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We show that the integral foliated simplicial volume of a compact oriented smooth manifold with a regular foliation by circles vanishes.

Introduction

In his proof of Mostow rigidity in [START_REF] Gromov | Volume and bounded cohomology[END_REF], Gromov introduced the concept of simplicial volume for an oriented compact connected topological manifold M . This is a homotopy invariant of M , which measures the complexity of singular fundamental cycles of M with R-coefficients. When M is a smooth manifold, its simplicial volume, despite being only a homotopy invariant, has very deep connections with the geometrical properties of M . For example, if M admits a complete Riemannian metric of negative sectional curvature, its simplicial volume has to be positive (see [START_REF] Gromov | Volume and bounded cohomology[END_REF][START_REF] Thurston | Three-dimensional geometry and topology[END_REF][START_REF] Inoue | The Gromov invariant of negatively curved manifolds[END_REF]). Furthermore Gromov showed that the simplicial volume is dominated by the minimal volume of the manifold (see [START_REF] Gromov | Volume and bounded cohomology[END_REF]). In this light, positive simplicial volume is an obstruction to the existence of a sequence of collapsing Riemannian metrics, satisfying a uniform sectional curvature bound, on the given manifold (see [START_REF] Pansu | Effondrement des variétés riemanniennes[END_REF]).

A long-standing conjecture about this interplay between topology and geometry was stated by Gromov [START_REF]Asymptotic invariants of infinite groups[END_REF][START_REF]Parametrised simplicial volume and S 1 -actions[END_REF].A 4 (+)], [17, 3.1 (e) on p. 769]:

Conjecture A. Let M be an oriented closed (compact without boundary) connected aspherical manifold. If the simplicial volume of M vanishes, then the L 2 -Betti numbers of M vanish. In particular, the Euler characteristic of M also vanishes.

An approach to give a positive answer to Conjecture A is laid out in [START_REF]Metric structures for Riemannian and non-Riemannian spaces[END_REF][START_REF] Schmidt | L 2 -Betti numbers of R-spaces and the integral foliated simplicial volume[END_REF]: consider a suitable integral approximation of the simplicial volume, then apply a Poincaré duality argument to bound the L 2 -Betti numbers in terms of this integral approximation. Finally, relate the integral approximation to the simplicial volume on aspherical manifolds. An instance of such an approximation is the integral foliated simplicial volume (see [START_REF]Metric structures for Riemannian and non-Riemannian spaces[END_REF][START_REF] Schmidt | L 2 -Betti numbers of R-spaces and the integral foliated simplicial volume[END_REF]), which we consider here.

In this article we show that in the presence of a circle foliation and a big fundamental group, the integral foliated simplicial volume vanishes: Theorem B. Let M be a compact oriented smooth manifold equipped with a regular smooth circle foliation F, such that the inclusion of each leaf of F is π 1 -injective and has finite holonomy. Then the (relative) integral foliated simplicial volume of M vanishes:

   M, ∂M    = 0.
The work of Schmidt in [START_REF] Schmidt | L 2 -Betti numbers of R-spaces and the integral foliated simplicial volume[END_REF] provides the following corollary to Theorem B.

Corollary C. Let (M, F) be a closed connected oriented aspherical smooth manifold, and F a regular smooth circle foliation, such that the inclusion of each leaf is π 1 -injective and has finite holonomy. Then the L 2 -Betti numbers of M vanish. In particular χ(M ) = 0.

The work of Löh in [START_REF] Löh | Cost vs. integral foliated simplicial volume[END_REF] provides another corollary to Theorem B, involving a different invariant, namely the cost. The cost is a randomized version of the minimal number of generators of a group.

Corollary D. Let (M, F) be a closed connected oriented aspherical smooth manifold, and F a regular smooth circle foliation, such that the inclusion of each leaf is π 1 -injective and has finite holonomy. Then Cost(π 1 (M )) = 1, that is the manifold M is cheap.

Additionally, we obtain some information on the stable integral simplicial volume of manifolds with residually finite fundamental group: Corollary E. Let M be a compact oriented smooth manifold with residually finite fundamental group, equipped with a regular smooth circle foliation F, such that the inclusion of each leaf of F is π 1 -injective and has finite holonomy. If the foliation restricted to the preimage of the manifold part of the orbifold M/F is an orientable bundle, then the (relative) stable integral simplicial volume of M vanishes: M, ∂M ∞ Z = 0. This, and a slightly stronger statement, will be a corollary of the proof of Theorem B and will be explained at the end of Section 3 (see Remark 3.9). It can be seen as the generalisation of [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF]Corollary 1.3] to our setting.

Given a smooth manifold M , we may consider different notions of "symmetry" for M . A general notion is to split M into a family of submanifolds, that retain certain desired geometric or topological properties. In [START_REF] Cheeger | Collapsing Riemannian manifolds while keeping their curvature bounded. I[END_REF], Cheeger and Gromov studied a type of decomposition called an F -structure. This is a direct generalization of a smooth torus action on a smooth manifold. In particular, they show that if a Riemannian manifold M admits a polarized F -structure of positive dimension, then the minimal volume of M vanishes. Since the minimal volume dominates the simplicial volume, the simplicial volume of M also vanishes. Furthermore, in this case the Euler characteristic of M is also zero (see [START_REF] Cheeger | Collapsing Riemannian manifolds while keeping their curvature bounded. I[END_REF]Proposition 1.5] [25,p. 75]).

In the particular case when the splitting of M is given by the orbits of a smooth circle action, the Corollary to the Vanishing Theorem [14, p. 41] implies that the simplicial volume of M vanishes. This fact was independently proven by Yano in [START_REF] Yano | Gromov invariant and S 1 -actions[END_REF]. His proof is quite geometric and relies heavily on the stratification of the orbit space by orbit type. This proof has been extended to the setting of the integral foliated simplicial volume by Fauser in [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF], when one adds the assumption that the inclusion of every orbit in M is injective at the level of fundamental groups. We point out that this condition is not satisfied when the action has fixed points. A more general notion of symmetry can be found in the context of foliations. They arise naturally as solutions to differential equations (see [START_REF] Moerdijk | Introduction to foliations and Lie groupoids[END_REF]Chapter 1]). Moreover, smooth group actions, as well as the fibers of a smooth fiber bundle, are some examples of smooth foliations.

We follow the approach of Yano and Fauser [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF][START_REF] Yano | Gromov invariant and S 1 -actions[END_REF] to prove Theorem B. The hypothesis requiring the holonomy groups to be finite is necessary to obtain the stratification of the leaf space. Indeed, Sullivan in [START_REF] Sullivan | A counterexample to the periodic orbit conjecture[END_REF] constructed a 5-dimensional smooth manifold with a foliation by circles, with leaves having infinite holonomy. For this particular example the leaf space does not admit an orbifold structure. Furthermore, the condition that for any leaf its inclusion into the manifold induces an injective map between the fundamental groups is also necessary for our proof. Simple examples of a regular foliation by circles where the inclusion is not π 1 -injective are given by the Hopf fibrations S 2n+1 → CP n . We recall that the integral foliated simplicial volume of simply-connected manifolds, and in particular of S 2n+1 , is bounded below by 1 (see [START_REF] Schmidt | L 2 -Betti numbers of R-spaces and the integral foliated simplicial volume[END_REF]Proposition 5.29]).

Any smooth circle action gives rise to a circle foliation, but there are many instances of circle foliations not coming from circle actions. A simple example is given by considering non-orientable circle bundles over a nonorientable base. For example, the unit tangent bundle of a closed nonorientable surface is a circle foliation not coming from a circle action. This holds since the unit tangent bundle is not a principal circle bundle: if it were, then the structure group of the tangent bundle would be SO [START_REF] Bochner | Compact groups of differentiable transformations[END_REF], but since the surface is non-orientable the structure group of the tangent bundle cannot be reduced to SO [START_REF] Bochner | Compact groups of differentiable transformations[END_REF]. Also observe that the total space of the tangent bundle of any manifold is an orientable manifold. In particular the tangent bundle of the Möbius band {(θ, y)

∈ [0, 1] × [-1, 1]}/(0, y) ∼ (1, -y) is diffeomorphic to S 1 × [-1, 1] × R 2 .
Another concrete example is given by the unit tangent bundle of the Klein bottle. We remark that for these examples, there is a finite cover of the manifold with a smooth circle action such that the orbits of the action cover the leaves of the foliation. Other non-homogeneous examples are given by non-orientable Seifert fibrations over a non-orientable surface (see [START_REF] Orlik | Seifert manifolds[END_REF]Section 5.2]). We point out that the universal cover of a Seifert fibration is one of S 3 , S 2 × R and R 3 (see [27, Proposition 1]), and they all admit a smooth circle action. We remark that, for these cases, the conclusion of the main theorem can also be obtained by the work of Fauser, Friedl, Löh in [9, Theorem 1.7].

