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Abstract

Let UN = (UN
1 , . . . , UN

p ) be a d-tuple of N ×N independent Haar unitary matrices and ZNM be
any family of deterministic matrices in MN (C)⊗MM (C). Let P be a self-adjoint non-commutative
polynomial. In [28], Voiculescu showed that the empirical measure of the eigenvalues of this polyno-
mial evaluated in Haar unitary matrices and deterministic matrices converges towards a deterministic
measure defined thanks to free probability theory. Let now f be a smooth function, the main technical
result of this paper is a precise bound of the difference between the expectation of

1

MN
TrMN (C) ⊗TrMM (C)

(

f(P (UN ⊗ IM , Z
NM ))

)

,

and its limit when N goes to infinity. If f is seven times differentiable, we show that it is bounded by
M2 ‖f‖

C7 N
−2. As a corollary we obtain a new proof with quantitative bounds of a result of Collins

and Male which gives sufficient conditions for the operator norm of a polynomial evaluated in Haar
unitary matrices and deterministic matrices to converge almost surely towards its free limit. Our
result also holds in much greater generality. For instance, it allows to prove that if UN and Y MN

are independent and MN = o(N1/3), then the norm of any polynomial in (UN ⊗ IMN , IN ⊗ Y MN )
converges almost surely towards its free limit. Previous results required that MN is bounded.

1 Introduction

Understanding the behaviour of random matrices in large dimension is the core of random matrix
theory. In the early nineties Voiculescu showed that one could get very accurate results with the help
of non-commutative probability theory. This theory is equipped with a notion of freeness, analogous to
independence in classical probability theory, which often describes accurately the asymptotic behaviour
of random matrices. In [27] he studied the asymptotic behaviour of independent matrices taken from
the Gaussian Unitary Ensemble (GUE). In a later paper he proved a similar theorem for Haar unitary
matrices, which are random matrices whose law is the Haar measure on the unitary group UN . In
a nutshell, Voiculescu proved in [28] that given UN

1 , . . . , UN
p independent Haar unitary matrices, the

renormalized trace of a polynomial P evaluated in these matrices converges towards a deterministic limit
α(P ). Specifically, the following holds true almost surely:

lim
N→∞

1

N
TrN

(
P (UN

1 , . . . , UN
p , UN

1

∗
, . . . , UN

p

∗
)
)
= α(P ). (1)

Voiculescu computed the limit α(P ) with the help of free probability. To give more detail, let BN be a
self-adjoint matrix of size N , then one can define the empirical measure of its (real) eigenvalues by

µBN
=

1

N

N∑

i=1

δλi
,
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where δλ is the Dirac mass in λ and λ1, . . . , λN are the eingenvalue of BN . In particular, if P is a
self-adjoint polynomial, that is such that for any matrices A1, . . . , Ad, P (A1, . . . , Ad, A

∗
1, . . . , A

∗
d) is a

self-adjoint matrix, then one can define the random measure µP (UN
1 ,...,UN

p ,UN
1

∗,...,UN
p

∗). In this case,
Voiculescu’s result (1) implies that there exists a measure µP with compact support such that almost
surely µP (UN

1 ,...,UN
p ,UN

1
∗,...,UN

p
∗) converges weakly towards µP : its moments are given by µP (x

k) = α(P k)

for all integer numbers k.

However, the convergence of the empirical measure of the eigenvalues of a matrix does not say much
about the local properties of its spectrum, in particular about the convergence of the norm of this matrix,
or the local fluctuations of its spectrum. For a comprehensive survey of important milestones related
to these questions, we refer to the introduction of our previous paper [11]. In a nutshell, when dealing
with a single matrix, incredibly precise results are known. Typically, concerning the GUE, very precise
results were obtained by Tracy and Widom in the early nineties in [26]. On the other hand, there are
much less results available when one deals with a polynomial in several random matrices. One of the
most notable result was found by Haagerup and Thorbjørnsen in 2005 in [16]: they proved the almost
sure convergence of the norm of a polynomial evaluated in independent GUE matrices. Equivalently, for
P a self-adjoint polynomial, they proved that almost surely, for N large enough,

σ
(
P (XN

1 , . . . , XN
d )
)
⊂ SuppµP + (−ε, ε), (2)

where σ(H) is the spectrum of H and SuppµP the support of the measure µP . The result (2) was a major
breakthrough in the context of free probability and was refined in multiple ways, see [25, 9, 1, 3, 23, 11].
Those results all have in common that the basic random matrix is always self-adjoint. Much less is
known in the non self-adjoint case. However Collins and Male proved in [12] the same result as in
[18] but with unitary Haar matrices instead of GUE matrices by using Male’s former paper. With the
exception of [12] and [11], all of these results are essentially based on the method introduced by Haagerup
and Thorbjørnsen who relies on the so-called linearization trick. The main idea of this tool is that given
a polynomial P , the spectrum of P (XN

1 , . . . , XN
d ) is closely related to the spectrum of

LN = a0 ⊗ IN +

d∑

i=1

ai ⊗XN
i ,

where a0, . . . , ad are matrices of size k depending only on P . Thus we trade a polynomial of degree d
with coefficient in C by a polynomial of degree 1 with coefficient in Mk(d)(C). In [12], the main idea was
to view Haar unitary matrices as a random function of a GUE random matrix. Then the authors showed
that almost surely this random function converges uniformly and they concluded by using the main
result of [18]. An issue of this method is that it does not give any quantitative estimate. An important
aim of this paper is to remedy to this problem. Our approach requires neither the linearization trick,
nor the study of the Stieljes transform and attacks the problem directly without using previous results
about the strong convergence of GUE random matrices. In this sense the proof is more direct and less
algebraic. We will apply it to a generalization of Haar unitary matrices by tackling the case of Haar
unitary matrices tensorized with deterministic matrices.

A usual strategy to study outliers, that are the eigenvalues going away from the spectrum, is to study
the non-renormalized trace of smooth non-polynomial functions evaluated in independent Haar matrices
i.e. if P is self-adjoint:

TrN

(
f
(
P
(
UN
1 , . . . , UN

p , UN
1

∗
, . . . , UN

p

∗
)))

.

This strategy was also used by Haagerup, Thorbjørnsen and Male. Indeed it is easy to see that if f is a
function which takes value 0 on (−∞, C − ε], 1 on [C,∞) and in [0, 1] elsewhere, then

P
(
λ1(P (UN

1 , . . . , UN
p , UN

1

∗
, . . . , UN

p

∗
)) ≥ C

)
≤ P

(
TrN

(
f(P (UN

1 , . . . , UN
p , UN

1

∗
, . . . , UN

p

∗
))
)
≥ 1
)
.

Hence, if we can prove that TrN
(
f(P (UN

1 , . . . , UN
p , UN

1
∗
, . . . , UN

p
∗
))
)

converges towards 0 in probability,

this would already yield expected results. The above is just a well-known exemple, but one can get much
more out of this strategy. Therefore, we need to study the non-renormalized trace. The case where f
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is a polynomial function has already been studied a long time ago, starting with the pioneering works
[8, 14], and later formalized by the concept of second order freeness [20, 19]. However here we have to
deal with a function f which is at best C∞. This makes things considerably more difficult and forces us
to adopt a completely different approach. The main result is the following theorem (for the notations,
we refer to Section 2 – for now, let us specify that 1

N TrN denotes the usual renormalized trace on N×N
matrices whereas τ denotes its free limit):

Theorem 1.1. We define

• u = (u1, . . . , up, u
∗
1, . . . , u

∗
p) a family of p free Haar unitaries and their adjoints,

• UN = (UN
1 , . . . , UN

p , (UN
1 )∗, . . . , (UN

p )∗) random unitary i.i.d. matrices of size N whose law is
invariant by multiplication by a matrix of SUN(R), and their adjoints.

• ZNM = (ZNM
1 , . . . , ZNM

q ) deterministic matrices and their adjoint,

• P a self-adjoint polynomial,

• f : R 7→ R a smooth enough function.

Then there exists a polynomial LP which only depends on P such that for any N,M ,

∣∣∣∣∣E
[

1

MN
TrMN

(
f
(
P
(
UN ⊗ IM , ZNM

)) )]
− τN ⊗ τM

(
f
(
P
(
u⊗ IM , ZNM

)) )
∣∣∣∣∣

≤ M2

N2
LP

(∥∥ZNM
∥∥)×min

{
ln2(N) ‖f‖C6 , ‖f‖C7

}
.

where ‖f‖C6 is the sum of the supremum on R of the first six derivatives. Besides if ZNM = (IN ⊗
Y M
1 , . . . , IN ⊗ Y M

q ) and that these matrices commute, then we have the same inequality without the M2.

This theorem is a consequence of the slightly sharper, but less explicit, Theorem 4.1. It is essentially
the same statement, but instead of having the norm C6 of f , we have the fourth moment of the Fourier
transform of f . The above theorem calls for a few remarks.

• We assumed that the matrices ZNM were deterministic, but thanks to Fubini’s theorem we can
assume that they are random matrices as long as they are independent from XN . In this situation
though, LP

(∥∥ZNM
∥∥) in the right side of the inequality is a random variable (and thus we need

some additional assumptions on the law of ZNM if we want its expectation to be finite for instance).

• In Theorems 1.1 and 4.1 we have UN ⊗ IM and u⊗ IM , however it is very easy to replace them by
UN ⊗ Y M and u ⊗ Y M for some matrices Y M

i ∈ MM (C). Indeed we just need to apply Theorem
1.1 or 4.1 with ZNM = IN ⊗ Y M . Besides, in this situation, LP

(∥∥ZNM
∥∥) = LP

(∥∥Y M
∥∥) does

not depend on N . What this means is that if we have a matrix whose coefficients are polynomial
in UN , and that we replace UN by u, we only change the spectra of this matrix by M2N−2 in
average.

• In the specific case where ZNM = (IN ⊗ Y M
1 , . . . , IN ⊗ Y M

q ) and the Y M
i commute, as we stated

in Theorem 1.1, we have the same inequality without the M2. This shows that the M2 term is
really a non-commutative feature. Lowering the exponent in all generality would yield a direct
improvement to Theorem 1.2. A lead to do so would be to prove a sharper version of Lemma 3.1.
While this seems unrealistic for deterministic matrices, it might be possible to get some results
when considering random matrices.

A detailed overview of the proof is given in Subsection 4.1. Similarly to [11], we interpolate Haar
unitary matrices and free Haar unitaries with the help of a free Ornstein-Uhlenbeck process on the
unitary group, i.e. the free unitary Brownian motion. For a reference, see Definition 2.7. However in [11]
this idea was only to understand the intuition of the proof. In this paper the computations involved were
quite different, indeed since we were considering the usual free Ornstein-Uhlenbeck process, we could use
a computation trick to replace this process by a well-chosen interpolation between GUE matrices and
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free semicirculars. This means that we did not need to use free stochastic calculus. There is no such
trick for the free unitary Brownian motion, hence the computations use much more advanced tools.

When using this process, the Schwinger-Dyson equations, which can be seen as an integration by
part, appear in the computation. For more information about these equations we refer to [15] to find
numerous applications. In the specific case of the unitary group it is worth checking the proof of Theorem
5.4.10 from [2]. Even though those equations only come into play in the proof of Lemma 4.3, they play
a major role in the proof since we could get a theorem similar to Theorem 1.1 for any random matrices
which satisfies those equations.

Theorem 1.1 is the crux of the paper and allows us to deduce many corollaries. Firstly we get the
following result. The first statement is basically Theorem 1.4 from [12]. The second one is entirely new
and let us tensorize by matrices whose size goes to infinity when until now we could only work with tensor
of finite size. This theorem is about strong convergence of random matrices, that is the convergence of
the norm of polynomials in these matrices, see Definition 2.1.

