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When heated, micro-resonators present a shift of their resonance frequencies. We study specifically silicon
cantilevers heated locally by laser absorption, and evaluate theoretically and experimentally their temperature
profile and its interplay with the mechanical resonances. We present a enhanced version of our earlier model
[F. Aguilar Sandoval et al., J. Appl. Phys. 117, 234503 (2015)] including both elasticity and geometry
temperature dependency, showing that the latter can account for 20% of the observed shift for the first
flexural mode. The temperature profile description takes into account thermal clamping conditions, radiation
at high temperature, and lower conductivity than bulk silicon due to phonon confinement. Thanks to a
space-power equivalence in the heat equation, scanning the heating point along the cantilever directly reveals
the temperature profile. Finally, frequency shift measurement can be used to infer the temperature field with
a few percent precision.

I. INTRODUCTION

Time is the most accurate quantity that can be mea-
sured. For this reason, many sensors convert a measur-
and (e.g. temperature) to time or frequency. Another
long term trend in sensing is miniaturization, leading to
ever more integrated, low power, low cost and reliable
detectors. At the overlap of those processes stand me-
chanical micro-resonators, with countless applications:
time itself1, quantum state detection2, mass detectors3,4,
chemical and biological sensors5,6, flow meters7,8, force
sensors9,10, thin films mechanical characterisation11,12,
temperature measurement13,14. The increased sensitiv-
ity of those detectors opened the door to single molecule
characterisation, as demonstrated for example by imag-
ing their atomic structure15, measuring their optical ab-
sorption16 or real-time monitoring of receptor-ligand in-
teractions6.

Temperature and related properties stand among the
observables accessible with micro-mechanical resonators:
as temperature changes, due to heat exchanges between
the resonator and its environment, its geometrical and
mechanical properties evolve, hence its resonance fre-
quency. Quartz based temperature sensors13 have for
example been available for half a century. More re-
cently, MEMS (Micro Electro Mechanical Systems) based
bolometers have demonstrated high potential for infrared
imaging17 or spectroscopy. Optical absorption can for in-
stance be monitored by shining light on molecules resting
of a membrane16: absorption leads to heating, tempera-
ture elevation, and resonance frequency shift of the mem-
brane. In the same spirit, infrared (IR) absorption of a
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surface can be tested at the nanoscale by coupling local
thermal expansion due to IR absorption to Atomic Force
Microscopy (AFM): modulating the IR source at the res-
onance frequency of the AFM cantilever, unprecedented
resolution can be achieved18. The photo-thermal effect
can also be applied directly to an AFM cantilever is use
to drive it at resonance in dynamic measurements19–23.
Moreover, the thermo-mechanical coupling has been re-
cently applied to fine tuning of the mechanical response
of micro-resonators and nano-photonics devices through
localized heating produced by focused light24–28.

In these examples, coupling between light absorption,
heating and the mechanical resonator is the key ingre-
dient and a desirable feature. In other cases, light ab-
sorption and heating are just a side-effects of the light
used to measure other properties: sensing the deflection
of AFM cantilevers with the optical lever technique29 or
interferometry9,30–37, measuring Raman Spectra to in-
fer material composition38, strain39 or temperature40–43
for example. In any case, a fine understanding of the
thermo-mechanical coupling is important to reach quan-
titative and robust results.

We focus in the present work on a basic design for the
resonator, namely a rectangular cantilever shape. This
is especially significant for AFM applications, including
scanning thermal microscopy44, but the approach could
be extended to other application and devices, like mem-
branes or tuning forks. Even when heated cantilevers
are not used in a resonant mode, our methods can be of
interest to quantify a priori the opto-thermo-mechanical
coupling. In a previous work45, we presented experimen-
tal evidence of a frequency shift of the resonant modes
of a silicon cantilever when the light power of the optical
measurement set-up is increased. This frequency shift
was identified as the signature of a temperature profile
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along the cantilever, and a model describing the results
was presented: all resonance modes are affected, with fre-
quency shifts values governed by the temperature field,
the Young’s modulus temperature dependence, and the
spatial mode shape. An agreement around 25% between
modes of the temperature elevation was achieved with
this framework, turning the frequency shift measurement
into an actual temperature sensor for the cantilever.

The main goal of this article is to provide a framework
to determine quantitatively the temperature field of a
locally heated cantilever, from the measurement of its
resonances frequency shift. We refine the analysis with
respect to our previous work45 by including the effect
of heat radiation and of thermal expansion of the can-
tilever in the model. We show that the former effect is
noticeable at high temperatures, and the latter is partic-
ularly important to consider for the first resonance mode:
neglecting it can lead to discrepancies up to 20% in tem-
perature estimation for a non uniform thermal gradient.
This is all the more important as in many experiments,
the first oscillation mode is the only measured one: it
is the lowest frequency one (and thus the most acces-
sible), and its displacement amplitude is usually larger
than other modes, so that the majority of transduction
schemes has been primarily developed to detect it. One
distinctive feature of our method is actually to include
more resonant modes in the analysis, providing a more
robust measurement strategy. To back our approach,
we present a comprehensive set of new measurements,
including Raman spectroscopy for a direct temperature
field measurement40–43, thermal noise45 or driven reso-
nance frequency shifts tracking, and temperature pro-
file exploration through heating point scanning. Our
measurement eventually reach a quantitative agreement
within a few percent between all measured modes and
the theoretical picture provided (a tenfold improvement
with respect to our previous work45), at all temperatures
between ambient and silicon melting.

The article is organized as follows: In section II, we de-
termine the temperature profiles for a cantilever heated
by a laser in vacuum. We evaluate the effects of thermal
radiation and discuss the thermal boundary condition at
the clamp. Raman measurements are presented to sup-
port our conclusions. In section III, we present an ana-
lytical model predicting the resonance frequency of the
flexural modes for a non-uniform temperature of the can-
tilever. We consider both the thermally-induced changes
of intrinsic elasticity and geometrical dimensions. We
evaluate and compare the sensitivity to these two thermo-
mechanical effects for different temperature profiles, in
particular for the specific case of silicon cantilever. In
section IV, we apply this framework to measurements in
vacuum, and demonstrate the quantitative agreement be-
tween observations and theory. As a side-product to this
study, we also show that frequency shift measurements
alone allow the reconstruction of the temperature profile
of the cantilever, thus could give access to the thermal
conductivity of its material.

II. THERMAL PROBLEM: CANTILEVER HEATED IN
VACUUM BY LASER IRRADIATION

Heated AFM cantilevers have been extensively studied
in the literature3,19–23,40–46, we gather in this section the
main ingredients useful for a quantitative description of
the temperature field of a silicon cantilever. We consider
a rectangular cantilever of length L much larger than its
width B, itself much larger its thickness H, clamped to
a macroscopic chip at temperature T0, and heated by a
laser beam focused at some distance x0 from the clamp.
In the limit where the cross section dimensions B,H are
small compared to x and L, the temperature T may be
assumed homogeneous across the cross section. T there-
fore only depends on the longitudinal coordinate x and is
described by the one-dimensional heat diffusion equation

ρcp
∂T

∂t
− ∂

∂x

(
λ
∂T

∂x

)
= q(x), (1)

where cp is the heat capacity, λ the thermal conductivity
and q the heat source/sink density at each position. The
characteristic time for heat diffusion along the cantilever
is ρcpL2/λ, of the order of a few ms for our samples.
Since all the measurements will be performed on a much
slower time scale, we will consider Eq. 1 in the stationary
regime (∂T/∂t = 0).

