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Abstract

Let XN be a family of N ×N independent GUE random matrices, ZN a family of deterministic

matrices, P a self-adjoint non-commutative polynomial, that is for any N , P (XN) is self-adjoint, f a

smooth function. We prove that for any k, if f is smooth enough, there exist deterministic constants

αP

i (f, Z
N ) such that

E

[

1

N
Tr

(

f(P (XN , ZN ))
)

]

=
k

∑

i=0

αP

i (f, Z
N )

N2i
+ O(N−2k−2).

Besides the constants αP

i (f, Z
N ) are built explicitly with the help of free probability. In particular,

if x is a free semicircular system, then when the support of f and the spectrum of P (x,ZN ) are

disjoint, for any i, αP

i (f, Z
N ) = 0. As a corollary, we prove that given α < 1/2, for N large enough,

every eigenvalue of P (XN , ZN ) is N−α-close from the spectrum of P (x,ZN ).

1 Introduction

Asymptotic expansions in Random Matrix Theory created bridges between different worlds, including
topology, statistical mechanics, and quantum field theory. In mathematics, a breakthrough was made
in 1986 by Harer and Zagier who used the large dimension expansion of the moments of Gaussian
matrices to compute the Euler characteristic of the moduli space of curves. A good introduction to this
topic is given in the survey [32] by Zvonkin. In physics, the seminal works of t’Hooft [28] and Brézin,
Parisi, Itzykson and Zuber [20] related matrix models with the enumeration of maps of any genus, hence
providing a purely analytical tool to solve these hard combinatorial problems. Considering matrices in
interaction via a potential, the so-called matrix models, indeed allows to consider the enumeration of
maps with several vertices, including a possible coloring of the edges when the matrix model contains
several matrices. This relation allowed to associate matrix models to statistical models on random
graphs [38, 11, 23, 24, 26], as well as in [19] and [25] for the unitary case. This was also extended to
the so-called β-ensembles in [27, 17, 12, 13, 15, 16]. Among other objects, these works study correlation
functions and the so-called free energy and show that they expand as power series in the inverse of the
dimension, and the coefficients of these expansions enumerate maps sorted by their genus. To compute
asymptotic expansions, often referred to in the literature as topological expansions, one of the most
successful methods is the loop equations method, see [35] and [36]. Depending on the model of random
matrix, those are Tutte’s equations, Schwinger-Dyson equations, Ward identities, Virasoro constraints,
W-algebra or simply integration by part. This method was refined and used repeatedly in physics, see
for example the work of Eynard and his collaborators, [21, 22, 18, 14]. At first those equations were only
solved for the first few orders, however in 2004, in [22] and later [33] and [34], this method was refined
to push the expansion to any orders recursively [37].

In this paper we want to generalize Harer-Zagier expansion for the moments of Gaussian matrices to
more general smooth functions. Instead of a single GUE matrix, we will consider several independent
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matrices and deterministic matrices. We repeatedly use Schwinger-Dyson equations associated to GUE
matrices to carry out our estimates. While we do not use the link between the coefficients of our expansion
and map enumeration, as a corollary we get a new expression of these combinatorial objects. We show
that the number of colored maps of genus g with a single specific vertex can be expressed as an integral,
see remark 3.8 for a precise statement.

All papers quoted above have in common that they deal with polynomials or exponentials of poly-
nomial evaluated in random matrices. With the exception of the work of Haagerup and Thorbjørnsen
[10], smooth functions have not been considered. However being able to work with such functions is
important for the applications. In particular we need to be able to work with functions with compact
support to prove strong convergence results, that is proving the convergence of the spectrum for the
Hausdorff distance. In this paper we establish a finite expansion of any orders around the dimension
of the random matrix for the trace of smooth functions evaluated in polynomials in independent GUE
random matrices. We refer to Definition 2.16 for a definition of those objects. The link between maps and
topological expansion is a good motivation to prove such kind of theorem. Another motivation is to study
the spectrum of polynomials in these random matrices: because we consider general smooth functions,
our expansion will for instance allow to study the spectrum outside of the limiting bulk. In the case of a
single GUE matrix, we have an explicit formula for the distribution of the eigenvalues of those random
matrices, see Theorem 2.5.2 of [1]. However, if we consider polynomials in independent GUE matrices,
we have no such result. The first result in this direction dates back to 1991 when Voiculescu proved
in [7] that the renormalized trace of such polynomials converges towards a deterministic limit α(P ). In
particular given XN

1 , . . . , XN
d independent GUE matrices, the following holds true almost surely:

lim
N→∞

1

N
TrN

(
P (XN

1 , . . . , XN
d )
)
= α(P ) . (1)

Voiculescu computed the limit α(P ) with the help of free probability. Besides if AN is a self-adjoint
matrix of size N , then one can define the empirical measure of its (real) eigenvalues by

µAN
=

1

N

N∑

i=1

δλi
,

where δλ is the Dirac mass in λ and λ1, . . . , λN are the eigenvalue of AN . In particular, if P is a self-
adjoint polynomial, that is such that for any self adjoint matrices A1, . . . , Ad, P (A1, . . . , Ad) is a self-
adjoint matrix, then one can define the random measure µP (XN

1 ,...,XN
d
). In this case, Voiculescu’s result

(1) implies that there exists a measure µP with compact support such that almost surely µP (XN
1 ,...,XN

d
)

converges weakly towards µP : it is given by µP (x
k) = α(P k) for all integer numbers k. Consequently,

assuming we can apply Portmanteau theorem, the proportion of eigenvalues of AN = P (XN
1 , . . . , XN

d )
in the interval [a, b], that is µAN

([a, b]), converges towards µP ([a, b]).
Therefore in order to study the eigenvalues of a random matrix one has to study the renormalized

trace of its moments. However if instead of studying the renormalized trace of polynomials in AN , we
study the non-renormalized trace of smooth function in AN , then we can get precise information on the
location of the eigenvalues. It all comes from the following remark, let f be a non-negative function such
that f is equal to 1 on the interval [a, b], then if σ(AN ) is the spectrum of AN ,

P

(
σ(AN ) ∩ [a, b] 6= ∅

)
≤ P

(
TrN (f(AN )) ≥ 1

)
≤ E

[
TrN (f(AN ))

]
.

Thus if one can show that the right-hand side of this inequality converges towards zero when N goes
to infinity, then asymptotically there is no eigenvalue in the segment [a, b]. In the case of the random
matrices that we study in this paper, that is polynomials in independent GUE matrices, a breakthrough
was made in 2005 by Haagerup and Thorbjørnsen in [2]. They proved the almost sure convergence of the
norm of those matrices. More precisely, they proved that for P a self-adjoint polynomial, almost surely,
for any ε > 0 and N large enough,

σ
(
P (XN

1 , . . . , XN
d )
)
⊂ SuppµP + (−ε, ε) , (2)

where SuppµP is the support of the measure µP . In order to do so, they showed that given a smooth
function f , there is a constant αP

0 (f), which can be computed explicitly with the help of free probability,
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such that

E

[ 1
N

TrN (f(AN ))
]
= αP

0 (f) +O(N−2).

A similar equality was proved in [8] with a better estimation of the dependency in the parameters such
as f and ZN in the O(N−2). Given the important consequences that studying the first two orders had,
one can wonder what happens at the next order. More precisely, could we write this expectation as a
finite order Taylor expansion, and what consequences would it have on the eigenvalues? That is, can we
prove that for any k, if f is smooth enough, there exist deterministic constants αP

i (f) such that

E

[
1

N
Tr
(
f(P (XN

1 , . . . , XN
d ))

)]
=

k∑

i=0

αP
i (f)

N2i
+ O(N−2k−2)?

Haagerup and Thorbjørnsen gave a positive answer in 2010 (see [10]) for the specific case of a single
GUE matrices, that is d = 1. However the method of the proof relied heavily on the explicit formula
of the law of the eigenvalues of a GUE matrix and since there is no equivalent for polynomials in GUE
matrices we cannot adapt this proof. Instead, we developed a proof whose main tool is free probability.
The main idea of the proof is to interpolate independent GUE matrices and free semicirculars with free
Ornstein-Uhlenbeck processes. It is similar to the method used in [8]. The main result is the following
Theorem.

Theorem 1.1. We define,

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• ZN = (ZN
1 , . . . , ZN

r , ZN
1

∗
, . . . , ZN

r
∗
) deterministic matrices whose norm is uniformly bounded over

N ,

• P a self-adjoint polynomial which can be written as a linear combination of m monomials of degree
at most n and coefficients at most cmax,

• f : R 7→ R a function of class C4(k+1)+2. We define ‖f‖Ci the sum of the supremum on R of the
first i-th derivatives of f .

Then there exist deterministic coefficients (αP
i (f, Z

N))1≤i≤k and constants C,K and c independent of P ,
such that with KN = max{

∥∥ZN
1

∥∥ , . . . ,
∥∥ZN

q

∥∥ ,K}, Cmax(P ) = max{1, cmax}, for any N , if k ≤ cNn−1,

∣∣∣∣∣∣
E

[
1

N
TrN

(
f(P (XN , ZN))

)]
−
∑

0≤i≤k

1

N2i
αP
i (f, Z

N)

∣∣∣∣∣∣
(3)

≤ 1

N2(k+1)
‖f‖C4(k+1)+2 ×

(
C × n2Kn

NCmaxm
)4(k+1)+1

× k12k.

Besides if we define K̂N like KN but with 2 instead of K, then we have that for any i,

∣∣αP
i (f, Z

N )
∣∣ ≤ ‖f‖C4i+2 ×

(
C × n2K̂n

NCmaxm
)4i+1

× i12i. (4)

Finally if f and g are functions of class C4(k+1) equal on a neighborhood of the spectrum of P (x, ZN ),
where x is a free semicircular system free from MN (C), then for any i ≤ k, αP

i (f, Z
N) = αP

i (g, Z
N). In

particular if the support of f and the spectrum of P (x, ZN ) are disjoint, then for any i, αP
i (f, Z

N ) = 0.

This theorem is a consequence of the slightly sharper, but less explicit, Theorem 3.4. It is essentially
the same statement, but instead of having the norm Ck of f , we make the moment of the Fourier
transform of f appears. We also give an explicit expression for the coefficients αP

i . The above Theorem
calls for a few remarks.

• We assumed that the matrices ZN are deterministic, but thanks to Fubini’s theorem we can assume
that they are random matrices as long as they are independent from XN . In this situation though,
Kn

N in the right side of the inequality is a random variable (and thus we need some additional
assumptions if we want its expectation to be finite for instance).
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• We assumed that the matrices ZN were uniformly bounded over N . This is a technical assumption
which is necessary to make sure that the coefficients αP

i are well-defined. However as we can see
in Theorem 3.4, one can relax this assumption. That being said, in order for equation (3) to be
meaningful one has to be careful that the term Kn

N
4 is not compensating the term N−2.