Theorem 1.2. Let the following objects be given:

• UN = (UN
1 , . . . , UN

d ) independent unitary Haar matrices of size N ,

• u = (u1, . . . , ud) a system of free Haar unitaries,

• Y M = (Y M
1 , . . . , Y M

p ) random matrices of size M , which almost surely, as M goes to infinity,
converges strongly in distribution towards a p-tuple y of non-commutative random variables in a
C∗- probability space B with a faithful trace τB.

• ZN = (ZN
1 , . . . , ZN

q ) random matrices of size N , which almost surely, as N goes to infinity, con-
verges strongly in distribution towards a q-tuple z of non-commutative random variables in a C∗-
probability space with a faithful trace,

then the following holds true.

• If UN and ZN are independent, almost surely, (UN , ZN ) converges strongly in distribution towards
F = (u, z), where F belongs to a C∗- probability space (A, ∗, τA, ‖.‖) in which u and z are free.

• If UN and Y MN are independent and MN = o(N1/3), almost surely, (UN ⊗ IMN
, IN ⊗ Y MN )

converges strongly in distribution towards F = (u⊗1, 1⊗y). The family F thus belongs to A⊗minB
(see Definition 2.4). Besides if the matrices Y MN commute, then we can weaken the assumption
on MN by only assuming that MN = o(N).

Understanding the Stieljes transform of a matrix gives a lot of information about its spectrum. This
was actually a very important point in the proof of Haagerup and Thorbjørnsen’s theorem. Our proof
does not use this tool, however our final result, Theorem 4.1, allows us to deduce the following estimate.
Being given a self-adjoint NM ×NM matrix, we denote by GA its Stieltjes transform:

GA(z) =
1

NM
TrNM

(
1

z −A

)
.

This definition extends to the tensor product of free Haar unitaries with deterministic matrices by
replacing TrNM by τN ⊗ τM .

Corollary 1.1. Given

• u = (u1, . . . , up, u
∗
1, . . . , u

∗
p) a family of p free Haar unitaries and their adjoints,

• UN = (UN
1 , . . . , UN

p , (UN
1 )∗, . . . , (UN

p )∗) random unitary i.i.d. matrices of size N whose law is
invariant by multiplication by a matrix of SUN(R), and their adjoints.

• Y M = (Y M
1 , . . . , Y M

q , Y M
1

∗
, . . . , Y M

q
∗
) deterministic matrices of size M a fixed integer and their

adjoints,

• P a self-adjoint polynomial,
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there exists a polynomial LP such that for every Y M , z ∈ C\R, N ∈ N,

∣∣E
[
GP (UN⊗IM ,IN⊗Y M )(z)

]
−GP (u⊗IM ,1⊗Y M )(z)

∣∣ ≤ LP

(∥∥Y M
∥∥)M

2

N2

(
1

|ℑ(z)|5
+

1

|ℑ(z)|2

)
.

One of the limitation of Theorem 1.1 is that we need to pick f regular enough. Actually by approx-
imating f , we can afford to take f less regular at the cost of a slower speed of convergence. In other
words, we trade some degree of regularity on f for a smaller exponent in N . The best that we can achieve
is to take f Lipschitz. Thus it makes sense to introduce the Lipschitz-bounded metric. This metric is
compatible with the topology of the convergence in law of measure. Let FLU be the set of Lipschitz
function from R to R, uniformly bounded by 1 and with Lipschitz constant at most 1, then

dLU (µ, ν) = sup
f∈FLU

∣∣∣∣
∫

R

fdµ−
∫

R

fdν

∣∣∣∣ .

For more information about this metric we refer to Annex C.2 of [2]. In this paper, we get the following
result:

Corollary 1.2. Under the same notations as in Corollary 1.1, there exists a polynomial LP such that
for every matrices Y M and M,N ∈ N,

dLU

(
E[µP (UN⊗IM ,IN⊗YM )], µP (u⊗IM ,1⊗YM )

)
≤ LP

(∥∥Y M
∥∥)M2

(
lnN

N

)1/3

.

This paper is organized as follows. In section 2 we give many usual definitions and notations in free
probability, commutative and non-commutative stochastic calculus. Section 3 contains the proof of many
important properties which we will need later on. Section 4 contains the proof of Theorem 1.1. Finally
in section 5 we prove all of the corollaries.

2 Framework and standard properties

2.1 Usual definitions in free probability

In order to be self-contained, we begin by reminding the following definitions of free probability.

Definition 2.1. • A C∗-probability space (A, ∗, τ, ‖.‖) is a unital C∗-algebra (A, ∗, ‖.‖) endowed with
a state τ , i.e. a linear map τ : A → C satisfying τ(1A) = 1 and τ(a∗a) ≥ 0 for all a ∈ A. In this
paper we always assume that τ is a trace, i.e. that it satisfies τ(ab) = τ(ba) for any a, b ∈ A. An
element of A is called a (non commutative) random variable. We will always work with faithful
trace, that is such that if a ∈ A, τ(a∗a) = 0 if and only if a = 0, in which case the norm is
determined by τ thanks to the formula:

‖a‖ = lim
k→∞

(
τ
(
(a∗a)2k

))1/2k
.

• Let A1, . . . ,An be ∗-subalgebras of A, having the same unit as A. They are said to be free if for
all k, for all ai ∈ Aji such that j1 6= j2, j2 6= j3, . . . , jk−1 6= jk:

τ
(
(a1 − τ(a1))(a2 − τ(a2)) . . . (ak − τ(ak))

)
= 0.

Families of non-commutative random variable are said to be free if the ∗-subalgebras they generate
are free.

• Let A = (a1, . . . , ak) be a k-tuple of non-commutative random variables. The joint distribution
of the family A is the linear form µA : P 7→ τ

[
P (A,A∗)

]
on the set of polynomials in 2k non

commutative indeterminates. By convergence in distribution, for a sequence of families of variables
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(AN )N≥1 = (aN1 , . . . , aNk )N≥1 in C∗-algebras
(
AN ,∗ , τN , ‖.‖

)
, we mean the pointwise convergence

of the map
µAN

: P 7→ τN
[
P (AN , A∗

N )
]
,

and by strong convergence in distribution, we mean convergence in distribution, and pointwise
convergence of the map

P 7→
∥∥P (AN , A∗

N )
∥∥.

• A non commutative random variable u is called a Haar unitary when it is unitary, that is uu∗ =
u∗u = 1A, and for all n ∈ N, one has

τ(un) =

{
1 if n = 0,
0 else.

The strong convergence of non-commutative random variable is actually equivalent to the convergence
of its spectrum for the Hausdorff distance. More precisely we have the following proposition whose proof
can be found in [12] (see Proposition 2.1):

Proposition 2.1. Let xN = (xN
1 , . . . , xN

p ) and x = (x1, . . . , xp) be p-tuples of variables in C∗-probability
spaces, (AN , .∗, τN , ‖ · ‖) and (A, .∗, τ, ‖ · ‖), with faithful states. Then, the following assertions are
equivalent.

• xN converges strongly in distribution to x.

• For any self-adjoint variable hN = P (xN ,x∗
N ), where P is a fixed polynomial, µhN

converges in
weak-∗ topology to µh where h = P (x,x∗). Weak-∗ topology means relatively to continuous functions
on C. Moreover, the spectrum of hN converges in Hausdorff distance to the spectrum of h, that is,
for any ε > 0, there exists N0 such that for any N ≥ N0,

σ(hN ) ⊂ σ(h) + (−ε, ε). (3)

In particular, the strong convergence in distribution of a single self-adjoint variable is its convergence in
distribution together with the Hausdorff convergence of its spectrum.

It is important to note that thanks to Theorem 7.9 from [22], that we recall below, one can consider
free copy of any random variable.

Theorem 2.1. Let (Ai, φi)i∈I be a family of C∗-probability spaces such that the functionals φi : Ai → C,
i ∈ I, are faithful traces. Then there exist a C∗-probability space (A, φ) with φ a faithful trace, and a
family of norm-preserving unital ∗-homomorphism Wi : Ai → A, i ∈ I, such that:

• φ ◦Wi = φi, ∀i ∈ I.

• The unital C∗-subalgebras form a free family in (A, φ).

2.2 Non-commutative polynomials and derivatives

We set C〈Y1, . . . , Yd〉 the set of non-commutative polynomial in d indeterminates. We will also use
Pd = C〈Y1, . . . , Yd, Y

∗
1 , . . . , Y

∗
d 〉 the set of non-commutative polynomial in 2d indeterminates. We endow

this vector space with the norm

‖P‖A =
∑

M monomial

|cM (P )|AdegM , (4)

where cM (P ) is the coefficient of P for the monomial M . One can define several maps which we use
multiple times in the rest of the paper, but first let us set a few notations, for A,B,C non-commutative
polynomials,

A⊗B#C = ACB,

A⊗B#̃C = BCA,

m(A⊗B) = BA.
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Definition 2.2. If 1 ≤ i ≤ d, one set ∂i : Pd −→ Pd ⊗ Pd such that for P,Q ∈ Pd,

∂i(PQ) = ∂iP × 1⊗Q+ P ⊗ 1× ∂iQ,

∂iYj = 1i=j , ∂iY
∗
j = 0.

We also define Di : Pd −→ Pd by DiP = m ◦ ∂iP . We similarly define ∂∗
i and D∗

i with the difference
that for any j, ∂∗

i Y
∗
j = 1i=j , ∂iYj = 0.

Because they satisfy the Leibniz’s rule, the maps ∂i and ∂∗
i are called non-commutative derivatives.

It is related to Schwinger-Dyson equations on semicircular variable, for more information see [2], Lemma
5.4.7. While we do not use those equations in this paper, we use those associated with Haar unitary
matrices. To do so, we define the following non-commutative derivative.

Definition 2.3. If 1 ≤ i ≤ d, one set δi : Pd −→ Pd ⊗ Pd such that for P,Q ∈ Pd,

δi(PQ) = δiP × 1⊗Q+ P ⊗ 1× δiQ,

δiYj = 1i=jYi ⊗ 1, δiY
∗
j = −1i=j1⊗ Y ∗

i .

We also define Di : Pd −→ Pd by DiP = m ◦ δiP .

We would like to apply the map δi to power series, more precisely the exponential of a polynomial,
however since this is not well-defined in all generality we will need a few more definitions. Firstly, we
need to define properly the operator norm of tensor of C∗-algebras. Since we use it later in this paper,
we work with the minimal tensor product also named the spatial tensor product. For more information
we refer to chapter 6 of [21].

Definition 2.4. Let A and B be C∗-algebra with faithful representations (HA, φA) and (HB, φB), then
if ⊗2 is the tensor product of Hilbert spaces, A ⊗min B is the completion of the image of φA ⊗ φB in
B(HA ⊗2 HB) for the operator norm in this space. This definition is independent of the representations
that we fixed.

Consequently if P ∈ Ad, z = (z1, . . . , zd) belongs to a C∗-algebra A, then (δiP
k)(z, z∗) belongs to

A ⊗min A, and
∥∥(δiP k)(z, z∗)

∥∥ ≤ CP k ‖P (z, z∗)‖k−1 for some constant CP independent of k. Thus we
can define

(δie
P )(z, z∗) =

∑

k∈N

1

k!
(δiP

k)(z, z∗). (5)

While we will not always be in this situation during this paper, it is important to note that if
A = MN (C), then up to isomorphism A⊗min A is simply MN2(C) with the usual operator norm. Now
we prove the following property based on Duhamel formula.

