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INTEGRAL FOLIATED SIMPLICIAL VOLUME AND
CIRCLE FOLIATIONS

CATERINA CAMPAGNOLO AND DIEGO CORRO

Abstract. We show that the integral foliated simplicial volume of a
compact oriented smooth manifold with a regular foliation by circles
vanishes.

1. Introduction

In his proof of Mostow rigidity in [14], Gromov introduced the concept of
simplicial volume for an oriented compact connected topological manifold
M . This is a homotopy invariant of M , which measures the complexity of
singular fundamental cycles of M with R-coefficients. When M is a smooth
manifold, its simplicial volume, despite being only a homotopy invariant, has
very deep connections with the geometrical properties of M . For example, if
M admits a complete Riemannian metric of negative sectional curvature, its
simplicial volume has to be positive (see [14, 31, 18]). Furthermore Gromov
showed that the simplicial volume is dominated by the minimal volume of the
manifold (see [14]). In this light, positive simplicial volume is an obstruction
to the existence of a sequence of collapsing Riemannian metrics, satisfying
a uniform sectional curvature bound, on the given manifold (see [25]).

A long-standing conjecture about this interplay between topology and
geometry was stated by Gromov [15, 8.A4(+)], [17, 3.1 (e) on p. 769]:

Conjecture A. Let M be an oriented closed (compact without boundary)
connected aspherical manifold. If the simplicial volume of M vanishes, then
the L2-Betti numbers of M vanish. In particular, the Euler characteristic
of M also vanishes.

An approach to give a positive answer to Conjecture A is laid out in [16,
28]: consider a suitable integral approximation of the simplicial volume, then
apply a Poincaré duality argument to bound the L2-Betti numbers in terms
of this integral approximation. Finally, relate the integral approximation
to the simplicial volume on aspherical manifolds. An instance of such an
approximation is the integral foliated simplicial volume (see [16, 28]), which
we consider here.

In this article we show that in the presence of a circle foliation and a big
fundamental group, the integral foliated simplicial volume vanishes:

Theorem B. Let M be a compact oriented smooth manifold equipped with
a regular smooth circle foliation F , such that the inclusion of each leaf of F

2010 Mathematics Subject Classification. 53C12, 55N10, 55R55, 57R19.
Key words and phrases. Regular circle foliation, integral foliated simplicial volume.

1



2 C. CAMPAGNOLO AND D. CORRO

is π1-injective and has finite holonomy. Then the (relative) integral foliated
simplicial volume of M vanishes:M,∂M

 = 0.
The work of Schmidt in [28] provides the following corollary to Theorem B.

Corollary C. Let (M,F) be a closed connected oriented aspherical smooth
manifold, and F a regular smooth circle foliation, such that the inclusion of
each leaf is π1-injective and has finite holonomy. Then the L2-Betti numbers
of M vanish. In particular χ(M) = 0.

The work of Löh in [19] provides another corollary to Theorem B, involv-
ing a different invariant, namely the cost. The cost is a randomized version
of the minimal number of generators of a group.
Corollary D. Let (M,F) be a closed connected oriented aspherical smooth
manifold, and F a regular smooth circle foliation, such that the inclusion of
each leaf is π1-injective and has finite holonomy. Then Cost(π1(M)) = 1,
that is the manifold M is cheap.

Additionally, we obtain some information on the stable integral simplicial
volume of manifolds with residually finite fundamental group:
Corollary E. Let M be a compact oriented smooth manifold with residu-
ally finite fundamental group, equipped with a regular smooth circle foliation
F , such that the inclusion of each leaf of F is π1-injective and has finite
holonomy. If the foliation restricted to the preimage of the manifold part of
the orbifold M/F is an orientable bundle, then the (relative) stable integral
simplicial volume of M vanishes:

‖M,∂M‖∞Z = 0.
This, and a slightly stronger statement, will be a corollary of the proof of

Theorem B and will be explained at the end of Section 3 (see Remark 3.9).
It can be seen as the generalisation of [7, Corollary 1.3] to our setting.

Given a smooth manifold M , we may consider different notions of “sym-
metry” for M . A general notion is to split M into a family of submani-
folds, that retain certain desired geometric or topological properties. In [5],
Cheeger and Gromov studied a type of decomposition called an F -structure.
This is a direct generalization of a smooth torus action on a smooth man-
ifold. In particular, they show that if a Riemannian manifold M admits a
polarized F -structure of positive dimension, then the minimal volume of M
vanishes. Since the minimal volume dominates the simplicial volume, the
simplicial volume of M also vanishes. Furthermore, in this case the Euler
characteristic of M is also zero (see [5, Proposition 1.5] [25, p. 75]).

In the particular case when the splitting of M is given by the orbits of
a smooth circle action, the Corollary to the Vanishing Theorem [14, p. 41]
implies that the simplicial volume of M vanishes. This fact was indepen-
dently proven by Yano in [33]. His proof is quite geometric and relies heavily
on the stratification of the orbit space by orbit type. This proof has been
extended to the setting of the integral foliated simplicial volume by Fauser
in [7], when one adds the assumption that the inclusion of every orbit in
M is injective at the level of fundamental groups. We point out that this
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condition is not satisfied when the action has fixed points. A more general
notion of symmetry can be found in the context of foliations. They arise
naturally as solutions to differential equations (see [21, Chapter 1]). More-
over, smooth group actions, as well as the fibers of a smooth fiber bundle,
are some examples of smooth foliations.

We follow the approach of Yano and Fauser [7, 33] to prove Theorem B.
The hypothesis requiring the holonomy groups to be finite is necessary to
obtain the stratification of the leaf space. Indeed, Sullivan in [30] constructed
a 5-dimensional smooth manifold with a foliation by circles, with leaves
having infinite holonomy. For this particular example the leaf space does
not admit an orbifold structure. Furthermore, the condition that for any
leaf its inclusion into the manifold induces an injective map between the
fundamental groups is also necessary for our proof. Simple examples of a
regular foliation by circles where the inclusion is not π1-injective are given
by the Hopf fibrations S2n+1 → CPn. We recall that the integral foliated
simplicial volume of simply-connected manifolds, and in particular of S2n+1,
is bounded below by 1 (see [28, Proposition 5.29]).

Any smooth circle action gives rise to a circle foliation, but there are
many instances of circle foliations not coming from circle actions. A simple
example is given by considering non-orientable circle bundles over a non-
orientable base. For example, the unit tangent bundle of a closed non-
orientable surface is a circle foliation not coming from a circle action. This
holds since the unit tangent bundle is not a principal circle bundle: if it
were, then the structure group of the tangent bundle would be SO(2), but
since the surface is non-orientable the structure group of the tangent bundle
cannot be reduced to SO(2). Also observe that the total space of the tangent
bundle of any manifold is an orientable manifold. In particular the tangent
bundle of the Möbius band {(θ, y) ∈ [0, 1] × [−1, 1]}/(0, y) ∼ (1,−y) is
diffeomorphic to S1 × [−1, 1] × R2. Another concrete example is given by
the unit tangent bundle of the Klein bottle. We remark that for these
examples, there is a finite cover of the manifold with a smooth circle action
such that the orbits of the action cover the leaves of the foliation. Other
non-homogeneous examples are given by non-orientable Seifert fibrations
over a non-orientable surface (see [24, Section 5.2]). We point out that the
universal cover of a Seifert fibration is one of S3, S2 × R and R3 (see [27,
Proposition 1]), and they all admit a smooth circle action. We remark that,
for these cases, the conclusion of the main theorem can also be obtained by
the work of Fauser, Friedl, Löh in [9, Theorem 1.7].

To prove Theorem B, we need to check that Yano’s and Fauser’s tech-
niques from [7, 33] apply in the case of foliations instead of circle actions.
After the hollowing procedure, we are left with a certain circle bundle
Mn−2 → Mn−2/Fn−2. If it is an orientable bundle, our proof is a straight-
forward translation of the proof in [7]. But the bundle can be non-orientable
over a non-orientable base (thus still having orientable total space): this is
a novelty of foliations with respect to circle actions. Then we need an addi-
tional argument that exploits the flexibility of the integral foliated simplicial
volume (see Section 3, in particular Setup 3.2).
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In general, regular foliations by circles are instances of singular circle
fiberings over polyhedra, introduced by Edmonds and Fintushel in [6]. They
proved that a singular circle fibering on a smooth manifold is given by a
group action if and only if the bundle part of the fibering is orientable (see
[6, Theorem 3.8]). To the best of our knowledge, it is not known whether an
arbitrary smooth manifold with a foliation by circles with finite holonomy
admits a finite cover with a group action. If so, our main result would follow
by multiplicativity of the integral foliated simplicial volume and the main
result in [7].

The condition of π1-injectivity is a technical one: it is used so that we have
only a global representation of π1(M) over a fixed essentially free standard
Borel space to consider, instead of a potentially different one for every leaf.
This technicality might be overcome by constructing a suitable family of
representations and essentially free standard Borel spaces at each step of the
hollowing construction (the hollowing construction is presented in Section
2.5).