• The exponent 12 in the term k12k is very suboptimal and could easily be optimized a bit more in
the proof of Theorem 1.1. For a better bound we refer to Theorem 3.4, where the term k12k is
replaced by k3k. However in order to work with the norm Ck instead of the moments of the Fourier
transform, we were forced to increase this term.

• Although we cannot take k = ∞, hence only getting a finite Taylor expansion, we can still take k
which depends on N . However to keep the last term under control we need to estimate the k-th
derivative of f .

• Since the probability that there is an eigenvalue of P (XN , ZN) outside of a neighborhood of
P (x, ZN ) is exponentially small as N goes to infinity. The hypothesis of smoothness on f only
need to be verified on a neighborhood of P (XN , ZN ) for an asymptotic expansion to exist.

As we said earlier in the introduction, by studying the trace of a smooth function evaluated in
P (XN

1 , . . . , XN
d ), Haagerup and Thorbjørnsen were able to show in [2] that the spectrum of P (XN

1 , . . . , XN
d )

converges for the Hausdorff distance towards an explicit subset of R. We summarized this result in equa-
tion (2). With the full finite order Taylor expansion, by taking f : x → g(Nαx) where g is a well-chosen
smooth function, one can show the following proposition.

Corollary 1.2. Let XN be independent GUE matrices of size N , AN a family of deterministic matrices
whose norm is uniformly bounded over N , x be a free semicircular system and P a self-adjoint polynomial.
Given α < 1/2, almost surely for N large enough,

σ
(
P (XN , AN )

)
⊂ σ

(
P (x,AN )

)
+N−α,

where σ(X) is the spectrum of X, and x is free from MN (C).

In the case of a single GUE matrix, much more precise results were obtained by Tracy and Widom in [6].
They proved the existence of a continuous decreasing function F2 from R to [0, 1] such that if λ1(X

N)
denotes the largest eigenvalue of XN ,

lim
N→∞

P
(
N2/3(λ1(X

N)− 2) ≥ s
)
= F2(s) .

This was generalized to β-matrix model in [29] and to polynomials in independent GUE matrices which
are close to the identity in [30]. But there is no such result for general polynomials in independent GUE
matrices. However with Theorem 1.1 we managed to get an estimate on the tail of the distribution of√
N
∥∥P (XN , AN )

∥∥.
Corollary 1.3. Let XN be a vector of independent GUE matrices of size N , AN a family of deterministic
matrices whose norm is uniformly bounded over N , x be a free semicircular system and P a polynomial.
Then there exists a constant C such that for N large enough,

P

( √
N

ln4 N

(∥∥P (XN , AN )
∥∥−

∥∥P (x,AN )
∥∥) ≥ C (δ + 1)

)
≤ e−N + e−δ2 ln8 N .

This corollary is similar to Theorem 1.5 obtained in [8], but with a substantial improvement on the
exponent since in this theorem, instead of 1/2, we only had 1/4. Theorem 1.5 of [8] also gave a similar
bound on the probability that

∥∥P (XN )
∥∥ be smaller than its deterministic limit, but Theorem 3.4 does

not yield any improvement on this inequality. The proof of this corollary can be summarized in two
steps: first use measure concentration to get an estimate on the probability that

∥∥P (XN , AN )
∥∥ is far

from its expectation, and secondly use Theorem 1.1 to estimate the difference between the expectation
and the deterministic limit. Finally it is worth noting that the exponent 1/2 comes from the fact that
for every N2 that we gain in equation (3), we also have to differentiate our function f four more times.
Thus if we take f : x → g(Nαx) where g is smooth, then in order for N−2 to compensate the differential,
we have to take α = 1/2. If we only had to differentiate our function three more times, then we could
take α = 2/3 which is the same exponent as in Tracy-Widom.
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2 Framework and standard properties

2.1 Usual definitions in free probability

In order to be self-contained, we begin by recalling the following definitions from free probability.

Definition 2.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-algebra (A, ∗, ‖.‖) endowed with
a state τ , i.e. a linear map τ : A → C satisfying τ(1A) = 1 and τ(a∗a) ≥ 0 for all a ∈ A. In this
paper we always assume that τ is a trace, i.e. that it satisfies τ(ab) = τ(ba) for any a, b ∈ A. An
element of A is called a (non commutative) random variable. We will always work with a faithful
trace, namely, for a ∈ A, τ(a∗a) = 0 if and only if a = 0.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They are said to be free if for
all k, for all ai ∈ Aji such that j1 6= j2, j2 6= j3, . . . , jk−1 6= jk:

τ
(
(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))

)
= 0.

Families of non-commutative random variables are said to be free if the ∗-subalgebras they generate
are free.

• Let A = (a1, . . . , ak) be a k-tuple of random variables. The joint distribution of the family A is the
linear form µA : P 7→ τ

[
P (A,A∗)

]
on the set of polynomials in 2k non-commutative variables.

• A family of non commutative random variables x = (x1, . . . , xd) is called a free semicircular system
when the non commutative random variables are free, self-adjoint (xi = x∗

i ), and for all k in N and
i, one has

τ(xk
i ) =

∫
tkdσ(t),

with dσ(t) = 1
2π

√
4− t2 1|t|≤2 dt the semicircle distribution.

It is important to note that thanks to [5, Theorem 7.9], that we recall below, one can consider free
copies of any non-commutative random variable.

Theorem 2.2. Let (Ai, φi)i∈I be a family of C∗-probability spaces such that the functionals φi : Ai → C,
i ∈ I, are faithful traces. Then there exist a C∗-probability space (A, φ) with φ a faithful trace, and a
family of norm-preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I, such that:

• φ ◦Wi = φi, ∀i ∈ I.

• The unital C∗-subalgebras form a free family in (A, φ).

Let us finally fix a few notations concerning the spaces and traces that we use in this paper.

Definition 2.3. • (AN , τN ) is the free sum of MN (C) with a system of d free semicircular variable,
this is the C∗-probability space built in Theorem 2.2. Note that when restricted to MN (C), τN is
just the regular renormalized trace on matrices. The restriction of τN to the C∗-algebra generated
by the free semicircular system x is denoted as τ . Note that one can view this space as the limit of
a matrix space, we refer to Proposition 3.5 from [8].

• TrN is the non-renormalized trace on MN (C).

• We denote Er,s the matrix with coefficients equal to 0 except in (r, s) where it is equal to one.

• We regularly identify MN (C) ⊗ Mk(C) with MkN (C) through the isomorphism Ei,j ⊗ Er,s 7→
Ei+rN,j+sN , similarly we identify TrN ⊗Trk with TrkN .

• If AN = (AN
1 , . . . , AN

d ) and Bk = (Bk
1 , . . . , B

k
d ) are two vectors of random matrices, then we

denote AN ⊗Bk = (AN
1 ⊗Bk

1 , . . . , A
N
d ⊗Bk

d ). We typically use the notation XN ⊗ Ik for the vector
(XN

1 ⊗ Ik, . . . , X
N
1 ⊗ Ik).
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2.2 Non-commutative polynomials and derivatives

Let Ad,2r = C〈X1, . . . , Xd, Y1, . . . , Y2r〉 be the set of non-commutative polynomial in p+2r variables.
We set q = 2r to simplify notations. We endow this vector space with the norm

‖P‖A =
∑

Mmonomial

|cM (P )|AdegM , (5)

where cM (P ) is the coefficient of P for the monomial M and degM the total degree of M (that is the sum
of its degree in each letter X1, . . . , Xd, Y1, . . . , Y2r). Let us define several maps which we use frequently
in the sequel. First, for A,B,C ∈ Ad,q, let

A⊗B#C = ACB, A⊗B#̃C = BCA, m(A⊗B) = BA. (6)

We define an involution ∗ on Ad,q by X∗
i = Xi, Y

∗
i = Yi+r if i ≤ d + r, Y ∗

i = Yi−r else, and then we
extend it to Ad,q by linearity and the formula (αPQ)∗ = αQ∗P ∗. P ∈ Ad,q is said to be self-adjoint
if P ∗ = P . Self-adjoint polynomials have the property that if x1, . . . , xd, z1, . . . , zr are elements of a
C∗-algebra such as x1, . . . , xd are self-adjoint, then so is P (x1, . . . , xd, z1, . . . , zr, z

∗
1 , . . . , z

∗
r ).

Definition 2.4. If 1 ≤ i ≤ d, one defines the non-commutative derivative ∂i : Ad,q −→ Ad,q ⊗ Ad,q by
its value on a monomial M ∈ Ad,q given by

∂iM =
∑

M=AXiB

A⊗B ,

and then extend it by linearity to all polynomials. We can also define ∂i by induction with the formulas,

∀P,Q ∈ Ad,q, ∂i(PQ) = ∂iP × 1⊗Q+ P ⊗ 1× ∂iQ,

∀i, j, ∂iXi = ∂i,j1⊗ 1.
(7)

Similarly, with m as in (6), one defines the cyclic derivative Di : Ad,q −→ Ad,q for P ∈ Ad,q by

DiP = m ◦ ∂iP .

Definition 2.5. We define Fd,q to be the ∗-algebra generated by Ad,q and the family
{
eiQ | Q ∈ Ad,q self-adjoint

}
.

Then, as we will see in the next proposition, a natural way to extend the definition of ∂i (and Di) to
Fd,q is by setting

∂ie
iQ = i

∫ 1

0

eiαQ ⊗ 1 ∂iQ 1⊗ ei(1−α)Qdα. (8)

However we cannot define the integral properly on Fd,q ⊗Fd,q. After evaluating our polynomials in C∗-
algebras, the integral will be well-defined as we will see. Firstly, we need to define properly the operator
norm of tensor of C∗-algebras. We work with the minimal tensor product also named the spatial tensor
product. For more information we refer to chapter 6 of [4].

Definition 2.6. Let A and B be C∗-algebra with faithful representations (HA, φA) and (HB, φB), then
if ⊗2 is the tensor product of Hilbert spaces, A ⊗min B is the completion of the image of φA ⊗ φB in
B(HA ⊗2 HB) for the operator norm in this space. This definition is independent of the representations
that we fixed.

While we will not always be in this situation during this paper, it is important to note that if
A = MN (C), then up to isomorphism A ⊗min A is simply MN2(C) with the usual operator norm. If
P ∈ Ad,q, z = (z1, . . . , zd+q) belongs to a C∗-algebra A, then (∂iP

k)(z) belongs to A ⊗min A, and∥∥(∂iP k)(z)
∥∥ ≤ CPk ‖P (z)‖k−1

for some constant CP independent of k. Thus we can define

(∂ie
P )(z) =

∑

k∈N

1

k!
(∂iP

k)(z). (9)

We have now defined the non-commutative differential of the exponential of a polynomial twice, in (8)
and (9). However those two definitions are compatible thanks to the following proposition (see [9],
Proposition 2.2 for the proof).
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Proposition 2.7. Let P ∈ Ad,q, z = (z1, . . . , zd+q) elements of a C∗-algebra A, then with (∂ie
P )(z)

defined as in (9),
(
∂ie

P
)
(z) =

∫ 1

0

eαP (z) ⊗ 1 ∂iP (z) 1⊗ e(1−α)P (z) dα.