A. First approach: isothermally clamped edge, no radiation

As the cantilever is placed in vacuum, no heat transfer
can occur by convection with its surroundings. In this
first step, we neglect thermal radiation, the only possi-
ble heat transfer mechanism is thus thermal conduction
through the cantilever. All cantilever surfaces are then
assumed to be thermally insulated, except at the heating
point x0. The temperature is thus solution of

d

dx

(
λ(T )

dT

dx

)
=

Pa
BH

δD(x− x0), (2)

where Pa = AP0 is the absorbed power (fraction
A(T (x0)) of the power P0 of the laser), and δD is Dirac’s
distribution. The temperature profile may be obtained
by integrating twice (2) and imposing the boundary con-
dition of an isothermally clamped edge and a thermally
insulated free end:

T (x = 0) = T0 (3a)
dT

dx

∣∣∣∣
x=L

= 0. (3b)

The temperature increase profile θ(x) = T (x)−T0 is thus
solution of∫ T0+θ(x)

T0

λ(T ′)dT ′ = Pa

BH x for x ≤ x0 (4a)

θ(x) = θ(x0) for x > x0 (4b)



3

0 100 200 300 400 500
0

500

1000

1500

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

300 500 700 900 1100 1300 1500
0

50

100

150

200

model

Exp.

b)

a)

FIG. 1. a) Numerical temperature profiles computed from
Eq. (4) for a silicon cantilever in vacuum with L = 500 µm
and BH = 75 µm2, heated at x0 = L by a constant power
Pa labelled on the right of each curve. Inset: temperature
dependence of the silicon conductivity λ from Refs. 47 and
48. b) Temperatures profiles of panel a) normalized by their
respective maximum temperature increase ∆T = θ(x = L).

Using the silicon conductivity data from Ref. 47 dis-
played in the inset of figure 1-a, we can numerically
solve Eq. (4) and obtain the temperature profiles θ(x)
for various absorbed power Pa and x0 = L. We plot
these estimations in figure 1-a for a cantilever such that
L = 500 µm and BH = 75 µm2, with T0 = 22 °C. In
figure 1-b we report the corresponding normalized tem-
perature profiles Θ(X) = θ(x)/∆T with ∆T the maxi-
mum temperature increase and X = x/L the normalised
position. The non-linear shape of the temperature pro-
files due to the significant temperature dependency of the
silicon conductivity appears clearly.

When the laser spot is located at x0 < L, the temper-
ature profiles are just truncated in their upper part so
that θ(x > x0) = ∆T , as illustrated in Fig. 2. Therefore,
scanning the cantilever with the heating position x0 and
reading the temperature at the same position θ(x0) will
directly draw the temperature profile of Fig. 1-a.

It is worth noting that in this case where conduction
is the only dissipating mechanism, the normalized pro-
files Θ(X) are independent of the geometry B,H,L. The
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FIG. 2. a) Numerical temperature profiles computed from
Eq. (4) for a silicon cantilever in vacuum with L = 500 µm
and BH = 75 µm2, heated by a constant power Pa = 9.7 mW
at position x0 labelled on the right of each curve. b) Tem-
peratures profiles of panel a) normalized by their respective
maximum temperature increase ∆T = θ(x = L).

profiles displayed in Fig. 1-b are fully determined by the
intrinsic material conductivity λ(T ).

Another characteristic resulting from Eq. (2) is the
same dependence of the temperature increase to the posi-
tion x and the absorbed power Pa. The variations of the
maximum temperature rise ∆T with the absorbed power
Pa corresponds exactly to the variations displayed in fig-
ure 1-a where Pa would linearly vary from zero to the
indicated values. To illustrate this behavior, we report
in Fig. 3 a measurement using a Raman spectrometer
to track the temperature of the cantilever while sweep-
ing both P and x0 (experimental details in appendix A).
Fig. 3 shows that up to ∆T = 1000 K, the temperature
profile depends on x0 and P0 through their product only.
Such equivalence is very interesting to evaluate a temper-
ature profile, since scanning in power at a fixed position
is generally easier to perform than scanning in space at
a fixed power.
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FIG. 3. a) Experimental temperature profiles measured
with Raman spectroscopy for a BudgetSensor AIO tipless sil-
icon cantilever in vacuum (L = 500 µm, BH = 78 µm2), as a
function of the heating/sensing laser position x0 and power
P0. b) Data of panel a) plotted as a function of the product
(x0 +lth)P0. The offset lth = 40 µm applied to x0 accounts for
the thermal resistance of the cell and chip till the cantilever
clamp. All data collapse on a master curve, as expected from
eq. (6).

B. On the boundary condition of isothermally clamped edge

So far we assumed that the temperature increase at
the clamp, between the cantilever and the chip support-
ing it, was negligible, writing the boundary condition
T (x = 0) = T0. However, no matter how large is the
chip compared to the cantilever, most of the heat ab-
sorbed from the laser is dissipated inside the chip, in-
evitably resulting in a rise of the cantilever temperature
at the clamp. In this section we evaluate the tempera-
ture rise at the frontier x = 0 considering the dissipation
problem inside the chip. In the limit B � H, we can re-

duce the problem to two dimensions, the thermal flux J
inside the chip is radial and inversely proportional to the
distance r from the clamp J = 2Pa/πrB. Hence the tem-
perature decays as Tchip(r) = 2Pa/πλ0B ln (lchip/r) + T0

where lchip denotes the distance from the clamp where
the temperature is assumed to be equal to the reference
temperature T0. Assuming a good thermal contact, lchip

is fixed by the chip geometry between the cantilever base
and the thermostat at T0. The temperature at the clamp
(r → 0) can be estimated choosing a cutoff for small r
equal to cantilever thickness H,

Tclamp =
2Pa
πBλ0

ln

(
lchip

H

)
+ T0, (5)

Using the new boundary condition T (x = 0) = Tclamp,
the cantilever temperature increase θ(x) solution of (2)
can be expressed in the similar form than (4)∫ T0+θ(x)

T0

λSi(T
′)dT ′ =

Pa
BH

(x+ lth), (6)

where lth corresponds to the distance from the clamp
where the cantilever temperature would extrapolate to
T0 (figure 4) and is defined by

lth =
2H

π
ln

(
lchip

H

)
. (7)

The introduction of lth allows to take into account the
temperature increase at x = 0. According to eq. (7)
the effect of the temperature increase at the clamp is
governed by cantilever thickness H. For H = 2.5 µm
and lchip = 300 µm (typical chip thickness value), we get
lth = 7.6 µm. Performing a 3D simulation with COMSOL
Multiphysics for a cantilever with H = 2.5 µm and B =
32 µm, we find lth = 7.8 µm. Note that any additional
thermal resistance between the chip and the thermostat
at temperature T0 will increase the value of lth.