We organize our work as follows: in Section 2 we present the preliminaries
as well as a series of clarifying examples. In Section 3 we prove Theorem B.
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(RTG 2229). The first author was also supported by the Swiss National
Science Foundation, grant number P400P2 191107/1. The second author
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2. Preliminaries

2.1. Simplicial volume. We begin by defining the simplicial volume, also
known as the Gromov invariant or Gromov norm, of a topological compact
connected oriented manifold M , with possibly empty boundary ∂M . Given
a singular k-chain z =

∑
i aiσi ∈ Ck(M,R), we define its `1-norm as

‖z‖1 =
∑
i

|ai| ,

where each σi : ∆k →M is a singular simplex of dimension k.
The simplicial volume of M is the infimum over the `1-norms of the (rel-

ative) real cycles representing the fundamental class:

‖M,∂M‖ = inf
{∑

i

|ai| [M,∂M ] =
[∑

i

aiσi

]
∈ Hn(M,∂M ;R)

}
.

2.2. Integral foliated simplicial volume. Consider a topological com-
pact connected oriented manifold M and its universal cover M̃ . Denote
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by Γ = π1(M) the fundamental group of M . Then Γ acts on M̃ by deck
transformations. This induces a natural action of Γ on Ck(M̃,Z). There is
a natural identification

Ck(M,Z) ∼= Z⊗ZΓ Ck(M̃,Z).
A standard Borel space is a measurable space that is isomorphic to a

Polish space with its Borel σ-algebra B. Recall that a Polish space is a sep-
arable completely metrizable topological space. Let Z be a standard Borel
probability space, that is, a standard Borel space endowed with a probabil-
ity measure µ. Suppose now that Γ acts (on the left) on such a standard
Borel probability space (Z,B, µ) in a measurable and measure-preserving
way. Denote this action by α : Γ→ Aut(Z, µ). Set

L∞(Z, µ;Z) =
{
f : Z −→ Z

∫
Z
|f |dµ <∞

}
.

We define a right Γ-action on L∞(Z, µ;Z) by setting
(f · γ)(z) = f(γz), ∀f ∈ L∞(Z, µ;Z), ∀γ ∈ Γ, ∀z ∈ Z.

There is a natural inclusion for any k ∈ N:

iα : Ck(M,Z) ∼= Z⊗ZΓ Ck(M̃,Z) −→ L∞(Z, µ;Z)⊗ZΓ Ck(M̃,Z)
1⊗ σ 7−→ const1 ⊗ σ,

where the tensor products are taken over the given actions. We will write
C∗(M ;α) for the complex L∞(Z, µ;Z) ⊗ZΓ C∗(M̃,Z). We call its elements
parametrized chains.

Given a parametrized k-chain z =
∑
i fi⊗σi ∈ L∞(Z, µ;Z)⊗ZΓCk(M̃,Z)

we define its parametrized `1-norm as

|z|1 =
∑
i

∫
Z
|fi|dµ,

where each σi : ∆k → M is a singular simplex of dimension k. Here we
assume that z is in reduced form, that is, all the singular simplices σi belong
to different Γ-orbits. For more details on the integral foliated simplicial
volume, see for example [20].

Note that the action of Γ on M̃ restricts to the preimage of the boundary
of M under the covering map p : M̃ →M . Thus we get an action

Γ −→ Homeo(p−1(∂M)).
This restricted action allows us to define the subcomplex

C∗(∂M ;α) = L∞(Z, µ;Z)⊗ZΓ C∗(p−1(∂M),Z) ⊂ C∗(M ;α),
and hence the quotient

C∗(M,∂M ;α) = C∗(M ;α)/C∗(∂M ;α).
This last quotient is naturally isomorphic to the chain complex

L∞(Z, µ;Z)⊗ZΓ C∗(M̃, p−1(∂M);Z).
From now on we set:

H∗(M,∂M ;α) = H∗(C∗(M,∂M ;α)).
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The (relative) integral foliated simplicial volume of M is the infimum over
the parametrized `1-norms of the (relative) parametrized cycles representing
the fundamental class:M,∂M

 = inf
α,(Z,µ)

{M,∂M
α α : Γ −→ Aut(Z, µ)} ,

where M,∂M
α is given by

inf
{∑

i

∫
Z
|fi|dµ [M,∂M ]α =

[∑
i

fi ⊗ σi

]
∈ Hn(M,∂M ;α)

}
.

Here [M,∂M ]α denotes the image of the fundamental class [M,∂M ] ∈
Hn(M,∂M ;Z) in Hn(M,∂M ;α) under the map induced by iα.

Remark 2.1. For every compact connected oriented n-manifold M , we have
the following inequality (see [20, Proposition 4.6]):

‖M,∂M‖ ≤ M,∂M
.

Note also that the infimum in the definition of M,∂M
 is achieved by an

essentially free action α, meaning that µ ({z ∈ Z | Stabα(z) 6= {idΓ}}) = 0
[20, Corollary 4.14].

From now on, we consider only smooth connected orientable manifolds.

2.3. Foliations. We proceed to define a smooth regular foliation on a
smooth connected manifold M and state some of its properties. A smooth
regular foliation of M is a partition F = {Lp | p ∈ M} of M where each
leaf Lp is an embedded smooth submanifold Lp ⊂M , called the leaf through
p, and such that the tangent spaces of the leaves are smooth subbundles of
TM (see [21, p. 9 (iii)]).

Remark 2.2. Observe that there might exist foliations where the leaves are
not embedded submanifolds [21, Section 1.1], but we will not consider such
foliations in the present work.

The following phenomena give rise to foliations: let p : M → B be a
smooth submersion. Then the partition induced by the fibers of p produces a
foliation. More generally, any involutive subbundle of TM induces a foliation
on M . Consider a compact Lie group G acting smoothly on M with finite
stabilizer subgroups. The partition

F = {G(p) = {gp | g ∈ G} | p ∈M} ,

is a regular foliation (see [1, Theorem 3.65 and Example 5.3][21, p. 16]).
The codimension codim(M,L) of a foliation on a connected manifold M

is the codimension of any leaf L. The quotient space M/F induced by the
partition, equipped with the quotient topology, is called the leaf space of F .
We denote the projection map by π : M →M/F , and the image under π of
a subset A ⊂M by A∗.
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2.3.1. Germs. Given two smooth manifolds M and N , a point x ∈M , and
two diffeomorphisms f : M → N and g : M → N , we say that f and g
define the same germ at x, and denote it by f ∼x g, if there exists an open
neighborhood U ⊂M of x such that f |U = g|U . The germ of f at x is:

[f ]x = {g : M −→ N | f ∼x g and g is a diffeomorphism} .
If N = M , we denote the group of germs at x of diffeomorphisms f with
f(x) = x by Diffx(M).

2.3.2. Holonomy. Fix a leaf L ∈ F , and fix two points p, q ∈ L. Consider
two transversal sections T and S to L at p and q. That is, T and S are
submanifolds in M such that TpM = TpL ⊕ TpT and TqM = TqL ⊕ TqS.
Consider α : [0, 1]→ L any path joining p to q.

Proposition 2.3 (Section 2.1 [21]). There exists an open neighborhood A ⊂
T of p, contained in some foliated chart, and a diffeomorphism f : A → S,
given by α : [0, 1]→ L such that f(p) = q and for any x ∈ A, the image f(x)
is contained in the same leaf as x.

Figure 2.1. Local picture of holonomy

For the path α we set
hol(α)S,T = [f ]p.

Remark 2.4. Observe that
(1) for a fixed foliated chart, the diffeomorphism f of Proposition 2.3 is

unique;
(2) the definition of the holonomy does not depend on the choice of the

chart [21, p. 21].
Consequently the holonomy hol(α)S,T is well-defined.

Proposition 2.5 ([21]). The following hold:
(i) Let α be a path in L from p to q and β be a path in L from q to w.

Let T , S and R be transversal sections to L at p, q and w respectively.
Then for the concatenation of paths βα we have:

hol(βα)R,T = hol(β)R,S ◦ hol(α)S,T .
(ii) Consider α and β homotopic paths, relative to the fixed end points, in

L from p to q, and fix T and S transversal sections at p, respectively
q. Then

hol(α)S,T = hol(β)S,T .



8 C. CAMPAGNOLO AND D. CORRO

(iii) Let α be a path in L from p to q, and consider T and T ′ two transversal
sections at p and S and S′ two transversal sections at q. Denote the
constant path with image p by cp. Then

hol(α)S′,T ′ = hol(cq)S
′,S hol(α)S,T hol(cp)T,T

′
.

Considering closed loops in L with base point p ∈ L, we point out that
by Proposition 2.5 (i) and (ii), for a transversal section T at p we have a
group homomorphism

holT : π1(L, p) −→ Diffp(T ).
Moreover taking k = codim(M,L), since for any transversal section T we
can identify Diffp(T ) = Diff0(Rk), by Proposition 2.5 (iii), we obtain a group
homomorphism

hol(L, p) : π1(L, p) −→ Diff0(Rk).
We define the holonomy group of the leaf L at p, denoted by Hol(L, p), to

be the image of π1(L, p) under the homomorphism hol(L, p). This group is
independent of the base point p up to conjugation in Diff0(Rk). We denote
by K the kernel of the short exact sequence:
(2.1) 1 −→ K −→ π1(L, p) −→ Hol(L, p) −→ 1.