We explained why (8) was well-defined when we evaluate our polynomials in a C∗-algebra. However in
order to be perfectly rigorous we need to give the following definition for the non-commutative differential
that we use in the rest of this paper.

Definition 2.8. For α ∈ [0, 1], let ∂α,i : Fd,q → Fd,q ⊗ Fd,q which satisfies (7) and such that for any
P ∈ Ad,q self-adjoint,

∂α,ie
iP = ieiαP ⊗ 1 ∂iP 1⊗ ei(1−α)P .

And then, given z = (z1, . . . , zd+q) elements of a C∗-algebra, we define for any Q ∈ Fd,q,

∂iQ(z) =

∫ 1

0

∂α,iQ(z) dα.

In particular, it means that we can define rigorously the composition of those applications. Since the
map ∂α,i goes from Fd,q to Fd,q ⊗Fd,q it is very easy to do so. In particular we will use the very specific
operator (see Definition 2.10 for the notation ∂1

i , ∂2
i and ⊠).

Definition 2.9. Let Q ∈ Fd,q, given z = (z1, . . . , zd+q) elements of a C∗-algebra, let i, j ∈ [1, d], we
define

Dj∂
1
i DiQ⊠Dj∂

2
i DiQ(z) =

∫

[0,1]4
(m◦∂α3,j)◦∂1

α2,i◦(m◦∂α1,i)Q(z)⊠(m◦∂α4,j)◦∂2
α2,i◦(m◦∂α1,i)Q(z) dα.

For the sake of clarity, we introduce the following notation which is close to Sweedler’s convention.
Its interest will be clear in section 3.

Definition 2.10. Let Q ∈ Fd,q, C be a C∗-algebra. Then let α : Fd,q → C and β : Fd,q → C be morphisms.
We also set n : A⊗B ∈ C ⊗ C 7→ AB ∈ C. Then we use the following notation,

α(δ1i P )⊠ β(δ2i P ) = n ◦ (α⊗ β(δiP )).

This notation is especially useful when our applications α and β are simply evaluation of P as it is
the case in section 3. Indeed we typically denote, δ1i P (X)⊠ δ2i P (Y ), rather than define hX : P → P (X)
and use the more cumbersome and abstract notation, n ◦ (hX ⊗ hY (δiP )).

The map ∂i is related to the so-called Schwinger-Dyson equations on semicircular variable thanks to
the following proposition. One can find a proof for polynomials in [1], Lemma 5.4.7, and then extend it
to Fd,q thanks to Definition (9).

Proposition 2.11. Let x = (x1, . . . , xd) be a free semicircular system, y = (y1, . . . , yr) be non-commutative
random variables free from x, if the family (x, y) belongs to the C∗-probability space (A, ∗, τ, ‖.‖), then
for any Q ∈ Fd,q,

τ(Q(x, y, y∗) xi) = τ ⊗ τ(∂iQ(x, y, y∗)) .

Now that we have defined the usual non-commutative polynomial spaces, we build a very specific one
which we need to define properly the coefficients of the topological expansion.

Definition 2.12. Let (cn)n be the sequence such that c0 = 0, cn+1 = 2cn + 2. We define by induction,
J0 = {∅} and for n ≥ 0,

Jn+1 = { {I, 2cn + 1} |I ∈ Jn} ∪ { {s1 + cn, . . . , sn + cn, 2cn + 2} |I = {s1, . . . , sn} ∈ Jn} .

Then we define An
d,q = C〈Xi,I , 1 ≤ i ≤ p, I ∈ Jn, Y1, . . . , Yr, Y

∗
1 , . . . , Y

∗
r 〉. We also define Fn

d,q as the

∗-algebra generated by An
d,q and the family

{
eiQ | Q ∈ An

d,q self-adjoint
}
.
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Definition 2.13. Similarly to Definition 2.8, we define ∂i and ∂i,I on Fn
d,q which satisfies (7) and (8)

and
∀i, j ∈ [1, p], I,K ∈ Jn, ∂i,IXj,K = δi,jδI,K1⊗ 1, ∂iXj,K = δi,j1⊗ 1.

We then define Di = m ◦ ∂i and Di,I = m ◦ ∂i,I on Fn
d,q.

In particular, F0
d,q = Fd,q and the two definitions of ∂i coincide.

Remark 2.14. Note that given s ∈ [1, cn], then there exists a unique l ≤ n such that for any I =
{s1, . . . , sn} ∈ Jn, either sl = s or s /∈ I. Besides for any I = {s1, . . . , sn},K = {k1, . . . , kn} ∈ Jn, if
there exists l such that sl = kl, then for any q ≥ l, sq = kq.

This prompts us to define the following,

Definition 2.15. Let l ∈ [0, n], we define J l
n = { {sl+1, . . . , sn} | {s1, . . . , sn} ∈ Jn }, then we set

∀A ∈ J l
n, ∂i,A =

∑

I∈Jn such that A⊂I

∂i,I .

And finally we define Di,A = m ◦ ∂i,A on Fn
d,q.

In particular J0
n = Jn, Jn

n = {∅} and ∂i,∅ = ∂i. It is worth noting that thanks to remark 2.14, A ⊂ I
is equivalent to having the last l coefficients of I equal to those of A.

2.3 GUE random matrices

We conclude this section by reminding the definition of Gaussian random matrices and stating a few
useful properties about them.

Definition 2.16. A GUE random matrix XN of size N is a self-adjoint matrix whose coefficients are
random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
NXN

i,i are independent centered Gaussian random variables
of variance 1.

• For 1 ≤ i < j ≤ N , the random variables
√
2N ℜXN

i,j and
√
2N ℑXN

i,j are independent centered

Gaussian random variables of variance 1, independent of
(
XN

i,i

)
i
.

When doing computations with Gaussian variables, the main tool that we use is Gaussian integration
by part. It can be summarized into the following formula, if Z is a centered Gaussian variable with
variance 1 and f a C1 function, then

E[Zf(Z)] = E[∂Zf(Z)] . (10)

A direct consequence of this, is that if x and y are centered Gaussian variable with variance 1, and
Z = x+iy√

2
, then

E[Zf(x, y)] = E[∂Zf(x, y)] and E[Zf(x, y)] = E[∂Zf(x, y)] , (11)

where ∂Z = 1
2 (∂x + i∂y) and ∂Z = 1

2 (∂x − i∂y). When working with GUE matrices, an important
consequence of this are the so-called Schwinger-Dyson equations, which we summarize in the following
proposition. For more information about these equations and their applications, we refer to [1], Lemma
5.4.7.

Proposition 2.17. Let XN be GUE matrices of size N , Q ∈ Fd,q, then for any i,

E

[
1

N
TrN (XN

i Q(XN))

]
= E

[(
1

N
TrN

)⊗2

(∂iQ(XN))

]
.
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Proof. Let us first assume that Q ∈ Ad,q. One can write XN
i = 1√

N
(xi

r,s)1≤r,s≤N and thus

E

[
1

N
TrN (XN

i Q(XN ))

]
=

1

N3/2

∑

r,s

E
[
xi
r,s TrN (Er,s Q(XN ))

]

=
1

N3/2

∑

r,s

E

[
TrN (Er,s ∂xi

r,s
Q(XN))

]

=
1

N2

∑

r,s

E
[
TrN (Er,s ∂iQ(XN)#Es,r)

]

= E

[(
1

N
TrN

)⊗2

(∂iQ(XN))

]
.

If Q ∈ Fd,q, then the proof is pretty much the same but we need to use Duhamel’s formula which states
that for any matrices A and B,

eB − eA =

∫ 1

0

eαB(B −A)e(1−α)A dα. (12)

Thus this let us prove that

∂xi
r,s
eiP (XN ) = i

∫ 1

0

eiαP (XN ) ∂iP (XN)#Es,r ei(1−α)P (XN ) dα.

And the conclusion follows.

Now to finish this section we state a property that we use several times in this paper. For the proof
we refer to Proposition 2.11 in [8].

Proposition 2.18. There exist constants C,D and α such that for any N ∈ N, if XN is a GUE random
matrix of size N , then for any u ≥ 0,

P
(∥∥XN

∥∥ ≥ u+D
)
≤ e−αuN .

Consequently, for any k ≤ αN/2,

E

[∥∥XN
∥∥k
]
≤ Ck.

3 Proof of Theorem 1.1

3.1 A Poincaré type equality

One of the main tool when dealing with GUE random matrices is the Poincaré inequality (see Defini-
tion 4.4.2 from [1]), which gives us a sharp upper bound of the variance of a function in these matrices.
Typically this inequality shows that the variance of a trace of a polynomial in GUE random matrices,
which a priori is of order O(1), is of order O(N−2). In this paper we use the same kind of argument which
are used to prove the Poincaré inequality to get an exact formula for the variances we are interested in.

Proposition 3.1. Let P,Q ∈ Fd,q, R
N , SN , TN be independent vectors of d independent GUE matrices

of size N . Let AN be a vector of deterministic matrices and their adjoints. With convention Cov(X,Y ) =
E[XY ]− E[X ]E[Y ], for any t ≥ 0, we have:

Cov
(
TrN

(
P
(
(1− e−t)1/2RN , AN

))
,TrN

(
Q
(
(1 − e−t)1/2RN , AN

)))

=
1

N

∑

i

∫ t

0

E

[
TrN

(
DiP

(
(e−s − e−t)1/2RN + (1− e−s)1/2SN , AN

)

×DiQ
(
(e−s − e−t)1/2RN + (1 − e−s)1/2TN , AN

))]
ds.
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Proof. We define the following function,

h(s) = E

[
TrN

(
P
(
(e−s − e−t)1/2RN + (1− e−s)1/2SN , AN

))

TrN

(
Q
(
(e−s − e−t)1/2RN + (1− e−s)1/2TN , AN

)) ]
.

To simplify notations, we set

SN
s =

(
(e−s − e−t)1/2RN + (1− e−s)1/2SN , AN

)
, TN

s =
(
(e−s − e−t)1/2RN + (1 − e−s)1/2TN , AN

)
.

Then we have,

Cov
(
TrN

(
P
(
(1− e−t)1/2RN , AN

))
,TrN

(
Q
(
(1− e−t)1/2RN , AN

)))
= −

∫ t

0

dh

ds
(s) ds.

Thanks to Duhamel’s formula (see (12)) we find

dP
(
SN
s , AN

)

ds
= −e−s

2

d∑

i=1

∂iP
(
SN
s , AN

)
#

(
RN

i

(e−s − e−t)1/2
− SN

i

(1− e−s)1/2

)
.