To prove Theorem B, we need to check that Yano's and Fauser's techniques from [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF][START_REF] Yano | Gromov invariant and S 1 -actions[END_REF] apply in the case of foliations instead of circle actions. After the hollowing procedure, we are left with a certain circle bundle

M n-2 → M n-2 /F n-2 .
If it is an orientable bundle, our proof is a straightforward translation of the proof in [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF]. But the bundle can be non-orientable over a non-orientable base (thus still having orientable total space): this is a novelty of foliations with respect to circle actions. Then we need an additional argument that exploits the flexibility of the integral foliated simplicial volume (see Section 3, in particular Setup 3.2).

In general, regular foliations by circles are instances of singular circle fiberings over polyhedra, introduced by Edmonds and Fintushel in [START_REF] Edmonds | Singular circle fiberings[END_REF]. They proved that a singular circle fibering on a smooth manifold is given by a group action if and only if the bundle part of the fibering is orientable (see [START_REF] Edmonds | Singular circle fiberings[END_REF]Theorem 3.8]). To the best of our knowledge, it is not known whether an arbitrary smooth manifold with a foliation by circles with finite holonomy admits a finite cover with a group action. If so, our main result would follow by multiplicativity of the integral foliated simplicial volume and the main result in [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF].

The condition of π 1 -injectivity is a technical one: it is used so that we have only a global representation of π 1 (M ) over a fixed essentially free standard Borel space to consider, instead of a potentially different one for every leaf. This technicality might be overcome by constructing a suitable family of representations and essentially free standard Borel spaces at each step of the hollowing construction (the hollowing construction is presented in Section 2.5).

We organize our work as follows: in Section 2 we present the preliminaries as well as a series of clarifying examples. In Section 3 we prove Theorem B.

Preliminaries

2.1. Simplicial volume. We begin by defining the simplicial volume, also known as the Gromov invariant or Gromov norm, of a topological compact connected oriented manifold M , with possibly empty boundary ∂M . Given a singular k-chain z = i a i σ i ∈ C k (M, R), we define its 1 -norm as

z 1 = i |a i | , where each σ i : ∆ k → M is a singular simplex of dimension k.
The simplicial volume of M is the infimum over the 1 -norms of the (relative) real cycles representing the fundamental class:

M, ∂M = inf i |a i | [M, ∂M ] = i a i σ i ∈ H n (M, ∂M ; R) .

2.2.

Integral foliated simplicial volume. Consider a topological compact connected oriented manifold M and its universal cover M . Denote by Γ = π 1 (M ) the fundamental group of M . Then Γ acts on M by deck transformations. This induces a natural action of Γ on C k ( M , Z). There is a natural identification

C k (M, Z) ∼ = Z ⊗ ZΓ C k ( M , Z).
A standard Borel space is a measurable space that is isomorphic to a Polish space with its Borel σ-algebra B. Recall that a Polish space is a separable completely metrizable topological space. Let Z be a standard Borel probability space, that is, a standard Borel space endowed with a probability measure µ. Suppose now that Γ acts (on the left) on such a standard Borel probability space (Z, B, µ) in a measurable and measure-preserving way. Denote this action by α : Γ → Aut(Z, µ). Set

L ∞ (Z, µ; Z) = f : Z -→ Z Z |f |dµ < ∞ .
We define a right Γ-action on L ∞ (Z, µ; Z) by setting

(f • γ)(z) = f (γz), ∀f ∈ L ∞ (Z, µ; Z), ∀γ ∈ Γ, ∀z ∈ Z.
There is a natural inclusion for any k ∈ N:

i α : C k (M, Z) ∼ = Z ⊗ ZΓ C k ( M , Z) -→ L ∞ (Z, µ; Z) ⊗ ZΓ C k ( M , Z) 1 ⊗ σ -→ const 1 ⊗ σ,
where the tensor products are taken over the given actions. We will write C * (M ; α) for the complex L ∞ (Z, µ; Z) ⊗ ZΓ C * ( M , Z). We call its elements parametrized chains. Given a parametrized k-chain z

= i f i ⊗ σ i ∈ L ∞ (Z, µ; Z) ⊗ ZΓ C k ( M , Z) we define its parametrized 1 -norm as |z| 1 = i Z |f i |dµ,
where each σ i : ∆ k → M is a singular simplex of dimension k. Here we assume that z is in reduced form, that is, all the singular simplices σ i belong to different Γ-orbits. For more details on the integral foliated simplicial volume, see for example [START_REF] Löh | Integral foliated simplicial volume of hyperbolic 3manifolds[END_REF]. Note that the action of Γ on M restricts to the preimage of the boundary of M under the covering map p : M → M . Thus we get an action Γ -→ Homeo(p -1 (∂M )).

This restricted action allows us to define the subcomplex

C * (∂M ; α) = L ∞ (Z, µ; Z) ⊗ ZΓ C * (p -1 (∂M ), Z) ⊂ C * (M ; α),
and hence the quotient

C * (M, ∂M ; α) = C * (M ; α)/C * (∂M ; α).
This last quotient is naturally isomorphic to the chain complex

L ∞ (Z, µ; Z) ⊗ ZΓ C * ( M , p -1 (∂M ); Z).
From now on we set:

H * (M, ∂M ; α) = H * (C * (M, ∂M ; α)).
The (relative) integral foliated simplicial volume of M is the infimum over the parametrized 1 -norms of the (relative) parametrized cycles representing the fundamental class:

   M, ∂M    = inf α,(Z,µ) {    M, ∂M    α α : Γ -→ Aut(Z, µ)} , where    M, ∂M    α is given by inf i Z |f i |dµ [M, ∂M ] α = i f i ⊗ σ i ∈ H n (M, ∂M ; α) .
Here 

M, ∂M ≤    M, ∂M    .
Note also that the infimum in the definition of

   M, ∂M  
 is achieved by an essentially free action α, meaning that µ ({z Corollary 4.14].

∈ Z | Stab α (z) = {id Γ }}) = 0 [20,
From now on, we consider only smooth connected orientable manifolds. 2.3. Foliations. We proceed to define a smooth regular foliation on a smooth connected manifold M and state some of its properties. A smooth regular foliation of M is a partition F = {L p | p ∈ M } of M where each leaf L p is an embedded smooth submanifold L p ⊂ M , called the leaf through p, and such that the tangent spaces of the leaves are smooth subbundles of T M (see [21, p. 9 (iii)]). Remark 2.2. Observe that there might exist foliations where the leaves are not embedded submanifolds [21, Section 1.1], but we will not consider such foliations in the present work.

The following phenomena give rise to foliations: let p : M → B be a smooth submersion. Then the partition induced by the fibers of p produces a foliation. More generally, any involutive subbundle of T M induces a foliation on M . Consider a compact Lie group G acting smoothly on M with finite stabilizer subgroups. The partition The codimension codim(M, L) of a foliation on a connected manifold M is the codimension of any leaf L. The quotient space M/F induced by the partition, equipped with the quotient topology, is called the leaf space of F. We denote the projection map by π : M → M/F, and the image under π of a subset A ⊂ M by A * . 2.3.1. Germs. Given two smooth manifolds M and N , a point x ∈ M , and two diffeomorphisms f : M → N and g : M → N , we say that f and g define the same germ at x, and denote it by

F = {G(p) = {gp | g ∈ G} | p ∈ M } ,
f ∼ x g, if there exists an open neighborhood U ⊂ M of x such that f | U = g| U . The germ of f at x is: [f ] x = {g : M -→ N | f ∼ x g and g is a diffeomorphism} .
If N = M , we denote the group of germs at x of diffeomorphisms f with f (x) = x by Diff x (M ).

2.3.2.

Holonomy. Fix a leaf L ∈ F, and fix two points p, q ∈ L. Consider two transversal sections T and S to L at p and q. That is, T and S are submanifolds in M such that T p M = T p L ⊕ T p T and T q M = T q L ⊕ T q S. Consider α : [0, 1] → L any path joining p to q.

Proposition 2.3 (Section 2.1 [21]).

There exists an open neighborhood A ⊂ T of p, contained in some foliated chart, and a diffeomorphism f : A → S, given by α : [0, 1] → L such that f (p) = q and for any x ∈ A, the image f (x) is contained in the same leaf as x. 

Proposition 2.5 ([21]). The following hold:

(i) Let α be a path in L from p to q and β be a path in L from q to w. Let T , S and R be transversal sections to L at p, q and w respectively. Then for the concatenation of paths βα we have:

hol(βα) R,T = hol(β) R,S • hol(α) S,T .
(ii) Consider α and β homotopic paths, relative to the fixed end points, in L from p to q, and fix T and S transversal sections at p, respectively q. Then hol(α) S,T = hol(β) S,T .

(iii) Let α be a path in L from p to q, and consider T and T two transversal sections at p and S and S two transversal sections at q. Denote the constant path with image p by c p . Then hol(α) S ,T = hol(c q ) S ,S hol(α) S,T hol(c p ) T,T .