The holonomy group of a leaf measures roughly “how twisted” the foli-
ation is around the leaf. A foliation induced by a submersion has trivial
holonomy for any leaf. Observe that, by considering derivatives of germs at
the origin, we obtain a new representation:

Dhol(L, p) : π1(L, p) −→ GLk(R).

Remark 2.6. When a smooth Lie group H acts on a smooth manifold M in
such a way that the mapH×M →M×M given by (h, p) 7→ (hp, p) is proper,
there exists a smooth Riemannian metric g on M such that the action of H
is by isometries (see [1, Theorem 3.65]). Such an action is called a proper
action. Fix p ∈ M and consider the elements of H as diffeomorphisms of
M onto itself. By taking the derivative of h ∈ H we have a linear map
Dph : TpM → ThpM . For h ∈ H such that hp = p it becomes Dph : TpM →
TpM . Since h maps minimizing geodesics to minimizing geodesics, for v ∈
TpM small enough we have:

h expp(v) = expp(Dph(v)).(2.2)
Thus, h is a linear map with respect to the normal coordinates expp : U ⊂
TpM → V ⊂ M . Assume p is fixed by the action of H, i.e. hp = p for all
h ∈ H. From Equation (2.2) it follows that the linear action of H on TpM is
effective if and only if the action of H is effective. Observe that for any finite
group H acting smoothly on a compact manifold M , the action is proper.
Thus if p ∈M is in the fixed point set of the action of H, the action is linear
under the normal coordinates of any H-invariant Riemannian metric. See
also [2, Theorem 1] and [23, Lemma 2.1 (1) and (2)].

We now describe a tubular neighborhood of a leaf L in M with finite
holonomy. Let L̄ → L be the covering space of L associated with the
subgroup K in (2.1). Note that there is an action of Hol(L, p) on L̄. Consider
a transversal section T at a point p ∈ L and the holonomy action of the
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fundamental group π1(L, p) on T described above. We consider the diagonal
action of H = Hol(L, p) on L̄× T given by h · (q, x) = (h · q, h · x). Then we
have the following theorem:

Theorem 2.7 (Local Reeb stability, Theorem 2.9 in [21]). Let (M,F) be a
regular foliation. For a compact leaf L with finite holonomy H = Hol(L, p),
there exists a foliated open neighborhood V of L in M and a diffeomorphism

L̄×H T = (L̄× T )/H −→ V.

Moreover for any point q ∈ V , the whole leaf Lq is contained in V , and,
setting Hq = {h ∈ H | hq = q}, is homeomorphic to L̄/Hq.

In the case where F is induced by a group action, Theorem 2.7 is known
as the Slice Theorem (see [1, Theorem 3.57]). We say that a regular smooth
foliation F has finite holonomy if every leaf has finite holonomy. For more
information on foliations, see for example [21, 4].

2.3.3. Orbifolds. For the sake of completeness, we recall the notion of an
orbifold. Consider a topological space X, and fix n ≥ 0. An n-dimensional
orbifold chart on X is given by an open subset Ũ ⊂ Rn, a finite group G
of smooth automorphisms of Ũ , and a G-invariant map φ : Ũ → X, which
induces a homeomorphism of Ũ/G onto some open subset U ⊂ X. By
G-invariant we mean that φ(g · u) = φ(u) for any g ∈ G and u ∈ Ũ . An
embedding λ : (Ũ , G, φ) ↪→ (Ṽ ,H, ψ) between two orbifold charts is a smooth
embedding λ : Ũ → Ṽ such that ψλ = φ. Given two charts (Ũ , G, φ) and
(Ṽ ,H, ψ) with φ(Ũ) = U and ψ(Ṽ ) = V , we say that they are compatible
if for any x ∈ U ∩ V there exists W ⊂ U ∩ V , an open neighborhood of
x, and a chart (W̃ ,K, µ) with µ(W̃ ) = W , such that there are embeddings
(W̃ ,K, µ) ↪→ (Ũ , G, φ) and (W̃ ,K, µ) ↪→ (Ṽ ,H, ψ). The space X equipped
with an atlas of orbifold charts is called an orbifold, and we use the notation
OX to distinguish it from the original topological space X.

Let (M,F) be a regular foliation with all leaves compact with finite ho-
lonomy. From Theorem 2.7, an open neighborhood of p∗ ∈ M/F is given
by T/Hol(Lp, p). Thus the transversal sections to the leaves, the holonomy,
and the projection map π induce an orbifold atlas on M/F .

Theorem 2.8 (Theorem 2.15 in [21]). Let (M,F) be a foliation of codimen-
sion k such that any leaf of F is compact with finite holonomy group. Then
the space of leaves M/F has a canonical orbifold structure of dimension k.

Consider an n-dimensional orbifold X, and for x ∈ X, let (Ũ , G, φ) be a
chart around x. Take y ∈ Ũ such that φ(y) = x. The local group or isotropy
at x is the conjugacy class (see [21, Section 2.4]) in Diff0(Rn) of

Gx := {g ∈ G | gy = y}.

Consider (M,F) a regular foliation of codimension k, with compact leaves
of finite holonomy. Given p∗ ∈M/F , the isotropy Gp is the conjugacy class
of Hol(Lp, p) in Diff0(Rk) (see [21, Theorem 2.15]).
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2.4. Triangulation of the leaf space. Let M be a compact manifold.
We consider a regular foliation (M,F) by circles, i.e. any leaf L of F is
homeomorphic to a circle. We observe that in this case the holonomy of any
leaf L is isomorphic to either the trivial group, Z/kZ, for k ∈ N≥2, or Z,
since Z, kZ and the trivial group are the only subgroups of Z = π1(S1). We
will assume from now on that Hol(L, p) is finite, i.e. of the form Z/kZ or the
trivial group, for any leaf. In this case, by Theorem 2.8, the leaf space M/F
is a compact orbifold. For a general regular foliation (M,F) with compact
leaves and finite holonomy we will now define a decomposition into strata,
and recall that we can triangulate the leaf space M/F with respect to this
decomposition. The triangulation of the leaf space is such that the interior of
each simplex lies in a smooth submanifold contained in M/F . Furthermore
the projection map π : M →M/F is a smooth submersion between smooth
manifolds over the interior of each simplex.

2.4.1. The stratification. We recall that a stratification of a topological space
X is a partition of X into subsets {Σα}α∈Λ such that:

(i) The partition is locally finite, i.e. each compact subset of X only
intersects a finite number of strata.

(ii) If Σβ ∩ cl(Σα) 6= ∅, then Σβ ⊂ cl(Σα).
(iii) If X is a smooth manifold, the strata Σα are embedded smooth sub-

manifolds.
Let H < Diff0(Rn) be a finite subgroup. We denote by (H) its conjugacy

class in Diff0(Rn). For a regular foliation (M,F) with compact leaves and
finite holonomy, we consider the set

Σ(H) = {p∗ ∈M/F | (Hol(Lp, p)) = (H)} ⊂M/F .

From the description of the tubular neighborhood of a leaf Lp given by
Theorem 2.7, we can see that {Σ(H) | H = Hol(Lp, p)} gives a stratification
of M/F . We can describe Σ(H) locally as follows: for p∗ ∈ Σ(H) we consider
L̄p ×H T , the tubular neighborhood of Lp described in Theorem 2.7. The
points in Σ(H) correspond to the projection of the fixed points of the action
of π1(Lp) on T . Thus locally, the stratification of M/F is induced from the
stratification of the orbit space T/H (see [26, Section 4.3], [29, Sections 4.2
and 4.3]). From the fact that the transverse spaces T to the leaves give an
atlas for the orbifold M/F , we see that indeed the subsets Σ(H) of M/F
induce a stratification on the orbifold M/F (see [22, Section 1.2]).

Remark 2.9. In general for an orbifold X, the isotropy groups yield a
stratification of X, by setting Σ(H) = {x ∈ X | (H) = (Gx)}.

For a foliation by circles (M,F) with finite holonomy over a compact
manifold M we describe the holonomy stratification. The stratification of
M/F is given by {Σ(Z/kZ) | k ∈ N}. Since M is compact, there are finitely
many conjugacy types of holonomy groups.

Proposition 2.10. Let (M,F) be a regular foliation with compact leaves
and finite holonomy. Consider a connected component Σ of a holonomy
stratum. Then for S = π−1(Σ), the projection π : S → Σ is a fiber bundle.
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Proof. Fix p ∈ S, consider T a fixed transversal to Lp at p, and assume that
H is the holonomy group of Lp at p. Observe that, by construction, for any
x ∈ S we have Lx ⊂ S. Thus the foliation F induces a regular foliation on
S, which we also denote by F . Recall that q ∈ S∩T is fixed by H. Then by
Theorem 2.7, we have that Lq = L̄p/H is a covering space of Lp of degree
1. Since q was arbitrary, we conclude that all the leaves of (S,F) induce a
degree 1 covering of Lp.