Since TrN (∂iP#B) = TrN (DiP ×B), we compute,

dh

ds
(s) = −e−s

2

∑

i

E

[
TrN

(
DiP

(
SN
s

)( RN
i

(e−s − e−t)1/2
− SN

i

(1− e−s)1/2

))
TrN

(
Q
(
TN
s

))

+TrN
(
P
(
SN
s

))
TrN

(
DiQ

(
SN
s

)( RN
i

(e−s − e−t)1/2
− TN

i

(1− e−s)1/2

))]
.

But by using integration by part formula (11), we get that

E

[
TrN

(
DiP

(
SN
s

) RN
i

(e−s − e−t)1/2

)
TrN

(
Q
(
TN
s

))
]

=
1

N

∑

1≤a,b≤N

E

[
TrN

(
Ea,b ∂iDiP

(
SN
s

)
#Eb,a

)
× TrN

(
Q
(
TN
s

))

+TrN
(
DiP

(
SN
s

)
Ea,b

)
× TrN

(
DiQ

(
TN
s

)
Eb,a

)
]
.

And similarly

E

[
TrN

(
DiP

(
SN
s

) SN
i

(1 − e−s)1/2

)
TrN

(
Q
(
TN
s

))
]

=
1

N

∑

1≤a,b≤N

E

[
TrN

(
Ea,b ∂iDiP

(
SN
s

)
#Eb,a

)
× TrN

(
Q
(
TN
s

))
]
.

Therefore with similar computations we conclude,

dh

ds
(s) = − 1

N
e−s

∑

i

E

[
TrN

(
DiP

(
SN
s

)
DiP

(
SN
s

) )
]
.

Hence the conclusion.
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3.2 A first rough formulation of the coefficients

In this subsection we prove the following lemma which will be the backbone of the proof of the
topological expansion. The heuristic behind this lemma is that if Q ∈ Fd(p+1),q, X

N independent GUE
matrices, (yi)i≥1 systems of free semicirculars free between each other. Then we can find R ∈ F2d(p+1)+1,q

such that

E

[
τN

(
Q
(
XN , (yi)1≤i≤p

)
, ZN

)]
−τN

(
Q (x, (yi)1≤i≤p) , Z

N
)
=

1

N2
E

[
τN

(
R
(
XN , (yi)1≤i≤2p+2, Z

N
) )]

.

Then we will only need to apply this lemma recursively to build the topological expansion. Note that
thanks to the definition of AN in Definition 2.3, it makes sense to consider matrices and free semicirculars
in the same space. One can also assume that those matrices are random thanks to Proposition 2.7 of [8].

Lemma 3.2. Let the following objects be given,

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• x = (x1, . . . , xd), ys = (ys,1, . . . , ys,d), systems of free semicircular variables, free between each
other,

• ZN = (ZN
1 , . . . , ZN

q ) deterministic matrices and their adjoints,

• Y N =
(
XN , (1− e−t1)1/2y1, . . . , (1− e−td)1/2yp, Z

N
)
,

• Y =
(
x, (1 − e−t1)1/2y1, . . . , (1− e−td)1/2yp, Z

N
)
,

• Y N
t =

(
e−t/2XN + (1− e−t)1/2x, (1 − e−t1)1/2y1, . . . , (1− e−td)1/2yp, Z

N
)
,

• Ỹ N
t a copy of Y N

t where we replaced every semicircular variable by a free copy,

• Q ∈ Fd(p+1),q.

Then, for any N , with ∂s,j the non-commutative differential as defined in 2.4 but with respect to (1 −
e−ts)1/2ys,j

E

[
τN

(
Q
(
Y N
))]

− τN

(
Q (Y )

)

=
1

2N2

∑

1≤i,j≤d

∫ ∞

0

te−t
E

[
τN

((
Dj

(
∂1
i DiQ

)
(Y N

t )
)
⊠

(
Dj

(
∂2
i DiQ

)
(Ỹ N

t )
))]

+ e−t
∑

s

ts E

[
τN

((
Ds,j

(
∂1
iDiQ

)
(Y N

t )
)
⊠

(
Ds,j

(
∂2
i DiQ

)
(Ỹ N

t )
))]

dt.

First we need to prove the following technical lemma.

Lemma 3.3. If RkN , Y kN
1 , . . . , Y kN

p are p + 1 independent vectors of d independent GUE matrices of
size kN , then let

Sk =
(
RkN , Y kN

1 , . . . , Y kN
p , XN ⊗ Ik, Z

N ⊗ Ik
)

With P1,2 = IN ⊗E1,2, Ek the expectation with respect to (RkN , Y kN
1 , . . . , Y kN

d ) given Q ∈ Fd(p+2),q, we
have that

lim
k→∞

k3/2Ek [τkN (Q(Sk)P1,2)] = 0

Proof. Given A1, . . . , Al, B1, . . . , Bl ∈ Ad(p+2),q, we define the following quantity,

fA(y) = Ek

[
τkN

(
(A1e

iyB1 . . . Ale
iyBl)(Sk)P1,2

)]
,

dn(y) = sup
∑

i
degAi≤n, Ai monomials

|fA(y)| .
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Thanks to Proposition 2.18, we know that there exists constants γ and D (depending on N ,
∥∥XN

∥∥ and∥∥ZN
∥∥) such that for any n ≤ γk, |dn(y)| ≤ Dn. Consequently we define

g(a, y) =
∑

n≤γk/2

dn(y)a
n.

Let m = supi degBi and A be such that
∑

i degAi ≤ n, there exists a constant CB which only depends
on the coefficients of the Bi such that

∣∣∣∣
dfA(y)

dy

∣∣∣∣ ≤ CB dn+m(y).

Naturally we get that for any y ∈ [0, 1]

|fA(y)| ≤ |fA(0)|+ CB

∫ y

0

dn+m(y)dy.

And by taking the supremum over A, we get that

dn(y) ≤ dn(0) + CB

∫ y

0

dn+m(y).

Hence by summing over n, we have for a small enough,

g(a, y) ≤ g(a, 0) + CBa
−m


 ∑

1≤i≤m

(aD)γk/2+i−1 +

∫ y

0

g(a, y)dy


 .

Thanks to Grönwall’s inequality we get that there exist a constant κ such that for any y ∈ [0, 1],

g(a, y) ≤


g(a, 0) + CBa

−m
∑

1≤i≤m

(aD)γk/2+i−1


 eyCBa−m

.

Thus for a < 1/D, we have

limsup
k→∞

k3/2g(a, y) ≤ eyCBa−m

limsup
k→∞

k3/2g(a, 0).

However, we have

g(a, 0) =
∑

n≤γk/2

an sup
A monomial, degA≤n

|Ek [τkN (A(Sk)P1,2)]| .

We refer to the proof of Lemma 3.7 of [8] to prove that limsupk→∞ k3/2g(a, 0) = 0 (with the notations
of [8], it is the same thing as to show that k3/2fγk/2(a) converges towards 0). Hence for any A,B,

limsup
k→∞

k3/2
∣∣Ek

[
τkN

(
(A1e

iyB1 . . . Ale
iyBl)(Sk)P1,2

)]∣∣ ≤ a−
∑

i
degAi limsup

k→∞
k3/2g(a, 1) = 0.

Hence the conclusion.

Proof of Lemma 3.2. We have,

E

[
τN

(
Q
(
Y N
) )]

− τN

(
Q (Y )

)
= −

∫ ∞

0

E

[
d

dt
τN

(
Q
(
Y N
t

))]
dt.

We can compute

d

dt
τN

(
Q
(
Y N
t

) )
=

e−t

2

∑

i

τN

(
DiQ

(
Y N
t

)( xi

(1− e−t)1/2
− et/2XN

i

))
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Thus thanks to Gaussian integration by part (see (11)) and Schwinger-Dyson equations (see Proposition
2.11), we get that

E

[
d

dt
τN

(
Q
(
Y N
t

) )]
= E

[
e−t

2

∑

i

(
τN ⊗ τN

(
∂iDiQ

(
Y N
t

) )
− 1

N

∑

u,v

τN

(
Eu,v ∂iDiQ

(
Y N
t

)
#Ev,u

))]
.

(13)

Let

ΛN,t = τN ⊗ τN

(
∂iDiQ

(
Y N
t

) )
− 1

N

∑

u,v

τN

(
Eu,v ∂iDiQ

(
Y N
t

)
#Ev,u

)
.

Thanks to Theorem 5.4.5 of [1], we have that if

Zk =
(
e−tXN ⊗ Ik + (1− e−t)1/2RkN , (1− e−t1)1/2Y kN

1 , . . . , (1− e−td)1/2Y kN
d , ZN ⊗ Ik

)

with RkN and Y kN
s being independent vectors of d independent GUE matrices. Then with Ek the

expectation with respect to RkN and Y kN
s ,

ΛN,t = lim
k→∞

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ (Zk)

)
(14)

− Ek

[
1

N

∑

1≤u,v≤N

τkN

(
Eu,v ⊗ Ik ∂iDiQ (Zk)#Ev,u ⊗ Ik

)]
.

For more information, we refer to Proposition 3.5 of [8]. See also the definition of AN in Definition 2.3.
Let A,B be matrices of MN (C)⊗Mk(C), since Ik =

∑
l El,l and τkN (M) =

∑
a,b g

∗
a ⊗ f∗

bMga ⊗ fb,

1

N

∑

1≤u,v≤N

τkN

(
Eu,v ⊗ Ik A Ev,u ⊗ Ik B

)

=
1

N

∑

1≤u,v≤N

∑

1≤l,l′≤k

τkN (Eu,v ⊗ El,l A Ev,u ⊗ El′,l′ B)

=
1

N2k

∑

1≤l,l′≤k

∑

1≤v≤N

g∗v ⊗ f∗
l A gv ⊗ fl′

∑

1≤u≤N

g∗u ⊗ f∗
l′ B gu ⊗ fl

=
1

k

∑

1≤l,l′≤k

τN (IN ⊗ f∗
l A IN ⊗ fl′) τN (IN ⊗ f∗

l′ B IN ⊗ fl)

= k
∑

1≤l,l′≤k

τkN
(
A IN ⊗ El′,l

)
τkN

(
B IN ⊗ El,l′

)
.

Hence with convention Pl,l′ = IN ⊗ El,l′ , we have

1

N

∑

1≤u,v≤N

τkN

(
Eu,v⊗Ik ∂iDiQ (Zk)#Ev,u⊗Ik

)
= k

∑

1≤l,l′≤k

τkN⊗τkN

(
∂iDiQ (Zk)×Pl′,l⊗Pl,l′

)
(15)

Let U ∈ Mk(C) be a unitary matrix, then since for any i,

IN ⊗ U XN
i ⊗ Ik IN ⊗ U∗ = XN

i ⊗ Ik,

IN ⊗ U ZN
i ⊗ Ik IN ⊗ U∗ = ZN

i ⊗ Ik,

and that the law of RkN and Y kN
j is invariant by conjugation by a unitary matrix. We get that

Ek

[
τkN

(
∂1
iDiQ (Zk)Pl′,l

)]
= Ek

[
(τkN ⊗ IM )

(
∂1
i DiQ (Zk) IN ⊗ U∗El′,lU ⊗ IM

)]
.
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Thus if l = l′, we can pick U such that U∗El′,lU = E1,1, and if l 6= l′, we can pick U such that
U∗El′,lU = E1,2. Hence,

k
∑

1≤l,l′≤k

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

= k2Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)P1,1 ⊗ P1,1

)
(16)

+ k2(k − 1)Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)P1,2 ⊗ P1,2

)
.