Considering closed loops in L with base point p ∈ L, we point out that by Proposition 2.5 (i) and (ii), for a transversal section T at p we have a group homomorphism

hol T : π 1 (L, p) -→ Diff p (T ).
Moreover taking k = codim(M, L), since for any transversal section T we can identify Diff p (T ) = Diff 0 (R k ), by Proposition 2.5 (iii), we obtain a group homomorphism hol(L, p) : π 1 (L, p) -→ Diff 0 (R k ). We define the holonomy group of the leaf L at p, denoted by Hol(L, p), to be the image of π 1 (L, p) under the homomorphism hol(L, p). This group is independent of the base point p up to conjugation in Diff 0 (R k ). We denote by K the kernel of the short exact sequence:

(2.1) 1 -→ K -→ π 1 (L, p) -→ Hol(L, p) -→ 1.
The holonomy group of a leaf measures roughly "how twisted" the foliation is around the leaf. A foliation induced by a submersion has trivial holonomy for any leaf. Observe that, by considering derivatives of germs at the origin, we obtain a new representation:

Dhol(L, p) : π 1 (L, p) -→ GL k (R).
Remark 2.6. When a smooth Lie group H acts on a smooth manifold M in such a way that the map H×M → M ×M given by (h, p) → (hp, p) is proper, there exists a smooth Riemannian metric g on M such that the action of H is by isometries (see [START_REF] Alexandrino | Lie groups and geometric aspects of isometric actions[END_REF]Theorem 3.65]). Such an action is called a proper action. Fix p ∈ M and consider the elements of H as diffeomorphisms of M onto itself. By taking the derivative of h ∈ H we have a linear map

D p h : T p M → T hp M . For h ∈ H such that hp = p it becomes D p h : T p M → T p M .
Since h maps minimizing geodesics to minimizing geodesics, for v ∈ T p M small enough we have:

h exp p (v) = exp p (D p h(v)). (2.2)
Thus, h is a linear map with respect to the normal coordinates exp p : U ⊂ T p M → V ⊂ M . Assume p is fixed by the action of H, i.e. hp = p for all h ∈ H. From Equation (2.2) it follows that the linear action of H on T p M is effective if and only if the action of H is effective. Observe that for any finite group H acting smoothly on a compact manifold M , the action is proper. Thus if p ∈ M is in the fixed point set of the action of H, the action is linear under the normal coordinates of any H-invariant Riemannian metric. See also [2, Theorem 1] and [23, Lemma 2.1 (1) and ( 2)].

We now describe a tubular neighborhood of a leaf L in M with finite holonomy. Let L → L be the covering space of L associated with the subgroup K in (2.1). Note that there is an action of Hol(L, p) on L. Consider a transversal section T at a point p ∈ L and the holonomy action of the fundamental group π 1 (L, p) on T described above. We consider the diagonal action of H = Hol(L, p) on L × T given by h • (q, x) = (h • q, h • x). Then we have the following theorem: Theorem 2.7 (Local Reeb stability, Theorem 2.9 in [START_REF] Moerdijk | Introduction to foliations and Lie groupoids[END_REF]). Let (M, F) be a regular foliation. For a compact leaf L with finite holonomy H = Hol(L, p), there exists a foliated open neighborhood V of L in M and a diffeomorphism

L × H T = ( L × T )/H -→ V.
Moreover for any point q ∈ V , the whole leaf L q is contained in V , and, setting

H q = {h ∈ H | hq = q}, is homeomorphic to L/H q .
In the case where F is induced by a group action, Theorem 2.7 is known as the Slice Theorem (see [START_REF] Alexandrino | Lie groups and geometric aspects of isometric actions[END_REF]Theorem 3.57]). We say that a regular smooth foliation F has finite holonomy if every leaf has finite holonomy. For more information on foliations, see for example [START_REF] Moerdijk | Introduction to foliations and Lie groupoids[END_REF]4].

Orbifolds.

For the sake of completeness, we recall the notion of an orbifold. Consider a topological space X, and fix n ≥ 0. An n-dimensional orbifold chart on X is given by an open subset U ⊂ R n , a finite group G of smooth automorphisms of U , and a G-invariant map φ : U → X, which induces a homeomorphism of U /G onto some open subset U ⊂ X. By G-invariant we mean that φ(g • u) = φ(u) for any g ∈ G and u ∈ U . An embedding λ : ( U , G, φ) → ( V , H, ψ) between two orbifold charts is a smooth embedding λ : U → V such that ψλ = φ. Given two charts ( U , G, φ) and ( V , H, ψ) with φ( U ) = U and ψ( V ) = V , we say that they are compatible if for any x ∈ U ∩ V there exists W ⊂ U ∩ V , an open neighborhood of x, and a chart ( W , K, µ) with µ( W ) = W , such that there are embeddings ( W , K, µ) → ( U , G, φ) and ( W , K, µ) → ( V , H, ψ). The space X equipped with an atlas of orbifold charts is called an orbifold, and we use the notation O X to distinguish it from the original topological space X.

Let (M, F) be a regular foliation with all leaves compact with finite holonomy. From Theorem 2.7, an open neighborhood of p * ∈ M/F is given by T /Hol(L p , p). Thus the transversal sections to the leaves, the holonomy, and the projection map π induce an orbifold atlas on M/F. Theorem 2.8 (Theorem 2.15 in [START_REF] Moerdijk | Introduction to foliations and Lie groupoids[END_REF]). Let (M, F) be a foliation of codimension k such that any leaf of F is compact with finite holonomy group. Then the space of leaves M/F has a canonical orbifold structure of dimension k.

Consider an n-dimensional orbifold X, and for x ∈ X, let ( U , G, φ) be a chart around x. Take y ∈ U such that φ(y) = x. The local group or isotropy at x is the conjugacy class (see [START_REF] Moerdijk | Introduction to foliations and Lie groupoids[END_REF]Section 2.4]

) in Diff 0 (R n ) of G x := {g ∈ G | gy = y}.
Consider (M, F) a regular foliation of codimension k, with compact leaves of finite holonomy. Given p * ∈ M/F, the isotropy G p is the conjugacy class of Hol(L p , p) in Diff 0 (R k ) (see [START_REF] Moerdijk | Introduction to foliations and Lie groupoids[END_REF]Theorem 2.15]).

Triangulation of the leaf space.

Let M be a compact manifold. We consider a regular foliation (M, F) by circles, i.e. any leaf L of F is homeomorphic to a circle. We observe that in this case the holonomy of any leaf L is isomorphic to either the trivial group, Z/kZ, for k ∈ N ≥2 , or Z, since Z, kZ and the trivial group are the only subgroups of Z = π 1 (S 1 ). We will assume from now on that Hol(L, p) is finite, i.e. of the form Z/kZ or the trivial group, for any leaf. In this case, by Theorem 2.8, the leaf space M/F is a compact orbifold. For a general regular foliation (M, F) with compact leaves and finite holonomy we will now define a decomposition into strata, and recall that we can triangulate the leaf space M/F with respect to this decomposition. The triangulation of the leaf space is such that the interior of each simplex lies in a smooth submanifold contained in M/F. Furthermore the projection map π : M → M/F is a smooth submersion between smooth manifolds over the interior of each simplex.

2.4.1. The stratification. We recall that a stratification of a topological space X is a partition of X into subsets {Σ α } α∈Λ such that:

(i) The partition is locally finite, i.e. each compact subset of X only intersects a finite number of strata.

(ii) If Σ β ∩ cl(Σ α ) = ∅, then Σ β ⊂ cl(Σ α ). (iii) If X is a smooth manifold, the strata Σ α are embedded smooth sub- manifolds.
Let H < Diff 0 (R n ) be a finite subgroup. We denote by (H) its conjugacy class in Diff 0 (R n ). For a regular foliation (M, F) with compact leaves and finite holonomy, we consider the set

Σ (H) = {p * ∈ M/F | (Hol(L p , p)) = (H)} ⊂ M/F.
From the description of the tubular neighborhood of a leaf L p given by Theorem 2.7, we can see that {Σ (H) | H = Hol(L p , p)} gives a stratification of M/F. We can describe Σ (H) locally as follows: for p * ∈ Σ (H) we consider Lp × H T , the tubular neighborhood of L p described in Theorem 2.7. The points in Σ (H) correspond to the projection of the fixed points of the action of π 1 (L p ) on T . Thus locally, the stratification of M/F is induced from the stratification of the orbit space T /H (see [START_REF] Pflaum | Analytic and geometric study of stratified spaces[END_REF]Section 4.3], [29, Sections 4.2 and 4.3]). From the fact that the transverse spaces T to the leaves give an atlas for the orbifold M/F, we see that indeed the subsets Σ (H) of M/F induce a stratification on the orbifold M/F (see [START_REF] Moerdijk | Simplicial cohomology of orbifolds[END_REF]Section 1.2]). Remark 2.9. In general for an orbifold X, the isotropy groups yield a stratification of X, by setting Σ

(H) = {x ∈ X | (H) = (G x )}.
For a foliation by circles (M, F) with finite holonomy over a compact manifold M we describe the holonomy stratification. The stratification of M/F is given by {Σ (Z/kZ) | k ∈ N}. Since M is compact, there are finitely many conjugacy types of holonomy groups.