We now consider (S,F), and denote by G the holonomy group of Lp at p
for the restricted foliation F to S. Since we know that all leaves in (S,F)
are covering spaces of Lp corresponding to the trivial group, and are the
fixed points of the faithful action of G on S ∩ T , we conclude that G is the
trivial group. Then, by Theorem 2.7, we obtain that locally the foliation
(S,F) is a product foliation. �

2.4.2. Triangulation. Given an orbifold X, there exists a triangulation T of
X, such that the closures of the strata Σ(H) are contained in subcomplexes
of T (see [13, 32]). By taking a subdivison of T we can assume that for a
simplex σ of T , the isotropy groups of the points in the interior of σ are the
same, and are subgroups of the isotropy groups of the points in the boundary
of σ. Furthermore we can assume that there is a face σ′ ⊂ σ, such that the
isotropy is constant on σ \ σ′, and possibly larger on σ′. Thus, any simplex
σ of T has a vertex v ∈ σ with maximal isotropy. This means that for any
point x ∈ σ, a conjugate of Gx is contained in Gv.

2.5. Hollowings. In this section, we introduce our main geometric tool,
hollowings. The right category in which to consider this construction is that
of manifolds with corners, so we first define these for the sake of complete-
ness. We follow the presentations in [8, Appendix B] and [33], and refer
the reader interested in more details on manifolds with corners and their
submanifolds to [8, Appendix B].

Let n ∈ N and let k ∈ {0, ..., n}. A sector of dimension n with index k is
a set of the form

A = {(x1, ..., xn) ∈ Rn | xi1 ≥ 0, ..., xik ≥ 0},
with pairwise distinct i1, ..., ik ∈ {1, ..., n}. Note that Rn is a sector of
dimension n with index 0. The index of a point x ∈ A is the number of its
coordinates that are equal to 0 among xi1 , ..., xik . The index of 0 ∈ Rn is k,
the index of A.

Let m ∈ N be arbitrary and A ⊂ Rn a sector. Let U ⊂ A be open,
and V ⊂ Rm an arbitrary subset. A map φ : U → V is smooth if for every
x ∈ U , there exists an open neighborhood Ux ⊂ Rn of x and a smooth map
φx : Ux → V such that φx and φ coincide on U ∩ Ux.

Let M be a topological space. An atlas with corners for M of dimension
n is a family (Ui, Vi, φi)i∈I where (Vi)i∈I is an open cover of M , each Ui
is an open subset in a sector Ai of dimension n and each φi : Ui → Vi is
a homeomorphism (called chart) such that all transition maps are smooth,
i.e. for all i, j ∈ I, the map

(φ−1
j ◦ φi)|Ui∩φ−1

i (Vj),

is smooth (in the above sense).
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We say that a Hausdorff second countable topological space M is an n-
dimensional manifold with corners, if it admits an atlas with corners as
above. For such an M , define the subsets ∂M =<(1) M ⊃ ... ⊃<(n) M as
the image under the chart homeomorphisms of all subsets of points of index
at least 1 ≤ ... ≤ n. This does not depend on the choice of the charts.

In order to define submanifolds with corners, we need the notion of sub-
sector. Let A = {x ∈ Rn | xi1 ≥ 0, ..., xik ≥ 0} be a sector of dimension n
with index k. Let p, `, j ∈ N with p ≥ `. A subsector of A (of codimension p,
coindex ` in A and complementary index j) is a subset A′ ⊂ A determined
by sets L ⊂ {i1, ..., ik} with ` elements, P ⊂ {1, ..., n} \ {i1, ..., ik} with p− `
elements and J ⊂ {1, ..., n} \ ({i1, ..., ik} ∪ P ) with j elements such that

A′ = {(x1, ..., xn) ∈ A | xi = 0∀i ∈ L, xi = 0∀i ∈ P, xi ≥ 0 ∀i ∈ J}.

Let M be a manifold with corners. A closed subspace N ⊂M is called a
submanifold (with corners), if for all x ∈ N there exists a chart φ : U → V
of M , where U is contained in a sector A, and a subsector A′ ⊂ A such that
φ(0) = x and φ−1(V ∩N) = U ∩A′.

With these definitions, we are able to define hollowings. Let M be a
manifold with corners and N a submanifold with corners of M , such that N
is transverse to each

(
<(k) M

)
\
(
<(k+1) M

)
and <(k) N = N ∩

(
<(k) M

)
.

The tubular neighborhood ν(N) of N in M has the structure of a disk
bundle over N . Let ψ : νS(N) × [0, 1] → ν(N) be the parametrization of
ν(N) in polar coordinates, that is νS(N) is the total space of the associated
sphere bundle, ψ|νS(N)×{1} = idνS(N) and ψ|νS(N)×{0} is the projection of
the bundle ν(N)→ N . Take

M ′ = cl (M \ ν(N))
⋃

ψ|νS(N)×{1}

νS(N)× [0, 1].

There is a natural map p : M ′ → M defined by p|M\ν(N) = idM\ν(N) and
p|νS(N)×[0,1] = ψ. The space M ′ has a canonical structure as a manifold with
corners, making p a differentiable map between manifolds with corners.

The hollowing of M at N is the map p : M ′ → M . In the case where
N = ∅, we define M ′ = M and p = idM . The submanifolds N ⊂ M and
p−1(N) ⊂M ′ are called the trace and the hollow wall of p, respectively. For
a submanifold L ⊂M , denote by p̄(L) the submanifold cl(p−1(L\(L∩N))) ⊂
M ′.

Let (M,F) be a compact oriented n-dimensional manifold, with possibly
empty boundary ∂M , equipped with a regular foliation of dimension q, such
that each leaf has finite holonomy. Consider a triangulation of the leaf
space M/F as described in Section 2.4.2, and denote by (M/F)(k) the k-th
skeleton of the triangulation. We define a sequence of hollowings

Mn−q−1 pn−q−2
// Mn−q−2 // · · · // M1 p0

// M0 = M

in the following way. For k = 0, ..., n− q− 2, we define inductively the map
pk : Mk+1 →Mk to be the hollowing at

Xk = p̄k−1(. . . p̄0(π−1((M/F)(k))) . . .),
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for k ≥ 1, and X0 = π−1((M/F)(0)). The following proposition shows that
at each step of the hollowing we obtain a foliated manifold.

Proposition 2.11. Let (M,F) be a compact smooth manifold with a regular
foliation with finite holonomy. For each hollowing pi : Mi+1 →Mi, there are
regular foliations Fi on Mi, and Fi+1 on Mi+1, such that pi maps Fi+1 to
Fi.

Proof. We will prove this by induction on i. Assume that (Mi,Fi) is a
regular foliation with finite holonomy. Consider U a tubular neighborhood
of Xi in Mi, and fix q ∈ U . Then q belongs to a tubular neighborhood of
some leaf Lp ⊂Mi of Fi with p ∈ Xi. Denote by H the holonomy group of
Lp, and T a transverse subspace to Lp at p. Since a tubular neighborhood
of Lp is foliated diffeomorphic to L̄p ×H T , the leaf Lq is contained in this
tubular neighborhood, and thus in the tubular neighborhood U of Xi. This
implies that the tubular neighborhood of Xi in Mi is foliated. Since we are
hollowing Mi at Xi, we see that the foliation Fi restricted to U minus the
zero-section Xi induces a foliation on νS(Xi) × [0, 1], with finite holonomy.
This proves the proposition. �

Remark 2.12. In general, let (M,F) be a compact smooth manifold with
a regular foliation with finite holonomy. Consider a fixed stratum Σ(H) of
M/F . For p∗ ∈ Σ(H) we have, from Theorem 2.7, that a neighborhood is
given by T/H. Furthermore, we may assume that T is homeomorphic to an
(n − q)-disk, where q is the dimension of F , and that H acts linearly on it
(see Remark 2.6). This implies that the fixed point set of the action of H on
T is a linear subspace. Thus locally, the stratum is a submanifold in T/H.
Since, by construction, the simplices of the triangulation are contained in
strata, from the description of the hollowing and the local description of the
foliation, we see that the map p∗i : Mi+1/Fi+1 → Mi/Fi is a hollowing on
the i-th skeleton.

Remark 2.13. For the particular case that the regular foliation F is given
by circles, the foliation Fi is also given by circles.

2.5.1. Examples. We present some examples of hollowings.

Example 2.14.
(1) For the standard n-dimensional simplex ∆n, we denote by (∆n)(k)

the k-th skeleton of ∆n. We can define a sequence of hollowings in-
ductively. Setting ∆n

0 = ∆n, we define qk : ∆n
k+1 → ∆n

k the hollowing
at q̄k−1 · · · q̄0((∆n)(k)) (see Figure 2.2).

(2) The following is a hollowing for a singular foliation, but we find it
helpful as an example. Let S1 act on S2 by rotations along the north-
south axis. This gives a foliation F of S2 by the orbit circles, except
for the two fixed points N,S. The leaf space (S2)∗ is a segment with
orbifold structure given by the open segment and its two boundary
points corresponding to the fixed points N,S.

A hollowing p at the submanifold {N,S} is described as follows:
in (S2)′ the tubular neighborhoods ν(N), ν(S) ⊂ S2 of N and S (two
2-disks) are replaced by two annuli [0, 1]× (S1∪S1), by gluing {1}×
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(a) The simplex ∆3
0

(b) The hollowed sim-
plex ∆3

1

(c) The hollowed sim-
plex ∆3

2

Figure 2.2. Hollowings of the simplex

(S1 ∪S1) via the identity to S2 \ (ν(N) ∪ ν(S)) along the boundaries
S1 ∪ S1 (see Figure 2.3). In this case the hollowed manifold (S2)′ is
a closed annulus, that is S2 with two disjoint open disks removed.