Similarly we also have,

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)

)

=
∑

1≤l,l′≤k

Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk) Pl,l ⊗ Pl′,l′

)
(17)

= k2 Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk) P1,1 ⊗ P1,1

)
.

By combining equations (14),(15),(16) and (17), we get that

ΛN,t = lim
k→∞

−
{
k
∑

1≤l,l′≤k

Ek

[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]

− Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

+ k2(k − 1)Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)P1,2 ⊗ P1,2

)}
.

Thanks to Lemma 3.3, the last term converges towards 0. Consequently,

ΛN,t = lim
k→∞

− k

{ ∑

1≤l,l′≤k

Ek

[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]
(18)

− Ek[τkN ]⊗ Ek[τkN ]
(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)}
.

Let T kN , SkN , T kN
j , SkN

j be independent vectors of d independent GUE random matrices. We set the
following notations,

Z1
k,r =

(
e−tXN ⊗ Ik + (e−r − e−t)1/2RkN + (1− e−r)1/2SkN ,

(1− e−t1)1/2Y kN
1 , . . . , (1− e−td)1/2Y kN

d , ZN ⊗ Ik

)
,

Z1,s
k,r =

(
e−tXN ⊗ Ik + (1− e−t)1/2RkN , (1− e−t1)1/2Y kN

1 , . . . ,

(e−r − e−ts)1/2Y kN
s + (1− e−r)1/2SkN

s , . . . , (1− e−td)1/2Y kN
d , ZN ⊗ Ik

)
,

And similarly we define Z2
k,r (respectively Z2,s

k,r) but with T kN (respectively T kN
j ) instead of SkN (re-

spectively SkN
j ). Thanks to Proposition 3.1, we get that

k
∑

1≤l,l′≤k

Ek

[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]
− Ek[τkN ]⊗ Ek[τkN ]

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

=
1

k2N3

∑

1≤l,l′≤k

∑

1≤j≤d

∫ t

0

E

[
TrkN

(
Dj

(
∂1
i DiQ

)
(Z1

k,r) Pl′,l ⊠ Dj

(
∂2
i DiQ

)
(Z2

k,r) Pl,l′

)]
dr

+
∑

s

∫ ts

0

E

[
TrkN

(
Ds,j

(
∂1
i DiQ

)
(Z1,j

k,r) Pl′,l ⊠ Ds,j

(
∂2
i DiQ

)
(Z2,j

k,r) Pl,l′

)]
dr,

14



where ∂s,j is the non-commutative differential as defined in 2.4 but with respect to (1−e−ts)1/2Y kN
s,j . Be-

sides if A,B are matrices of MN (C)⊗Mk(C), then
∑

1≤l,l′≤k TrkN ⊗IM (APl′,lBPl,l′ ) = TrN (Trk ⊗IN (A)
Trk ⊗IN (B)). Hence

k
∑

1≤l,l′≤k

Ek

[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]
− Ek[τkN ]⊗ Ek[τkN ]

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

=
1

N2

∑

1≤j≤d

∫ t

0

Ek

[
τN

(
(τk ⊗ IN )

(
Dj

(
∂1
i DiQ

)
(Z1

k,r)
)
⊠ (τk ⊗ IN )

(
Dj

(
∂2
i DiQ

)
(Z2

k,r)
))]

dr

+
∑

s

∫ ts

0

Ek

[
τN

(
(τk ⊗ IN )

(
Ds,j

(
∂1
i DiQ

)
(Z1,s

k,r)
)
⊠ (τk ⊗ IN )

(
Ds,j

(
∂2
i DiQ

)
(Z2,s

k,r)
))]

dr.

If Q, T ∈ Fd(p+1),q are evaluated in Z1
k,r, Z

2
k,r, Z

1,s
k,r or Z2,s

k,r , then thanks to Proposition 3.1,

Ek [τk ⊗ IN (Q)τk ⊗ IN (T )]

=
1

k2

∑

1≤i,j,r,s≤N

Ek [TrkN (QIk ⊗ Ej,i)× Ei,j TrkN (TIk ⊗ Es,r)× Er,s]

=
1

k2

∑

1≤i,j,r,s≤N

Ek [TrkN (QIk ⊗ Ej,i) TrkN (TIk ⊗ Es,r)]× (Ei,jEr,s)

= O(k−2) +
1

k2

∑

1≤i,j,r,s≤N

(
Ek [TrkN (QIk ⊗ Ej,i)]Ek [TrkN (TIk ⊗ Es,r)]

)
⊗ (Ei,jEr,s)

= O(k−2) + Ek [τk ⊗ IN (Q)]Ek [τk ⊗ IN (T )] .

Hence we get that

k
∑

1≤l,l′≤k

Ek

[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]
− Ek[τkN ]⊗ Ek[τkN ]

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

=
1

N2

∑

1≤j≤d

∫ t

0

τN

(
Ek

[
(τk ⊗ IN )

(
Dj

(
∂1
i DiQ

)
(Z1

k,r)
)]

⊠ Ek

[
(τk ⊗ IN )

(
Dj

(
∂2
i DiQ

)
(Z2

k,r)
)])

dr

+
∑

s

∫ ts

0

τN

(
Ek

[
(τk ⊗ IN )

(
Ds,j

(
∂1
i DiQ

)
(Z1,s

k,r)
)]

⊠ Ek

[
(τk ⊗ IN )

(
Ds,j

(
∂2
i DiQ

)
(Z2,s

k,r)
)])

dr.

+O(k−2).

However, Z1
k,r, Z

2
k,r, Z

1,s
k,r and Z2,s

k,r all have the same law as Zk, thus

k
∑

1≤l,l′≤k

Ek

[
τkN ⊗ τkN

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)]
− Ek[τkN ]⊗ Ek[τkN ]

(
∂iDiQ(Zk)Pl′,l ⊗ Pl,l′

)

=
1

N2

∑

1≤j≤d

t τN

(
Ek

[
(τk ⊗ IN )

(
Dj

(
∂1
i DiQ

)
(Zk)

)]
⊠ Ek

[
(τk ⊗ IN )

(
Dj

(
∂2
i DiQ

)
(Zk)

)])

+
∑

s

ts τN

(
Ek

[
(τk ⊗ IN )

(
Ds,j

(
∂1
i DiQ

)
(Zk)

)]
⊠ Ek

[
(τk ⊗ IN )

(
Ds,j

(
∂2
i DiQ

)
(Zk)

)])
.

+O(k−2).

We can view GUE matrices of size kN as a matrix of size N with matrix coefficients. The diagonal
coefficients are independent GUE matrices of size k multiplied by N−1/2. The upper non-diagonal
coefficients are independent random matrices of size k which have the same law as (2N)−1/2(X+iY ) where
X and Y are independent GUE matrices of size k, and the lower non-diagonal coefficients are the adjoints
of the upper coefficients. We then define xN and yj

N as vectors of matrices whose diagonal coefficients
are free semicirculars multiplied by N−1/2, the upper non-diagonal coefficients are free between each
other, free from the diagonal one, and they are of the form (2N)−1/2(a + ib) where a and b are free
semicirculars. Finally the lower non-diagonal coefficients are the adjoints of the upper coefficients. We
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also assume that semicirculars from different matrices are free and that all of those semicirculars live
in a C∗-algebra endowed with a trace τ . Thus if we define Z just like Zk but with xN ,yj

N instead of
RkN , Y kN

j , thanks to Theorem 5.4.2 from [1], we get that

ΛN,t = − 1

N2

∑

1≤j≤d

t τN

(
(τ ⊗ IN )

(
Dj

(
∂1
i DiQ

)
(Z)
)
⊠ (τ ⊗ IN )

(
Dj

(
∂2
i DiQ

)
(Z)
))

+
∑

s

ts τN

(
(τ ⊗ IN )

(
Ds,j

(
∂1
iDiQ

)
(Z)
)
⊠ (τ ⊗ IN )

(
Ds,j

(
∂2
i DiQ

)
(Z)
))

.

Let Z̃ be a free copy of Z, that is such that we replaced every semicircular variable with a free copy.
Then,

ΛN,t = − 1

N2

∑

1≤j≤d

t τ ⊗ τN

((
Dj

(
∂1
i DiQ

)
(Z)
)
⊠

(
Dj

(
∂2
i DiQ

)
(Z̃)
))

+
∑

s

ts τ ⊗ τN

((
Ds,j

(
∂1
i DiQ

)
(Z)
)
⊠

(
Ds,j

(
∂2
i DiQ

)
(Z̃)
))

.

But then if Z̃k is an independent copy of Zk, once again thanks to Theorem 5.4.2 from [1], we get that

ΛN,t = − 1

N2

∑

1≤j≤d

lim
k→∞

t Ek

[
τkN

((
Dj

(
∂1
i DiQ

)
(Zk)

)
⊠

(
Dj

(
∂2
iDiQ

)
(Z̃k)

))]

+
∑

s

ts Ek

[
τkN

((
Ds,j

(
∂1
iDiQ

)
(Zk)

)
⊠

(
Ds,j

(
∂2
i DiQ

)
(Z̃k)

))]
.

Hence if we define Ỹ N
t a copy of Y N

t where we replaced every semicircular variables by a free copy, then
by Theorem 5.4.5 from [1],

ΛN,t = − 1

N2

∑

1≤j≤d

t τN

((
Dj

(
∂1
i DiQ

)
(Y N

t )
)
⊠

(
Dj

(
∂2
i DiQ

)
(Ỹ N

t )
)

+
∑

s

ts τN

((
Ds,j

(
∂1
iDiQ

)
(Y N

t )
)
⊠

(
Ds,j

(
∂2
i DiQ

)
(Ỹ N

t )
))

.

Thus by using this result in equation (13), we have in conclusion

E

[
d

dt
τN

(
Q
(
Y N
t

) )
]
= − e−t

2N2

∑

1≤i,j≤d

t E
[
τN

((
Dj

(
∂1
i DiQ

)
(Y N

t )
)
⊠

(
Dj

(
∂2
i DiQ

)
(Ỹ N

t )
)]

+
∑

s

ts E

[
τN

((
Ds,j

(
∂1
i DiQ

)
(Y N

t )
)
⊠

(
Ds,j

(
∂2
i DiQ

)
(Ỹ N

t )
))]

.