Proposition 2.10. Let (M, F) be a regular foliation with compact leaves and finite holonomy. Consider a connected component Σ of a holonomy stratum. Then for S = π -1 (Σ), the projection π : S → Σ is a fiber bundle.

Proof. Fix p ∈ S, consider T a fixed transversal to L p at p, and assume that H is the holonomy group of L p at p. Observe that, by construction, for any x ∈ S we have L x ⊂ S. Thus the foliation F induces a regular foliation on S, which we also denote by F. Recall that q ∈ S ∩ T is fixed by H. Then by Theorem 2.7, we have that L q = Lp /H is a covering space of L p of degree 1. Since q was arbitrary, we conclude that all the leaves of (S, F) induce a degree 1 covering of L p .

We now consider (S, F), and denote by G the holonomy group of L p at p for the restricted foliation F to S. Since we know that all leaves in (S, F) are covering spaces of L p corresponding to the trivial group, and are the fixed points of the faithful action of G on S ∩ T , we conclude that G is the trivial group. Then, by Theorem 2.7, we obtain that locally the foliation (S, F) is a product foliation.

2.4.2. Triangulation. Given an orbifold X, there exists a triangulation T of X, such that the closures of the strata Σ (H) are contained in subcomplexes of T (see [START_REF] Goresky | Triangulation of stratified objects[END_REF][START_REF] Yang | The triangulability of the orbit space of a differentiable transformation group[END_REF]). By taking a subdivison of T we can assume that for a simplex σ of T , the isotropy groups of the points in the interior of σ are the same, and are subgroups of the isotropy groups of the points in the boundary of σ. Furthermore we can assume that there is a face σ ⊂ σ, such that the isotropy is constant on σ \ σ , and possibly larger on σ . Thus, any simplex σ of T has a vertex v ∈ σ with maximal isotropy. This means that for any point

x ∈ σ, a conjugate of G x is contained in G v .
2.5. Hollowings. In this section, we introduce our main geometric tool, hollowings. The right category in which to consider this construction is that of manifolds with corners, so we first define these for the sake of completeness. We follow the presentations in [8, Appendix B] and [START_REF] Yano | Gromov invariant and S 1 -actions[END_REF], and refer the reader interested in more details on manifolds with corners and their submanifolds to [START_REF]Parametrised simplicial volume and S 1 -actions[END_REF]Appendix B].

Let n ∈ N and let k ∈ {0, ..., n}. A sector of dimension n with index k is a set of the form

A = {(x 1 , ..., x n ) ∈ R n | x i 1 ≥ 0, ..., x i k ≥ 0},
with pairwise distinct i 1 , ..., i k ∈ {1, ..., n}. Note that R n is a sector of dimension n with index 0. The index of a point x ∈ A is the number of its coordinates that are equal to 0 among

x i 1 , ..., x i k . The index of 0 ∈ R n is k, the index of A.
Let m ∈ N be arbitrary and A ⊂ R n a sector. Let U ⊂ A be open, and V ⊂ R m an arbitrary subset. A map φ : U → V is smooth if for every x ∈ U , there exists an open neighborhood U x ⊂ R n of x and a smooth map

φ x : U x → V such that φ x and φ coincide on U ∩ U x .
Let M be a topological space. An atlas with corners for M of dimension n is a family (U i , V i , φ i ) i∈I where (V i ) i∈I is an open cover of M , each U i is an open subset in a sector A i of dimension n and each φ i : U i → V i is a homeomorphism (called chart) such that all transition maps are smooth, i.e. for all i, j ∈ I, the map

(φ -1 j • φ i )| U i ∩φ -1 i (V j )
, is smooth (in the above sense).

We say that a Hausdorff second countable topological space M is an ndimensional manifold with corners, if it admits an atlas with corners as above. For such an M , define the subsets ∂M =< (1) M ⊃ ... ⊃< (n) M as the image under the chart homeomorphisms of all subsets of points of index at least 1 ≤ ... ≤ n. This does not depend on the choice of the charts.

In order to define submanifolds with corners, we need the notion of subsector. Let A = {x ∈ R n | x i 1 ≥ 0, ..., x i k ≥ 0} be a sector of dimension n with index k. Let p, , j ∈ N with p ≥ . A subsector of A (of codimension p, coindex in A and complementary index j) is a subset A ⊂ A determined by sets L ⊂ {i 1 , ..., i k } with elements, P ⊂ {1, ..., n} \ {i 1 , ..., i k } with pelements and J ⊂ {1, ..., n} \ ({i 1 , ..., i k } ∪ P ) with j elements such that

A = {(x 1 , ..., x n ) ∈ A | x i = 0 ∀i ∈ L, x i = 0 ∀i ∈ P, x i ≥ 0 ∀i ∈ J}.
Let M be a manifold with corners. A closed subspace N ⊂ M is called a submanifold (with corners), if for all x ∈ N there exists a chart φ : U → V of M , where U is contained in a sector A, and a subsector

A ⊂ A such that φ(0) = x and φ -1 (V ∩ N ) = U ∩ A .
With these definitions, we are able to define hollowings. Let M be a manifold with corners and N a submanifold with corners of M , such that N is transverse to each

< (k) M \ < (k+1) M and < (k) N = N ∩ < (k) M . The tubular neighborhood ν(N ) of N in M has the structure of a disk bundle over N . Let ψ : ν S (N ) × [0, 1] → ν(N ) be the parametrization of ν(N ) in polar coordinates, that is ν S (N )
is the total space of the associated sphere bundle, ψ| ν S (N )×{1} = id ν S (N ) and ψ| ν S (N )×{0} is the projection of the bundle ν(N ) → N . Take

M = cl (M \ ν(N )) ψ| ν S (N )×{1} ν S (N ) × [0, 1].
There is a natural map p : M → M defined by p| M \ν(N ) = id M \ν(N ) and p| ν S (N )×[0,1] = ψ. The space M has a canonical structure as a manifold with corners, making p a differentiable map between manifolds with corners.

The hollowing of M at N is the map p : M → M . In the case where N = ∅, we define M = M and p = id M . The submanifolds N ⊂ M and p -1 (N ) ⊂ M are called the trace and the hollow wall of p, respectively. For a submanifold L ⊂ M , denote by p(L) the submanifold cl(p -1 (L\(L∩N ))) ⊂ M .

Let (M, F) be a compact oriented n-dimensional manifold, with possibly empty boundary ∂M , equipped with a regular foliation of dimension q, such that each leaf has finite holonomy. Consider a triangulation of the leaf space M/F as described in Section 2.4.2, and denote by (M/F) (k) the k-th skeleton of the triangulation. We define a sequence of hollowings

M n-q-1 p n-q-2 / / M n-q-2 / / • • • / / M 1 p 0 / / M 0 = M
in the following way. For k = 0, ..., n -q -2, we define inductively the map p k : M k+1 → M k to be the hollowing at

X k = pk-1 (. . . p0 (π -1 ((M/F) (k) )) . . .),
for k ≥ 1, and X 0 = π -1 ((M/F) (0) ). The following proposition shows that at each step of the hollowing we obtain a foliated manifold.

Proposition 2.11. Let (M, F) be a compact smooth manifold with a regular foliation with finite holonomy. For each hollowing p i : M i+1 → M i , there are regular foliations F i on M i , and F i+1 on M i+1 , such that p i maps F i+1 to F i .

Proof. We will prove this by induction on i. Assume that (M i , F i ) is a regular foliation with finite holonomy. Consider U a tubular neighborhood of X i in M i , and fix q ∈ U . Then q belongs to a tubular neighborhood of some leaf L p ⊂ M i of F i with p ∈ X i . Denote by H the holonomy group of L p , and T a transverse subspace to L p at p. Since a tubular neighborhood of L p is foliated diffeomorphic to Lp × H T , the leaf L q is contained in this tubular neighborhood, and thus in the tubular neighborhood U of X i . This implies that the tubular neighborhood of X i in M i is foliated. Since we are hollowing M i at X i , we see that the foliation F i restricted to U minus the zero-section X i induces a foliation on ν S (X i ) × [0, 1], with finite holonomy. This proves the proposition.