Proposition 2.2. Let P ∈ Pd, z = (z1, . . . , zd) elements of a C∗-algebra A, then

(
δie

P
)
(z, z∗) =

∫ 1

0

(
eαP δiP e(1−α)P

)
(z, z∗) dα,

with convention
A× (B ⊗ C)×D = (AB) ⊗ (CD).

Proof. One has,

∫ 1

0

(
eαP δiP e(1−α)P

)
(z, z∗) dα =

∑

n,m

∫ 1

0

αn(1− α)m

n!m!
dα (Pn δiP Pm) (z, z∗)

=
∑

k

∑

n+m=k

∫ 1

0

αn(1− α)m

n!m!
dα (Pn δiP Pm) (z, z∗).

But for any n,m,
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∫ 1

0

αn(1 − α)m

n!m!
dα =

∫ 1

0

αn+m

(n+m)!
dα =

1

(m+ n+ 1)!
.

Hence,

∫ 1

0

(
eαP δiP e(1−α)P

)
(z, z∗) dα =

∑

k

1

(k + 1)!

∑

n+m=k

(Pn δiP Pm) (z, z∗) =
(
δi e

P
)
(z, z∗).

2.3 Free stochastic calculus

The main idea of this paper is to use an interpolation between Haar unitary matrices and their free
limit. In order to do so, we will need some notion of free stochastic calculus. The main reference in this
field is the paper [6] of Biane and Speicher to which we refer for most of the proofs in this subsection.
That being said, we made the choice to be rigorous, but in the rest of the paper we will not use all of
the notations and objects introduced here.

From now on, (A, τ) is a W ∗-non-commutative probability space, that is A is a von Neumann algebra,
and τ is a faithful normal tracial state on A. We take A filtered, that is there exists a family (At)t∈R+

of unital, weakly closed ∗-subalgebras of A,such that As ⊂ At for all s ≤ t. Besides we also assume that
there exist p freely independent (At)t∈R+ -free Brownian motions (St)t∈R+ . That is Si

t is a self-adjoint
element of At with semi-circular distribution of mean 0 and variance t, and for all s ≤ t, Si

t − Si
s is free

with As, and has semi-circular distribution of mean 0 and variance t − s. Besides since the state τ is
tracial, for any unital, weakly closed ∗-subalgebra B of A, there exists a unique conditional expectation
onto B. We shall denote it by τ(.|B). A map t ∈ R+ 7→ Mt ∈ A will be called a martingale with respect
to the filtration (At)t∈R+ if for every s ≤ t one has τ(Mt|As) = Ms.

We define the opposite algebra Aop as the algebra A endowed of the same addition, norm and
involution, but with the product a × b = b · a where · is the product in A. We can endow Aop with a
faithful normal tracial state τop, which if we view as a linear map on A is actually τ . Similarly to the
minimal tensor product, we will denote L∞(τ ⊗ τop) the von Neuman algebra generated by A ⊗ Aop

in B(L2(A, τ) ⊗2 L2(Aop, τop)) where ⊗2 is the usual tensor product for Hilbert spaces. Similarly to
classical stochastic calculus, we now introduce piecewise constant maps.

Definition 2.5. A simple biprocess is a piecewise constant map t 7→ Ut from R+ into the algebraic
tensor product A⊗Aop, such that Ut = 0 for t large enough. Besides it is called adapted if for any t ≥ 0,
Ut ∈ At ⊗At.

The space of simple biprocesses form a complex vector space that we can endow with the norm

‖U‖2B∞ =

∫ ∞

0

‖Us‖2L∞(τ⊗τop) ds. (6)

We will denote by B∞
a the completion of the vector space of adapted simple biprocesses for this norm.

Now that we have defined the notion of simple process, we can define its stochastic integral that we will
later extend to the space B∞

a .

Definition 2.6. Let (St)t≥0 be a free Brownian motion, U be a simple adapted biprocess, we can find a
decomposition U =

∑n
j=1 A

j ⊗Bj and 0 = t0 ≤ t1 ≤ · · · ≤ tm such that for t ∈ [ti, ti+1), A
j
t = Aj

ti ∈ Ati

and Bj
t = Bj

ti ∈ Aop
ti . We define its stochastic integral by

∫ ∞

0

Us#dSs =
m−1∑

i=0

Uti#(Sti+1 − Sti) =
n∑

j=1

m−1∑

i=0

Aj
ti(Sti+1 − Sti)B

j
ti .

This definition is independent of the decomposition chosen. Besides t 7→
∫ t

0
Us#dXs is a martingale.
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Thanks to Burkholder-Gundy inequality, that is Theorem 3.2.1 of [6], if we see the stochastic integral
as a linear map from the space of adapted simple biprocesses endowed with the norm ‖.‖B∞ to A, then
this map is continuous. Hence we can extend it to B∞

a and the martingale property remains true. Before
talking about Itô’s formula, as in the classical case, we need to introduce the quadratic variation. We will
not develop the idea, but by studying random matrices, in the case of simple tensors, we are prompted
to define

〈〈a⊗ b, c⊗ d〉〉 = a τ(bc) d.

We call ♯ the product law in A ⊗ Aop. If by contrast we want to use the usual product in A ⊗ A, we
will not put any sign. Let † be the linear application such that on simple tensors, (a ⊗ b)† = b ⊗ a. In
all generality for any Z, Y ∈ A⊗Aop,

〈〈Z, Y 〉〉 = (1A ⊗ τop)
(
Z♯(Y †)

)
.

Since ‖〈〈Z, Y 〉〉‖ ≤ ‖Z‖L∞(τ⊗τop) ‖Y ‖L∞(τ⊗τop), we can extend this bilinear application to Z, Y ∈ L∞(τ⊗
τop). Besides by Cauchy-Schwarz, for U, V ∈ B∞

a , 〈〈U, V 〉〉 is integrable.
Now that we have defined all of the necessary object to do stochastic calculus, we can state Itô’s

formula. We will need to handle polynomials in several processes, however Biane and Speicher only stated
Itô’s formula for a product of two processes, that is if X0, Y0 ∈ A, U i, V i ∈ B∞

a and K,L ∈ L1(R+,A),
we set

Yt = Y0 +

∫ t

0

Ksds+
∑

i

∫ t

0

U i
s#dSi

s,

Zt = Z0 +

∫ t

0

Lsds+
∑

i

∫ t

0

V i
s#dSi

s,

then for any t ≥ 0,

YtZt = Y0Z0 +

∫ t

0

(
YsLs +KsZs +

∑

i

〈〈U i
s, V

i
s 〉〉
)

ds+
∑

i

∫ t

0

(
(Ys ⊗ 1A)V

i
s + U i

s(1A ⊗ Zs)
)
#dSi

s.

(7)
To find a proof of this formula, see Theorem 4.1.2 in [6]. While this theorem only proves the case where
L = K = 0 and we only have a single Brownian motion, deducing equation (7) does not need much
more work. Finally this formula let us prove the general Itô’s formula. Even though this formula is used
without a proof by Dabrowski in [13], we do not know of any satisfying reference. Hence we include a
proof for self-containedness. Let us first fix a few notations.

• If P ∈ C〈X1, . . . , Xd〉, X ∈ (L∞(R+,A))d and K ∈ (L1(R+,A))d, then ∂P (X)#K =
∑

i ∂iP (X)#Ki.

• Similarly if U ∈ (B∞
a )d, then ∂P (X)♯U =

∑
i ∂iP (X)♯Ui.

• Finally if U, V ∈ B∞
a , A,B,C ∈ L∞(R+,A), then (A⊗B⊗C)# (U, V ) = ((A⊗B)♯U, (1⊗C)♯V ).

Theorem 2.2. Let X0 ∈ Ad, P be a non-commutative polynomial in d indeterminates, for any t ≥ 0,
K ∈ (L1([0, t],A))d and (1s≤tU

i
s)s∈R+ ∈ (B∞

a )d. With I the application identity on Pd, we define

Xt = X0 +

∫ t

0

Ksds+
∑

i

∫ t

0

U i
s#dSi

s,

∆U (P )(X) =
∑

i

∑

j,k

〈〈 (∂j ⊗ I) ◦ ∂kP (X)#(U i,j , U i,k) 〉〉.

Then for any t ≥ 0, ∂P (X)#K and ∆U (P )(X) ∈ L1([0, t],A)), and (1s≤t∂P (Xs)♯Us)s∈R+ ∈ B∞
a .

Finally for any t ≥ 0,

P (Xt) = P (X0) +

∫ t

0

∂P (Xs)#Ks ds+
∑

i

∫ t

0

∂P (X)♯U i
s #dSi

s +

∫ t

0

∆U (P )(Xs) ds.
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Proof. Thanks to Burkholder-Gundy inequality, that is Theorem 3.2.1 of [6], we know that

sup
0≤s≤t

∥∥X i
s

∥∥ ≤
∥∥X i

0

∥∥+
∥∥Ki

s

∥∥
L1([0,t],A)

+
∑

j

∥∥U i,j
1[0,t]

∥∥
B∞

a

.

Thus for any t ∈ R+, (Xs)s∈[0,t] ∈ L∞([0, t],A)d, thus for any polynomial P , ∂P (X)#K ∈ L∞([0, t],A),
and (1s≤t∂P (Xs)♯Us)s∈R+ ∈ B∞

a . With the help of inequality ‖〈〈Z, Y 〉〉‖ ≤ ‖Z‖L∞(τ⊗τop) ‖Y ‖L∞(τ⊗τop),

we also have that ∆U (P )(X) ∈ L1([0, t],A)). Finally to prove the formula, we proceed recurrently. If P
is of degree 1, there is nothing to prove. For larger degree, by linearity we only need to deal with the
case where P is a monomial. Thus we can write P = QR with Q and R monomials of smaller degree for
which the formula is verified. Thus thanks to equation (7), we have that

P (Xt) = Q(X0)R(X0) +

∫ t

0

Q(Xs) ∂R(Xs)#Ks + ∂Q(Xs)#Ks R(Xs)ds

=

∫ t

0

Q(Xs) ∆U (R)(Xs) + ∆U (Q)(Xs) R(Xs) +
∑

i

〈〈 ∂Q(Xs)♯U
i
s, ∂R(Xs)♯U

i
s 〉〉 ds

=
∑

i

∫ t

0

(Q(Xs)⊗ 1A) ∂R(Xs)♯U
i
s + ∂Q(Xs)♯U

i
s 1A ⊗R(Xs) #dSi

s.

It is clear that,
∂(QR)(Xs)#Ks = Q(Xs) ∂R(Xs)#Ks + ∂Q(Xs)#Ks R(Xs),

∂(QR)(Xs)♯U
i
s = (Q(Xs)⊗ I) ∂R(Xs)♯U

i
s + ∂Q(Xs)♯U

i
s 1A ⊗R(Xs).

And finally,

∆U (QR)(X) =
∑

i

∑

j,k

〈〈 (∂j ⊗ I) ◦ ∂k(QR)(X)#(U i,j , U i,k) 〉〉

=
∑

i

∑

j,k

∑

Q=AXjBXkC

〈〈 A(X)⊗B(X)⊗ C(X)#(U i,j , U i,k) 〉〉R(X)

+
∑

R=AXjBXkC

Q(X)〈〈 A(X)⊗B(X)⊗ C(X)#(U i,j , U i,k) 〉〉

+
∑

Q=AXjB,R=CXkD

〈〈 A(X)⊗ (BC)(X)⊗D(X)#(U i,j , U i,k) 〉〉

=Q(X) ∆U (R)(X) + ∆U (Q)(X) R(X) +
∑

i

〈〈 ∂Q(X)♯U i, ∂R(X)♯U i 〉〉.