S2
(S2)∗

N

S

N∗

S∗

(a) Foliation and leaf space

(S2)′

(b) Hollowing (small open disks
are missing at the two poles)

Figure 2.3. Action of S1 by rotations on S2.

(3) Let S3 = {(z0, z1) ∈ C2 | |z0|2 + |z1|2 = 1}. Fix p, q ∈ Z with
(p, q) = 1 and let S1 act on S3 via

e2iπθ · (z0, z1) = (e2iπθpz0, e
2iπθqz1).

This action is called a weighted Hopf fibration; when p, q = 1 we
recover the classical Hopf fibration. The action has no fixed points,
but the circles

{(z0, 0) | |z0| = 1}, {(0, z1) | |z1| = 1} ⊂ S3,

have non-trivial isotropy isomorphic to Z/pZ and Z/qZ, respectively.
All other points have trivial isotropy. The orbit of each point is
a circle. The orbit space is S2, with orbifold structure a cylin-
der with upper and lower boundary circles collapsed to points x∗p
and x∗q , respectively, corresponding to the two orbits with isotropy
Z/pZ and Z/qZ, respectively. Take a triangulation of this S2 such
that x∗p, x∗q are among the vertices: for example add four vertices
y∗0, ..., y

∗
3 on the equator and join each of them by edges to x∗p and
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x∗q (see Figure 2.4). In this fashion, we obtain a triangulation of
S2 with 6 vertices, 12 edges and 8 triangles. The hollowings con-
sist here of a single map p0 : M1 → S3, that is the hollowing at
π−1((S3/F)(0)): we take tubular neighborhoods νp, νq, νy0 , . . . , νy3 of
the 6 circles π−1(x∗p), π−1(x∗q), π−1(y∗0), ..., π−1(y∗3) out of S3 and glue
back the products [0, 1] × ∂νp, [0, 1] × ∂νq, [0, 1] × ∂νy0 , . . . , [0, 1] ×
∂νy3 using the identity map along the associated sphere bundles
∂νp, ∂νq, ∂νy0 , . . . , ∂νy3 .

(a) Orbit space (b) Triangulated orbit
space

(c) Hollowing

Figure 2.4. Hollowing for the orbit space of the weighted
Hopf fibration

2.5.2. Decomposition of the manifold. Let (M,F) be a regular foliation by
circles with finite holonomy. In this case the leaf space has dimension n −
1. We will show that when M is orientable, the (n − 3)-skeleton of the
triangulation of M/F given in Subsection 2.4.2 contains all the strata of
non-trivial holonomy.

Lemma 2.15. Let M be a compact oriented smooth manifold equipped with a
regular smooth circle foliation F . Then the strata with non-trivial holonomy
are contained in the (n− 3)-skeleton of M/F .

Proof. Suppose there is a connected component Σ of a stratum with non-
trivial holonomy that lies in (M/F)(n−2) and not in (M/F)(n−3). Fix p ∈M
such that p∗ ∈ Σ, and denote by H the holonomy of the leaf Lp through p
at p. We are going to study the action of H on a small neighborhood of p
in M .

For S = π−1(Σ) we have a circle bundle π : S → Σ by Proposition 2.10.
Thus over a closed neighborhood U ⊂ Σ around p∗ we have that π−1(U) is
diffeomorphic to S1 × U , and S has codimension 1 in M . Moreover since Σ
is an (n− 2)-manifold, we can assume that U is homeomorphic to Dn−2.

We now consider proj : Tub(S)→ S a small tubular neighborhood of S in
M , and set Tub(π−1(U)) = (proj)−1(π−1(U)). Then for a small closed set
V̄ ⊂ π−1(U) we have that V = proj−1(V̄ ) is homeomorphic to [−1, 1] × V̄
(see Figure 2.5). Since π−1(U) ∼= S1 × Dn−2, we can assume that V is
homeomorphic to [−1, 1] × [−1, 1] × Dn−2, but with the first factor [−1, 1]
corresponding to the intersection of V with the circle leaves of the foliation.
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Figure 2.5. Neighborhood V

A small neighborhood A of p∗ in M/F is homeomorphic to ([−1, 1] ×
Dn−2)/H, since [−1, 1] × Dn−2 corresponds to the intersection of V with a
transversal section T to the leaf Lp at p. Observing that Dn−2 corresponds
to the intersection of the transversal section T with S, and this intersection
is fixed by H, we conclude that H acts trivially on Dn−2. Consequently
H acts faithfully linearly on R1 (see Remark 2.6), the tangent space to the
factor [−1, 1]. Thus H is isomorphic to Z/2Z.

Now consider a closed tubular neighborhood Tub(Lp). By the Local Reeb
stability Theorem 2.7, this neighborhood is foliated diffeomorphic to S1 ×H
([−1, 1] × Dn−2). As we said above, the action of Z/2Z on the factor Dn−2

is trivial, so Tub(Lp) is foliated diffeomorphic to (S1 ×Z/2Z [−1, 1])× Dn−2.
Observe that S1×Z/2Z [−1, 1] is diffeomorphic to the Möbius band. Since M
is orientable, then Tub(Lp) is orientable too. This is a contradiction. �

The previous lemma implies, as in Yano [33], that the hollowing con-
structed in Section 2.5 is as follows:

Mn−2 pn−3
// Mn−3 // · · · // M1 p0

// M0 = M.

As in [7, 8] we extend this sequence to account for the case when M has
non-empty boundary. We set M−1 = M , and p−1 = idM . We set X−1 =
∂M ⊂M−1, and define Nj = p−1

j (Xj) ⊂Mj+1. For j < i we set

pi,j = pj ◦ pj+1 ◦ · · · ◦ pi−1 : Mi −→Mj .

Define Ñj = p−1
n−2,j+1(Nj) = p−1

n−2,j(Xj) ⊂ Mn−2, and for {j1, . . . , jk} a set
of distinct indices with −1 ≤ ji ≤ n− 3 we define

Ñj1,...,jk = Ñj1 ∩ . . . ∩ Ñjk ⊂Mn−2

and
Xj1,...,jk = pn−2,j1(Ñj1,...,jk) ⊂ Xj1 .

Remark 2.16. Note that Ñj1,...,jk does not depend on the order of the
indices j1, . . . , jk, while Xj1,...,jk depends on which index appears first. There
is no assumption of any kind on the order relations between the ji’s.

We recover for the foliated context a series of lemmas from [33] and [7].
For example we have the following:
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Lemma 2.17 (Lemma 4 in [33]). Let (M,F) be a regular foliation by cir-
cles with finite holonomy. For j1, . . . , jk ≥ 0, each connected component of
Xj1,...,jk/Fj1 is contractible and can be identified with ∆j1−k+1

j1−k+1.

Proof. We show first that this holds for Xj1 . The set Xj1 is the pullback
via pj1−1,0 ◦ π : Mj1 → M/F of the j1-skeleton. For every connected com-
ponent X ′j1 of Xj1 , we have that X ′j1/Fj1 is equal to ∆`

`, where ` = j1 (see
Example 2.14 (1)). Under this identification, each connected component of
Xj1,...,jk/Fj1 is diffeomorphic to ∆`−k+1

`−k+1. This space is contractible. �

From the construction of the triangulation (Section 2.4.2) we obtain:

Lemma 2.18 (Lemma 2.1 in [7]). Let (M,F) be a regular foliation by cir-
cles with finite holonomy. For j1, . . . , jk ≥ 0, the space Xj1,...,jk is foliated
diffeomorphic to (Xj1,...,jk/Fj1)× S1.

Proof. From the construction of the triangulation of M/F , over each face of
an (n−1)-simplex we have leaves of F with same holonomy. By construction
of Xj1,...,jk , this fact also holds for Fj1 . From Lemma 2.17 it follows that
over a connected component of Xj1,...,jk we have constant holonomy. Thus
by Proposition 2.10 Xj1,...,jk is the union of total spaces of circle bundles over
the connected components of Xj1,...,jk/Fj1 , which are contractible. Therefore
it is trivial. �

A main difference with the work of [7, 33] is that the circle bundle S1 →
Mn−2 → (Mn−2/Fn−2) is not trivial in general. Nonetheless, we have the
following lemma:

Lemma 2.19. Let (M,F) be a regular foliation by circles with finite holo-
nomy on a connected manifold. For the last hollowing Mn−2, the leaf space
(Mn−2/Fn−2) has the homotopy type of a compact connected 1-complex and
Mn−2 is aspherical.

Proof. Let Σ = ∪H 6={id}Σ(H) ⊂M/F be the union of all strata correspond-
ing to non-trivial holonomy groups. By Lemma 2.15, Σ/F is contained in
simplices of dimension at most n− 3 in M/F .

