L (taking ε small enough to
have length(γ) < 2L). On D1 the disk of greatest
area, there is not any ε

L -shortcut between two points
of γ. Fix any point A of γ and denote for every r ≥ 0
Fr := {m ∈ D1 | d(A,m) = r}. Since d(A, ·) is a Lip-
schitz continuous function, it is differentiable almost
everywhere and, according to Sard’s lemma, Fr is a
submanifold for almost every r; we will restrict our-
selves to such r. Let u(r) and v(r) be the two points
of γ away from r from A when r < length(γ)

2 . Since Fr
is a submanifold on D1 which is a submanifold with
boundary on D1∪γ, there is a path δr of Fr connecting

δr

A

r

D1

r

Fr u(r)

v(r)

Fig. 2: The loci Fr and δr

u(r) to v(r). Then, since ε
L -shortcuts do not exist,

length(δr) ≥{
2r − ε

L if r ≤ length(γ)
4

length(γ)− 2r − ε
L if length(γ)

4 ≤ r ≤ length(γ)
2 .

Using the coarea formula (Proposition 2.1), we obtain:

A(D1) =
∫ +∞

0
length(Fr) dr

≥
∫ length(γ)

2

0
length(δr) dr

≥ 2
∫ length(γ)

4

0

(
2r − ε

L

)
dr

≥ length(γ)2

8 − ε.

In addition to the fact that 3
4A(S2) ≥ A(D1) and that

this inequality holds for any ε > 0 short enough, we
can conclude.

As it turns out, we can obtain an even better im-
provement of Papasoglu’s isoperimetric inequality based
on Pu’s systolic inequality. This improvement was sug-
gested by an anonymous reviewer and is discussed next.

We recall that the systole of a closed Riemannian
manifold (M, g) is defined by:

sys(M, g) :=

inf
{
lengthg(γ) | γ : S1 →M is a non-contractible loop

}
.

A systolic inequality is an inequality of the form
v(M, g) ≥ Csys(M, g)n where v is the Riemannian vol-
ume of (M, g), n is the dimension ofM and C > 0 does
not depend on the metric g. Pu’s systolic inequality is
the following
Theorem 2.3 (Pu’s systolic inequality [Pu52, Theorem
1]). Let (RP 2, g) be a Riemannian real projective plane
and denote by A its Riemannian area, then

A(RP 2, g) ≥ 2
π
sys(RP 2, g)2,

with equality if and only if g is a Riemannian metric of
constant curvature.
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For more information about systolic inequalities, we
refer the reader to the article survey [CK03]. Our sec-
ond improvement of Paposoglu’s inequality takes the
following form.
Proposition 2.4. Let (S2, g) be a Riemannian 2-sphere
and denote by A its Riemannian area. Then for any
ε > 0 there exists a closed curve γ dividing (S2, g) into
two disks D1 and D2 of area at least A(S2,g)

4 and whose
length satisfies

length(γ) ≤
√

3π
2 A(S2, g) + ε.

Proof. We will use an argument given by Gromov in
[Gro83, Section 5.5.B’ (e)]. Let us have the same ap-
proach as the previous proof, taking γ ∈ Γ a curve of
length length(γ) < L+ ε dividing S2 into two disks D1
and D2 with the same conditions.

Since there is no ε-shortcut, any curve joining two
antipodal points of ∂D1 is longer than length(γ)

2 − ε. By
identification of these antipodal points, D1 gives a pro-
jective plane of systole greater than length(γ)

2 − ε, thus,
applying Pu’s systolic inequality (Theorem 2.3),

A(D1) ≥ 2
π

(
length(γ)

2 − ε
)2

.

Since 3
4A(S2) ≥ A(D1), we then conclude.

Remark 2.5. The equality case of Pu’s theorem tells
us about the unoptimality of this inequality. Precisely,
there is no Riemannian 2-sphere (S2, g) whose mini-
mal closed curve γ satisfying Papasoglu’s hypothesis
has length:

length(γ) =
√

3π
2 A(S2, g).

As a matter of fact, this would imply the equality cases
3
4A(S2, g) = A(D1) and A(D1) = 2

π

(
length(γ)

2

)2
. By

Pu’s theorem, D1 is then a hemisphere of the round
sphere of radius length(γ)

2π . Let us see that D1 is a hemi-
sphere of 2-sphere of radius r implies that (S2, g) is the
round sphere of radius r. This will complete the proof
because γ would be an equator which is obviously not
minimal for Papasoglu’s lemma.