In many practical cases, since lth � L, this refined
thermal boundary condition has only a tiny effect on
the behavior of the system, and usually goes unnoticed.
For example, for a cantilever such that H = 2.5 µm
(lth = 7.6 µm) and L = 500 µm, the error neglect-
ing the temperature increase at the clamp is only of
lth/L = 1.5 % on the temperature increase at the free
end. However, as we will see in section III, the frequency
shift of the fundamental mechanical resonance is mainly
sensitive to the temperature variation close to the clamp.
It is thus important to take into account the chip temper-
ature increase (characterized by the length lth) in order
to correctly predict the frequency shift of such mode.

C. Thermal radiation effects

In the previous paragraphs, the cantilever surfaces
were considered adiabatic (q = 0), neglecting both ther-
mal radiation and convection with the surroundings at-
mosphere. While placing the cantilever in vacuum en-
ables to neglect the convection, one shall still consider
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FIG. 4. Effect of the temperature rise at the clamp on the
temperature profiles. The normalized temperature profiles
Θ(X) are obtained solving Eq. (2) with the boundary condi-
tions T (x = 0) = T0 (solid lines) or T (x = 0) = Tclamp such
that lth = L/3 (dash lines). These functions are independent
of the geometry. Such large lth has been chosen for illustra-
tion purposes, but in the experiments lth is in the few percent
range of L.

the radiative effects, especially as high temperatures are
reached. In general, the output power by a radiating
surface S at the temperature T is given by εσST 4, with
σ = 5.67× 10−8 W m−2 K−4 the Stefan-Boltzmann con-
stant and ε the material emissivity (ε = 1 for a per-
fect black body, ε = 0 for a perfect mirror, 0 < ε < 1
for common gray bodies such as silicon). The output
power by radiation for a cantilever infinitesimal element
dx with H � B is thus 2εσBdxT 4. Including this radia-
tive power into the energy balance, as well as the radia-
tion received from the surroundings at temperature T0,
the steady state heat equation (2) becomes

d

dx

(
λ(T )

dT

dx

)
=

Pa
BH

δD(x− x0) + ε
2σ

H
(T 4 − T 4

0 ). (8)

According to eq. (8) we can roughly evaluate the radia-
tive heat effect relatively to the heat conduction effect by
computing a dimensionless number F = 2εσT 3L2/λH.
For our silicon cantilevers, H = 2.5 µm, ε = 0.749,50,
around T = 1000 K we get F ≈ 0.25. The expected ra-
diative effects are thus to be considered at high temper-
ature, and one needs to solve (8) in order to accurately
determine the temperature profile of such cantilever.

In figure 5-a, we compute the temperature profiles θ(x)
solving eq. (8) with the boundary conditions of eqs. (3),
considering (ε = 0.7) or not (ε = 0) the radiative effect
for three absorbed powers Pa. As expected, the radiative
effect lowers the temperature rise. The corresponding
normalized temperature profiles are displayed in figure 5-
b: the radiative effect has a negligible effect on the func-
tions Θ(X). In the inset of figure 5-a, we report the max-
imum temperature increase ∆T as a function of Pa up
to the melting point. This function becomes dependent
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FIG. 5. a) Numerical temperature profiles with (ε = 0.7) and
without (ε = 0) the radiation heat transfer . The cantilevers
dimensions are H = 2.5 µm, B = 30 µm and L = 500 µm.
Inset: Maximum temperature increase ∆T (at x = L) versus
the absorbed power Pa normalized by power needed to reach
the melting point for a non radiative cantilever Pmax,ε=0

a . b)
Temperatures profiles of panel a) normalized by their respec-
tive maximum temperature increase ∆T = θ(x = L). Ther-
mal radiation has a negligible effect on the functions Θ(X).

of the cantilever geometry and does not have the same
variation as the spatial profiles. There is no equivalence
anymore between the power Pa and the position x seen
previously when conduction is the only thermal process
taken into account. For a cantilever such as H = 2.5 µm,
B = 30 µm L = 500 µm, one needs to impose 16% more
power to reach the melting point than without radiative
effect. This value drops to 4% with L = 250 µm. As
predicted by the dimensionless number F , the radiative
effect increases as L2.

In conclusion, as long as the temperature elevation is
such that T � (λH/2σεL2)1/3, corresponding to F � 1,
the radiative heat transfer effect can be neglected. Oth-
erwise, the radiative effect must be taken into account
to accurately predict the temperature elevation even if
the normalised temperature profile Θ(X) remains unper-
turbed at first order.
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III. MECHANICAL PROBLEM: THERMALLY INDUCED
FREQUENCY SHIFT

Let us describe the rectangular cantilever dynamics in
the Euler Bernoulli approximation: the flexural modes
of the cantilever are supposed to be only perpendicular
to its length and uniform across its width. The strain
can thus be described solely by the transverse deflection
w(x, t). The kinetic energy density of the vibrating beam
is 1/2µ(∂w/∂t)2, where µ denotes the linear mass density.
The potential energy density is the strain energy stored
elastically in the bent cantilever 1/2EI(∂2w/∂x2)2 with
E the Young’s modulus and I = BH3/12 the second
moment of inertia, and potential energy due to an op-
tional external load f . Integrating these quantities over
the length L, one obtains the total kinetic and potential
energy

K =
1

2

∫ L

0

µ

(
∂w

∂t

)2

dx, (9a)

U =

∫ L

0

[
1

2
EI

(
∂2w

∂x2

)2

− fw

]
dx. (9b)

All quantities µ, E et I and f may depend on the po-
sition x. By deriving the Lagrange’s equation for the
Lagrangian K − U , one obtains the well-known Euler-
Bernoulli equation governing the beam motion

∂2

∂x2

[
EI

∂2w

∂x2

]
+ µ

∂2w

∂t2
= f. (10)

The solution can be described as a Fourier expansion
function

w(x, t) =

∞∑
n=1

Wnφn(x) cos(ωnt+ ψn) (11)

where φn(x) are the normal modes and ωn the natural
frequencies. Wn and ψn are respectively the amplitude
and the phase of the vibration mode. The normal modes
φn(x) are the solutions of the time Fourier transform of
eq. (10) in the absence of external force (f = 0)

d2

dx2

[
EI

d2φn
dx2

]
− ω2

nµφn = 0, (12)

and must satisfy the appropriate boundary conditions.
In our case of a clamped-free cantilever, these boundary
conditions read as

φn(0) = 0,
dφn
dx

(0) = 0, (13a)

d2φn
dx2

(L) = 0,
d3φn
dx3

(L) = 0. (13b)