3.3 Proof of Theorem 1.1

In this section we focus on proving Theorem 1.1 from which we deduce all of the important corollaries.
It will mainly be a corollary of the following theorem, which is slightly stronger but less explicit. We
refer to Definition 3.6 for the definition of LTi and Lemma 3.5 for the one of xTi .

Theorem 3.4. Let the following objects be given,

• XN = (XN
1 , . . . , XN

d ) independent GUE matrices of size N ,

• ZN = (ZN
1 , . . . , ZN

q ) deterministic matrices and their adjoints,

• P ∈ Ad,q a polynomial that we assume to be self-adjoint,
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• f : R 7→ R such that there exists a measure on the real line µ with
∫
(1 + y4(k+1)) d|µ|(y) < +∞

and for any x ∈ R,

f(x) =

∫

R

eixy dµ(y) . (19)

Then if we set,

αP
i (f, Z

N ) =

∫

R

∫

[0,+∞)i

τN

( (
LT1 . . . LTi

)
(eiyP )(xTi , ZN)

)
dt1 . . . dti dµ(y),

and that we write P =
∑

1≤i≤Nb(P ) ciMi where the Mi are monomials and ci ∈ C, if we set Cmax(P ) =

max{1,maxi |ci|}, then there exist constants C,K and c independent of P such that with KN = max{
∥∥ZN

1

∥∥
, . . . ,

∥∥ZN
q

∥∥ ,K}, for any N and k ≤ cN(degP )−1,

∣∣∣∣∣∣
E

[
τN

(
f(P (XN , ZN))

)]
−
∑

0≤i≤k

1

N2i
αP
i (f, Z

N )

∣∣∣∣∣∣
(20)

≤ 1

N2k+2

∫

R

(|y|+ y4(k+1))d|µ|(y)×
(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)

× k3k.

Besides if we define K̂N like KN but with 2 instead of K, then we have that for any j ∈ N∗,

∣∣αP
j (f, Z

N )
∣∣ ≤

∫

R

(|y|+ y4j)d|µ|(y)×
(
C × K̂degP

N Cmax(P )Nb(P )(degP )2
)4j

× j3j . (21)

Finally if f and g satisfies (19) and are bounded functions equal on a neighborhood of the spectrum
of P (x, ZN ), where x is a free semicircular system free from MN (C), then for any i, αP

i (f, Z
N ) =

αP
i (g, Z

N). In particular if f is a bounded function such that its support and the spectrum of P (x, ZN )
are disjoint, then for any i, αP

i (f, Z
N ) = 0.

The following lemma allows us to define the coefficients of the topological expansion by induction. It
is basically a reformulation of Lemma 3.2 with the notations of Definitions 2.12 and 2.13. Although the
notations in this formula are a bit heavy, such a formulation is necessary in order to get a better upper
bound on the remainder term. It is the first step of the proof of Theorem 3.4.

Lemma 3.5. Let x, y1, . . . , ycn be free semicircular system of d variables. Then with Tn = (t1, . . . , tn)
and I = {s1, . . . , sn},

XN,Tn

i,I = e−
∑n

i=1 ti/2XN
i +

n−1∑

l=0

e−
∑l

i=1 ti/2(1− e−tl+1)1/2y
sl+1

i ,

xTn

i,I = e−
∑

n
i=1 ti/2xi +

n−1∑

l=0

e−
∑

l
i=1 ti/2(1− e−tl+1)1/2y

sl+1

i .

Given Q ∈ Fn
d,q, with X

N,Tn+1

1 =
(
X

N,Tn+1

{I,2cn+1}

)
I∈Jn

and X
N,Tn+1

2 =
(
X

N,Tn+1

{I+cn,2cn+2}

)
I∈Jn

, then with the

convention of Definition 2.15,

E

[
τN

(
Q
(
XN,Tn, ZN

) )]
− τN

(
Q
(
xTn , ZN

) )

=
1

2N2

∑

1≤i,j≤d

∫ ∞

0

e−
∑n+1

i=1 ti
∑

0≤l≤n

tl+1 e−
∑

l
i=1 ti

∑

A∈Jl
n

E

[
τN

((
Dj,A

(
∂1
iDiQ

)
(X

N,Tn+1

1 , ZN)
)

⊠

(
Dj,A

(
∂2
i DiQ

)
(X

N,Tn+1

2 , ZN)
))]

dtn+1.
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Proof. Let Y N
t and Ỹ N

t be as in Lemma 3.2, S ∈ Fd(p+1),q such that Q(XN,Tn , ZN) = S(Y N
t ), then

∂iDiS(Y
N
t ) = e−

∑n
i=1 ti ∂iDiQ(XN,T , ZN). Thus with the convention of Definition 2.15, we also have

e
∑

n
i=1 ti Dj∂

1
i DiS(Y

N
t )⊠Dj∂iDiS(Ỹ

N
t ) = e−

∑
n
i=1 ti Dj,∅∂

1
i DiS(X

N,{Tn,t}
1 , ZN)

⊠Dj,∅∂
2
i DiS(X

N,{Tn,t}
2 , ZN).

Thanks to remark 2.14, we know that given s ∈ [1, cn], there exists a unique l ∈ [0, n−1] and kl+2, . . . , kn
such that for any I = {s1, . . . , sn} ∈ Jn, either for i > l + 1, si = ki and sl+1 = s or s /∈ I. Hence for
any s, there exists A = {s, kl+2, . . . , kn} ∈ J l

n such that

e
∑

n
i=1 ti Ds,j∂

1
i DiS(Y

N
t )⊠Ds,j∂iDiS(Ỹ

N
t ) = e−

∑
l
i=1 ti Dj,A∂

1
i DiS(X

N,{Tn,t}
1 , ZN)

⊠Dj,A∂
2
i DiS(X

N,{Tn,t}
2 , ZN).

Thus thanks to Lemma 3.2,

E

[
τN

(
Q
(
XN,Tn , ZN

) )]
− τN

(
Q
(
xN,Tn , ZN

) )

=
1

2N2

∑

1≤i,j≤p

∫ ∞

0

te−t−2
∑n

i=1 ti E

[
τN

((
Dj,∅

(
∂1
i DiQ

)
(X

N,{Tn,t}
1 , ZN)

)

⊠

(
Dj,∅

(
∂2
i DiQ

)
(X

N,{Tn,t}
2 , ZN)

))]

+ e−t−∑n
i=1 ti

∑

0≤l≤n−1

tle
−∑l

i=1 ti
∑

A∈Jl
n

E

[
τN

((
Dj,A

(
∂1
i DiQ

)
(X

N,{Tn,t}
1 , ZN)

)

⊠

(
Dj,A

(
∂2
i DiQ

)
(X

N,{Tn,t}
2 , ZN)

))]
dt.

Hence by renaming t in tn+1, we get the conclusion.

This prompts us to define the following operator:

Definition 3.6. We set X1 =
(
X{I,2cn+1}

)
I∈Jn

and X2 =
(
X{I+cn,2cn+2}

)
I∈Jn

. Then we define LTn+1 :

Fn
d,q → Fn+1

d,q by:

LTn+1(Q) =
1

2

∑

1≤i,j≤p
0≤l≤n

tl+1 e−
∑n+1

i=1 ti−
∑

l
i=1 ti

∑

A∈Jl
n

Dj,A

(
∂1
i DiQ

)
(X1, Z)⊠Dj,A

(
∂2
iDiQ

)
(X2, Z). (22)

In order to be perfectly rigorous, as in Definition 2.8, we have to define L̃
Ts+1

αs,βs,γs,δs
: Fn

d,q → Fn+1
d,q as

in (22) but with Dαs,j,A

(
∂1
γs,i

Dδs,iQ
)
(X1, Z) ⊠ Dβs,j,A

(
∂2
γs,i

Dδs,iQ
)
(X2, Z) (where we used notations

of Definition 2.8) instead of
(
∂1
i DiQ

)
(X1, Z)⊠Dj,A

(
∂2
i DiQ

)
(X2, Z). Then given x = (xI)I∈Jn

and z

elements of a C∗-algebra, we define LTn+1(Q)(x, z) as the integral of L̃
Ts+1

αs,βs,γs,δs
(Q)(x, z) over αs, βs, γs

and δs.

Thus we get directly the following proposition.

Proposition 3.7. Let x be a free semicircular system, (yi)i≥1 be free semicircular systems free from x,
and XN be independent GUE matrices. We define XN,Tn and xTn as in 3.5, then for any Q ∈ Fd,q,

E

[
τN

(
Q(XN , ZN)

)]
=
∑

0≤i≤k

1

N2i

∫

[0,+∞)i

τN

( (
LTi . . . LT1

)
(Q)(xTi , ZN )

)
dt1 . . . dti

+
1

N2(k+1)

∫

[0,+∞)k+1

E

[
τN

( (
LTk+1 . . . LT1

)
(Q)(XN,Tk+1 , ZN)

)]
dt1 . . . dtk+1.

Before giving the proof of Theorem 3.4, as mentioned in the introduction, the former proposition
gives some insight in map enumeration.
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Remark 3.8. We say that a graph on a surface is a map if it is connected and its faces are homeomorphic
to discs. It is of genus g if it can be embedded in a surface of genus g but not g− 1. For an edge-colored
graph on an orientated surface we say that a vertex is of type q = Xi1 . . .Xip if it has degree p and when
we look at the half-edges going out of it, starting from a distinguished one and going in the clockwise
order the first half-edge is of color i1, the second i2, and so on. If Mg(Xi1 . . . Xip) is the number of such
maps of genus g with a single vertex, then given XN

i independent GUE matrices

E

[
1

N
TrN

(
XN

i1 . . .XN
ip

)]
=
∑

g∈N

1

N2g
Mg(Xi1 . . . Xip).

For a proof we refer to [31] for the one matrix case and [5], chapter 22, for the multimatrix case. Thanks
to Proposition 3.7, we immediately get that

Mg(Xi1 . . . Xip) =

∫

[0,+∞)g

τ
(
LTg . . . LT1

(
Xi1 . . . Xip

)
(xTg )

)
dt1 . . . dtg .

We can now prove Theorem 3.4.

Proof of Theorem 3.4. Thanks to Proposition 3.7, we immediately get that

E

[
τN

(
f(P (XN , ZN ))

)]
=
∑

0≤i≤k

1

N2i
αP
i (f, Z

N)

+
1

N2(k+1)

∫

R

∫

[0,+∞)k+1

E

[
τN

( (
LTk+1 . . . LT1

)
(eiyP )(XN,Tk+1, ZN )

)]
dt1 . . . dtk+1 dµ(y).