Finally, one of the fundamental tool that we use in this paper is the free unitary Brownian motion,
a good reference on the matter is [4]. In particular one can find a proof of its existence.

Definition 2.7. Let (St)t≥0 be a free Brownian motion, the free unitary Brownian motion (ut)t≥0 is the
unique solution to the equation

∀t ≥ 0, ut = 1A −
∫ t

0

us

2
ds+ i

∫ t

0

us ⊗ 1A#dSs.

In particular, for any t ≥ 0, ut is unitary, that is utu
∗
t = u∗

tut = 1A.

2.4 Notations

Let us now fix a few notations concerning the spaces and traces that we use in this paper.
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Definition 2.8. • (AN , τN ) is the free sum of MN (C) with the von Neuman algebra A from the
former subsection. To build AN we use Theorem 2.1 and we get a C∗-probability space C with
a faithful trace ϕ. Since we want (AN , τN ) to be a von Neuman algebra, we set L2(C,ϕ) as the
completion of C for the norm a 7→ φ(a∗a)1/2, we have an injective C∗-algebra morphism from C to
B(L2(C,ϕ)). We then proceed to take AN the closure of the image of C in this space for the weak
topology. As for τN , since we can extend (x, y) 7→ ϕ(x∗y) to a scalar product 〈., .〉ϕ on L2(C,ϕ),
we set for a ∈ B(L2(C,ϕ)), τN (a) = 〈a(1), 1〉ϕ.

• Note that when restricted to MN (C), τN is just the regular renormalized trace on matrices. As in
the former subsection, the restriction of τN to the C∗-algebra A is denoted as τ .

• TrN is the non-renormalized trace on MN (C).

• Ei,j is the matrix whose only non-zero coefficient is (i, j) and this coefficient has value 1, the size
of the matrix Ei,j will depend on the context.

• In general we identify MN (C) ⊗ Mk(C) with MkN (C) through the isomorphism Ei,j ⊗ Er,s 7→
Ei+rN,j+sN , similarly we identify TrN ⊗Trk with TrkN .

• If AN = (AN
1 , . . . , AN

d ) and BM = (BM
1 , . . . , BM

d ) are two vectors of matrices, then we denote
AN ⊗ BM = (AN

1 ⊗ BM
1 , . . . , AN

d ⊗ BM
d ) and if M = N , ANBN = (AN

1 BN
1 , . . . , AN

d BN
d ). We

typically use the notation XN ⊗ IM for the vector (XN
1 ⊗ IM , . . . , XN

1 ⊗ IM ).

• If P ∈ Pd, in order to avoid cumbersome notations when evaluating P in (X,X∗), instead of
denoting P (X,X∗) we will write P̃ (X).

• We define (ei)i∈[1,M ], (gi)i∈[1,N ] and (fi)i∈[1,k] the canonical basis of CM , CN and Ck

We define an involution ∗ on Pd such that (Yi)
∗ = Y ∗

i , (Y ∗
i )

∗ = Yi and we extend it to Pd with the
formula (αPQ)∗ = αQ∗P ∗. P ∈ Pd is said to be self-adjoint if P ∗ = P . Self-adjoint polynomials have the
property that if z1, . . . , zd are elements of a C∗-algebra, then P (z1, . . . , zd, z

∗
1 , . . . , z

∗
d) is self-adjoint. Now

that we have defined the notion of self-adjoint polynomial we give a property which justifies computations
that we will do later on:

Proposition 2.3. Let the following objects be given,

• u = (u1
t , . . . , u

p
t )t≥0 a family of p free unitary Brownian motions,

• UN = (UN
1 , . . . , UN

p ) matrices of size N ,

• uN
t = (UN

1 u1
t , . . . , U

N
p up

t ) elements of AN ,

• ZNM matrices in MN (C)⊗MM (C),

• f ∈ C0(R),

• P a self-adjoint polynomial.

Then this map is measurable:

(UN , ZNM ) 7→ τN ⊗ τM

(
f
(
P̃
(
uN
t ⊗ IM , ZNM

)))
.

For a full proof we refer to [11], Proposition 2.7. But in a few words, it is easy to see the measurability
when f is a polynomial since then this map is also polynomial in the coefficient of UN and ZNM , and we
conclude by density. Actually we could easily prove that this map is continuous, however we do not need
it. The only reason we need this property is to justify that if UN is a vector of random matrices, then

the random variable τN ⊗ τM

(
f
(
P̃ (uN

t ⊗ IM , ZNM )
))

is well-defined. To conclude this subsection we

introduce different notations related to application defined on tensor spaces.
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Definition 2.9. Let n : A ⊗ B ∈ MM (C))⊗2 7→ AB ∈ MM (C)), we define the linear application
(τN ⊗ IM )

⊗
(τN ⊗ IM ) : (AN ⊗MM (C))⊗2 → MM (C) as

(τN ⊗ IM )
⊗

(τN ⊗ IM ) = n ◦ (τN ⊗ IM )⊗2.

We will also use the shorter notation (τN ⊗ IM )
⊗

2.

The following notation has similarities with the previous one, but its interest will be clear in section
4. For the reader familiar with it, this is close to Sweedler’s convention.

Definition 2.10. Let P ∈ Pd, C be a C∗-algebra. Then let α : Pd → C and β : Pd → C be morphisms.
We also set n : A⊗B ∈ C ⊗ C 7→ AB ∈ C. Then we use the following notation,

α(δ1i P )⊠ β(δ2i P ) = n ◦ (α⊗ β(δiP )).

This notation will be especially useful when our applications α and β are simply evaluation of P
as it is the case in section 4. Indeed we will typically denote, δ1i P (X) ⊠ δ2i P (Y ), rather than define
hX : P → P (X) and use the more cumbersome and abstract notation, n ◦ (hX ⊗ hY (δiP )).

2.5 Random matrix model

We conclude this section by giving the definition and a few properties on the models of random
matrices that we will study.

Definition 2.11. A Haar unitary matrix of size N is a random matrix distributed according to the Haar
measure on the group of unitary matrices of size N .

Definition 2.12. A hermitian Brownian motion (XN
t )t∈R+ of size N is a self-adjoint matrix whose

coefficients are random variables with the following laws:

• For 1 ≤ i ≤ N , the random variables
√
N((XN

t )i,i)t∈R+ are independent Brownian motions.

• For 1 ≤ i < j ≤ N , the random variables (
√
2N ℜ(XN

t )i,j)t∈R+ and (
√
2N ℑ(XN

t )i,j)t∈R+ are
independent Brownian motions, independent of

√
N((XN

t )i,i)t∈R+ .

To study the free unitary Brownian motion, we will need to study its finite dimensional version.
There are several ways to define it, but in this paper the handiest way to define it is through a stochastic
differential equation.

Definition 2.13. Let XN be a hermitian Brownian motion, then UN is said to be a unitary Brownian
motion if it is the solution of the stochastic differential equation,

dUN
t = iUN

t dXN
t − 1

2
UN
t dt, UN

0 = IN , (8)

where we use the convention (UN
t dXN

t )i,j =
∑

k(U
N
t )i,kd(X

N
t )k,j.

The following property is typical of the kind of computation that we can do with unitary Brownian
motion with classical stochastic calculus, see [10] for exemple.

Proposition 2.4. Let UN
1 , . . . , UN

p be unitary Brownian motions of size N , AN
p+1, . . . , A

N
d be determinis-

tic matrices, Q ∈ Pd be a monomial, we set Qs the monomial evaluated in (UN
1,s, . . . , U

N
p,s, A

N
p+1, . . . , A

N
d )

and their adjoints, |Q|B the degree of Q with respect to (U1, . . . , Up, U
∗
1 , . . . , U

∗
p ). Then there exists a

martingale J such that,
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dTrN Qs = dJ − |Q|B
2

TrN Qs −
1

N

∑

i≤p, Q=AUiBUiC

TrN (AsU
N
i,sCs)TrN (BsU

N
i,s)

− 1

N

∑

i≤p, Q=AU∗
i BU∗

i C

TrN

(
AsU

N
i,s

∗
Cs

)
TrN

(
BsU

N
i,s

∗
)

+
1

N

∑

i≤p, Q=AUiBU∗
i C

Tr(AsCs)Tr(Bs)

+
1

N

∑

i≤p, Q=AU∗
i BUiC

Tr(AsCs)Tr(Bs).

3 Preliminaries

3.1 A matricial inequality

We are indebted to Mikael de la Salle for supplying us with the proof of the following lemma.

Lemma 3.1 (de la Salle). Let A be a C∗-algebra, A1, A2 ∈ A, B1, B2 ∈ MM (C), as in subsection 2.3 we
define (A1 ⊗B1)♯(A2 ⊗B2) = (A1A2)⊗ (B2B1). Then if x, y ∈ A⊗MM (C), with the operator norm in
their respective space,

‖x♯y‖ ≤ M ‖x‖ ‖y‖ .

Proof. We write x =
∑

1≤i,j≤M xi,j ⊗ Ei,j , y =
∑

1≤k,l≤M yk,l ⊗ Ek,l, then

x♯y =
∑

i,j,k

xk,jyi,k ⊗ Ei,j .

We define Ak =
∑

i,j xk,jyi,k ⊗ Ei,j , Xk =
∑

j xk,j ⊗ Ek,j ⊗ IM , Yk =
∑

i yi,k ⊗ IM ⊗ Ei,k. Then
by using the fact that Xk and Yk are band matrices, we have ‖Xk‖ ≤ ‖x‖ and ‖Yk‖ ≤ ‖y‖. Besides
‖x♯y‖ ≤∑1≤k≤M ‖Ak‖. Finally we have for any k,

‖XkYk‖2 = ‖XkYk(XkYk)
∗‖

=

∥∥∥∥∥∥


∑

i,j

xk,jyi,k ⊗ Ek,j ⊗ Ei,k




∑

i,j

xk,jyi,k ⊗ Ek,j ⊗ Ei,k




∗∥∥∥∥∥∥

=

∥∥∥∥∥∥

∑

i,j,u,v

xk,jyi,ky
∗
u,kx

∗
k,v ⊗ Ek,jEv,k ⊗ Ei,kEk,u

∥∥∥∥∥∥

=

∥∥∥∥∥∥

∑

i,j,u

xk,jyi,ky
∗
u,kx

∗
k,v ⊗ Ek,k ⊗ Ei,jEv,u

∥∥∥∥∥∥
= ‖AkA

∗
k ⊗ Ek,k‖

= ‖Ak‖2 .

Thus ‖x♯y‖ ≤∑1≤k≤M ‖Ak‖ ≤ M ‖x‖ ‖y‖.

3.2 A Poincaré type equality

One of the main tool when dealing with GUE random matrices is the Poincaré inequality (see Defi-
nition 4.4.2 from [2]), which gives us a sharp majoration of the variance of a function in these matrices.
Typically this inequality shows that the variance of the renormalized trace of a polynomial in GUE ran-
dom matrices, which a priori is of order O(1), is of order O(N−2). In this paper we need a similar type
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of inequality but instead of working with independent GUE random matrices, we work with marginal
of independent unitary Brownian motions at times t. We will follow the approach of [17], Proposition
6.1. We cannot however reuse directly their result since they only consider a single brownian motion and
they prove an inequality instead of an equality.