The normal modes function φn(x) form an orthonormal
basis. It is possible to show that the total mechanical
energy of the beam K + U is the sum of independent

terms corresponding to the mechanical energy of each
mode51. The cantilever can be seen as a collection of
independent harmonic oscillators. Like any system free of
non-conservative force, the mechanical energy associated
to each mode n remains constant in time. Inserting the
modal vibration Wnφn(x) cos(ωnt+ ψ) into eqs. (9), the
energy conservation allows us to get the frequencies of
natural vibrations

ω2
n =

∫ L

0

EI φ′′n(x)
2

dx∫ L

0

µ φn(x)
2

dx

, (14)

also known as the Rayleigh quotient52. Knowing the
function φn of various modes and substituting in (14), the
frequency of these modes of vibration can easily be cal-
culated. It can be useful to rewrite eq. 14 using the nor-
malised position X = x/L and associated normal modes
Φn(X) = φn(LX):

ω2
n =

∫ 1

0

EI Φ′′n(X)
2

dX

L4

∫ 1

0

µ Φn(X)
2

dX

. (15)

In the case where the geometrical dimensions B, H and
the Young modulus E remain constant along the length,
eq. (12) is reduced to a differential equation with constant
coefficients. The exact forms of the normal modes Φn can
be determined in terms of analytic functions:

Φn(X) = cosαnX − coshαnX

+ κn(sinαnX − sinhαnX)
(16)

with κn = (cosαn+coshαn)/(sinαn+sinhαn). The ap-
plication of the boundary conditions (13) only allows cer-
tain discrete values for the spatial eigenvalues αn. They
are the roots of

1 + cosαn coshαn = 0, (17)

which leads to α1 = 1.875, α2 = 4.694, . . . , and αn =
(n− 1/2)π for large n.

Inserting the modal functions (16) into the Rayleigh
quotient (14), one obtains the resonant pulsations ω0

n

ω0
n =

α2
n

L2

√
EI

µ
. (18)

For common materials, like silicon, rise in temperature
simultaneously induces a material softening (decrease of
E) and an increase of its dimensions due to thermal ex-
pansion. According to the dispersion equation (18), both
effects will affect the resonance frequency. Around a ref-
erence temperature T0, the thermal dependency of the
Young’s modulus can be described by its first order tem-
perature coefficient

aE(T0) =
1

E0

dE

dT

∣∣∣∣
T=T0

. (19)
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Similarly, the extent to which the cantilever material ex-
pands or retracts upon temperature change is expressed
by the linear thermal expansion coefficient defined by

al(T0) =
1

l0

dl

dT

∣∣∣∣
T=T0

. (20)

Both coefficients aE and al are intrinsic functions of
the constituting material and may vary with the ref-
erence temperature T0. For silicon at 298 K, aE ≈
−64× 10−6 K−153,54 and al ≈ 2.5× 10−6 K−155–57. In
the following, we describe quantitatively how the fre-
quency ωn evolves when the cantilever is submitted to the
one-dimensional temperature profile T (x) = T0 + θ(x).

A. Uniform temperature

Let us consider the case where the temperature distri-
bution is uniform, θ(x) = ∆T . In this case the dispersion
equation (18) remains valid, the resonance frequency can
be rephrased as

ωn = α2
n

√
EBH3

12mL3
, (21)

where the mass m and αn are the only constant terms
upon the cantilever temperature change. Deriving Eq.
(21) with respect to the temperature around T0, the fre-
quency shift can be obtained as

∆Ωn =
ωn − ω0

n

ω0
n

=
1

2
(aE + al) ∆T. (22)

The cantilever relative frequency shift induced by a uni-
form temperature change is independent of the mode
number n and is equally proportional to the thermal co-
efficients of elasticity aE and expansion al. For silicon,
the temperature effect on elasticity dominates over the
thermal expansion, the overall coefficient aE + al is neg-
ative. A rise of temperature will tend to decrease the
resonant frequency. In the derivation to get (22), we as-
sumed that al is a scalar, independent of the direction.
This assumption of isotropic thermal expansion is correct
for silicon which is a crystal with a diamond-like struc-
ture55. Note again that the coefficient al and aE are
defined at a specific temperature T0 and may vary with
it.

B. Arbitrary temperature profile

In the general case where the temperature increase pro-
file θ(x) imposed is not uniform, the material’s elasticity
E as well as the cantilever cross section dimensions B
and H, thus its second moment of inertia I and linear
mass density µ, are function of the variable x through

the temperature profile. Close to T0,

E(x) = E0(1 + aEθ(x)), (23a)
I(x) = I0(1 + 4alθ(x)), (23b)
µ(x) = µ0(1− alθ(x)). (23c)

The cantilever length L reads as

L = L0 + al

∫ L0

0

θ(x)dx. (24)

The determination of the corresponding normal mode
functions φn, leading to the resonance frequencies, im-
plies to solve eq. (12) with the varying parameters of
eqs. (23). For an arbitrary distribution θ(x), this dif-
ferential equation does not have any analytical solution.
However, for most materials, the thermo-induced me-
chanical effects are relatively small: |aEθ(x)| � 1 and
|alθ(x)| � 1. For silicon, even for the maximum possible
temperature increase, from 0 K to the melting temper-
ature T Si

m = 1683 K, one remains in this limit of small
variations since 1/al � 1/aE ≈ 15 000 K � T Si

m . Thus,
the effect of temperature on the normal modes φn can
be seen as a perturbation. In this limit, we show in the
appendix B that the frequency shift is not sensitive to
the normal mode variations at the first order. In the fol-
lowing we thus rely on eq. 16 for the expression of the
normal modes.

From small variation of eq. 15 around temperature T0,
the frequency shift induced by the temperature change
θ(x) = Θ(X)∆T can be expressed as a function of the
known normal modes Φn(X) and reads as

∆Ωn =
1

2

[
(aE + 4al)

∫ 1

0

XΘ(X)pn(X)dX+

al

∫ 1

0

Θ(X)qn(X)dX − 4al

∫ 1

0

Θ(X)dX

]
∆T. (25)

The functions pn and qn are respectively the normalized
square curvature and square amplitude

pn(X) =
Φ′′n(X)

2∫ 1

0

Φ′′n(X)
2

dX

=
1

α4
n

Φ′′n(X)
2
, (26a)

qn(X) =
Φn(X)

2∫ 1

0

Φn(X)
2

dX

= Φn(X)
2
. (26b)

The two first terms in (25) involve the normal modes
Φn, these contributions are thus mode dependent. The
first one involves the temperature profile weighted by the
local curvature pn(X). It corresponds to the effect of
bending energy change due to elasticity temperature de-
pendency and transversal dilatation. The second one in-
volves the temperature profile weighted by the local am-
plitude qn(X) and corresponds to the effect of the kinetic
energy change caused by dilatation. The third and last
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term is independent of the mode number n and corre-
sponds to the effect of the longitudinal dilatation.