In order to prove it, we will apply Pu’s theorem to
D2, thus D2 would be a round hemisphere of radius r.
Let us see that any curve δ2 joining two antipodal points
N and S of D2 is longer than length(γ)

2 = πr. Suppose
the contrary for some δ2 in D2 joining N and S, then,
gluing this curve with any meridian δ1 of the hemi-
sphere D1 joining N and S, we obtain a close simple
curve δ = δ1 ·δ2. Since meridians of a round hemisphere
of radius r have length πr, length(δ) < length(γ). But,
according to the intermediate value theorem, there ex-
ists a meridian δ1 such as δ divides (S2, g) into disks of
same area, a contradiction with γ minimality.

δ2

δ1

D2

D1

N

S

γ

Fig. 3: δ2 glued with a meridian δ1

3 Besicovitch’s lemma for Finsler manifolds

In this section, we extend Papasoglu’s lemma to Finsler
manifolds for any good notion of Finsler area. For this,
we first give a natural generalization of the Besicovitch
lemma.

3.1 Length metric and volume on Finsler
manifolds

The manifolds used here will be closed and connected.
See [BBI01] for details about the results of this section.

Recall that a continuous Finsler metric on a man-
ifold M is a continuous function Φ : TM → [0,+∞[
whose restriction to every tangent space is an asym-
metric norm. Such a manifoldM is said to be a Finsler
manifold (M,Φ). If Φ(−vx) = Φ(vx) for all tangent
vectors, we shall say that Φ is a reversible continuous
Finsler metric. We can then define a length metric dΦ
on M by:

∀x, y ∈M, dΦ(x, y) = inf
γ:x y

lengthΦ(γ)

where the infimum is taken on the piecewise-C1 curves
γ : [0, 1]→M joining x to y and

lengthΦ(γ) :=
∫ 1

0
Φ(γ′(t)) dt.

We will restrict ourselves to the case of reversible con-
tinuous Finsler metrics.

Contrary to the Riemannian case, there is no nat-
ural way to define a volume on Finsler manifolds. We
will give two classical examples of Finsler volume. The
Busemann-Hausdorff volume could be defined, for all
open subsets U ⊂M , as:

vBH(U) :=
∫
U

|Bg|
|BΦ|

vg,

where vg is the volume associated to g which is a Rie-
mannian auxiliary metric, for every p ∈ M , |A| desig-
nates the gp-normalized Lebesgue measure of A ⊂ TpM
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and Bg and BΦ are unit balls of TpM endowed with the
normed metrics gp and Φp respectively. This definition
does not depend on g and boils down to normalizing the
volume of the unit ball of each tangent space (TpM,Φp).

On the other hand, the Holmes-Thompson volume
is defined, for all open subsets U ⊂M as:

vHT (U) :=
∫
U

|B∗Φ|
|Bg|

vg,

where, for all p ∈M and all convex K of the Euclidean
space (TpM, gp),

K∗ := {u ∈ TpM | ∀w ∈ K, gp(u,w) ≤ 1}

is the dual convex of K. Compared to the Busemann-
Hausdorff volume, here we normalize the unit dual ball.
In the case of a Riemannian manifold (M, g), Busemann-
Hausdorff and Holmes-Thompson volumes are equal and
vBH = vHT = vg. Both Busemann-Hausdorff and
Holmes-Thompson volumes are examples of Finsler vol-
umes. We refer to [BBI01, §5.5.3] for an in-depth anal-
ysis of this general notion. Let’s just underline that
any Finsler volume v is monotonous in the sense that
for all short applications between Finsler manifolds f :
(M,Φ)→ (N,Ψ),

v(f(M),Ψ) ≤ v(M,Φ).

3.2 Finsler Besicovitch’s Lemma
We show that we can deduce a more general statement
of Besicovitch’s lemma from the proof given in [Gro01,
Section 4.28]:
Proposition 3.1 (Finsler Besicovitch’s lemma). Let
P ⊂ Rn be a n-dimensional parallelotope endowed with
a reversible continuous Finsler metric Φ. If (Fi, Gi)
(with 1 ≤ i ≤ n) denote its pairs of opposite faces and
di := dΦ(Fi, Gi), then, for any Finsler volume v,

v(P,Φ) ≥ v

(
n∏
i=1

[0, di], ‖ · ‖∞
)
.

Proof. Let f be the continuous function

f :
{
P → Rn
x 7→ (dΦ(x, Fi))1≤i≤n

.