Remark 2.12. In general, let (M, F) be a compact smooth manifold with a regular foliation with finite holonomy. Consider a fixed stratum Σ (H) of M/F. For p * ∈ Σ (H) we have, from Theorem 2.7, that a neighborhood is given by T /H. Furthermore, we may assume that T is homeomorphic to an (n -q)-disk, where q is the dimension of F, and that H acts linearly on it (see Remark 2.6). This implies that the fixed point set of the action of H on T is a linear subspace. Thus locally, the stratum is a submanifold in T /H. Since, by construction, the simplices of the triangulation are contained in strata, from the description of the hollowing and the local description of the foliation, we see that the map p * i : M i+1 /F i+1 → M i /F i is a hollowing on the i-th skeleton. Remark 2.13. For the particular case that the regular foliation F is given by circles, the foliation F i is also given by circles.

Examples. We present some examples of hollowings.

Example 2.14.

(1) For the standard n-dimensional simplex ∆ n , we denote by (∆ n ) (k) the k-th skeleton of ∆ n . We can define a sequence of hollowings inductively. Setting ∆ n 0 = ∆ n , we define

q k : ∆ n k+1 → ∆ n k the hollowing at qk-1 • • • q0 ((∆ n ) (k) ) (see Figure 2.2). (2)
The following is a hollowing for a singular foliation, but we find it helpful as an example. Let S 1 act on S 2 by rotations along the northsouth axis. This gives a foliation F of S 2 by the orbit circles, except for the two fixed points N, S. The leaf space (S 2 ) * is a segment with orbifold structure given by the open segment and its two boundary points corresponding to the fixed points N, S.

A hollowing p at the submanifold {N, S} is described as follows: in (S 2 ) the tubular neighborhoods ν(N ), ν(S) ⊂ S 2 of N and S (two 2-disks) are replaced by two annuli [0, 1] × (S 1 ∪ S 1 ), by gluing {1} × (

) Let S 3 = {(z 0 , z 1 ) ∈ C 2 | |z 0 | 2 + |z 1 | 2 = 1}. 3 
Fix p, q ∈ Z with (p, q) = 1 and let S 1 act on S 3 via e 2iπθ • (z 0 , z 1 ) = (e 2iπθp z 0 , e 2iπθq z 1 ).

This action is called a weighted Hopf fibration; when p, q = 1 we recover the classical Hopf fibration. The action has no fixed points, but the circles

{(z 0 , 0) | |z 0 | = 1}, {(0, z 1 ) | |z 1 | = 1} ⊂ S 3 ,
have non-trivial isotropy isomorphic to Z/pZ and Z/qZ, respectively. All other points have trivial isotropy. The orbit of each point is a circle. The orbit space is S 2 , with orbifold structure a cylinder with upper and lower boundary circles collapsed to points x * p and x * q , respectively, corresponding to the two orbits with isotropy Z/pZ and Z/qZ, respectively. Take a triangulation of this S 2 such that x * p , x * q are among the vertices: for example add four vertices y * 0 , ..., y * 3 on the equator and join each of them by edges to x * p and

x * q (see Figure 2.4). In this fashion, we obtain a triangulation of S 2 with 6 vertices, 12 edges and 8 triangles. The hollowings consist here of a single map p 0 : M 1 → S 3 , that is the hollowing at π -1 ((S 3 /F) (0) ): we take tubular neighborhoods ν p , ν q , ν y 0 , . . . , ν y 3 of the 6 circles π -1 (x * p ), π -1 (x * q ), π -1 (y * 0 ), ..., π -1 (y * 3 ) out of S 3 and glue back the products [0, 1] × ∂ν p , [0, 1] × ∂ν q , [0, 1] × ∂ν y 0 , . . . , [0, 1] × ∂ν y 3 using the identity map along the associated sphere bundles ∂ν p , ∂ν q , ∂ν y 0 , . . . , ∂ν y 3 . Proof. Suppose there is a connected component Σ of a stratum with nontrivial holonomy that lies in (M/F) (n-2) and not in (M/F) (n-3) . Fix p ∈ M such that p * ∈ Σ, and denote by H the holonomy of the leaf L p through p at p. We are going to study the action of H on a small neighborhood of p in M . For S = π -1 (Σ) we have a circle bundle π : S → Σ by Proposition 2.10. Thus over a closed neighborhood U ⊂ Σ around p * we have that π -1 (U ) is diffeomorphic to S 1 × U , and S has codimension 1 in M . Moreover since Σ is an (n -2)-manifold, we can assume that U is homeomorphic to D n-2 .

We now consider proj : Tub(S) → S a small tubular neighborhood of S in M , and set Tub(π -1 (U )) = (proj) -1 (π -1 (U )). Then for a small closed set V ⊂ π -1 (U ) we have that

V = proj -1 ( V ) is homeomorphic to [-1, 1] × V (see Figure 2.5). Since π -1 (U ) ∼ = S 1 × D n-2 , we can assume that V is homeomorphic to [-1, 1] × [-1, 1] × D n-2
, but with the first factor [-1, 1] corresponding to the intersection of V with the circle leaves of the foliation. Observe that S 1 × Z/2Z [-1, 1] is diffeomorphic to the Möbius band. Since M is orientable, then Tub(L p ) is orientable too. This is a contradiction.

The previous lemma implies, as in Yano [START_REF] Yano | Gromov invariant and S 1 -actions[END_REF], that the hollowing constructed in Section 2.5 is as follows:

M n-2 p n-3 / / M n-3 / / • • • / / M 1 p 0 / / M 0 = M.
As in [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF][START_REF]Parametrised simplicial volume and S 1 -actions[END_REF] we extend this sequence to account for the case when M has non-empty boundary. We set M -1 = M , and p -1 = id M . We set X -1 = ∂M ⊂ M -1 , and define

N j = p -1 j (X j ) ⊂ M j+1 . For j < i we set p i,j = p j • p j+1 • • • • • p i-1 : M i -→ M j . Define N j = p -1 n-2,j+1 (N j ) = p -1 n-2,j (X j ) ⊂ M n-2
, and for {j 1 , . . . , j k } a set of distinct indices with -1 ≤ j i ≤ n -3 we define

N j 1 ,...,j k = N j 1 ∩ . . . ∩ N j k ⊂ M n-2 and X j 1 ,...,j k = p n-2,j 1 ( N j 1 ,...,j k ) ⊂ X j 1 .
Remark 2.16. Note that N j 1 ,...,j k does not depend on the order of the indices j 1 , . . . , j k , while X j 1 ,...,j k depends on which index appears first. There is no assumption of any kind on the order relations between the j i 's.

We recover for the foliated context a series of lemmas from [START_REF] Yano | Gromov invariant and S 1 -actions[END_REF] and [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF]. For example we have the following: Lemma 2.17 (Lemma 4 in [START_REF] Yano | Gromov invariant and S 1 -actions[END_REF]). Let (M, F) be a regular foliation by circles with finite holonomy. For j 1 , . . . , j k ≥ 0, each connected component of X j 1 ,...,j k /F j 1 is contractible and can be identified with ∆ j 1 -k+1 j 1 -k+1 . Proof. We show first that this holds for X j 1 . The set X j 1 is the pullback via p j 1 -1,0 • π : M j 1 → M/F of the j 1 -skeleton. For every connected component X j 1 of X j 1 , we have that X j 1 /F j 1 is equal to ∆ , where = j 1 (see Example 2.14 (1)). Under this identification, each connected component of

X j 1 ,...,j k /F j 1 is diffeomorphic to ∆ -k+1 -k+1
. This space is contractible. From the construction of the triangulation (Section 2.4.2) we obtain: Lemma 2.18 (Lemma 2.1 in [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF]). Let (M, F) be a regular foliation by circles with finite holonomy. For j 1 , . . . , j k ≥ 0, the space X j 1 ,...,j k is foliated diffeomorphic to (X j 1 ,...,j k /F j 1 ) × S 1 .

Proof. From the construction of the triangulation of M/F, over each face of an (n-1)-simplex we have leaves of F with same holonomy. By construction of X j 1 ,...,j k , this fact also holds for F j 1 . From Lemma 2.17 it follows that over a connected component of X j 1 ,...,j k we have constant holonomy. Thus by Proposition 2.10 X j 1 ,...,j k is the union of total spaces of circle bundles over the connected components of X j 1 ,...,j k /F j 1 , which are contractible. Therefore it is trivial.

A main difference with the work of [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF][START_REF] Yano | Gromov invariant and S 1 -actions[END_REF] is that the circle bundle

S 1 → M n-2 → (M n-2 /F n-2
) is not trivial in general. Nonetheless, we have the following lemma: Lemma 2.19. Let (M, F) be a regular foliation by circles with finite holonomy on a connected manifold. For the last hollowing M n-2 , the leaf space (M n-2 /F n-2 ) has the homotopy type of a compact connected 1-complex and M n-2 is aspherical.

Proof. Let Σ = ∪ H ={id} Σ (H) ⊂ M/F be the union of all strata corresponding to non-trivial holonomy groups. By Lemma 2.15, Σ/F is contained in simplices of dimension at most n -3 in M/F.