Proposition 3.1. Let Q ∈ Pd, (UN
t )t∈R+ , (V N

t )t∈R+ , (WN
t )t∈R+ be independent vectors of p unitary

Brownian motions of size N . Let AN be a vector of deterministic matrices, with notations as in Definition
2.8, one has for any T ≥ 0,

Var
(
TrN

(
Q̃(UN

T , AN )
))

=
1

N

∑

k≤p

∫ T

0

E
[
TrN

(
D̃kQ(V N

T−tU
N
t , AN )× D̃kQ(WN

T−tU
N
t , AN )∗

)]
dt.

Proof. To simplify notations, we will not write the index N in UN
t , V N

t ,WN
t and AN . For U ∈ MN (C)p,

we set f : (U,U∗) 7→ TrN (Q(U,A,U∗, A∗)). We can view f as a polynomial in the coefficient of the ma-
trices U and their conjuguate, since those are complex variables we use the notion of complex differential.
That is if g : (x, y) ∈ R2 → g(x, y) ∈ C is a differentiable function, we define ∂zg = 1

2 (∂xg − i∂yg) and
∂zg = 1

2 (∂xg + i∂yg). If ui,j
k is the (i, j)-coefficient of the k-th matrix in U , we denote the differential of

f with respect to ui,j
k by ∂ui,j

k

f , and the differential of f with respect to the conjuguate of this coefficient
by ∂∗

uj,i

k

f . In particular,

∂ui,j

k
((Uk)i,j) = 1, ∂∗

ui,j

k

((U∗
k )i,j) = 1,

∂ui,j

k
((Uk)a,b) = 0, ∂∗

ui,j

k

((U∗
k )a,b) = 0, for all (a, b) 6= (i, j),

∂ui,j

k

((U∗
k )a,b) = 0, ∂∗

ui,j

k

((Uk)a,b) = 0, for any (a, b).

Next we introduce
Mt = PT−tf(Ut, U

∗
t ),

where PT−tf(U,U
∗) = EV [f(VT−tU, (VT−tU)∗)] with (Vt)t≥0, p independent unitary Brownian motions

of size N and EV the expectation with respect to (Vt)t≥0. We will follow the approach of [17], Proposition
6.1, and show that (Mt)0≤t≤T is a martingale. It will follow that,

Var
(
TrN

(
Q̃(UN

T , AN )
))

= E[|f(UT , U
∗
T )|2 − |E[f(UT , U

∗
T )]|2]

= E[MTMT −M0M0] (9)

= E
[
〈MT ,MT 〉

]
.

If we set (Xt)t≥0, d independent hermitian Brownian motions of size N , and ft = PT−tf , then

dMt = (∂tft)(Ut, U
∗
t )dt+

∑

i,j,k

(∂ui,j

k
ft)(Ut, U

∗
t ) d(Uk,t)i,j + (∂∗

ui,j

k

ft)(Ut, U
∗
t ) d(U

∗
k,t)i,j

+
1

2

∑

k, i,j,r,s
ε1,ε2∈{1,∗}

(∂ε1
ui,j

k

∂ε2
ur,s

k

ft)(Ut, U
∗
t ) d〈(Uε1

k,t)i,j , (U
ε2
k,t)r,s〉t.

By using equation (8), we can isolate the martingale term in the previous equation. We get that in order
to show that (Mt)0≤t≤T is a martingale we have to show that if
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Λt =
1

2

∑

i,j,k

(∂ui,j

k
ft)(Ut, U

∗
t ) (Uk,t)i,j + (∂∗

ui,j

k

ft)(Ut, U
∗
t ) (U

∗
k,t)i,j

+
1

2N

∑

k, i,j,r,s

(∂ui,j

k
∂ur,s

k
ft)(Ut, U

∗
t ) (Uk,t)i,s(Uk,t)r,j

+
1

2N

∑

k, i,j,r,s

(∂∗
ui,j

k

∂∗
ur,s

k
ft)(Ut, U

∗
t ) (U

∗
k,t)i,s(U

∗
k,t)r,j

− 1

N

∑

k, i,j

(∂∗
ui,j

k

∂uj,i

k
ft)(Ut, U

∗
t ),

then Λt = (∂tft)(Ut, U
∗
t ). We will use the fact that if gt : (V, V ∗) 7→ f(V Ut, U

∗
t V

∗),

∂ui,j

k
ft(Ut, U

∗
t ) = EV

[
∑

q

(Vk,T−t)q,i ∂uq,j

k
f(VT−tUt, U

∗
t V

∗
T−t)

]
,

∂∗
ui,j

k

ft(Ut, U
∗
t ) = EV

[
∑

q

(V ∗
k,T−t)j,q ∂∗

ui,q

k

f(VT−tUt, U
∗
t V

∗
T−t)

]
,

∂va,b

k

gt(VT−t, V
∗
T−t) =

∑

q

(Uk,t)b,q ∂ua,q

k
f(VT−tUt, U

∗
t V

∗
T−t),

∂∗
va,b

k

gt(VT−t, V
∗
T−t) =

∑

q

(U∗
k,t)q,a ∂∗

uq,b

k

f(VT−tUt, U
∗
t V

∗
T−t).

Consequently,

∑

i,j

(∂ui,j

k
ft)(Ut, U

∗
t ) (Uk,t)i,j = EV


∑

i,j,q

(Vk,T−t)q,i ∂uq,j

k
f(VT−tUt, U

∗
t V

∗
T−t) (Uk,t)i,j




= EV


∑

i,q


∑

j

∂uq,j

k
f(VT−tUt, U

∗
t V

∗
T−t) (Uk,t)i,j


 (Vk,T−t)q,i




= EV


∑

i,q

∂vq,i

k
gt(VT−t, V

∗
T−t) (Vk,T−t)q,i


 .

We also have,

∑

i,j

(∂∗
ui,j

k

∂uj,i

k
ft)(Ut, U

∗
t ) =

∑

i,j,s

(∂∗
ui,j

k

∂uj,s

k
ft)(Ut, U

∗
t ) 1i=s

=
∑

i,j,s

(∂∗
ui,j

k

∂uj,s

k
ft)(Ut, U

∗
t ) (U

∗
kUk)i,s

=
∑

i,j,s,q,a,b

EV

[
(∂∗

ui,a

k

∂ub,s

k

ft)(Ut, U
∗
t ) (V

∗
k,T−t)j,a(Vk,T−t)b,j(U

∗
k,t)i,q(Uk,t)q,s

]

=
∑

j,q,a,b

EV




∑

i,s

(∂∗
ui,a

k

∂ub,s

k

ft)(Ut, U
∗
t ) (U

∗
k,t)i,q(Uk,t)q,s


 (V ∗

k,T−t)j,a(Vk,T−t)b,j




=
∑

q,a,b

EV


(∂∗

vq,a

k
∂vb,q

k

gt)(VT−t, V
∗
T−t)

∑

j

(Vk,T−t)b,j(V
∗
k,T−t)j,a




= EV

[
∑

q,a

(∂∗
vq,a

k
∂va,q

k
gt)(VT−t, V

∗
T−t)

]
.
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With a few additional, but similar, computations we get that

Λt = − d

ds

(
E[gt(Vs, V

∗
s )]
)
|s=T−t

= (∂tft)(Ut, U
∗
t ).

Hence

dMt = i

∑

i,j,k

(∂ui,j

k
ft)(Ut, U

∗
t ) (Uk,t dX

N
k,t)i,j − (∂∗

ui,j

k

ft)(Ut, U
∗
t ) ((Uk,t dX

N
k,t)

∗)i,j , (10)

and thus Mt is a martingale. Therefore, as we saw in equation (9), we are left with computing the
bracket of Mt. To begin with we have,

〈(Uk,t dX
N
k,t)i,j , (Uk,t dXN

k,t)r,s〉 = 1i=r,j=s
dt

N
,

〈((Uk,t dX
N
k,t)

∗)i,j , ((Uk,t dXN
k,t)

∗)r,s〉 = 1i=r,j=s
dt

N
,

〈(Uk,t dX
N
k,t)i,j , ((Uk,t dXN

k,t)
∗)r,s〉 = (Uk,t)i,r(Uk,t)s,j

dt

N
,

〈((Uk,t dX
N
k,t)

∗)i,j , (Uk,t dXN
k,t)r,s〉 = (U∗

k,t)s,j(U
∗
k,t)i,r

dt

N
.

Let us remind that f : (U,U∗) 7→ TrN (Q(U,A,U∗, A∗)), thus one has

(∂ui,j

k
ft)(Ut, U

∗
t ) = EV

[
TrN (D̃kQ(VT−tUt, A) Vk,T−tEi,j)

]
,

(∂∗
ui,j

k

ft)(Ut, U
∗
t ) = EV

[
TrN (V ∗

k,T−t D̃
∗
kQ(VT−tUt, A) Ei,j)

]
.

We will now compute four different brackets, and by summing them we will get the bracket of Mt (see
equation (10)). First,

〈
∑

i,j,k

(∂ui,j

k
ft)(Ut, U

∗
t ) (Uk,t dX

N
k,t)i,j ,

∑

i,j,k

(∂ui,j

k
ft)(Ut, U∗

t ) (Uk,t dXN
k,t)i,j

〉
(11)

=
∑

k

∑

i,j,r,s

(∂ui,j

k
ft)(Ut, U

∗
t ) (∂ur,s

k
ft)(Ut, U∗

t )
〈
(Uk,t dX

N
k,t)i,j , (Uk,t dXN

k,t)r,s

〉

=
1

N

∑

k

∑

i,j

(∂ui,j

k

ft)(Ut, U
∗
t ) (∂ui,j

k

ft)(Ut, U∗
t ) dt

=
1

N

∑

k

∑

i,j

EV

[
TrN (D̃kQ(VT−tUt, A) Vk,T−tEi,j)

]
EV

[
TrN (Ej,i(Vk,T−t)

∗D̃kQ(VT−tUt, A)
∗ )
]
dt

=
1

N

∑

k

EV,W

[
TrN (D̃kQ(VT−tUt, A) Vk,T−tW

∗
k,T−tD̃kQ(WT−tUt, A)

∗)
]
dt.

Similarly one has,

〈
∑

i,j,k

(∂∗
ui,j

k

ft)(Ut, U
∗
t ) ((Uk,t dX

N
k,t)

∗)i,j ,
∑

i,j,k

(∂∗
ui,j

k

ft)(Ut, U∗
t ) ((Uk,t dXN

k,t)
∗)i,j

〉
(12)

=
1

N

∑

k

EV,W

[
TrN

(
V ∗
k,T−t D̃

∗
kQ(VT−tUt, A) D̃∗

kQ(WT−tUt, A)
∗ Wk,T−t

)]
dt.

Next we have,
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〈
∑

i,j,k

(∂ui,j

k
ft)(Ut, U

∗
t ) (Uk,t dX

N
k,t)i,j ,

∑

i,j,k

(∂∗
ui,j

k

ft)(Ut, U∗
t ) ((Uk,t dXN

k,t)
∗)i,j

〉
(13)

=
∑

k

∑

i,j,r,s

(∂ui,j

k
ft)(Ut, U

∗
t ) (∂

∗
ur,s

k

ft)(Ut, U∗
t )
〈
(Uk,t dX

N
k,t)i,j , ((Uk,t dXN

k,t)
∗)r,s

〉

=
1

N

∑

k

∑

i,j,r,s

(∂ui,j

k
ft)(Ut, U

∗
t ) (∂

∗
ur,s

k

ft)(Ut, U∗
t ) (Uk,t)i,r(Uk,t)s,j dt

=
1

N

∑

k

∑

i,j,r,s

EV

[
TrN (D̃kQ(VT−tUt, A) Vk,T−tEi,j)

]

× EW

[
TrN (Es,rD̃∗

kQ(WT−tUt, A)
∗ Wk,T−t)

]
(Uk,t)i,r(Uk,t)s,j dt

=
1

N

∑

k

EV,W

[
∑

i,j,r,s

(
D̃kQ(VT−tUt, A) Vk,T−t

)
j,i

(Uk,t)i,r

(
D̃∗

kQ(WT−tUt, A)
∗ Wk,T−t

)
r,s

(Uk,t)s,j

]
dt

=
1

N

∑

k

EV,W

[
TrN

(
D̃kQ(VT−tUt, A) Vk,T−tUk,t D̃∗

kQ(WT−tUt, A)
∗ Wk,T−tUk,t

)]
dt.