From this it follows that p̄n−2,0(π−1(Σ)) = ∅, since at this point we have
removed all the preimages of the simplices of dimension less than n − 2.
Thus over Mn−2 the foliation does not have holonomy, and induces a circle
bundle. Observe that Mn−2/Fn−2 ∼= M/F \ (M/F)(n−3) has the homotopy
type of a compact 1-complex, that is a finite graph. Since M is connected,
this graph is connected. The fundamental group of a finite graph is a finitely
generated free group. From the long exact sequence of homotopy groups of
the fibration S1 →Mn−2 →Mn−2/Fn−2 we see that Mn−2 is aspherical. �

Furthermore, by the construction of the hollowings and the triangulation,
the following proposition holds:

Proposition 2.20 (See Proposition 2.2 in [7]). For all pairwise distinct
j1, . . . , jk ∈ {0, . . . , n − 3} we have that Xj1,...,jk,−1 is the union of the con-
nected components Y ⊂ Xj1,...,jk that satisfy

Y ⊂ pn−2,j1(Ñ−1).
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Proof. Let j ∈ {0, . . . , n− 3}. We first show the statement for Xj,−1 ⊂ Xj .
We work in the space Xj/Fj and show the statement there.

Let Y ⊂ Xj/Fj be a connected component. We will show that

Y ⊂ Xj,−1/Fj ⇐⇒ Y ⊂ pn−2,j(Ñ−1)/Fj .
The left-to-right implication is true by definition. For the right-to-left impli-
cation, as in the proof of Lemma 2.17, we observe that Y is homeomorphic
to ∆j

j , where ∆j
j is obtained from the standard simplex ∆j by hollowing

inductively along the `-skeleton for all ` ∈ {0, . . . , j − 1} (see Example 2.14
1). From this it follows that we are in one of the following cases:

(1) Y ⊂ pn−2,j(Ñ−1)/Fj , or
(2) Y ∩ pn−2,j(Ñ−1)/Fj = ∅.

In the first case, we have

Y ⊂ Xj/Fj ∩ pn−2,j(Ñ−1)/Fj
= pn−2,j(Ñj)/Fj ∩ pn−2,j(Ñ−1)/Fj
⊂ pn−2,j(Ñj,−1)/Fj
= Xj,−1/Fj ,

where the last inclusion follows from
pn−2,j(Ñj \ Ñ−1)/Fj ∩ pn−2,j(Ñ−1 \ Ñj)/Fj = ∅,

which holds by construction of the hollowings. In the second case, we have
Y ∩Xj,−1/Fj = ∅.

For Xj1,...,jk,−1 with k ≥ 1, it suffices to observe that
Xj1,...,jk,−1/Fj = Xj1,...,jk/Fj ∩Xj1,−1/Fj .

See also [8, Lemma 4.2.8] for more details. �

Remark 2.21. We point out that we can take a refinement of the triangu-
lation on ∂(Mn−2/Fn−2) so that it is compatible with the decompositions

∂(Mn−2/Fn−2) =
n−3⋃
i=−1

Ñi/Fn−2

and

∂
(
Ñi1,...,ik/Fn−2

)
=

n−3⋃
i=−1,i 6=i1,...,ik

Ñi1,...,ik,i/Fn−2.

That is, each Ñi1,...,ik,i/Fn−2 is a subcomplex of ∂(Mn−2/Fn−2).

3. Proof of Theorem B

Now we establish the necessary preliminary results for the proof of our
main theorem, which is carried out at the end of the section.

We will then use the triangulation of M/F to construct a series of trian-
gulations on the holonomy strata that have zero foliated simplicial volume.

Proposition 3.1 (See Proposition 4.1 in [7]). Assume the inclusions of the
leaves of the foliation F are π1-injective. Take k ∈ {1, . . . , n − 2} and let
j1, . . . , jk ∈ {0, . . . , n − 3} be pairwise distinct. Then, for any choice of
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basepoints, the inclusions Xj1,...,jk ⊂ Mj1 and Xj1,...,jk,−1 ⊂ Mj1 are π1-
injective.

Proof. By Proposition 2.20, it suffices to show that the inclusion Xj1,...,jk ⊂
Mj1 is π1-injective. By Lemma 2.18, we have Xj1,...,jk

∼= (Xj1,...,jk/Fj1)×S1.
By Lemma 2.17, each connected component of Xj1,...,jk/Fj1 is contractible.
Now, by Proposition 2.11, the composition of maps

Xj1,...,jk ⊂Mj1

pj1,0−→ M0 = M

is the inclusion of leaves into M , and thus π1-injective by hypothesis. Thus
the inclusion Xj1,...,jk ⊂Mj1 is also π1-injective. �

We now construct a series of representations of the fundamental groups
of the hollowings Mj as follows:

Setup 3.2. Fix xn−2 ∈ Mn−2, and set xi = pn−2,i(xn−2) ∈ Mi. We write
Γ = π1(M,x0) and consider a fixed essentially free standard Γ-space (Z, µ),
with the representation α0 = α : Γ → Aut(Z, µ). From this representation,
using the hollowing maps pi,0 : Mi → M , we can define for Γi = π1(Mi, xi)
a representation αi : Γi → Aut(Z, µ) by setting

αi = α ◦ π1(pi,0).

Recall that we have a circle bundle Mn−2 → Mn−2/Fn−2 (see proof of
Lemma 2.19), which may be orientable or not. If the bundle structure of
Mn−2 is orientable, then by the classification of oriented S1-bundles, it is
trivial: by Lemma 2.19 Mn−2/Fn−2 has the homotopy type of a graph, and
hence H2(Mn−2/Fn−2,Z) = 0.

If the bundle structure ofMn−2 is non-orientable, sinceMn−2 is orientable,
then the base Mn−2/Fn−2 is non-orientable. For this case we need to change
the Borel space we consider as follows: we take B the oriented double cover
of Mn−2/Fn−2. By pulling back the circle bundle we obtain an orientable
double cover W of Mn−2. This double cover is homotopy equivalent to
an oriented circle bundle over B. Thus we get the following commutative
diagram:

W
p̃

2
//

��

Mn−2

��
B

p

2
// Mn−2/Fn−2.

Observe that the fundamental groupH ofW is a subgroup of index 2 of Γn−2,
and thus we obtain a representation β of H on (Z, µ) by restricting αn−2. In
the subsequent proofs, we will find parametrized relative fundamental cycles
of W , and from them we will obtain appropriate parametrized fundamental
cycles of Mn−2.

To do so, as in [20, Setup 4.24 and Definition 4.25], set γ0 = e and γ1 be
a fixed representative of the non-identity class in Γn−2/H. We denote the
elements in

Γn−2 ×H Z = Γn−2 × Z/{(γh, z) ∼ (γ, h · z), γ ∈ Γn−2, h ∈ H, z ∈ Z}
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by [γ, z], and Γn−2 acts on Γn−2×H Z by γ′[γ, z] = [γ′γ, z]. The measure on
Γn−2×H Z is given as follows: we take the counting measure µ′ on Γn−2/H
and then pull back the measure (1/2)µ′⊗µ on Γn−2/H×Z via the bijection

Γn−2 ×H Z −→ Γn−2/H × Z,
[γ, z] 7−→ (γH, z).

As in [20, Proof of Proposition 4.26], we have the following well-defined
ZΓn−2-isomorphism:

ψ : L∞(Z;Z)⊗ZH ZΓn−2 −→ L∞(Γn−2 ×H Z;Z)

f ⊗ γj 7−→
(

[γk, z] 7→
{
f(z), if k = j

0, if k 6= j

)
.

The induced map
Ψ: C∗(W ;β) −→ C∗(Mn−2; Γn−2 ×H Z)

f ⊗ σ 7−→ ψ(f ⊗ e)⊗ σ
sends parametrized fundamental cycles of W to parametrized fundamental
cycles of Mn−2 [20, Proof of Proposition 4.26]. The parametrized norms
behave as follows:

(3.1)
Ψ(c)

Γn−2×HZ ≤ 1
2
cZ

for all c ∈ C∗(W ;β).
Using the hollowings pi : Mi+1 →Mi, we define Hi = π1(pn−2,i ◦ p̃)(H) <

Γi. Note that Hi has finite index in Γi for every i ∈ {0, . . . , n− 2}. Indeed,
the maps π1(pn−2,i) induced by the hollowings are surjective: the hollowing
maps pi are quotient maps by construction, and their fibers are either a
point, or a sphere of dimension at least 1, hence connected. Then [3, The-
orem 1.1] applies. Moreover, the index of H in Γn−2 is 2 by definition, so
that [Γi : Hi] ≤ 2.

We note that by construction of the representations αi, the restriction
of αi to Hi is an essentially free action on Z. The spaces we consider are
Γi ×Hi Z, which have an essentially free action of Γi as above, denoted by
βi.

Depending on whether the circle bundle Mn−2 → Mn−2/Fn−2 is ori-
entable or not, for i ∈ {0, . . . , n−2}, we consider Vi equal to Z, respectively
Γi ×Hi Z, with a representation ξi of Γi given by αi, respectively βi.