From this it follows that pn-2,0 (π -1 (Σ)) = ∅, since at this point we have removed all the preimages of the simplices of dimension less than n -2. Thus over M n-2 the foliation does not have holonomy, and induces a circle bundle. Observe that 3) has the homotopy type of a compact 1-complex, that is a finite graph. Since M is connected, this graph is connected. The fundamental group of a finite graph is a finitely generated free group. From the long exact sequence of homotopy groups of the fibration

M n-2 /F n-2 ∼ = M/F \ (M/F) (n-
S 1 → M n-2 → M n-2 /F n-2 we see that M n-2 is aspherical.
Furthermore, by the construction of the hollowings and the triangulation, the following proposition holds: Proposition 2.20 (See Proposition 2.2 in [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF]). For all pairwise distinct j 1 , . . . , j k ∈ {0, . . . , n -3} we have that X j 1 ,...,j k ,-1 is the union of the connected components Y ⊂ X j 1 ,...,j k that satisfy

Y ⊂ p n-2,j 1 ( N -1 ).
Proof. Let j ∈ {0, . . . , n -3}. We first show the statement for X j,-1 ⊂ X j . We work in the space X j /F j and show the statement there.

Let Y ⊂ X j /F j be a connected component. We will show that

Y ⊂ X j,-1 /F j ⇐⇒ Y ⊂ p n-2,j ( N -1 )/F j .
The left-to-right implication is true by definition. For the right-to-left implication, as in the proof of Lemma 2.17, we observe that Y is homeomorphic to ∆ j j , where ∆ j j is obtained from the standard simplex ∆ j by hollowing inductively along the -skeleton for all ∈ {0, . . . , j -1} (see Example 2.14 1). From this it follows that we are in one of the following cases:

(1) Y ⊂ p n-2,j ( N -1 )/F j , or (2) Y ∩ p n-2,j ( N -1 )/F j = ∅.
In the first case, we have

Y ⊂ X j /F j ∩ p n-2,j ( N -1 )/F j = p n-2,j ( N j )/F j ∩ p n-2,j ( N -1 )/F j ⊂ p n-2,j ( N j,-1 )/F j = X j,-1 /F j ,
where the last inclusion follows from

p n-2,j ( N j \ N -1 )/F j ∩ p n-2,j ( N -1 \ N j )/F j = ∅,
which holds by construction of the hollowings. In the second case, we have Y ∩ X j,-1 /F j = ∅. For X j 1 ,...,j k ,-1 with k ≥ 1, it suffices to observe that

X j 1 ,...,j k ,-1 /F j = X j 1 ,...,j k /F j ∩ X j 1 ,-1 /F j .
See also [START_REF]Parametrised simplicial volume and S 1 -actions[END_REF]Lemma 4.2.8] for more details.

Remark 2.21. We point out that we can take a refinement of the triangulation on ∂(M n-2 /F n-2 ) so that it is compatible with the decompositions

∂(M n-2 /F n-2 ) = n-3 i=-1 N i /F n-2
and

∂ N i 1 ,...,i k /F n-2 = n-3 i=-1,i =i 1 ,...,i k N i 1 ,...,i k ,i /F n-2 . That is, each N i 1 ,...,i k ,i /F n-2 is a subcomplex of ∂(M n-2 /F n-2 ).

Proof of Theorem B

Now we establish the necessary preliminary results for the proof of our main theorem, which is carried out at the end of the section.

We will then use the triangulation of M/F to construct a series of triangulations on the holonomy strata that have zero foliated simplicial volume. Proposition 3.1 (See Proposition 4.1 in [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF]). Assume the inclusions of the leaves of the foliation F are π 1 -injective. Take k ∈ {1, . . . , n -2} and let j 1 , . . . , j k ∈ {0, . . . , n -3} be pairwise distinct. Then, for any choice of basepoints, the inclusions X j 1 ,...,j k ⊂ M j 1 and X j 1 ,...,j k ,-1 ⊂ M j 1 are π 1injective.

Proof. By Proposition 2.20, it suffices to show that the inclusion X j 1 ,...,j k ⊂ M j 1 is π 1 -injective. By Lemma 2.18, we have X j 1 ,...,j k ∼ = (X j 1 ,...,j k /F j 1 ) × S 1 . By Lemma 2.17, each connected component of X j 1 ,...,j k /F j 1 is contractible. Now, by Proposition 2.11, the composition of maps

X j 1 ,...,j k ⊂ M j 1 p j 1 ,0 -→ M 0 = M
is the inclusion of leaves into M , and thus π 1 -injective by hypothesis. Thus the inclusion X j 1 ,...,j k ⊂ M j 1 is also π 1 -injective.

We now construct a series of representations of the fundamental groups of the hollowings M j as follows: Setup 3.2. Fix x n-2 ∈ M n-2 , and set x i = p n-2,i (x n-2 ) ∈ M i . We write Γ = π 1 (M, x 0 ) and consider a fixed essentially free standard Γ-space (Z, µ), with the representation α 0 = α : Γ → Aut(Z, µ). From this representation, using the hollowing maps p i,0 : M i → M , we can define for Γ i = π 1 (M i , x i ) a representation α i : Γ i → Aut(Z, µ) by setting [START_REF] Löh | Cost vs. integral foliated simplicial volume[END_REF]), which may be orientable or not. If the bundle structure of M n-2 is orientable, then by the classification of oriented S 1 -bundles, it is trivial: by Lemma 2.19 M n-2 /F n-2 has the homotopy type of a graph, and hence H 2 (M n-2 /F n-2 , Z) = 0.

α i = α • π 1 (p i,0 ). Recall that we have a circle bundle M n-2 → M n-2 /F n-2 (see proof of Lemma 2.
If the bundle structure of M n-2 is non-orientable, since M n-2 is orientable, then the base M n-2 /F n-2 is non-orientable. For this case we need to change the Borel space we consider as follows: we take B the oriented double cover of M n-2 /F n-2 . By pulling back the circle bundle we obtain an orientable double cover W of M n-2 . This double cover is homotopy equivalent to an oriented circle bundle over B. Thus we get the following commutative diagram:

W p 2 / / M n-2 B p 2 / / M n-2 /F n-2 .
Observe that the fundamental group H of W is a subgroup of index 2 of Γ n-2 , and thus we obtain a representation β of H on (Z, µ) by restricting α n-2 . In the subsequent proofs, we will find parametrized relative fundamental cycles of W , and from them we will obtain appropriate parametrized fundamental cycles of M n-2 .

To do so, as in [20, Setup 4.24 and Definition 4.25], set γ 0 = e and γ 1 be a fixed representative of the non-identity class in Γ n-2 /H. We denote the elements in

Γ n-2 × H Z = Γ n-2 × Z/{(γh, z) ∼ (γ, h • z), γ ∈ Γ n-2 , h ∈ H, z ∈ Z} by [γ, z], and Γ n-2 acts on Γ n-2 × H Z by γ [γ, z] = [γ γ, z].
The measure on Γ n-2 × H Z is given as follows: we take the counting measure µ on Γ n-2 /H and then pull back the measure (1/2)µ ⊗ µ on Γ n-2 /H × Z via the bijection

Γ n-2 × H Z -→ Γ n-2 /H × Z, [γ, z] -→ (γH, z).
As in [20, Proof of Proposition 4.26], we have the following well-defined ZΓ n-2 -isomorphism:

ψ : L ∞ (Z; Z) ⊗ ZH ZΓ n-2 -→ L ∞ (Γ n-2 × H Z; Z) f ⊗ γ j -→ [γ k , z] → f (z), if k = j 0, if k = j .
The induced map (3.1)

Ψ : C * (W ; β) -→ C * (M n-2 ; Γ n-2 × H Z) f ⊗ σ -→ ψ(f ⊗ e) ⊗ σ
   Ψ(c)     Γ n-2 × H Z ≤ 1 2    c    Z for all c ∈ C * (W ; β).
Using the hollowings p i : M i+1 → M i , we define

H i = π 1 (p n-2,i • p)(H) < Γ i .
Note that H i has finite index in Γ i for every i ∈ {0, . . . , n -2}. Indeed, the maps π 1 (p n-2,i ) induced by the hollowings are surjective: the hollowing maps p i are quotient maps by construction, and their fibers are either a point, or a sphere of dimension at least 1, hence connected. Then [3, Theorem 1.1] applies. Moreover, the index of H in Γ n-2 is 2 by definition, so that [Γ i :

H i ] ≤ 2.
We note that by construction of the representations α i , the restriction of α i to H i is an essentially free action on Z. The spaces we consider are Γ i × H i Z, which have an essentially free action of Γ i as above, denoted by β i .

Depending on whether the circle bundle M n-2 → M n-2 /F n-2 is orientable or not, for i ∈ {0, . . . , n -2}, we consider V i equal to Z, respectively Γ i × H i Z, with a representation ξ i of Γ i given by α i , respectively β i .