In eq (25) the coefficients aE and al are assumed to
be independent from the temperature. For temperature
change ∆T relatively large, this assumption may not be
longer possible. For instance, the silicon thermal expan-
sion coefficient al varies from 2.5× 10−6 K−1 at room
temperature to 4.6× 10−6 K−1 at 1500 K. In such cases,
one needs to use the following generalized expression to
describe the frequency shift

∆Ωn = gn(∆T )

=
1

2

∫ 1

0

[
AE (Θ(X)∆T ) pn(X)+

Al (Θ(X)∆T ) (4pn(X) + qn(X)− 4)
]
dX,

(27)

where the functions AE and Al are by definition

AE(θ) =

∫ T0+θ

T0

aE(T )dT =
E(T0 + θ)

E0
− 1, (28a)

Al(θ) =

∫ T0+θ

T0

al(T )dT. (28b)

In the derivation (27) nothing was assumed beyond the
small elasticity change |AE(θ(x))| � 1, and small dimen-
sions change |Al(θ(x))| � 1.

C. Frequency shift sensitivities to softening and dilatation

In order to evaluate and compare the respective ef-
fects of the cantilever softening and its dilatation on the
frequency shift it is useful to look at the first order coef-
ficients in aE and al of ∆Ωn given by (25)

sE =
d∆Ωn
daE

=
1

2
Pn∆T, (29)

sl =
d∆Ωn

dal
=

1

2

(
4Pn − 4Θ̄ +Qn

)
∆T, (30)

with

Pn =

∫ 1

0

Θ(X)pn(X)dX, (31a)

Qn =

∫ 1

0

Θ(X)qn(X)dX, (31b)

and Θ̄ =
∫ 1

0
dXΘ the mean temperature profile. The

coefficients Pn and Qn correspond to the temperature
profile projection on the square modal curvature and the
square modal amplitude. The sensitivity to the elasticity
temperature dependency sE only depends on the curva-
ture coefficient Pn, whereas the sensitivity to the thermal
expansion sl depends both on the curvature and ampli-
tude coefficients and also of the mean temperature Θ̄

which is independent of the mode number n. Note that
the modal contributions in Pn and Qn have a positive
contribution, while the non-modal term is negative.

In table I we report the computed coefficients assuming
constant (Θ ≡ 1), linear (Θ ≡ X) and quadratic (Θ ≡
X2) temperature profile. For a uniform temperature, all
Pn, Qn and Θ̄ equal unity, we thus retrieve the temper-
ature sensitivity given by eq. (22), sE = sl = ∆T/2. For
large modes number, the curvature and amplitude tend
to be uniformly distributed along the cantilever, thus the
projection coefficients Pn, Qn tend to the mean normal-
ized temperature Θ̄, namely 1/2 for the linear profile and
1/3 for the quadratic one. Therefore, the sensitivity ratio
sl/sE tends to unity: high mode number behave as if the
temperature field is uniform at Θ̄∆T .

For low modes numbers (especially mode 1) the curva-
ture is larger near the clamp, which is at lower tempera-
ture, thus Pn < Θ̄. The frequency shift of the first mode
of a beam heated at its free end is thus less sensitive to the
elasticity temperature dependency than when the beam
temperature changes uniformly. On the contrary, mode 1
amplitude is larger close to the free end of the cantilever
which is at higher temperature, thus Q1 > Θ̄, leading to
a stronger sensitivity to the thermal expansion of the first
mode with respect to a uniform temperature. For silicon,
though the elastic effect is still dominant, neglecting the
thermal expansion for mode 1 induces errors of order of
10% for a linear temperature profile, and even close to
30% for a quadratic profile. This shows the importance
to take into account dilatation effects even for material
with relatively small dilatation effect (like silicon) when
one wants to determine accurately the temperature from
the frequency shift, especially with the first resonance.

mode number n 1 2 3 4 ∞

Θ(X) = 1

Pn 0.5 0.5 0.5 0.5 0.5
Qn 0.5 0.5 0.5 0.5 0.5
sl/sE 1 1 1 1 1

slal/sEaE -3.9 % -3.9 % -3.9 % -3.9 % - 3.9 %

Θ(X) = X

Pn 0.193 0.406 0.468 0.483 0.5
Qn 0.807 0.594 0.532 0.517 0.5
sl/sE -2.17 0.536 0.862 0.932 1

slal/sEaE 8.8 % -2.2 % -3.5 % -3.8 % - 3.9 %

Θ(X) = X2

Pn 0.062 0.225 0.295 0.313 0.333
Qn 0.675 0.414 0.360 0.346 0.333
sl/sE -6.71 -0.08 0.699 0.851 1

slal/sEaE 27 % 0.3 % -2.8 % -3.4 % - 3.9 %

TABLE I. Temperature modal projection coefficients Pn and
Qn computed for a constant Θ(X) = 1, linear Θ(X) = X
and quadratic Θ(X) = X2 profile. The sensitivity to elas-
ticity change sE and to thermal expansion sl depends on the
mode number n and the temperature profile Θ(X). The ratio
slal/sEaE is computed for silicon at 22 °C.
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D. Temperature increase from frequency shift for a silicon
cantilever

In section II, the temperature profiles θ(x) = Θ(X)∆T
were determined for a cantilever heated by a laser at any
position x0 along its length. In the case where conduc-
tion is the only dissipating mechanism, and neglecting the
temperature increase at the clamp, the functions Θ(X)
are fully determined by conductivity λ(T ), the maximum
temperature ∆T and the heating position x0. Θ(X)
is otherwise independent of the cantilever geometry, see
eq. (2). In addition we have concluded that thermal ra-
diation for a silicon cantilever have a negligible effect on
these spatial profiles.

In section III, we determined the frequency shift ∆Ωn
as a function of the mechanical properties variation with
temperature al(T ), E(T ) and the cantilever temperature
profile Θ(X)∆T . For a material whose mechanical prop-
erties are known such as silicon, it is thus possible to
deduce the maximum temperature increase ∆T :

∆T = g−1
n (∆Ωn) . (32)

The g−1
n functions are the inverse functions of gn which

are defined according to eq. (27). g−1
n functions can be

obtained numerically by finding the value ∆T associated
to any value of ∆Ωn such that ∆Ωn = gn(∆T ). In fig-
ure 6, we computed the g−1

n functions for a silicon ma-
terial up to the fourth mode when x0 = L. The tem-
perature profiles Θ(X) are computed solving (6) such
that lth = 0 or lth/L = 5%. This process can natu-
rally be applied to any other choice of x0 and lth. We
use the thermal conductivity displayed in figure 1 from
Ref. 47. The Young modulus is described by the
semi-empirical formula E(T ) = E0 − BET exp(−T 0

E/T )
with the constants E0 = 167.5 GPa, BE = 15.8 MPa/K,
T 0
E = 317 K given by Ref. 54. The thermal dilatation

is described by the empirical formula given in Ref. 55:
al(T ) = C1 (1− exp(−C2(T − C3)) + C4T ) × 10−6 with
C1 = 3.725 K−1, C2 = 5.88 K−1, C3 = 124 K and
C4 = 5.548× 10−4 K−1.