And similarly,

〈
∑

i,j,k

(∂∗
ui,j

k

ft)(Ut, U
∗
t ) ((Uk,t dX

N
k,t)i,j ,

∑

i,j,k

(∂ui,j

k
ft)(Ut, U∗

t ) (Uk,t dXN
k,t)i,j

〉
(14)

=
1

N

∑

k

EV,W

[
TrN

(
(Vk,T−tU

k
t )

∗D̃∗
kQ(VT−tUt, A) (Wk,T−tU

k
t )

∗D̃kQ(WT−tUt, A)
∗
)]

dt.

We sum equations (11) to (14).

Var
(
TrN (Q̃(UN

T , AN ))
)

=
1

N

∑

k

∫ T

0

E
[
TrN

(
D̃kQ(VT−tUt, A) Vk,T−tUk,t (Wk,T−tUk,t)

∗D̃kQ(WT−tUt, A)
∗

+ (Vk,T−tUk,t)
∗ D̃∗

kQ(VT−tUt, A) D̃∗
kQ(WT−tUt, A)

∗ Wk,T−tUk,t

− D̃kQ(VT−tUt, A) Vk,T−tUk,t D̃∗
kQ(WT−tUt, A)

∗ Wk,T−tUk,t

− (Vk,T−tU
k
t )

∗D̃∗
kQ(VT−tUt, A) (Wk,T−tU

k
t )

∗D̃kQ(WT−tUt, A)
∗
)]

dt

=
1

N

∑

k

∫ T

0

E
[
TrN

((
D̃kQ(VT−tUt, A) Vk,T−tUk,t − (Vk,T−tUk,t)

∗ D̃∗
kQ(VT−tUt, A)

)

×
(
D̃kQ(WT−tUt, A)Wk,T−tUk,t − (Wk,T−tUk,t)

∗D̃∗
kQ(WT−tUt, A)

)∗ )]
dt.

Hence the conclusion.

Corollary 3.1. Let P,Q ∈ Pd, (UN
t )t∈R+ , (V N

t )t∈R+ , (WN
t )t∈R+ be independent vectors of p unitary

Brownian motions of size N . Let ZNM be a vector of deterministic matrices. We also define the map

h : x⊗ y ∈ (MN (C)⊗MM (C))⊗2 7→ y♯x ∈ MN (C)⊗MM (C).

With notations as in subsection 2.4, one has for any T ≥ 0,
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E
[
(TrN ⊗IM )

⊗
2
(
P̃ (UN

T ⊗ IM , ZNM )⊗ Q̃(UN
T ⊗ IM , ZNM )

) ]

− E[TrN ⊗IM ]
⊗

2
(
P̃ (UN

T ⊗ IM , ZNM )⊗ Q̃(UN
T ⊗ IM , ZNM )

)

= − 1

N

∑

k≤p

∫ T

0

E
[
TrN ⊗IM

(
h ◦ δkP̃ (V N

T−tU
N
t ⊗ IM , ZNM )× h ◦ δkQ̃(WN

T−tU
N
t ⊗ IM , ZNM )

)]
dt.

Proof. Let AN be a vector of deterministic matrices, by polarization and the fact that Dk(Q
∗)∗ = −DkQ,

we have

E
[
TrN

(
P̃ (UN

T , AN )
)
TrN

(
Q̃(UN

T , AN )
) ]

− E
[
TrN

(
P̃ (UN

T , AN )
) ]

E
[
TrN

(
Q̃(UN

T , AN )
) ]

= E

[(
TrN

(
P̃ (UN

T , AN )
)
− E

[
TrN

(
P̃ (UN

T , AN )
) ])(

TrN

(
Q̃∗(UN

T , AN )
)
− E

[
TrN

(
Q̃∗(UN

T , AN )
) ])]

=
1

N

∑

k≤p

∫ T

0

E
[
TrN

(
D̃kP (V N

T−tU
N
t , AN )× D̃kQ∗(WN

T−tU
N
t , AN )∗

)]
dt

= − 1

N

∑

k≤p

∫ T

0

E
[
TrN

(
m ◦ δkP̃ (V N

T−tU
N
t , AN )×m ◦ δkQ̃(WN

T−tU
N
t , AN )

)]
dt.

Now we want to study a polynomial in (UN
T ⊗ IM , ZNM ) and their adjoints. By linearity we can assume

that P is a monomial. One can also assume that ZNM
i = Ai ⊗Bi where Ai ∈ MN (C) and Bi ∈ MM (C).

Then,

P̃ (UN
T ⊗ IM , ZNM ) = P̃ (UN

T , A)⊗ P̃ (IM , B).

Thus assuming that P and Q are monomials, we have

E
[
(TrN ⊗IM )

⊗
2
(
P̃ (UN

T ⊗ IM , ZNM )⊗ Q̃(UN
T ⊗ IM , ZNM )

) ]

− E[TrN ⊗IM ]
⊗

2
(
P̃ (UN

T ⊗ IM , ZNM )⊗ Q̃(UN
T ⊗ IM , ZNM )

)

=
(
E[TrN (P̃ (UN

T , A))TrN (Q̃(UN
T , A))]− E[TrN (P̃ (UN

T , A))] E[TrN (Q̃(UN
T , A))]

)
⊗ P̃ (IM , B)Q̃(IM , B)

= − 1

N

∫ T

0

E
[
TrN

(
m ◦ δkP̃ (V N

T−tU
N
t , A)×m ◦ δkQ̃(WN

T−tU
N
t , A)

)]
⊗ P̃ (IM , B)Q̃(IM , B) dt

= − 1

N

∑

k≤p

∫ T

0

E
[
TrN ⊗IM

(
h ◦ δkP̃ (V N

T−tU
N
t ⊗ IM , ZNM )× h ◦ δkQ̃(WN

T−tU
N
t ⊗ IM , ZNM )

)]
dt.

Hence the conclusion by linearity.

3.3 Convergence of the submatrices of Haar unitary Brownian motions

The following lemma will be useful for a computation trick later in this paper. We prove the con-
vergence in distribution of a family of random matrices by using a well-known trick. We first prove that
the moments of the limit are the unique solution to some system of equations, then we prove that the
moments of our random matrices satisfies the same system of equations up to a term which converges
towards 0. We refer for exemple to the proof of Theorem 5.4.10 in [2] for a use of this method.

Proposition 3.2. We define the following family of random matrix processes, let (Xk
i,j)1≤i≤j≤N and

(Y k
i,j)1≤i<j≤N be independent hermitian Brownian motions of size k. We set Hk

i,i = Xk
i,i, Hk

i,j =

2−1/2(Xk
i,j + iY k

i,j) for i < j and Hk
i,j = 2−1/2(Xk

j,i − iY k
j,i) for i > j. We then define
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∀t ≥ 0, Uk,t
i,j = 1i=jIk −

∫ t

0

Uk,s
i,j

2
ds+ i

1√
N

N∑

l=1

∫ t

0

Uk,s
i,l dH

k,s
l,j .

We similarly define (Hi,j)1≤i,j≤N where we replaced the independent hermitian Brownian motions by
freely independent free Brownian motions. And similarly

∀t ≥ 0, ut
i,j = 1i=j1A −

∫ t

0

us
i,j

2
ds+ i

1√
N

N∑

l=1

∫ t

0

us
i,l ⊗ 1A#dHs

l,j .

We consider Uk,t, p independent copy of (Uk,t
i,j )1≤i,j≤N , and u

t, p freely independent copy of (ut
i,j)1≤i,j≤N .

Then the family Uk,t in the C∗-algebra L∞(Ω,Mk(C)) endowed with the trace X 7→ E[τN (X)] converges
towards the family u

t in the sense of Definition 2.1.

Proof. It is easy to see that (Uk,t
i,j )1≤i,j≤N is a unitary Brownian motion of size kN , thus for any i, j and

t, the operator norm of Uk,t
i,j is smaller than 1. Next we proceed as usual, for a polynomial Q, we denote

Qs this monomial evaluated in Uk,s, we have for a monomial Q of degree n,

dE[τk(Qs)]

dt
=− n

2
E[τk(Qs)]

− 1

N

∑

a

∑

i1,j1,i2,j2

∑

Q=AU
i1 ,j1
a BU

i2,j2
a C

E[τk((U
k,s
a )i1,j2CsAs)τk((U

k,s
a )i2,j1Bs)]

− 1

N

∑

a

∑

i1,j1,i2,j2

∑

Q=A(U
i1 ,j1
a )∗B(U

i2,j2
a )∗C

E[τk((U
k,s
a )∗i1,j2CsAs) τk((U

k,s
a )∗i2,j1Bs)]

+
1

N

∑

a

∑

i,j

∑

Q=AUi,j
a B(Uj,i

a )∗C

E[τk(CsAs) τk(Bs)]

+
1

N

∑

a

∑

i,j

∑

Q=A(Ui,j
a )∗BUj,i

a C

E[τk(CsAs) τk(Bs)].

One can view Uk,t
i,j as the matrix in the upper left corner of Ik ⊗ E1,i (U

k,t
i,j )1≤i,j≤N Ik ⊗ Ej,1, thus for

any polynomial P , there exists a polynomial S such that,

τk(P (Uk,t)) =
1

k
TrNk

(
S̃
(
Uk,t, (Ik ⊗ E1,i)i

))
,

where we view Uk,t as a vector of matrices of size kN . Since it has the law of a vector of unitary Brownian
motions of size kN , thanks to Proposition 3.1, we get that

E[τk(Qs)] =E[τk(Q0)]

+

∫ t

0

e−
n
2 (t−s)

(
− 1

N

∑

a

∑

i1,j1,i2,j2

∑

Q=AU
i1,j1
a BU

i2,j2
a C

E[τk((U
k,s
a )i1,j2CsAs)] E[τk((U

k,s
a )i2,j1Bs)]

− 1

N

∑

a

∑

i1,j1,i2,j2

∑

Q=A(U
i1,j1
a )∗B(U

i2,j2
a )∗C

E[τk((U
k,s
a )∗i1,j2CsAs)] E[τk((U

k,s
a )∗i2,j1Bs)]

+
1

N

∑

a

∑

i,j

∑

Q=AUi,j
a B(Uj,i

a )∗C

E[τk(CsAs)] E[τk(Bs)]

+
1

N

∑

a

∑

i,j

∑

Q=A(Ui,j
a )∗BUj,i

a C

E[τk(CsAs)] E[τk(Bs)]

)
ds+O(k−2).
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Similarly, thanks to Theorem 2.2, if Qs is now the monomial Q evaluated in u
s, we get that

τ(Qs) = τ(Q0) +

∫ t

0

e−
n
2 (t−s)

(
− 1

N

∑

a

∑

i1,j1,i2,j2

∑

Q=AU
i1 ,j1
a BU

i2,j2
a C

τ((us
a)i1,j2CsAs)τ((u

s
a)i2,j1Bs)

− 1

N

∑

a

∑

i1,j1,i2,j2

∑

Q=A(U
i1 ,j1
a )∗B(U

i2,j2
a )∗C

τ((us
a)

∗
i1,j2CsAs) τ((u

s
a)

∗
i2,j1Bs)

+
1

N

∑

a

∑

i,j

∑

Q=AUi,j
a B(Uj,i

a )∗C

τ(CsAs) τ(Bs)

+
1

N

∑

a

∑

i,j

∑

Q=A(Ui,j
a )∗BUj,i

a C

τ(CsAs) τ(Bs)

)
ds.