Let p i : M i+1 → M i be a fixed lift to the universal covers of the map p i : M i+1 → M i . We define a chain map

P i : L ∞ (ξ i+1 ; Z) ⊗ ZΓ i+1 C * ( M i+1 , Z) -→ L ∞ (ξ i ; Z) ⊗ ZΓ i C * ( M i , Z) f ⊗ σ -→ f ⊗ ( p i • σ).
In this way we obtain the following sequence:

L ∞ (ξ n-2 ; Z) ⊗ ZΓ n-2 C * ( M n-2 , Z) P n-3 -→ • • • P 0 -→ L ∞ (ξ 0 ; Z) ⊗ ZΓ 0 C * ( M , Z).
For i < j we can also consider the maps

P j,i : L ∞ (ξ j ; Z) ⊗ ZΓ j C * ( M j , Z) -→ L ∞ (ξ i ; Z) ⊗ ZΓ i C * ( M i , Z), defined as P j,i = P i • • • • • P j-1
. These maps will be used later in the proof of Theorem B.

For

X i 1 ,...,i k ⊂ M i 1 we set Λ i 1 ,...,i k = π 1 (X i 1 ,...,i k ).
As in the observation made in [7, Setup 4.2], these groups are independent of the base points chosen: 

Lemma 3.3. Let x, y be two points in a connected component of X i 1 ,...,i k . Then π 1 (X i 1 ,...,i k , x) ∼ = π 1 (X i 1 ,...,i k , y).
(X i 1 ,...,i k , x) is Z. Set x * = π • p i 1 ,0 (x), y * = π • p i 1 ,0 (y) the images of x, y in π • p i 1 ,0 (M i 1 )
. Choose an embedded path γ from x * to y * in π•p i 1 ,0 (X i 1 ,...,i k ) so that its interior avoids the (n-3)-skeleton (M/F) (n-3) . Its preimage γ in X i 1 ,...,i k is then a circle bundle over the embedded interval γ, thus an annulus. Therefore the two fibers above the two ends of the path x and y are homotopic. These are exactly the two generating circles of π 1 (X i 1 ,...,i k , x) and π 1 (X i 1 ,...,i k , y). By Proposition 3.1, we have Λ i 1 ,...,i k < Γ i 1 . We denote by ξ i 1 ,...,i k the restriction of the representation ξ i 1 to Λ i 1 ,...,i k . For the universal cover

q i 1 : M i 1 → M i 1 , observe that q -1 i 1 (X i 1 ,...,i k ) is Γ i 1 -invariant. Hence we can consider the subcomplex L ∞ (ξ i 1 ; Z) ⊗ ZΓ i 1 C * (q -1 i 1 (X i 1 ,••• ,i k ), Z). Proposition 3.4. For the subcomplex L ∞ (ξ i 1 ; Z) ⊗ ZΓ i 1 C * (q -1 i 1 (X i 1 ,••• ,i k ), Z) and the restriction ξ i 1 ,••• ,i k we have an isomorphism from L ∞ (ξ i 1 ; Z) ⊗ ZΓ i 1 C * (q -1 i 1 (X i 1 ,••• ,i k ), Z) onto L ∞ (ξ i 1 ,••• ,i k ; Z) ⊗ ZΛ i 1 ,••• ,i k C * (X i 1 ,••• ,i k , Z).
Proof. See [7, p. 12].

For a fixed ε > 0, we will show the existence of an essentially free Γspace, and a representation of Γ, such that there is a relative parametrized fundamental cycle of M with 1 -norm bounded above by ε. We begin by finding such a cycle for M n-2 . Proposition 3.5. Let (M, F) be an oriented compact connected smooth nmanifold with a regular foliation by circles with finite holonomy. Assume that the inclusion of each leaf into M is π 1 -injective. Set Γ = π 1 (M, x 0 ) and choose ε > 0. There exists a relative fundamental cycle

z ∈ C n (M n-2 ; ξ n-2 )
that has 1 -norm less than ε.

When the circle bundle M n-2 → M n-2 /F n-2 is not orientable, we use its oriented double cover. Let W → B be the oriented double cover of M n-2 → M n-2 /F n-2 , as in Setup 3.2:

W p 2 / / M n-2 B p 2 / / M n-2 /F n-2 .
We have corresponding preimages

W / / q q -1 n-2 ( N j ) ⊂ M n-2 q n-2 p-1 ( N j ) ⊂ W p / / N j ⊂ M n-2 p -1 ( N j /F n-2 ) ⊂ B p / / N j /F n-2 ⊂ M n-2 /F n-2 .
We recall that W → B is a trivial circle bundle. Proposition 3.5 thus gives us a parametrized relative fundamental cycle of the form u

= ū × c S 1 ∈ C n (W ; β), where ū is any relative fundamental cycle of B. For n -3 ≥ i ≥ -1, we define a cycle ūi ∈ C n-2 (p -1 ( N i /F n-2 ), Z)
as the sum of all the simplices in ∂ ū that belong to the subcomplex p -1 ( N i /F n-2 ) ⊂ ∂B. We define

u i := ūi × c S 1 ∈ C n-1 (p -1 ( N i ); β).
In an analogous fashion, for a subset of pairwise distinct indices i 1 , . . . , i k with n -3 ≥ i j ≥ -1, we inductively define cycles ūi

1 ,...,i k ∈ C n-1-k (p -1 ( N i 1 ,...,i k /F n-2 ), Z),
as the sum of all the simplices of ∂ ūi

1 ,...,i k-1 contained in p -1 ( N i 1 ,...,i k /F n-2 ).
For non-pairwise distinct indices we set ūi 1 ,...,i k = 0. We define

u i 1 ,...,i k := ūi 1 ,...,i k × c S 1 ∈ C n-k (p -1 ( N i 1 ,...,i k ); β).
Using the map Ψ introduced in Setup 3.2, we write

z = Ψ(u) ∈ C n (M n-2 ; β n-2 ), z i 1 ,...,i k = Ψ(u i 1 ,...,i k ) ∈ C n-k ( N i 1 ,...,i k ; β n-2 ).
With this notation, we have the following three lemmas. Lemma 3.6 (See [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF], Lemma 6.1). We have

∂z = n-3 i=-1 z i and ∂z i 1 ,...,i k = n-3 i=-1 z i 1 ,...,i k ,i
for all k ∈ {1, . . . , n -1} and pairwise distinct i 1 , . . . , i k ∈ {-1, ..., n -3}.

Proof. In the orientable case, by definition of z and z i 1 ,...,i k , it is enough to show the analogous statements for z and zi 1 ,...,i k .

Recall from Remark 2.21 that the boundary ∂(M

n-2 /F n-2 ) is a union of subcomplexes ∪ n-3 i=-1 N * i of the simplicial structure on ∂(M n-2 /F n-2 ). It follows that ∂ z = ∂ z| ∂(M n-2 /F n-2 ) = n-3 i=-1 ∂ z| N * i = n-3 i=-1 zi .
Moreover, for all k ∈ {1, . . . , n -1} and all pairwise distinct i 1 , . . . , i k ∈ {-1, ..., n -3}, we have that

∂ zi 1 ,...,i k = ∂ zi 1 ,...,i k | ∂( N i 1 ,...,i k /F n-2 ) = i =i 1 ,...,i k ∂ zi 1 ,...,i k | N i 1 ,...,i k ,i /F n-2 = n-3 i=-1 zi 1 ,...,i k ,i .
In the non-orientable case, we compute:

∂z = ∂Ψ(u) = Ψ(∂(u)) = Ψ(∂(ū) × c S 1 ).
Then we remark

∂ ū = ∂ ū| ∂(p -1 (M n-2 /F n-2 )) = n-3 i=-1 ∂ ū| p -1 ( N * i ) = n-3 i=-1
ūi .

We insert it in the previous computation and obtain the conclusion. An analogous reasoning shows also the formula for ∂z i 1 ,...,i k .

Lemma 3.7 (See [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF], Lemma 6.2). Let k ∈ {1, . . . , n-1} and let τ ∈ Sym(k) be a permutation of {1, . . . , k}. Then we have z i 1 ,...,i k = sign(τ )z i τ (1) ,...,i τ (k) .

Proof. We may assume that τ is a transposition (i j , i j+1 ). By definition of N i 1 ,...,i k and z i 1 ,...,i k , we may even assume that τ = (i k-1 , i k ). Thus we have to show that z i 1 ,...,i k-1 ,i k = -z i 1 ,...,i k-2 ,i k ,i k-1 .

By Lemma 3.6, we have

0 = ∂∂z i 1 ,...,i k-2 = ∂   n-3 i=-1 z i 1 ,...,i k-2 ,i   = n-3 j=-1 n-3 i=-1
z i 1 ,...,i k-2 ,i,j .