IV. EXPERIMENTAL VALIDATION

In order to test our approach, we perform resonance
frequency measurements of silicon cantilevers heated in
vacuum. In a previous paper45, we measured the fre-
quency shift by detecting cantilever spontaneous fluc-
tuations (thermal noise). Here we drive mechanically
the cantilever and track its resonance frequencies with
a phase locked loop (PLL). The advantage of such an ac-
tive technique is to procure a much larger signal-to-noise
ratio for a given acquisition time. Cantilever heating is
induced by partial absorption of a laser beam focused
at its free end. The fraction of the beam reflected off
the cantilever is used as a sensing beam to detect the
cantilever vibrations and allows us to track its resonance

-2 -1.5 -1 -0.5 0

0

500

1000

1500

FIG. 6. Functions g−1
1 to g−1

4 computed for a silicon can-
tilever heated at its extremity in vacuum, supposing lth =
L/20 (plain line) or lth = 0 (dashed lines). These function
are independent of the geometry and can be used for any sil-
icon cantilever to infer ∆T (and thus the full temperature
profile) from a measurement of ∆Ωn.

frequency shift (figure 7). In the following, we detail the
experiment and present the results obtained with two raw
silicon cantilevers.

A. Experimental setup

We use a stabilized solid state laser from Spectra
Physics, with a 40 mW maximum power available at
532 nm to irradiate the cantilever. The incident beam
power can be tuned continuously, benefiting from light
polarization, by rotating two linear polarizers relatively
to each other. The beam is then split in two: one beam
is sent on a photodiode to measure the incident power P0

while the other is focused through a lens at the cantilever
free end. The laser spot size illuminating the cantilever is
around 10 µm in diameter. The reflected beam is sent on
a two-quadrant photodiode, measuring two signals Pr1
and Pr2. The difference signal Pr1 − Pr2 delivered by
the two quadrants is sensitive to the cantilever bending
and used as the input signal of a PLL (Nanonis OC4).
The output signal of the PLL drives a piezo actuator
which vibrates the cantilever at its tracked resonance.
The sum signal Pr1 + Pr2 measures a fraction of the re-
flected power Pr and allow us, after proper calibration, to
know the cantilever reflectivity R = Pr/P0. The power
of the transmitted beam Pt is measured by a photodi-
ode placed under the cantilever and allows us to know
the transmission coefficient T = Pt/P0. The fraction A
of power absorbed by the cantilever is deduced from the
two latter measurements: A = 1−R− T .
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The cantilever is placed in a vacuum chamber at
1× 10−2 mbar. At this pressure level, the contribution of
convective heat transfer is negligible compared to ther-
mal conduction46.

vacuum

photodiode

2 quadrants photodiode

photodiode

Collimator

focusing lens

cantilever

Piezo

X Y Z stage

Phase Locked 
Loop

Amplifier

beam splitter
Optic fiber

Rotating 
polarizer

Fixed 
polarizer

Pr Pr

P0

Pt

FIG. 7. Experimental setup to simultaneously heat and track
the cantilever resonance frequencies. The cantilever placed in
a vacuum chamber is illuminated by a 532 nm laser beam, fo-
cused by a lens at its free end. The beam is partially absorbed,
reflected, and transmitted by the cantilever. The reflected
beam is sent on a two quadrants detector. The difference be-
tween the two quadrants is sent to a phase locked loop device,
which drives the piezo element shaking the cantilever at res-
onance.

We perform the experiments on two different geome-
tries of cantilevers: cantilever C500 is L = 500 µm long
(BudgetSensors AIO-CM) while cantilever C210 is L =
210 µm long (BudgetSensors AIO-FM). Both cantilevers
have the same cross sections dimensions B = 30 µm,
H = 2.7 µm, and are uncoated tipless atomic force micro-
scope silicon cantilevers. Geometrical dimensions were
measured using a scanning electron microscope (SEM)
with uncertainties around 1% for L and B and 4% for H.
For each tracked resonance, the incident power is contin-
uously increased up to a maximal value then symmetri-
cally decreased. The duration of one measurement is ap-
proximately 20 seconds. Since the characteristic time for
heat diffusion (ρcpL2/λ) is respectively 3 ms and 0.5 ms
for a 500 µm and 210 µm long cantilever, the temperature
field for both cantilevers can safely be considered in the
steady state regime during the whole experiment.

B. Results: power scan at x0 = L

The measured optical reflectivity R, transmission T
and deduced absorption A obtained with cantilever C210
and C500 are plotted in figure 8-a. The optical reflectiv-
ity R is calibrated by measuring the beam power reflected
onto the chip, where the reflectivity is expected to be
37% at 532 nm58. We observe a variation of the optical

coefficients with the incident optical power P0. Indeed
the silicon has an absorption depth of 1.3 µm at 532 nm,
which is comparable to the cantilever thickness H. The
cantilever is thus semi-transparent and has to be con-
sidered as a Fabry-Perot resonator with intrinsic optical
losses. The reflected and transmitted light intensities re-
sult from the interferences between the reflections inside
the cantilever. As the cantilever temperature increases,
so does its refractive index, detuning the Fabry-Perot
cavity. For the cantilever C210, the ∆T induced when
P0 increases from 0 to 6 mW modifies interferences of the
reflected beam from destructive to constructive, explain-
ing the oscillations observed. For the cantilever C500, the
reflected light interferes constructively at room temper-
ature, thus this cantilever absorbs 15% less power than
the C210. This illustrates the importance to measure ex-
perimentally these coefficients if one wants to determine
precisely the absorbed power.

The relative frequency shift ∆Ωn measured for the
first four resonances59 are displayed as a function of the
absorbed power AP0 in figure 8-b. As expected for a
cantilever in silicon, the temperature increase induces a
red-shift of its frequencies resonances. This red-shift in-
creases with the mode number n and accelerate with the
absorbed power. Note that for each measurement except
n = 1, we plot the frequency shift measured both for
an increasing and decreasing power. The perfect super-
position of the data indicates that the cantilever tem-
perature is in the steady state regime during the whole
experiment. Up to an absorbed power of 21.5 mW for
C210 and 10 mW for C500, both optical coefficients and
frequency shift measurements have an excellent repro-
ducibility, the cantilever only undergoes reversible phys-
ical changes. During the measurement of the first mode,
an additional power of 1 mW is imposed leading to ir-
reversible phenomena: the cantilever are molten at the
beam spot. The absorbed power for melting the can-
tilevers (22 mW and 10.3 mW) differ by 47%, which cor-
responds approximately to the cantilever length increase
(42%). Indeed, with conduction the main heat trans-
fer mechanism, the cantilever temperature varies as the
product PaL/BH (eq. (4)).