Thus, since for any k, E[τk(Q0)] = τ(Q0), we can show the convergence by induction.

3.4 Convergence of the free unitary Brownian motion

If ut is a free unitary Brownian motion at time t, one can define µut
as in Definition 2.1. Then thanks

to Riesz theorem, there is a measure νt such that for any function polynomial P in two commuting
indeterminates,

τ(P (ut, u
∗
t )) =

∫

C

f(z, z∗) dνt(z).

The measure νt is well-known albeit not explicit, the proof of the following theorem can be found in [4].

Theorem 3.1. For every t > 0, the measure νt is absolutely continuous with respect to the Haar measure
on T = {z ∈ C | |z| = 1}. For t > 4, the support of νt is equal to T, and its density is positive on T.
We set κ(t, ω) the density of νt at the point ω ∈ T. Then for t > 4, κ(t, ω) is the real part of the only
solution with positive real part of the equation,

z − 1

z + 1
e

t
2 z = ω. (15)

This theorem let us prove that when t is large, we are exponentially close to a Haar unitary for the
operator norm topology.

Proposition 3.3. There exists a C∗-algebra C which contains u1
t , . . . , u

p
t freely independent free unitary

Brownian motions at time t ≥ 5 and ũ1, . . . , ũp freely independent Haar unitaries such that for any i,∥∥ui
t − ũi

t

∥∥ ≤ 4e2πe−
t
2 .

Proof. We view B(L2([0, 2π])) as the C∗-algebra endowed with the state τ(u) = 〈u(1[0,2π]),1[0,2π]〉L2([0,2π].
The endomorphism x : f 7→ (t → tf(t)) is self-adjoint and has distribution (as defined in 2.1) µx(f) =∫
[0,2π]

f . Consequently we set g : s → κ(t, eis) and G : s →
∫ s

0
g(u) du. Since g is positive, we can define

ut = eiG
−1(x) which has the distribution of a free unitary Brownian motion at time t, indeed for any

polynomial P in two commuting indeterminates,

τ(P (ut, u
∗
t )) =

∫ 2π

0

P
(
eiG

−1(s), e−iG−1(s)
)
ds =

∫ 2π

0

P (eis, e−is))g(s)ds =

∫

C

f(z, z∗) dνt(z).

And similarly, u = eix is a Haar unitary. Besides, since

ut − u =

∫ 1

0

eiαG
−1(x)(G−1(x)− x)ei(1−α)xdα,

thanks to the fact that G is a dipheomorphism of [0, 2π],

‖ut − u‖ ≤
∥∥G−1(x) − x

∥∥ = sup
s∈[0,2π]

|G−1(s)− s| = sup
s∈[0,2π]

|s−G(s)| ≤ 2π sup
s∈[0,2π]

|1− g(s)|.
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We set y(s) the imaginary part of the only solution with positive real part of the equation (15). Then
we have for any s,

(g(s)− 1)2 + y(s)2

(g(s) + 1)2 + y(s)2
≤ e−tg(s).

However since (g(s)− 1)2 ≤ (g(s) + 1)2, we have,

(g(s)− 1)2

(g(s) + 1)2
≤ (g(s)− 1)2 + y(s)2

(g(s) + 1)2 + y(s)2
≤ e−tg(s).

First in the case where g(s) ≥ 1, then since we assumed t ≥ 4, |g(s)− 1| ≤ (|g(s)− 1|+2)e−2|g(s)−1|e−
t
2 ,

and since the function u → (u + 2)e−2u is decreasing, we have, |g(s)− 1| ≤ 2e−
t
2 .

If g(s) ≤ 1, then after studying the graph of the function h : g 7→ e−tg/2− 1−g
1+g , we have that this function

takes value 0 in in 0, is negative on (0, ct) for some ct ∈ (0, 1), and finally is positive for g > ct. Since
we know that g(s) is positive for t > 4 and h(g(s)) ≥ 0, if we find g such that h(g) ≤ 0, then g(s) ≥ g.
Besides for t ≥ 5, we have that h

(
ln(t/2)2t

)
≤ 0. Thus necessarily g(s) ≥ ln(t/2)2t , consequently since

g(s) ≤ 1, we know that 1− g(s) ≤ 2e−
t
2 g(s). Hence,

1− g(s) ≤ 2e−
t
2×ln(t/2) 2

t =
4

t
.

Thus by bootstrapping, for any s,

1− g(s) ≤ 2e−
t
2 (1−

4
t ) = 2e2e−

t
2 .

Consequently ‖ut − u‖ ≤ 4e2πe−t/2, and thanks to Theorem 2.1, we take C the free sum of p copies of
B(L2([0, 2π])).

3.5 Free stochastic calculus and free unitary Brownian motion

As we defined in Proposition 2.3, we consider uN
t = (UN

1 u1
t , . . . , U

N
p up

t )⊗ IM and ZNM . As we will
see later, thanks to Proposition 3.3, this will let us interpolate between UN = (UN

1 , . . . , UN
p ) random

unitary Haar matrices and u = (u1, . . . , up) free Haar unitaries. Concretely if P ∈ Pd, we set

h(t) = τN ⊗ τM

(
P̃ (uN

t , ZNM )
)
.

Then,

h(0) =
1

NM
TrMN

(
P̃ (UN ⊗ IM , ZNM )

)
,

h(∞) = τN ⊗ τM

(
P̃ (u⊗ IM , ZNM )

)
.

Consequently we would like to write,

1

NM
TrMN

(
P̃ (UN , ZNM )

)
− τN ⊗ τM

(
P̃ (u, ZNM )

)
=

∫ ∞

0

dh

dt
(t) dt.

Hence we need to compute the differential of s with respect to t, which we do in the following proposition.

Proposition 3.4. Let the following objects be given,

• u = (u1
t , . . . , u

p
t )t≥0 a family of p free unitary Brownian motions,

• UN = (UN
1 , . . . , UN

p ) matrices of size N ,

• uN
t = (UN

1 u1
t , . . . , U

N
p up

t ) elements of AN ⊗MM (C),

• ZNM = (ZNM
p+1 , . . . , Z

NM
d ) matrices in MN (C)⊗MM (C),

• P ∈ Pd.
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With notation as in subsection 2.4, the map H : t 7→ τN ⊗ τM

(
P̃
(
uN
t ⊗ IM , ZNM

))
is differentiable on

R+ and,
dH

dt
(t) = −1

2

∑

i≤p

τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
δiDiP̃

(
uN
t ⊗ IM , ZNM

)))
.

Proof. We want to use Theorem 2.2 to write H as an integral which we can then easily differentiate.
We need to define X0 ∈ Ad, K such that for any t ≥ 0, K ∈ (L1([0, t],A))d, U such that for any t ≥ 0,
(1s≤tU

i
s)t∈R+ ∈ (B∞

a )d, and then,

Xt = X0 +

∫ t

0

Ksds+
∑

i

∫ t

0

U i
s#dSi

s.

By using the linearity of the trace and the non-commutative differential, we can assume that ZNM
i =

Ai ⊗Bi where Ai ∈ MN (C) and Bi ∈ MM (C). We then set Xt = (uN
t , uN

t
∗
, A,A∗). Since (A,A∗) is free

from A, the processes K and U associated to (A,A∗) are zero. As for (uN
t , uN

t
∗
), by definition of a free

unitary Brownian motion, we have

∀t ≥ 0, uN
t = UN −

∫ t

0

uN
s

2
ds+ i

∫ t

0

uN
s ⊗ 1A#dSs,

∀t ≥ 0, (uN
t )∗ = UN −

∫ t

0

(uN
s )∗

2
ds− i

∫ t

0

1A ⊗ (uN
s )∗#dSs.

To minimize cumbersome notations, we will forget about the N in uN
t , and assimilate uN

t with ut.
Consequently we set for any s ≥ 0,

∀i ∈ [1, p], ∀j ∈ [1, p], Kj
s = −uj,s/2, U i,j

s = i 1i=juj,s ⊗ 1A,

∀i ∈ [1, p], ∀j ∈ [p+ 1, 2p], Kj
s = −u∗

j,s/2, U i,j
s = −i 1i=j1A ⊗ u∗

j,s,

∀i ∈ [1, p], ∀j > 2p, Kj
s = 0, U i,j

s = 0⊗ 0.

Thus we have for any monomial Q,

∂Q(X)#K = −1

2

∑

i≤p

∂iQ(X)#ui + ∂∗
i Q(X)#(ui)

∗,

∆U (Q)(X) = −
∑

i≤p

〈〈 (∂i ⊗ I) ◦ ∂iQ(X)#(ui ⊗ 1A, ui ⊗ 1A) 〉〉

− 〈〈 (∂i ⊗ I) ◦ ∂∗
i Q(X)#(ui ⊗ 1A,1A ⊗ (ui)

∗ 〉〉
− 〈〈 (∂∗

i ⊗ I) ◦ ∂iQ(X)#(1A ⊗ (ui)
∗, ui ⊗ 1A) 〉〉

+ 〈〈 (∂∗
i ⊗ I) ◦ ∂∗

i Q(X)#(1A ⊗ (ui)
∗,1A ⊗ (ui)

∗) 〉〉.

And thanks to Theorem 2.2, we have for any t ≥ 0,

Q(Xt) = Q(X0) +

∫ t

0

∂Q(Xs)#Ks ds+
∑

i

∫ t

0

∂Q(X)♯U i
s #dSi

s +

∫ t

0

∆U (Q)(Xs) ds.

Thus if we fix t ∈ R+, then for any ε ≥ −t,

Q(Xt+ε)−Q(Xt) =

∫ t+ε

t

∂Q(Xs)#Ks ds+
∑

i

∫ t+ε

t

∂Q(X)♯U i
s #dSi

s +

∫ t+ε

t

∆U (Q)(Xs) ds.

As we said in section 2.3,
(∑

i

∫ t

0
∂Q(X)♯U i

s #dSi
s

)
t≥0

is a martingale, thus

τN (Q(Xt+ε))− τN (Q(Xt)) =

∫ t+ε

t

τN (∂Q(Xs)#Ks) ds+

∫ t+ε

t

τN (∆U (Q)(Xs)) ds.
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Finally we have,
dτN (Q(Xt))

dt
= τN (∂Q(Xt)#Kt) + τN (∆U (Q)(Xt)). (16)

Besides,

τN (∂Q(Xt)#Kt) = −1

2

∑

i≤p

τN (DiQ(Xt) ui,t) + τN (u∗
i,tD

∗
i P (Xt)),

and,

τN (〈〈 (∂i ⊗ I) ◦ ∂iQ(X)#(ui ⊗ 1A, ui ⊗ 1A) 〉〉) =
∑

Q=AYiBYiC

τN (C(X)A(X)ui)τN (uiB(X)),

τN (〈〈 (∂i ⊗ I) ◦ ∂∗
i Q(X)#(ui ⊗ 1A,1A ⊗ u∗

i 〉〉) =
∑

Q=AYiBY ∗
i C

τN (A(X)uiu
∗
iC(X))τN (B(X)),

τN (〈〈 (∂∗
i ⊗ I) ◦ ∂iQ(X)#(1A ⊗ u∗

i , ui ⊗ 1A) 〉〉) =
∑

Q=AY ∗
i BYiC

τN (A(X)C(X))τN (uiu
∗
iB(X)),

τN (〈〈 (∂∗
i ⊗ I) ◦ ∂∗

i Q(X)#(1A ⊗ u∗
i ,1A ⊗ u∗

i ) 〉〉) =
∑

Q=AY ∗
i BY ∗

i C

τN (C(X)A(X)u∗
i )τN (u∗

iB(X)).