Since for all points x and y in P ,

|dΦ(x, Fi)− dΦ(y, Fi)| ≤ dΦ(x, y) (3.1)

for all i, considering the maximum among i, one has
that f : (P,Φ) → (Rn, ‖ · ‖∞) is short. Thus, prov-
ing f(P ) ⊃ ∏n

i=1[0, di] =: C is enough to obtain the
inequality.

Note that the boundary of P is mapped outside the
interior of C, more precisely, writing f = (f1, . . . , fn),
f i(Fi) = 0 whereas f i(Gi) ⊂ [di,+∞[. From the defi-
nition of P , there exists an homeomorphism h : P → C

G2

F1

F2

G1

x
P

f
d2

d1

f(x)

Fig. 4: Scheme of the proof

mapping each face onto a face (with the obvious choice).
So ft = tf|∂P + (1 − t)h|∂P defines a homotopy from
h|∂P to f|∂P with values in Rn \

◦
C. If there exists

y ∈
◦
C \ f(P ), then f should be homotopic to 0 in

Rn \ y ⊃ Rn \
◦
C, so h|∂P should also be homotopic to 0

in Rn \ y, a contradiction (h(P ) 3 y).
Since v is monotonous and f is short, one has the

chain of inequalities
v(P,Φ) ≥ v (f(P ), ‖ · ‖∞) ≥ v(C, ‖ · ‖∞).

Remark 3.2. The proof provides us with some infor-
mation about the equality case. Since f(P ) ⊃ C, in
order to have v (f(P ), ‖ · ‖∞) = v(C, ‖ · ‖∞), f(P ) and
C must only differ from a negligible set of Rn. Since
f : (P,Φ) → (Rn, ‖ · ‖∞) is short, in order to have
v(P,Φ) = v(f(P ), ‖ · ‖∞), f needs to be locally iso-
metric almost everywhere – meaning that dfx, which
is defined for almost every x, has norm 1 almost every-
where. Finally, v(P,Φ) = v(C, ‖ · ‖∞) implies (P,Φ) to
be locally isometric almost everywhere to(

C̃, ‖ · ‖∞
)
⊃ (C, ‖ · ‖∞)

with C̃ \ C negligible in Rn.
Examples 3.3.
• For v = vBH , it gives the sharp inequality:

vBH(P,Φ) ≥ bn
2n

n∏
i=1

di

where bn = π
n
2

Γ(n+ 1
2 ) designates the volume of the

standard Euclidean unit ball.
• For v = vHT , it gives the sharp inequality:

vHT (P,Φ) ≥ 2n
n!bn

n∏
i=1

di.

The symmetry of dΦ is key to get the inequality
(3.1), thus we cannot directly extend this proof to the
asymmetric Finsler case. Nevertheless, in the case of
the Holmes-Thompson volume, the Roger-Shepard in-
equality allows us to assert the following
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Proposition 3.4. Let P ⊂ Rn be a n-dimensional
parallelotope endowed with an asymmetric continuous
Finsler metric Φ. If (Fi, Gi) (with 1 ≤ i ≤ n) denote
its pairs of opposite faces, then,

vHT (P,Φ) ≥ n!
(2n)!

2n
bn

n∏
i=1

(dΦ(Fi, Gi) + dΦ(Gi, Fi)) .

Proof. Following the proof of [APBT16, Theorem 4.13],
we consider the symmetrized Finsler metric Ψ defined
by

∀u ∈ TP, Ψ(u) := Φ(u) + Φ(−u)
so that, for all curves γ,

lengthΨ(γ) = lengthΦ(γ) + lengthΦ(γ̌),

where γ̌ designates the time-reversed curve. Thus, for
all x, y ∈ P , dΨ(x, y) ≥ dΦ(x, y) + dΦ(y, x), hence

∀i, dΨ(Fi, Gi) ≥ dΦ(Fi, Gi) + dΦ(Gi, Fi).

On the other hand, at every p ∈ P , BΨp = BΦp −BΦp ,
thus, applying the Rogers-Shepard inequality at every
cotangent space we have that

vHT (P,Φ) ≥ (n!)2

(2n)!vHT (P,Ψ).

The inequality then follows from Proposition 3.1 ap-
plied to (P,Ψ).
Remark 3.5. We cannot hope such an inequality for the
Busemann-Hausdorff volume in the asymmetric case.
Here di will designate min(d(Fi, Gi), d(Gi, Fi)). To see
it in R2, let us take P = [0, 1]2 and let us define an
asymmetric norm Φ on R2 by its unit ball BΦ. Let
a =

(
−1

2 , 0
)
, b = a + h

(
2
3 , 1

)
and c = a + h

(
2
3 ,−1

)
where h > 3

2 ; we define BΦ as the triangle abc. As h
tends to infinity, d1 ∼ 1

h , d2 = 1 and vBH(P,Φ) = 3π
2h2 ,

thus
vBH(P,Φ)
d1d2

−→
h→+∞

0.