Let p̃i : M̃i+1 → M̃i be a fixed lift to the universal covers of the map
pi : Mi+1 →Mi. We define a chain map

Pi : L∞(ξi+1;Z)⊗ZΓi+1 C∗(M̃i+1,Z) −→ L∞(ξi;Z)⊗ZΓi C∗(M̃i,Z)

f ⊗ σ 7−→ f ⊗ (p̃i ◦ σ).
In this way we obtain the following sequence:

L∞(ξn−2;Z)⊗ZΓn−2 C∗(M̃n−2,Z) Pn−3−→ · · · P0−→ L∞(ξ0;Z)⊗ZΓ0 C∗(M̃,Z).
For i < j we can also consider the maps

Pj,i : L∞(ξj ;Z)⊗ZΓj C∗(M̃j ,Z) −→ L∞(ξi;Z)⊗ZΓi C∗(M̃i,Z),
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defined as Pj,i = Pi ◦ · · · ◦ Pj−1. These maps will be used later in the proof
of Theorem B.

For Xi1,...,ik ⊂ Mi1 we set Λi1,...,ik = π1(Xi1,...,ik). As in the observation
made in [7, Setup 4.2], these groups are independent of the base points
chosen:

Lemma 3.3. Let x, y be two points in a connected component of Xi1,...,ik .
Then π1(Xi1,...,ik , x) ∼= π1(Xi1,...,ik , y). The fundamental group of any such
connected component is Z.

Proof. By Proposition 3.1 the inclusions Xi1,...,ik ↪→ Mi1 are π1-injective
for all suitable sets of indices i1, . . . , ik, and by Lemma 2.18 Xi1,...,ik

∼=
(Xi1,...,ik/Fi1)×S1. Moreover, by Lemma 2.17 the connected components of
Xi1,...,ik/Fi1 are contractible. So for every choice of base point x ∈ Xi1,...,ik ,
the corresponding fundamental group π1(Xi1,...,ik , x) is Z.

Set x∗ = π ◦ pi1,0(x), y∗ = π ◦ pi1,0(y) the images of x, y in π ◦ pi1,0(Mi1).
Choose an embedded path γ from x∗ to y∗ in π◦pi1,0(Xi1,...,ik) so that its inte-
rior avoids the (n−3)-skeleton (M/F)(n−3). Its preimage γ in Xi1,...,ik is then
a circle bundle over the embedded interval γ, thus an annulus. Therefore the
two fibers above the two ends of the path x and y are homotopic. These are
exactly the two generating circles of π1(Xi1,...,ik , x) and π1(Xi1,...,ik , y). �

By Proposition 3.1, we have Λi1,...,ik < Γi1 . We denote by ξ′i1,...,ik the
restriction of the representation ξi1 to Λi1,...,ik . For the universal cover
qi1 : M̃i1 → Mi1 , observe that q−1

i1
(Xi1,...,ik) is Γi1-invariant. Hence we can

consider the subcomplex

L∞(ξi1 ;Z)⊗ZΓi1 C∗(q
−1
i1

(Xi1,··· ,ik),Z).

Proposition 3.4. For the subcomplex L∞(ξi1 ;Z)⊗ZΓi1 C∗(q
−1
i1

(Xi1,··· ,ik),Z)
and the restriction ξ′i1,··· ,ik we have an isomorphism from

L∞(ξi1 ;Z)⊗ZΓi1 C∗(q
−1
i1

(Xi1,··· ,ik),Z)

onto
L∞(ξ′i1,··· ,ik ;Z)⊗ZΛi1,··· ,ik C∗(Xi1,··· ,ik ,Z).

Proof. See [7, p. 12]. �

For a fixed ε > 0, we will show the existence of an essentially free Γ-
space, and a representation of Γ, such that there is a relative parametrized
fundamental cycle of M with `1-norm bounded above by ε. We begin by
finding such a cycle for Mn−2.

Proposition 3.5. Let (M,F) be an oriented compact connected smooth n-
manifold with a regular foliation by circles with finite holonomy. Assume
that the inclusion of each leaf into M is π1-injective. Set Γ = π1(M,x0) and
choose ε > 0. There exists a relative fundamental cycle

z ∈ Cn(Mn−2; ξn−2)

that has `1-norm less than ε.
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Proof. We consider two cases: when Mn−2/Fn−2 is orientable and when it
is not. In the first case, since Mn−2 is orientable, then the circle bundle
Mn−2 → Mn−2/Fn−2 is also orientable. Thus, as stated in the proof of
Lemma 2.19 and in the Setup 3.2, we have Mn−2 ∼= (Mn−2/Fn−2) × S1.
The subgroup Λ of π1(Mn−2/Fn−2) × π1(S1) generated by the circle factor
corresponds under this homeomorphism to the subgroup of Γn−2 generated
by a leaf. Observe that, by Proposition 2.11, each leaf in Mn−2 is mapped
by pn−3,0 to a leaf of (M,F). Since the inclusion of any leaf is π1-injective,
then (Z, µ) is an essentially free standard Λ-space with respect to α′, the
restriction of αn−2 to Λ. From the proof of [10, Lemma 10.8], given any rela-
tive fundamental cycle z̄ of Mn−2/Fn−2, there exists a cycle cS1 ∈ C1(S1;α′)
such that the relative fundamental cycle

z = z̄ × cS1 ∈ Cn(Mn−2;αn−2),

has `1-norm less than ε, as desired.
For the second case, we consider the oriented double cover p̃ : W →Mn−2

of Mn−2, which is the total space of a trivial circle bundle over the orientable
double cover B of Mn−2/Fn−2. Recall that Z is an essentially free H-space,
via the representation β. As in the first case, since B has the homotopy
type of a 1-complex, the fundamental group of the fiber S1 injects into H.
Denote by β′ the restriction of β to this subgroup. Again by the proof of
Lemma 10.8 in [10], for any relative fundamental cycle ū of B, we can find a
parametrized cycle cS1 ∈ C1(S1;β′) such that ū× cS1 has `1-norm less than
2ε.

Recall that the parametrized norms behave as followsΨ(c)
Γn−2×HZ ≤ 1

2
cZ

for all c ∈ C∗(W ;β). Hence, taking c = ū × cS1 ∈ Cn(W ;β), we obtain a
Γn−2×H Z-parametrized relative fundamental cycle z = Ψ(c) for Mn−2 withzΓn−2×HZ < ε. �

We will now show the existence of a fundamental cycle of (M,∂M) with
arbitrarily small `1-norm. Let z̄ be any relative fundamental cycle of the
manifold Mn−2/Fn−2. We first consider the case when the circle bundle
Mn−2 →Mn−2/Fn−2 is orientable. We fix ε > 0 and consider z = z̄ × cS1 ∈
Cn(Mn−2;αn−2), the cycle obtained from Proposition 3.5. For n − 3 ≥ i ≥
−1, we define a cycle z̄i ∈ Cn−2(Ñi/Fn−2;Z) as the sum of all the simplices
in ∂z̄ that belong to the subcomplex Ñi/Fn−2 ⊂ ∂Mn−2/Fn−2. We define

zi := z̄i × cS1 ∈ Cn−1(Ñi;αn−2).

In an analogous fashion, for a subset of pairwise distinct indices i1, . . . , ik
with n− 3 ≥ ij ≥ −1, we inductively define cycles

z̄i1,...,ik ∈ Cn−1−k(Ñi1,...,ik/Fn−2;Z),

as the sum of all the simplices of ∂z̄i1,...,ik−1 contained in Ñi1,...,ik/Fn−2. For
non-pairwise distinct indices we set z̄i1,...,ik = 0. We define

zi1,...,ik := z̄i1,...,ik × cS1 ∈ Cn−k(Ñi1,...,ik ;αn−2).
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When the circle bundle Mn−2 → Mn−2/Fn−2 is not orientable, we use its
oriented double cover. Let W → B be the oriented double cover of Mn−2 →
Mn−2/Fn−2, as in Setup 3.2:

W
p̃

2
//

��

Mn−2

��
B

p

2
// Mn−2/Fn−2.

We have corresponding preimages

W̃ //

q

��

q−1
n−2(Ñj) ⊂ M̃n−2

qn−2
��

p̃−1(Ñj) ⊂W
p̃ //

��

Ñj ⊂Mn−2

��

p−1(Ñj/Fn−2) ⊂ B p // Ñj/Fn−2 ⊂Mn−2/Fn−2.

We recall that W → B is a trivial circle bundle. Proposition 3.5 thus gives
us a parametrized relative fundamental cycle of the form u = ū × cS1 ∈
Cn(W ;β), where ū is any relative fundamental cycle of B.

For n− 3 ≥ i ≥ −1, we define a cycle ūi ∈ Cn−2(p−1(Ñi/Fn−2),Z) as the
sum of all the simplices in ∂ū that belong to the subcomplex p−1(Ñi/Fn−2) ⊂
∂B. We define

ui := ūi × cS1 ∈ Cn−1(p̃−1(Ñi);β).
In an analogous fashion, for a subset of pairwise distinct indices i1, . . . , ik
with n− 3 ≥ ij ≥ −1, we inductively define cycles

ūi1,...,ik ∈ Cn−1−k(p−1(Ñi1,...,ik/Fn−2),Z),

as the sum of all the simplices of ∂ūi1,...,ik−1 contained in p−1(Ñi1,...,ik/Fn−2).
For non-pairwise distinct indices we set ūi1,...,ik = 0. We define

ui1,...,ik := ūi1,...,ik × cS1 ∈ Cn−k(p̃−1(Ñi1,...,ik);β).

Using the map Ψ introduced in Setup 3.2, we write
z = Ψ(u) ∈ Cn(Mn−2;βn−2),
zi1,...,ik = Ψ(ui1,...,ik) ∈ Cn−k(Ñi1,...,ik ;βn−2).