In the orientable case, since ∂( N i 1 ,...,i k-2 /F n-2 ) is a subcomplex of the simplicial structure on M n-2 /F n-2 , and from the definition of z i 1 ,...,i k-2 , it follows that cancellations may occur only between terms with the same set of indices. Hence the only possibility is z i 1 ,...,i k-1 ,i k = -z i 1 ,...,i k-2 ,i k ,i k-1 .

In the non-orientable case, the exact same relations hold for the u i 1 ,...,i k .

Then apply the chain map Ψ to finish the proof. • ∂w i 1 ,...,i n-2 ,-1 = P n-2,i 1 (z i 1 ,...,i n-2 ,-1 );

(iii) |w i 1 ,...,i k | 1 ≤ C|z| 1 . The index i k is allowed to take the value -1.

Proof. Recall that X i 1 ,...,i k ∼ = (X i 1 ,...,i k /F i 1 ) × S 1 , and that for both the cases of orientability of the circle bundle M n-2 → M n-2 /F n-2 we have a series of essentially free representations of the fundamental groups of the hollowings M i . To prove this Lemma, we apply Lemmas 3.6, 3.7 above to the proof of [START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF]Lemma 6.3] for the essentially free representations α i . Now we are ready to prove the main theorem of the present article.

Proof of Theorem B. Given ε > 0, from Proposition 3.5, there exists a (relative) fundamental cycle z ∈ C n (M n-2 ; ξ n-2 ) with 1 -norm less than ε. From Lemma 3.8, we have associated chains w i ∈ C n (X i ; ξ i ) with 1 -norm less than C|z| 1 , where C is the constant of Lemma 3.8. We claim that the chain z := P n-2,0 (z) - We recall that for f ⊗ σ ∈ C n (M n-2 ; ξ n-2 ) we have

P n-2,0 (f ⊗ σ) = f ⊗ p 0 • • • • • p n-3 (σ) ∈ C n (M ; ξ).
Thus we have that

|z | 1 ≤ |z| 1 + n-3 i=0 |w i | 1 < ε,
when we choose z ∈ C n (M n-2 ; ξ n-2 ) such that |z| 1 < ε (n-2)C+1 .

Remark 3.9. In the case when the circle bundle M n-2 → M n-2 /F n-2 is orientable, the parametrized norm vanishes for arbitrary essentially free Γspaces. In particular, when Γ is residually finite, its profinite completion is such an essentially free Γ-space. By [START_REF] Frigerio | Integral foliated simplicial volume of aspherical manifolds[END_REF]Theorem 2.6] and [11, Proposition 2.12], this shows that the stable integral simplicial volume of M also vanishes.

If the bundle M n-2 → M n-2 /F n-2 is not orientable, our proof shows that starting from any measured Γ-space Z, we find arbitrarily small fundamental cycles parametrized by the space Γ × H 0 Z with the action β 0 , where H 0 = π 1 (p n-2,0 • p)(H). This however does not allow us a priori to conclude about the action on the profinite completion of Γ, except if H 0 = Γ. In this case, the space Γ × H 0 Z can be identified with Z; the action β 0 on Γ × H 0 Z corresponds under this identification to the original action γ • z = α(γ)(z) of Γ on Z. Thus, setting Z to be the profinite completion of Γ implies again, by [START_REF] Frigerio | Integral foliated simplicial volume of aspherical manifolds[END_REF]Theorem 2.6] and [START_REF] Fauser | Stable integral simplicial volume of 3-manifolds[END_REF]Proposition 2.12], that the stable integral simplicial volume of M vanishes.

  is a regular foliation (see [1, Theorem 3.65 and Example 5.3][21, p. 16]).
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  sends parametrized fundamental cycles of W to parametrized fundamental cycles of M n-2 [20, Proof of Proposition 4.26]. The parametrized norms behave as follows:

n- 3 i=0P

 3 i,0 (w i ) ∈ C n (M ; ξ) is a ξ-parametrized relative fundamental cycle of M . From [7, Proposition 3.9], it is sufficient to show that z is a U -local ξ-parametrised relative fundamental cycle of M , for an arbitrary open subset U ⊂ M \ p n-2,0 (∂M n-2 ) diffeomorphic to an n-disk. Since the boundary of M n-2 contains all the preimages of the hollowings, we have P n-2,0 (z) = z on any small ball in M \ p n-2,0 (∂M n-2 ). The rest of the proof of the claim follows from the proof of [7, Theorem 1.1].

  [M, ∂M ] α denotes the image of the fundamental class [M, ∂M ] ∈ H n (M, ∂M ; Z) in H n (M, ∂M ; α) under the map induced by i α .

	Remark 2.1. For every compact connected oriented n-manifold M , we have
	the following inequality (see [20, Proposition 4.6]):

  The fundamental group of any such connected component is Z. Proof. By Proposition 3.1 the inclusions X i 1 ,...,i k → M i 1 are π 1 -injective for all suitable sets of indices i 1 , . . . , i k , and by Lemma 2.18 X i 1 ,...,i k ∼ = (X i 1 ,...,i k /F i 1 ) × S 1 . Moreover, by Lemma 2.17 the connected components of X i 1 ,...,i k /F i 1 are contractible. So for every choice of base point x ∈ X i 1 ,...,i k , the corresponding fundamental group π 1

  Lemma 3.8 (See[START_REF] Fauser | Integral foliated simplicial volume and S 1 -actions[END_REF], Lemma 6.3). There exist chainsw i 1 ,...,i k ∈ C n-k+1 (X i 1 ,...,i k ; ξ i 1 ,...,i k ), w i 1 ,...,i k ,-1 ∈ C n-k (X i 1 ,...,i k ,-1 ; ξ i 1 ,...,i k ,-1 ),with k ∈ {1, . . . , n -2} and i 1 , ..., i k ∈ {0, . . . , n -3}, and a constant C ∈ R + depending only on k, such that (i) the chains w i 1 ,...,i k and w i 1 ,...,i k ,-1 are alternating with respect to permutations of the indices {i 1 , . . . , i k }; (ii) the following relations hold:• ∂w i 1 ,...,i k = P n-2,i 1 (z i 1 ,...,i k )i 1 ,...,i k ,i ,

	n-3
	i=-1
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Proof. We consider two cases: when M n-2 /F n-2 is orientable and when it is not. In the first case, since M n-2 is orientable, then the circle bundle M n-2 → M n-2 /F n-2 is also orientable. Thus, as stated in the proof of Lemma 2.19 and in the Setup 3.2, we have

) generated by the circle factor corresponds under this homeomorphism to the subgroup of Γ n-2 generated by a leaf. Observe that, by Proposition 2.11, each leaf in M n-2 is mapped by p n-3,0 to a leaf of (M, F). Since the inclusion of any leaf is π 1 -injective, then (Z, µ) is an essentially free standard Λ-space with respect to α , the restriction of α n-2 to Λ. From the proof of [10, Lemma 10.8], given any relative fundamental cycle z of M n-2 /F n-2 , there exists a cycle c S 1 ∈ C 1 (S 1 ; α ) such that the relative fundamental cycle

has 1 -norm less than ε, as desired.

For the second case, we consider the oriented double cover p : W → M n-2 of M n-2 , which is the total space of a trivial circle bundle over the orientable double cover B of M n-2 /F n-2 . Recall that Z is an essentially free H-space, via the representation β. As in the first case, since B has the homotopy type of a 1-complex, the fundamental group of the fiber S 1 injects into H. Denote by β the restriction of β to this subgroup. Again by the proof of Lemma 10.8 in [START_REF] Fauser | Variations on the theme of the uniform boundary condition[END_REF], for any relative fundamental cycle ū of B, we can find a parametrized cycle c S 1 ∈ C 1 (S 1 ; β ) such that ū × c S 1 has 1 -norm less than 2ε.

Recall that the parametrized norms behave as follows

We will now show the existence of a fundamental cycle of (M, ∂M ) with arbitrarily small 1 -norm. Let z be any relative fundamental cycle of the manifold M n-2 /F n-2 . We first consider the case when the circle bundle

), the cycle obtained from Proposition 3.5. For n -3 ≥ i ≥ -1, we define a cycle zi ∈ C n-2 ( N i /F n-2 ; Z) as the sum of all the simplices in ∂ z that belong to the subcomplex N i /F n-2 ⊂ ∂M n-2 /F n-2 . We define

In an analogous fashion, for a subset of pairwise distinct indices i 1 , . . . , i k with n -3 ≥ i j ≥ -1, we inductively define cycles zi

as the sum of all the simplices of ∂ zi 1 ,...,i k-1 contained in N i 1 ,...,i k /F n-2 . For non-pairwise distinct indices we set zi 1 ,...,i k = 0. We define z i 1 ,...,i k := zi 1 ,...,i k × c S 1 ∈ C n-k ( N i 1 ,...,i k ; α n-2 ).