All we need to do from now on is to get an estimate on the last line. To do so we use the following
remark. Let Q ∈ Fn

d,q, then we can write

Q =
∑

1≤i≤Nb(Q)

ciMi

where ci ∈ C and Mi ∈ Fn
d,q are monomials (not necessarily distinct). We also define Cmax(Q) =

max{1, supi |ci|}. Since for any I ∈ Jn,
∥∥∥XN,Tn

i,I

∥∥∥ ≤ 2 +
∥∥XN

i

∥∥, given B the union of
{
2 +

∥∥XN
i

∥∥}
1≤i≤p

and
{∥∥ZN

j

∥∥}
1≤j≤q

, and DN the maximum of this family, we get that

∥∥Q(XN,Tn, ZN)
∥∥ ≤ Nb(Q)× Cmax(Q)×D

deg(Q)
N . (23)

It is worth noting that this upper bound is not optimal at all and heavily dependent on the decomposition

chosen. Now let us consider L̃
Ts+1

αs,βs,γs,δs
defined as in Definition 3.6. We also consider F̃n

d,q the ∗-algebra
generated by An

d,q and the family

{
eiλyP (XI ) | I ∈ Jn, λ ∈ [0, 1]

}
.

Then L̃
Ts+1

αs,βs,γs,δs
send F̃s

d,q to F̃s+1
d,q . Let Q ∈ F̃s

d,q, then we get that

deg
(
L̃
Ts+1

αs,βs,γs,δs
(Q)
)
≤ degQ+ 4degP,

Cmax

(
L̃
Ts+1

αs,βs,γs,δs
(Q)
)
≤
∑s

k=1 tk
2

e−
∑s+1

k=1 tk(1 + |y|)4 Cmax(P )4 Cmax(Q),

Nb
(
L̃
Ts+1

αs,βs,γs,δs
(Q)
)
≤ deg(Q)(degQ+degP )(degQ+2degP )(degQ+3degP )×(Nb(P ) degP )4×Nb(Q).

Thus if we define by induction Q0 = eiyP , and Qs+1 = L̃
Ts+1

αs,βs,γs,δs
Qs, by a straightforward induction we

get that
degQs ≤ 4s degP (24)
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Cmax(Qs) ≤
∏s

r=1

∑r
k=1 tke

−∑
r
k=1 tk

2s
(1 + |y|)4s Cmax(P )4s (25)

Nb(Qs) ≤
(
Nb(P )(degP )2

)4s
(4s)! (26)

Actually since we have Dδ1,ie
iyP = iy ∂δ1,iP #̃eiyP , one can replace (1 + |y|)4s in equation (25) by

|y|(1 + |y|)4s−1. Thus thanks to (23), we get that

∥∥∥L̃Tk+1

αk+1,βk+1,γk+1,δk+1
. . . L̃T1

α1,β1,γ1,δ1
Q(XN,Tk+1, ZN)

∥∥∥

≤
k+1∏

r=1

∑r
s=1 tse

−∑
r
s=1 ts

2
× |y|

1 + |y| ×
(
(1 + |y|)Cmax(P )Nb(P )(degP )2

)4(k+1)

(4(k + 1))!×D
4(k+1) degP
N

Consequently after integrating over αs, βs, γs, δs, we get that

∣∣∣∣∣∣∣

∫

R

∫

[0,+∞)k+1

E

[
τN

( (
LTk+1 . . . LT1

)
(eiyP )(XN,Tk+1 , ZN)

)]
dt1 . . . dtk+1 dµ(y)

∣∣∣∣∣∣∣

≤
∫

[0,+∞)k+1

k+1∏

r=1

∑r
s=1 tse

−∑r
s=1 ts

2
dt1 . . . dtk+1 ×

∫

R

|y|(1 + |y|)4k+3d|µ|(y)

×
(
Cmax(P )Nb(P )(degP )2

)4(k+1)

(4(k + 1))!× E

[
D

4(k+1) degP
N

]
.

Besides

∫

[0,+∞)k+1

k+1∏

r=1

∑r
s=1 tse

−∑r
s=1 ts

2
dt1 . . . dtk+1 = 2−k−1

∫

0≤t1≤···≤tk+1

k+1∏

r=1

tre
−tr dt1 . . . dtk+1

≤ 2−k−1

∫

0≤t1≤···≤tk+1

k+1∏

r=1

e−tr/2 dt1 . . . dtk+1

=

∫

0≤t1≤···≤tk+1

k+1∏

r=1

e−tr dt1 . . . dtk+1

=
1

(k + 1)!
,

and
∫

R

|y|(1 + |y|)4k+3d|µ|(y) ≤ 24k+3

∫

R

(|y|+ y4(k+1))d|µ|(y).

Thanks to Proposition 2.18 we can find constants K and c such that with KN = max{K,
∥∥ZN

1

∥∥ , . . . ,
∥∥ZN

q

∥∥},
then for any k ≤ c(degP )−1N ,

E

[
D

4(k+1) degP
N

]
≤ K

4(k+1) degP
N .

Thus thanks to Stirling formula, there exists a constant C such that

∣∣∣∣∣∣∣

∫

R

∫

[0,+∞)k+1

E

[
τN

( (
LTk+1 . . . LT1

)
(eiyP )(XN,Tk+1 , ZN)

)]
dt1 . . . dtk+1 dµ(y)

∣∣∣∣∣∣∣

≤
∫

R

(|y|+ y4(k+1))d|µ|(y)×
(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)

× k3k .
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Hence we get equation (20). We get equation (21) very similarly. Finally to prove the last affirmation,
we only need to consider a function which takes value 0 on a neighborhood of the spectrum of P (x, ZN ).
Let X lN be independent GUE matrices of size lN , then we get that for any k such that f is smooth
enough, thanks to equation (20),

E

[
τN

(
f(P (X lN , ZN ⊗ Il))

)]
=
∑

0≤i≤k

1

(lN)2i
αP
i (f, Z

N ⊗ Il) +O(l−2(k+1)).

But in the sense of Definition 2.1, for any i, (xTi , ZN ⊗ Il) and (xTi , ZN ) have the same distribution,
hence

E

[
τN

(
f(P (X lN , ZN ⊗ Il))

)]
=
∑

0≤i≤k

1

(lN)2i
αP
i (f, Z

N ) +O(l−2(k+1)).

Consequently, if there exists i such that αP
i (f, Z

N ) 6= 0, then we can find constants c and k (dependent
on N) such that

E

[
τN

(
f(P (X lN , ZN ⊗ Il))

)]
∼l→∞ c× l−2k. (27)

We are going to show that the left hand side decays exponentially fast in l, hence proving a contradiction.
Now if we set E the support of f , then

∣∣∣E
[
τN

(
f(P (X lN , ZN ⊗ Il))

)]∣∣∣ ≤ ‖f‖∞ P
(
σ
(
P (X lN , ZN ⊗ Il)

)
∩ E 6= ∅

)
.

However thanks to Proposition 2.18, there exist constants A and B such that for any l,

P
(∥∥P (X lN , ZN ⊗ Il)

∥∥ ≥ A
)
≤ e−Bl.

Thus,

∣∣∣E
[
τN

(
f(P (X lN , ZN ⊗ Il))

)]∣∣∣ ≤ ‖f‖∞
(
P
(
σ
(
P (X lN , ZN ⊗ Il)

)
∩ E ∩ [−A,A] 6= ∅

)
+ e−Bl

)
.

Let g be a C∞-function, with compact support disjoint from the spectrum of P (x, ZN ) such that
g|E∩[−A,A] = 1. Then,

∣∣∣E
[
τN

(
f(P (X lN , ZN ⊗ Il))

)]∣∣∣ ≤ ‖f‖∞ P
(∥∥g

(
P (X lN , ZN ⊗ Il)

)∥∥ ≥ 1
)
+ e−Bl.

Since g is C∞ and has compact support, thanks to the Fourier transform it satisfies (19) for any k, thus
for any self-adjoint matrices U and V ,

‖g(U)− g(V )‖ =

∥∥∥∥
∫

y

∫ 1

0

eiyUα(U − V )eiyV (1−α)dαdµ(y)

∥∥∥∥

≤ ‖U − V ‖
∫

|y|d|µ|(y).

Hence there is a constant CB such that for any self-adjoint matrices Xi, Yi ∈ MlN (C) whose operator
norm is bounded by B,

∥∥g(P (X,ZN))− g(P (Y, ZN))
∥∥ ≤ CB

∑

i

‖Xi − Yi‖ .

Consequently, with a proof very similar to the one of Proposition 4.6 of [8], we get that there exist
constant D and S such that for any δ > 0,

P
(∣∣∥∥g

(
P (X lN , ZN ⊗ Il)

)∥∥− E
[∥∥g

(
P (X lN , ZN ⊗ Il)

)∥∥]∣∣ ≥ δ +De−N
)
≤ pe−2N + e−Sδ2l.

But then thanks to Theorem 1.6 of [3] and Weierstrass theorem, we know that almost surely
∥∥g
(
P (X lN , ZN ⊗ Il)

)∥∥
converges towards 0. Hence thanks to Proposition 2.18 and dominated convergence theorem, we get that
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E
[∥∥g

(
P (X lN , ZN ⊗ Il)

)∥∥] also converges towards 0. Hence for l large enough, there exist a constant S
such that

P
(∥∥g

(
P (X lN , ZN ⊗ Il)

)∥∥ ≥ 1
)
≤ e−Sl.

Consequently we get that there exist constants A and B such that

∣∣∣E
[
τN

(
f(P (X lN , ZN ⊗ Il))

)]∣∣∣ ≤ Ae−Bl,

which is in contradiction with equation (27). Hence the conclusion.

We can now prove Theorem 1.1, the only difficulty of the proof is to use the hypothesis of smoothness
to replace our function f by a function which satisfies (19) without losing too much on the constants.

Proof of Theorem 1.1. To begin with, let

h : x →
{

e−x−4−(1−x)−4

if x ∈ (0, 1),
0 else.

Let H be the primitive of h which takes value 0 on R− and renormalized such that it takes value 1 for
x ≥ 1. Then given a constant m one can define the function g : x → H(m+ 1− x)H(m + 1 + x) which
takes value 1 on [−m,m] and 0 outside of (−m − 1,m + 1). Let B be the union over i of the events
{
∥∥XN

i

∥∥ ≥ D+α−1} where D and α where defined in Proposition 2.18. Thus P(B) ≤ pe−N . By adjusting
the constant K defined in Theorem 3.4 we can always assume that it is larger than D+ α−1, thus if for
any i,

∥∥XN
i

∥∥ ≤ D+ α−1,
∥∥P (XN , ZN)

∥∥ ≤ mCmaxK
n
N . We fix m = mCmaxK

n
N , thus if P (XN , ZN ) has

an eigenvalue outside of [−m,m], necessarily XN ∈ B. Thus

E

[
τN

(
f(1− g)(P (XN , ZN ))

)]
≤ ‖f‖∞ P(B) ≤ ‖f‖∞ p× e−N . (28)

Since fg has compact support and is a function of class C4(k+1)+2, we can take its Fourier transform and
then invert it so that with the convention ĥ(y) = 1

2π

∫
R
h(x)e−ixydx, we have

∀x ∈ R, (fg)(x) =

∫

R

eixyf̂ g(y) dy .