With this notation, we have the following three lemmas.

Lemma 3.6 (See [7], Lemma 6.1). We have

∂z =
n−3∑
i=−1

zi and ∂zi1,...,ik =
n−3∑
i=−1

zi1,...,ik,i

for all k ∈ {1, . . . , n− 1} and pairwise distinct i1, . . . , ik ∈ {−1, ..., n− 3}.

Proof. In the orientable case, by definition of z and zi1,...,ik , it is enough to
show the analogous statements for z̄ and z̄i1,...,ik .
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Recall from Remark 2.21 that the boundary ∂(Mn−2/Fn−2) is a union
of subcomplexes ∪n−3

i=−1Ñ
∗
i of the simplicial structure on ∂(Mn−2/Fn−2). It

follows that

∂z̄ = ∂z̄|∂(Mn−2/Fn−2) =
n−3∑
i=−1

∂z̄|
Ñ∗i

=
n−3∑
i=−1

z̄i.

Moreover, for all k ∈ {1, . . . , n − 1} and all pairwise distinct i1, . . . , ik ∈
{−1, ..., n− 3}, we have that

∂z̄i1,...,ik = ∂z̄i1,...,ik |∂(Ñi1,...,ik/Fn−2)

=
∑

i 6=i1,...,ik

∂z̄i1,...,ik |Ñi1,...,ik,i/Fn−2

=
n−3∑
i=−1

z̄i1,...,ik,i.

In the non-orientable case, we compute:

∂z = ∂Ψ(u) = Ψ(∂(u)) = Ψ(∂(ū)× cS1).

Then we remark

∂ū = ∂ū|∂(p−1(Mn−2/Fn−2)) =
n−3∑
i=−1

∂ū|
p−1(Ñ∗i ) =

n−3∑
i=−1

ūi.

We insert it in the previous computation and obtain the conclusion.
An analogous reasoning shows also the formula for ∂zi1,...,ik . �

Lemma 3.7 (See [7], Lemma 6.2). Let k ∈ {1, . . . , n−1} and let τ ∈ Sym(k)
be a permutation of {1, . . . , k}. Then we have

zi1,...,ik = sign(τ)ziτ(1),...,iτ(k) .

Proof. We may assume that τ is a transposition (ij , ij+1). By definition of
Ñi1,...,ik and zi1,...,ik , we may even assume that τ = (ik−1, ik). Thus we have
to show that

zi1,...,ik−1,ik = −zi1,...,ik−2,ik,ik−1 .

By Lemma 3.6, we have

0 = ∂∂zi1,...,ik−2 = ∂

 n−3∑
i=−1

zi1,...,ik−2,i

 =
n−3∑
j=−1

n−3∑
i=−1

zi1,...,ik−2,i,j .

In the orientable case, since ∂(Ñi1,...,ik−2/Fn−2) is a subcomplex of the sim-
plicial structure on Mn−2/Fn−2, and from the definition of zi1,...,ik−2 , it fol-
lows that cancellations may occur only between terms with the same set of
indices. Hence the only possibility is

zi1,...,ik−1,ik = −zi1,...,ik−2,ik,ik−1 .

In the non-orientable case, the exact same relations hold for the ui1,...,ik .
Then apply the chain map Ψ to finish the proof. �



FOLIATED SIMPLICIAL VOLUME AND CIRCLE FOLIATIONS 25

Lemma 3.8 (See [7], Lemma 6.3). There exist chains

wi1,...,ik ∈ Cn−k+1(Xi1,...,ik ; ξ′i1,...,ik),

wi1,...,ik,−1 ∈ Cn−k(Xi1,...,ik,−1; ξ′i1,...,ik,−1),

with k ∈ {1, . . . , n−2} and i1, ..., ik ∈ {0, . . . , n−3}, and a constant C ∈ R+
depending only on k, such that

(i) the chains wi1,...,ik and wi1,...,ik,−1 are alternating with respect to per-
mutations of the indices {i1, . . . , ik};

(ii) the following relations hold:

• ∂wi1,...,ik = Pn−2,i1(zi1,...,ik)−
n−3∑
i=−1

wi1,...,ik,i,

• ∂wi1,...,in−2,−1 = Pn−2,i1(zi1,...,in−2,−1);

(iii) |wi1,...,ik |1 ≤ C|z|1. The index ik is allowed to take the value −1.

Proof. Recall that Xi1,...,ik
∼= (Xi1,...,ik/Fi1)×S1, and that for both the cases

of orientability of the circle bundle Mn−2 →Mn−2/Fn−2 we have a series of
essentially free representations of the fundamental groups of the hollowings
Mi. To prove this Lemma, we apply Lemmas 3.6, 3.7 above to the proof of
[7, Lemma 6.3] for the essentially free representations αi. �

Now we are ready to prove the main theorem of the present article.

Proof of Theorem B. Given ε > 0, from Proposition 3.5, there exists a
(relative) fundamental cycle z ∈ Cn(Mn−2; ξn−2) with `1-norm less than ε.
From Lemma 3.8, we have associated chains wi ∈ Cn(Xi; ξ′i) with `1-norm
less than C|z|1, where C is the constant of Lemma 3.8. We claim that the
chain

z′ := Pn−2,0(z)−
n−3∑
i=0

Pi,0(wi) ∈ Cn(M ; ξ)

is a ξ-parametrized relative fundamental cycle of M . From [7, Proposi-
tion 3.9], it is sufficient to show that z′ is a U -local ξ-parametrised rel-
ative fundamental cycle of M , for an arbitrary open subset U ⊂ M \
pn−2,0(∂Mn−2) diffeomorphic to an n-disk. Since the boundary of Mn−2
contains all the preimages of the hollowings, we have Pn−2,0(z) = z′ on any
small ball in M \ pn−2,0(∂Mn−2). The rest of the proof of the claim follows
from the proof of [7, Theorem 1.1].

We recall that for f ⊗ σ ∈ Cn(Mn−2; ξn−2) we have

Pn−2,0(f ⊗ σ) = f ⊗ p̃0 ◦ · · · ◦ p̃n−3(σ) ∈ Cn(M ; ξ).

Thus we have that

|z′|1 ≤ |z|1 +
n−3∑
i=0
|wi|1 < ε,

when we choose z ∈ Cn(Mn−2; ξn−2) such that |z|1 < ε
(n−2)C+1 . �
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Remark 3.9. In the case when the circle bundle Mn−2 → Mn−2/Fn−2 is
orientable, the parametrized norm vanishes for arbitrary essentially free Γ-
spaces. In particular, when Γ is residually finite, its profinite completion
is such an essentially free Γ-space. By [12, Theorem 2.6] and [11, Proposi-
tion 2.12], this shows that the stable integral simplicial volume of M also
vanishes.

If the bundle Mn−2 →Mn−2/Fn−2 is not orientable, our proof shows that
starting from any measured Γ-space Z, we find arbitrarily small fundamental
cycles parametrized by the space Γ ×H0 Z with the action β0, where H0 =
π1(pn−2,0 ◦ p̃)(H). This however does not allow us a priori to conclude about
the action on the profinite completion of Γ, except if H0 = Γ. In this case,
the space Γ ×H0 Z can be identified with Z; the action β0 on Γ ×H0 Z
corresponds under this identification to the original action γ ·z = α(γ)(z) of
Γ on Z. Thus, setting Z to be the profinite completion of Γ implies again,
by [12, Theorem 2.6] and [11, Proposition 2.12], that the stable integral
simplicial volume of M vanishes.
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[21] I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, vol. 91
of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cam-
bridge, 2003.

[22] I. Moerdijk and D. A. Pronk, Simplicial cohomology of orbifolds, Indag. Math.
(N.S.), 10 (1999), pp. 269–293.

[23] I. Mundet i Riera, Finite group actions on homology spheres and manifolds with
nonzero Euler characteristic, J. Topol., 12 (2019), pp. 744–758.

[24] P. Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-
Verlag, Berlin-New York, 1972.

[25] P. Pansu, Effondrement des variétés riemanniennes, d’après J. Cheeger et M. Gro-
mov, no. 121-122, 1985, pp. 63–82. Seminar Bourbaki, Vol. 1983/84.

[26] M. J. Pflaum, Analytic and geometric study of stratified spaces, vol. 1768 of Lecture
Notes in Mathematics, Springer-Verlag, Berlin, 2001.
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[29] J. Śniatycki, Differential geometry of singular spaces and reduction of symmetry,
vol. 23 of New Mathematical Monographs, Cambridge University Press, Cambridge,
2013.

[30] D. Sullivan, A counterexample to the periodic orbit conjecture, Inst. Hautes Études
Sci. Publ. Math., (1976), pp. 5–14.

[31] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, vol. 35 of Prince-
ton Mathematical Series, Princeton University Press, Princeton, NJ, 1997.

[32] C. T. Yang, The triangulability of the orbit space of a differentiable transformation
group, Bull. Amer. Math. Soc., 69 (1963), pp. 405–408.

[33] K. Yano, Gromov invariant and S1-actions, J. Fac. Sci. Univ. Tokyo Sect. IA Math.,
29 (1982), pp. 493–501.
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