However, in the asymmetric flat case (that is x 7→
Φx is identically equal to some norm on Rn), we still
have the weaker (sharp) inequality:

vBH(P,Φ) ≥ bn
2n
(

min
1≤i≤n

di

)n
. (3.2)

As a matter of fact, taking P = [0, 1]n without loss of
generality,

d := min
1≤i≤n

di = inf{α > 0, αBΦ ∩ ∂[−1, 1]n 6= ∅},

thus for all α < d, αBΦ ⊂ [−1, 1]n, so |dBΦ| ≤ 2n
(where | · | designates the standard Lebesgue measure
of Rn) which is equivalent to (3.2).

We can also show, with some duality, the Holmes-
Thompson analogous of this last inequality: for all flat
metrics

vHT (P,Φ) ≥ 2n
n!bn

(
min

1≤i≤n
di

)n
.

As a matter of fact, with the last notations, for all
α > 0,

αBΦ∩∂[−1, 1]n 6= ∅ ⇔ ∃i, αBΦ∩{x, 〈ei, x〉 = ±1} 6= ∅

⇔ ∃i, ei 6∈ (αBΦ)∗ or − ei 6∈ (αBΦ)∗

where the ej form the canonical base of Rn. Thus for
all α < d, (αBΦ)∗ ⊃ B‖·‖1 the convex hull of the ±ej ,
so |(dBΦ)∗| ≥ 2n

n! .

3.3 Finsler Papasoglu’s lemma
We can now extend the original proof of Papasoglu to
Finsler 2-spheres.
Proposition 3.6. Let (S2,Φ) be a reversible Finsler 2-
sphere. Fix a Finsler volume A and denote by c > 0
the constant such that A([0, d1]× [0, d2], ‖ · ‖∞) = cd1d2
for all di > 0. Then for any ε > 0 there exists a closed
curve γ dividing (S2,Φ) into two disks D1 and D2 of
area at least A(S2,Φ)

4 and whose length satisfies

length(γ) ≤ 2
√

3
c
A(S2,Φ) + ε. (3.3)

Proof. Let us have the same approach as the Rieman-
nian proof, taking γ ∈ Γ a curve of length

length(γ) < L+ ε

dividing S2 into two disk D1 and D2 with the same
conditions.

Let us divide γ into 4 curves γ = α1∪α2∪α3∪α4 of
the same length length(γ)

4 . Since there is no ε-shortcut,
we have got that

dΦ(α1, α3), dΦ(α2, α4) ≥ length(γ)
4 − ε.

Hence, by Besicovitch’s lemma and the Example 3.3,

A(D1) ≥ c
(length(γ)− 4ε)2

16 .

But A(D1) ≤ 3
4A(S2,Φ), thus

length(γ) ≤ 2
√

3
c
A(S2,Φ) + 4ε.

Examples 3.7.
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• For A = vBH , one has c = π
4 and (3.3) becomes:

length(γ) ≤ 4
√

3
π
A(S2,Φ) + ε.

• For A = vHT , one has c = 2
π and (3.3) becomes:

length(γ) ≤
√

6πA(S2,Φ) + ε.

Nevertheless, the proof of Proposition 2.4 gives a
better estimate in these two special cases:
Proposition 3.8. Let (S2,Φ) be a reversible Finsler 2-
sphere. Then for A = vHT or vBH and for any ε >
0, there exists a closed curve γ dividing (S2,Φ) into
two disks D1 and D2 of area at least A(S2,Φ)

4 and whose
length satisfies

length(γ) ≤
√

3π
2 A(S2, g) + ε,

with the same hypothesis on γ and ε as in the previous
proposition.
Proof. Let (S2,Φ) be a reversible Finsler 2-sphere. Ac-
cording to [Iva11], Pu’s systolic inequality:

A(RP 2,Φ) ≥ 2
π
sys(RP 2,Φ)2

remains true in this Finsler setting forA = vHT (Ivanov’s
Theorem 3) and A = vBH (Ivanov’s Theorem 4). Thus,
proof of Proposition 2.4 remains valid in this case.
Remark 3.9. the optimality issue discussed in Remark 2.5
still applies in the Busemann-Hausdorff case, according
to the optimality stated in [Iva11, Theorem 4].
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