In figure 8-c, we report the temperature increase ∆Tn
deduced from all measured relative frequency shift us-
ing ∆Tn = g−1

n (∆Ωn) with gn given by eq. (27). The
temperature profiles Θ(x) used to compute g−1

n were ob-
tained solving eq. (6) with lth = 9 µm from eq. (7) with
H = 2.7 µm and lchip = 300 µm. We verify experimen-
tally this value for lth with measurements where x0 is
set close to the clamp with a constant incident power
P0. The measured frequency shifts imply a temperature
spatially varying as x + lth, as suggested by our model.
Because both cantilevers have identical cross section di-
mensions, the temperature at the clamp is expected to
behave similarly. All temperatures ∆Tn deduced from
the frequency shift are well superposed on the full range.
At AP0 = 22 mW for C210 (10.3 mW for C500), when
the cantilever is damaged during the first mode mea-
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FIG. 8. Measured optical properties (a), frequency shift (b) and deduced temperature increase (c-d) for cantilever C210 (left)
and C500 (right). a) Measured optical reflectivity R, transmission T and deduced absorption A as a function of the incident
beam P0. The reflectivity and absorption oscillations can be explained by the temperature dependency of the silicon refractive
index. b) Relative frequency shift ∆Ωn versus the absorbed power AP0. During the mode 1 measurement, at AP0 = 22 mW
for C210 and AP0 = 10.3 mW for C500 (dash-dot line), the cantilevers were molten at their extremity. c) Temperature increase
deduced from ∆Ωn. All measurements are well superposed on a single curve. d) Relative error between the temperature from
frequency shift measurements ∆Tn and theory ∆Ttheo for λeff(T ) = 0.81λbulk(T ) and ε = 0.7. The agreement between all
modes, and theory, is excellent.

surement, the deduced temperature 1402 °C (1390 °C for C500) is very close to the silicon melting temperature
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T Si
m = 1410 °C.
We can compare the deduced temperature ∆Tn to the-

oretical values obtained solving (8) imposing the bound-
ary conditions (5) with lth = 9 µm. Using the bulk
thermal conductivity values47, the predicted temperature
curve is significantly lower than the deduced tempera-
tures. At the cantilever melting, the theory incorrectly
predicts a temperature respectively 34% and 27% lower
than the expected silicon melting temperature for C210
and C500. This discrepancy suggests that the effective
cantilever conductivity is smaller than the bulk silicon
conductivity. At micrometer scale, it has indeed been
reported that the silicon conductivity is reduced due to
phonon scattering at interfaces60,61, deviating from the
classical diffusion model. According to Ref. 62, the con-
ductivity of silicon film with a thickness H = 2.7 µm is
expected to be approximately 20% lower than the bulk
value. Using an effective conductivity 19% lower than the
bulk silicon, we obtain an excellent agreement with the
temperature deduced from the frequency shift, for both
cantilevers. Note that the temperature profiles Θ(X)
used to deduce the temperatures from the frequency shift
only depend on the conductivity variation, see (2). The
deduced temperatures ∆Tn are thus independent of the
choice of this multiplication factor which takes into ac-
count the phonon confinement. The relative error be-
tween the temperature increase from frequency shift mea-
surements and the theory with λeff(T ) = 0.81λbulk(T )
and ε = 0.7 is below 5% on the full temperature range
for C210, and below 2% for C500. We show the temper-
atures computed in both cases where the radiative heat
transfer is considered (ε = 0.7) or neglected (ε = 0). For
C210, the radiative effects appear at very high tempera-
tures and are relatively small, but as expected from Fig.
5, they are significant for C500.

C. Results: position scan at fixed power

So far, the frequency shift has been measured as a func-
tion of the incident power illuminating the cantilever at
its extremity x0 = L. For the cantilever C500, the fre-
quency shift was also measured at fixed power as a func-
tion of the laser positions x0 along the cantilever length
(figure 9-a). Each tracked frequency shift were extracted
from the thermal fluctuations spectrum measured as per-
formed in Ref. 45. When the laser beam is focused close
to the clamped end acting as a cold thermostat, the heat
flows only in a short portion of the cantilever, thus the
warming is reduced (see figure 2). Accordingly, the mea-
sured frequency shifts for all three modes vanishes when
pointing the laser at x0 = 0. At the opposite, when point-
ing the laser far enough away from the clamped edge,
the frequency shift becomes nearly independent from the
laser position. This shows that the frequency shift is al-
most insensitive to the thermo-mechanical changes at the
cantilever free end.

As in the previous paragraph, it is possible to de-

duce the temperature increase ∆T independently from
every relative frequency shift using ∆Tn = g−1

n (∆Ωn).
In that case the functions g−1

n are computed using the
temperature profiles displayed in figure 2 described by
(4). The deduced temperature increase ∆Tn as a func-
tion of the laser position x0 are reported in figure 9-b and
are well superimposed on a single curve for the full range
0 < x0 < L.
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FIG. 9. Cantilever C500: a) Frequency shifts measured
by thermal noise when scanning in laser position x0 at fixed
laser power P = 13 mW. b) Temperature increase ∆T de-
duced independently from the measured frequency shift using
∆Tn = g−1

n (∆Ωn).

D. Frequency shift measurement as a temperature sensor

So far, the temperature increase ∆Tn has been deduced
independently from each mode knowing a priori the ther-
mal conductivity λ(T ), thus the temperature distribution
Θ(X). As a side-product of our study, we present here a
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different approach that takes advantage of the different
frequency measurements and allows to retrieve ∆T only
knowing the mechanical properties E(T ), al(T ). To do
so, let us describe the temperature profile with a polyno-
mial function of order N such as

θ(X) =

N∑
k=1

τkX
k, (33)

with thus ∆T =
∑N
k=1 τk. Using the theoretical expres-

sion (27), we get the expected values of the frequency
shift as

∆Ωn =
1

2

∫ 1

0

[
AE

(
N∑
k=1

τkX
k

)
pn(X)+

Al

(
N∑
k=1

τkX
k

)
(4pn(X) + qn(X)− 4)

]
dX,

(34)

with pn, qn, Al and AE defined by eqs.26 and eqs.28.
We therefore have a set of equations with N unknowns
(τ1, . . . , τN ). Measuring at least N frequency shifts, we
can thus perform a fit using a non linear least squared
method. For each absorbed power Pa, we performed this
fitting procedure with N = 4 for the data of cantilever
C500 displayed in figure 8-b. The obtained temperature
increase ∆T are reported in figure 10-a. The temperature
deduced are in excellent agreement (< 0.8% on average)
with theory on the full temperature range.

The choice of a polynomial base is arbitrary, and can be
tailored to any other information we have on the system.
For example, if the heating position is at X0 = x0/L < 1,
we can choose up to pad the polynomials above X0 with
a plateau. Using this description for the temperature,
we performed the fitting procedure with N = 3 for the
data of cantilever C500 displayed figure 9-a. The ob-
tained temperature increase ∆T are reported in figure 10-
b. There is a good agreement (< 5% on average) with
the data deduced independently for each modes assuming
the theoretical temperature profile.

With these two examples displayed on figure 10, we
demonstrate that at any fixed power or heating position,
the measurement of a few frequency shifts is enough not
only to measure the maximum temperature of the can-
tilever, but also to reconstruct the temperature profile
along the cantilever. This last information could then be
used to infer the cantilever thermal conductivity.