Besides, since if h has compact support bounded by m+ 1 then
∥∥∥ĥ
∥∥∥
0
≤ 1

π (m+ 1) ‖h‖0, we have

∫

R

(|y|+ y4(k+1))
∣∣∣f̂ g(y)

∣∣∣ dy ≤
∫

R

∑4(k+1)+2
i=0 |y|i
1 + y2

∣∣∣f̂ g(y)
∣∣∣ dy

≤

∫

R

∑4(k+1)+2
i=0

∣∣∣(̂fg)(i)(y)
∣∣∣

1 + y2
dy

≤ 1

π
(m+ 1) ‖fg‖C4(k+1)+2

∫

R

1

1 + y2
dy

≤ (m+ 1) ‖fg‖C4(k+1)+2 ,

Hence fg satisfies the hypothesis of Theorem 3.4 with µ(dy) = f̂ g(y)dy. Therefore, combining with
equation (28), by adjusting the constant C, we get that

∣∣∣∣∣∣
E

[
τN

(
f(P (XN , ZN))

)]
−
∑

0≤i≤k

1

N2i
αP
i (fg, Z

N)

∣∣∣∣∣∣

≤ 1

N2k+2
‖fg‖C4(k+1)+2 ×

(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)+1

× k3k.
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Since the norm of the family ZN is uniformly bounded over N , the second line is of order N−2k−2. Hence

if (βi)1≤i≤k is a family of scalar such that E

[
τN

(
f(P (XN , ZN ))

)]
−∑0≤i≤k N

−2iβi is also of order

N−2k−2, then so is
∑

0≤i≤k(α
P
i (fg, Z

N)−βi)N
−2i. Thus for any i, βi = αP

i (fg, Z
N). Thus since it does

not depends on g, one can set αP
i (f, Z

N ) = αP
i (fg, Z

N).

Finally, one can write the j-th derivative of x → e−x−4

on R+ as x → Qj(x
−1)e−x−4

for some polynomial
Qj . By studying Nb(Qj), Cmax(Qj) and deg(Qj), as in the proof of Theorem 3.4, we get that the infinity
norm of the j-th derivative of this function is smaller than 20jj!(5j/4)5j/4. Hence by adjusting C and
using Stirling formula,

∣∣∣∣∣∣
E

[
τN

(
f(P (XN , ZN ))

)]
−
∑

0≤i≤k

1

N2i
αP
i (fg, Z

N)

∣∣∣∣∣∣

≤ 1

N2k+2
‖f‖C4(k+1)+2 ×

(
C ×KdegP

N Cmax(P )Nb(P )(degP )2
)4(k+1)+1

× k12k.

The other points of the Theorem are a direct consequence of Theorem 3.4.

4 Consequences of Theorem 3.4

4.1 Proof of corollary 1.2

Let g be a non-negative C∞-function which takes value 0 on (−∞, 1/2], 1 on [1,∞) and in [0, 1]
elsewhere. For any a, b ∈ R, we define hε

[a,b] : x 7→ g(ε−1(x − a))g(−ε−1(x − b)). Then let I be the

collection of connected components of the complementary set of σ(P (x,AN )). Then we define

hε =
∑

I∈I
hε
I .

This function is well-defined since the spectrum of P (x,AN ) is compact, hence its complementary set
has a finite number of connected components of measure larger than ε. And since if b− a ≤ ε, hε

[a,b] = 0,
the sum over I ∈ I is actually a finite sum. Besides, we have that

P
(
σ(P (XN , AN )) 6⊂ σ(P (x,AN )) + ε

)
≤ P

(∥∥hε(P (XN , AN ))
∥∥ ≥ 1

)
≤ E

[
TrN

(
hε(P (XN , AN ))

)]
.

Besides thanks to Theorem 1.1 since the spectrum of P (x,AN ) and the support of hε are disjoint, and
that the operator norm of the matrices AN is uniformly bounded over N , for any k ∈ N, we get that
there is a constant Ck such that for any ε and for N large enough,

E
[
TrN

(
hε(P (XN , AN ))

)]
≤ Ck

ε−4k−2

N2k−1
.

Thus if we set ε = N−α with α < 1/2, then by fixing k large enough we get that

P
(
σ(P (XN , AN )) 6⊂ σ(P (x,AN )) +N−α

)
= O(N−2).

Hence the conclusion by Borel-Cantelli lemma.

4.2 Proof of Corollary 1.3

Firstly, we need the following lemma.

Lemma 4.1. Let g be a C∞ function which takes value 0 on (−∞, 1/2] and value 1 on [1,∞), and in
[0, 1] otherwise. We set fε : t 7→ g(ε−1(t−α)) with α =

∥∥PP ∗(x,AN )
∥∥, then there exist constants C and

c such that for any k ≤ cN , ε > 0 and N ,

E

[
TrN

(
fε(PP ∗(XN , AN ))

)]
≤ N × Ck

(
ε−2

N

)2k

k12k .
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Proof. To estimate the above expectation we once again want to use the Fourier transform with a few
refinements to have an optimal estimate with respect to ε. We set fκ

ε : t 7→ g(ε−1(t−α))g(ε−1(κ− t)+1)
with κ > α. Since g has compact support and is sufficiently smooth we can apply Theorem 3.2. Setting
h : t 7→ g(t− ε−1α)g(ε−1κ+ 1− t) = fκ

ε (εt), we have for k ∈ N∗,

∫
y4k|f̂κ

ε (y)| dy =
1

2π

∫
y4k
∣∣∣∣
∫

g(ε−1(t− α))g(ε−1(κ− t) + 1)e−iyt dt

∣∣∣∣ dy

=
1

2π

∫
y4k
∣∣∣∣
∫

h(t)e−iyεt εdt

∣∣∣∣ dy

=
ε−4k

2π

∫
y4k
∣∣∣∣
∫

h(t)e−iyt dt

∣∣∣∣ dy

≤ ε−4k

2π

∫
1

1 + y2
dy

∫
(|h(4k)(t)|+ |h(4k+2)(t)|) dt

≤ ε−4k
(∥∥∥h(4k)

∥∥∥
∞

+
∥∥∥h(4k+2)

∥∥∥
∞

)
.

In the last line we used the fact the support of the derivatives of h are included in [ε−1α, ε−1α + 1] ∪
[ε−1κ, ε−1κ+1]. Thus thanks to Theorem 3.4 and by using the function g defined in the proof of Theorem
1.1, we get that there exist constants C and c such that for any k ≤ cN , for any κ > α,

E

[
TrN

(
fκ
ε (PP ∗(XN , AN ))

)]
≤ N × Ck

(
ε−2

N

)2k

k12k .

Hence the conclusion by dominated convergence theorem.

Consequently, with x+ = max(x, 0), for any r > 0,

E

[(∥∥PP ∗(XN , AN )
∥∥−

∥∥PP ∗(x,AN )
∥∥)

+

]
≤ r +

∫ ∞

r

P
(∥∥PP ∗(XN , AN )

∥∥ ≥
∥∥PP ∗(x,AN )

∥∥+ ε
)
dε

≤ r +

∫ ∞

r

P

(
TrN

(
fε(PP ∗(XN , AN ))

)
≥ 1
)
dε

≤ r +

∫ ∞

r

E

[
TrN

(
fε(PP ∗(XN , AN ))

)]
dε

≤ r + r ×N × Ck

(
r−2

N

)2k

k12k.

Thus by taking r = N−a, we get that

E

[(∥∥PP ∗(XN , AN )
∥∥−

∥∥PP ∗(x,AN )
∥∥)

+

]
≤ N−a ×

(
1 +N1+2k(2a−1) × Ckk12k

)
.

Now we want to pick a and k such that N1+2k(2a−1) ×Ckk12k is bounded by 1 uniformly over N (while
keeping in mind that k has to be an integer). It is sufficient to pick a and k such that,

lnC +
lnN

k
+ 12 lnk ≤ 2× (1− 2a) lnN.

We fix k = ⌈lnN⌉, then we need to pick a such that

lnC + 1 + 12 ln⌈lnN⌉ ≤ 2× (1− 2a) lnN.

Which means that we can pick a = 1
2 − 4 ln lnN

lnN , and for N large enough,

E

[(∥∥PP ∗(XN , AN )
∥∥−

∥∥PP ∗(x,AN )
∥∥)

+

]
≤ 2N−a =

2 ln4 N√
N

.
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Thanks to Proposition 4.6 from [8] we have that for N ≥ ln(p), there exist constants K and D such
that

P

( ∣∣ ∥∥P ∗P (XN , AN )
∥∥− E

[∥∥P ∗P (XN , AN )
∥∥] ∣∣ ≥ δ +Ke−N

)
≤ e−N + e−Dδ2N .

Thus with x+ = max(x, 0), we immediately get that

P


(∥∥P (XN , AN )

∥∥−
∥∥P (x,AN )

∥∥) ≥
δ +Ke−N + 2 ln4 N√

N

‖P (x,AN )‖




≤ P

((∥∥P (XN , AN )
∥∥−

∥∥P (x,AN )
∥∥)×

(∥∥P (XN , AN )
∥∥+

∥∥P (x,AN )
∥∥) ≥ δ +Ke−N +

2 ln4 N√
N

)

≤ P

(∥∥P ∗P (XN , AN )
∥∥−

∥∥P ∗P (x,AN )
∥∥ ≥ δ +Ke−N +

2 ln4 N√
N

)

≤ P

(∥∥P ∗P (XN , AN )
∥∥−

∥∥P ∗P (x,AN )
∥∥ ≥ δ +Ke−N + E

[(∥∥P ∗P (XN , AN )
∥∥−

∥∥P ∗P (x,AN )
∥∥)

+

] )

≤ P

(∥∥P ∗P (XN , AN )
∥∥−

∥∥P ∗P (x,AN )
∥∥ ≥ δ +Ke−N + E

[∥∥P ∗P (XN , AN )
∥∥−

∥∥P ∗P (x,AN )
∥∥]
)

≤ P

(∥∥P ∗P (XN , AN )
∥∥− E

[∥∥P ∗P (XN , AN )
∥∥] ≥ δ +Ke−N

)

≤ e−N + e−Dδ2N .

Since the family (AN )N is uniformly bounded over N , so is the sequence (
∥∥P (x,AN )

∥∥)N , hence by

replacing δ by D−1/2δ, we get that there is a constant C such that

P

(∥∥P (XN , AN )
∥∥−

∥∥P (x,AN )
∥∥ ≥ C

(
δ +

ln4 N√
N

))
≤ e−N + e−δ2N .

Finally by replacing δ by ln4 N√
N

δ, we get that

P

( √
N

ln4 N

(∥∥P (XN , AN )
∥∥−

∥∥P (x,AN )
∥∥) ≥ C (δ + 1)

)
≤ e−N + e−δ2 ln8 N .
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