V. CONCLUSION

In this article, we propose a model that describes the
shift of the mechanical resonance frequencies of a can-
tilever submitted to a temperature profile. We include
both elasticity and geometry temperature dependency.
While the elastic part makes the frequency shift sen-
sitive to the temperature profile weighted by the local
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FIG. 10. Cantilever C500: Temperature increase deduced
from the frequency shifts using two different methods when
varying the incident power (a) or scanning in laser posi-
tion (b). The plain lines are computed for each mode with
∆Tn = g−1

n (∆Ωn), assuming the temperature profile com-
puted from the knowledge of the thermal conductivity (same
data as figs. 8-c and 9-b). The circles correspond to the proce-
dure described by eqs. 33 and 34: at a given power or position,
all frequency shifts are simultaneously used to guess the tem-
perature profile, using an ad-hoc decomposition base, with no
hypothesis on the thermal conductivity. Both methods are in
very good accordance.

curvature, the thermal dilatation makes it also sensitive
to region of large cantilever vibrations. The proposed
model quantitatively describes the experimental data for
a raw silicon cantilever heated locally in vacuum from
room temperature up to the melting point. The thermal
dilatation must be considered if one wants to deduce ac-
curately the temperature from the frequency shift. This
is particularly important for the first resonance mode:
neglecting geometrical effects can lead to discrepancies
up to 20% in temperature estimation for a non uniform
thermal gradient. In many experiments, the first oscilla-
tion mode of a resonator being the only measured one,
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such an effect should certainly be included to enable a
quantitative measurement of the temperature profile.

The set of experiment provided, from Raman spec-
troscopy to frequency shifts measurements, demonstrates
that our approach is pertinent for heating at any posi-
tion on a cantilever: actually, scanning along its length
proves to be a powerful tool to have a direct image of
the temperature profile, thanks to a space - power equiv-
alence in the heat equation when thermal radiation can
be neglected.

As an opening, we demonstrate in the last section of
the article that the temperature profile θ(x) can be eval-
uated thanks to the frequency shifts only, with no a pri-
ori knowledge of the thermal conductivity. The latter
could then be extracted directly by differentiation of θ(x).
The larger the number of resonance modes tracked, the
best will be the approximation of the temperature pro-
file. This approach only requires the knowledge of the
temperature dependency of the elasticity and geometry.
It could prove very interesting to evaluate the thermal
conductivity of materials at the micro- and nano-scale,
where confinement of phonons modifies significantly their
properties from the bulk behavior.

Though presented here for single-clamped cantilevers,
the approach can be extended to other shapes of res-
onators, like double-clamped cantilever, tuning forks,
membranes, or more complicate structures. One would
only need to update the resonant mode shape and ther-
mal profile to compute the frequency shifts, which can
then be inverted to access the temperature field.
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Appendix A: Raman spectroscopy experiment

In this appendix we describe the measurement of
the temperature profile thanks to Raman spectroscopy,
which results are plotted in Fig. 3. The cantilever is

placed in a closed cell with a glass optical window, vac-
uum pumped down to 7× 10−2 mbar. Raman shifts are
obtained through a commercial micro-raman confocal-
spectrometer, Witec alpha 300, using a green laser at
532 nm. The spot size on the cantilever is 10 µm in di-
ameter, and can be moved under the microscope in an
automated fashioned thanks to a motorised translation
platform. The incident optical power P0 is tuned by
a pair of adjustable polarisers at the laser output, and
measured before and after each scan in position with a
powermeter. The sensor is placed in front of the cell
window, and the measured value is corrected for the re-
flectivity of the glass window. P0 is stable within 1%
during all the scans.

FIG. 11. Raman spectra acquired scanning position x0 at
constant incident power P0 = 15 mW. Inset: microscope
image of the cantilever with the laser spot in the center
(x0 = 250 µm).

In Fig. 11, we plot the measured Raman spectra cen-
tered around a peak characteristic of silicon close to
520 cm−1, drifting and broadening when the temperature
increases. Using the model for the temperature depen-
dence of the Stoke’s peak position of Ref. 64, we can link
the relative wavenumber at the peak to the temperature.
Using the spectrometer pixel size, we would be limited
to typically ±30 K of resolution. However we can use
various strategies to estimate the peak position from the
spectrum shape and not only the highest pixel, for in-
stance by fitting the peak close to its maximum with a
parabola. Using this approach, the estimate the resolu-
tion around ±10 K for the measured temperature of the
tip.

It should be noted that the temperature dependence of
the Stoke’s peak position can be slightly different from
the model of Ref. 64 in our case, since it as been reported
that Raman shifts can depend on sample thickness or ge-
ometry40,43. As in Ref. 43 for instance, we had to offset
the relative wavelengths by 4 cm−1 to match the peak

https://doi.org/10.5281/zenodo.4629591
https://doi.org/10.5281/zenodo.4629591
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position at low power on the silicon chip with that ex-
pected at room temperature. The temperatures reported
in Fig. 3 could thus need a correction in the 10 − 20%
range40,43. The conclusion that the temperature profile
is driven by the product position times power is anyway
robust to this minor calibration issue.

Appendix B: Resonance frequency shift dependence on the
modal shape

When deriving eq. 25, we made the hypothesis that
the modal shape changes due to the temperature field
Θ(X)∆T could be ignored. In this appendix we demon-
strate that they are indeed a second order effect. To this
aim, let us expand the modal function to the first order
in ∆T :

Φn(X) = Φ0
n(X) + aΦ∆TΦ1

n(X), (B1)

with aΦ∆T � 1 and where Φ0
n(X) is the modal function

at uniform temperature T0 given by eq. (16) and Φ1
n(X)

corresponds to the modal shape modification due to the
imposed temperature profile. Expanding eq. 15 to the
first order in ∆T leads to

∆Ωn =
1

2

[ ∫ 1

0

Θ(X)(aE + 4al)pn(X)dX+∫ 1

0

Θ(X)al
(
qn(X)− 4

)
dX + 2aΦDn

]
∆T. (B2)

with

Dn =

∫ 1

0
Φ0
n
′′
(X)Φ1

n
′′
(X)dX∫ 1

0
Φ0
n
′′(X)

2
dX

−
∫ 1

0
Φ0
n(X)Φ1

n(X)dX∫ 1

0
Φ0
n(X)

2
dX

=

∫ 1

0

[
Φ0
n
′′
(X)Φ1

n
′′
(X)

α4
n

− Φ0
n(X)Φ1

n(X)

]
dX.

(B3)

We recognise eq. 25 in eq. B2, with only the Dn extra
term. Since each functions Φ0

n(X) and Φ1
n(X) meet the

boundary conditions (13), using 2 integration by parts
we have∫ 1

0

Φ0
n
′′
(X)Φ1

n
′′
(X)dX =

∫ 1

0

Φ0
n

(4)
(X)Φ1

n(X)dX (B4)

And as Φ0
n is solution of the Euler-Bernoulli equation,

Φ0
n

(4)
= α4

nΦ0
n, implying that D = 0. To the first order

in ∆T , the frequency shifts ∆Ωn are thus insensitive to
the modal shape modification by the temperature profile,
and eq. 25 can safely be applied using the unperturbed
resonance modes.
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