Besides we also have,

τN ⊗ τN (δiDiQ(X)× 1⊗ ui) = 2
∑

Q=AYiBYiC

τ(B(X)ui)τ(C(X)A(X)ui)

−
∑

Q=AY ∗
i BYiC

τ(C(X)A(X))τ(B(X)uiu
∗
i )

−
∑

Q=AYiBY ∗
i C

τ(B(X))τ(C(X)uiu
∗
iA(X)),

τN ⊗ τN (δiD
∗
iQ(X)× u∗

i ⊗ 1) =− 2
∑

Q=AY ∗
i BY ∗

i C

τ(u∗
iB(X))τ(C(X)A(X)u∗

i )

+
∑

Q=AY ∗
i BYiC

τ(B(X)uiu
∗
i )τ(C(X)A(X))

+
∑

Q=AYiBY ∗
i C

τ(C(X)uiu
∗
iA(X))τ(B(X)).

Which means that

τN (∆U (Q)(X)) = −1

2

∑

i≤p

τN ⊗ τN (δiDiQ(X)× 1⊗ ui)− τN ⊗ τN (δiD
∗
iQ(X)× u∗

i ⊗ 1) .

And with equation (16),

dτN (Q(Xt))

dt
= −1

2

∑

i≤p

τN (DiQ(Xt) ui,t) + τN ⊗ τN (δiDiQ(Xt)× 1⊗ ui,t)

+ τN (u∗
i,tD

∗
iQ(Xt))− τN ⊗ τN

(
δiD

∗
iQ(Xt)× u∗

i,t ⊗ 1
)

= −1

2

∑

i≤p

τN ⊗ τN (δi (DiQ(Xt)ui,t))− τN ⊗ τN
(
δi
(
u∗
i,tD

∗
iQ(Xt)

))

= −1

2

∑

i≤p

τN ⊗ τN (δiDiQ(Xt)) .
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Now we want to study a polynomial in (uN
t , ZNM ) and their adjoints. If P is a monomial, we have,

P̃ (uN
t ⊗ IM , ZNM ) = P̃ (uN

t , A)⊗ P̃ (IM , B).

Therefore,

dH

dt
(t) = −1

2

∑

i≤p

τN ⊗ τN

(
δiDiP̃ (uN

t , A)
)
× τM

(
P̃ (IM , B)

)
.

And since for any S, T ∈ Pd,

τN ⊗ τN (δiT̃ S(u
N
t , A)) × τM

(
S̃T (IM , B)

)
= τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
δiT̃ S

(
uN
t ⊗ IM , A⊗B

)))
.

Hence after summing,

d

dt
τN ⊗ τM

(
P̃
(
uN
t , ZNM

))
= −1

2

∑

i≤p

τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
δiDiP̃

(
uN
t , ZNM

)))
,

and we conclude by linearity.

4 Proof of Theorem 1.1, the main result

4.1 Overview of the proof

If we take the point of view of free probability – for details we refer to the third point of Definition
2.1 – we have two families of non-commutative random variables, (UN ⊗ IM , ZNM ) and (u⊗ IM , ZNM ),
and we want to study the difference between their distributions. As mentioned in the introduction the
main idea of the proof is to interpolate those two families with the help of free unitary Brownian motions
uN
t =

(
uN
i,t

)
i

started in deterministic matrices
(
UN
i

)
i

of size N . A big difference with the case of the
GUE which was treated in [11] is that we do not have an explicit expression of the law of uN

t in function
of UN and u, which is why we had to introduce notions of free stochastic calculus.

Since our aim in this subsection is not to give a rigorous proof but to outline the strategy used in
subsection 4.2, we assume that we have no matrix ZNM and that M = 1. Now under the assumption
that this is well-defined, if Q is a non-commutative polynomial,

E

[
1

N
TrN

(
Q
(
UN
) )]

− τ
(
Q (u)

)
= −

∫ ∞

0

E

[
d

dt

(
τN
(
Q(uN

t )
) )]

dt.

In the classical case, if (St)t≥0 is a Markov process with generator θ, then under the appropriate assump-
tion we have

d

dt
E[f(St)] = E[(θf)(St)].

And if the law of the process at time 0 is invariant for this Markov process we have that for any t,
E[(θf)(St)] = 0. Since (uN

t )t≥0 is a free Markov process, we expect to get similarly that

d

dt

(
τN
(
Q(uN

t )
) )

= τN
(
(ΘQ)(uN

t )
)
,

for some generator Θ which we will compute with the help of Proposition 3.4. Besides the invariant law
of a free Brownian motion is the law of free Haar unitaries. Thus if (ut)t≥0 is a free Brownian motion
started in free Haar unitaries, we have that τ ((ΘQ)(ut)) = 0. Since unitary Haar matrices converges in
distribution towards free Haar unitaries (see [2], Theorem 5.4.10), we have that τN

(
(ΘQ)(uN

t )
)

converges
towards τ ((ΘQ)(ut)) = 0. As we will see in this proof, the convergence happens at a speed of N−2. To
prove this, the main idea is to view free unitary Brownian motions started in UN as the asymptotic limit
when k goes to infinity of a unitary Brownian motion of size kN started in UN ⊗ Ik (see Proposition
4.1).
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Another issue is that to prove Theorem 1.1, we would like to set Q = f(P ) but since f is not
polynomial this means that we need to extend the definition of operators such as δi. In order to do so
we assume that there exists µ a measure on R such that,

∀x ∈ R, f(x) =

∫

R

eixy dµ(y).

While we have to assume that the support of µ is indeed on the real line, µ can be a complex measure.
However we will usually work with measure such that |µ|(R) is finite. Indeed under this assumption we
can use Fubini’s theorem, and we get

E

[
1

M
TrN

(
f
(
P (UN )

) )]
− τ
(
f (P (u))

)
=

∫

R

{
E

[
1

N
TrN

(
eiyP(U

N)
)]

− τ
(
eiyP (u)

)}
dµ(y).

We can then set Q = eiyP . And even though this is not polynomial, since it is a power series, most of
the properties associated to polynomials remain true with some assumption on the convergence. The
main difficulty with this method is that we need to find a bound uniform in y, indeed we have terms of
the form ∫

R

|y|l d|µ|(y)

which appear. Thanks to Fourier integration we can relate the exponent l to the regularity of the function
f , thus we want to find a bound with l as small as possible. It turns out that with our proof l = 4.

4.2 Proof of Theorem 4.1

In this section we focus on proving the following theorem from which we deduce all of the important
corollaries.

Theorem 4.1. We define

• u = (u1, . . . , up) a family of p free Haar unitaries,

• UN = (UN
1 , . . . , UN

p ) random unitary i.i.d. matrices of size N whose law is invariant by multipli-
cation by a matrix of SUN(R).

• ZNM = (ZNM
p+1 , . . . , Z

NM
d ) deterministic matrices,

• P ∈ Pd a self-adjoint polynomial,

• f : R 7→ R such that there exists a measure on the real line µ with
∫
(1 + y4) d|µ|(y) < +∞ and

for any x ∈ R,

f(x) =

∫

R

eixy dµ(y).

Then there exists a polynomial LP which only depends on P such that for any N,M ,

∣∣∣∣∣E
[

1

MN
TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)))]
− τN ⊗ τM

(
f
(
P̃
(
u⊗ IM , ZNM

)) )
∣∣∣∣∣

≤ M2

N2
LP

(∥∥ZNM
∥∥)×min

{
ln2(N)

∫

R

(|y|+ y4) d|µ|(y),
∫

R

(|y|+ |y|5) d|µ|(y)
}
.

Even though we do not give an explicit expression for LP , it is possible to compute it rather easily
with the help of Lemma 4.4. In particular given a set of polynomials whose degree and coefficients are
uniformly bounded, we can find a polynomial R such that for any P in this set and any matrices ZNM ,
LP

(∥∥ZNM
∥∥) ≤ R

(∥∥ZNM
∥∥). Besides, if we replace P by αP where α ∈ C, then up to a constant

independent from α, we can bound LαP by (|α| + |α|5)LP , or even (|α| + |α|4)LP if one picks the first
expression in the minimum. The first step to prove this theorem is the following lemma, who is a direct
consequence of Proposition 3.4 and equation (5),
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Lemma 4.1. With the same notation as in Theorem 4.1, we define

• u = (u1
t , . . . , u

p
t )t≥0 a family of p free unitary Brownian motions,

• uN
t = (UN

1 u1
t , . . . , U

N
p up

t ) elements of AN .

Then with notation as in subsection 2.4,

1

MN
TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)))
− τN ⊗ τM

(
f
(
P̃
(
uN
t ⊗ IM , ZNM

)))

=
1

2

∑

i≤p

∫ ∫ t

0

τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
δi

(
Di e

iyP̃
) (

uN
t ⊗ IM , ZNM

)))
dt dµ(y).

Since Di e
iyP = iy δiP #̃ eiyP , this prompts us to define the following quantity.

Definition 4.1. Let A,B ∈ Pd, we set

SN
t,y(A,B) = E

[
τM

(
(τN ⊗ IM )

⊗
(τN ⊗ IM )

(
δi
(
A eiyP B

) (
ZN
t

)))]
,

where ZN
t =

(
uN
t ⊗ IM , ZNM , (uN

t )∗ ⊗ IM , (ZNM )∗
)
.

The following proposition justifies why the family (UN ⊗ IM , ut ⊗ IM , ZNM ) has in the large k limit
the distribution – in the sense of Definition 2.1 – of the family (UN ⊗ IkM , UkN

t ⊗ IM , ZNM ⊗ Ik) where
UkN
t are independent unitary Brownian motions of size kN at time t.

Proposition 4.1. If UkN
t are unitary Brownian motions of size kN at time t, independent of UN , we

set
Y k
t =

(
(UN ⊗ Ik UkN

t )⊗ IM , ZNM ⊗ Ik, (U
N ⊗ Ik UkN

t )∗ ⊗ IM , (ZNM )∗ ⊗ Ik

)
.

Then if q = AeiyPB, we have that for any t,

(τN ⊗ IM )
(
q(ZN

t )
)
= lim

k→∞
Ek

[
(τkN ⊗ IM )

(
q(Y k

t )
)]

,

where Ek is the expectation with respect to (UkN
t )t≥0.

Proof. It has been known for a long time that the unitary Brownian motion converges in distribution
towards the free unitary Brownian motion, see [5]. However since we also have to consider deterministic
matrices we will use Theorem 1.4 of [10]. This theorem states that if (UkN

t )t≥0 are independent unitary
Brownian motions and DkN is a family of deterministic matrices which converges strongly in distribution
towards a family of non-commutative random variables d, the family (UkN

t , DkN ) in the non-commutative
probability space (MkN (C), ∗,Ek[

1
kN Tr]) converges strongly in distribution towards the family (ut, d)

where ut are freely independent free unitary Brownian motions at time t free from d. That being said,
we do not use the convergence of the norm, we only need the convergence in distribution which is
way easier to prove. We did not find a satisfying reference but for the reader interested, the proof of
Proposition 3.2 is very similar. In our situation we can write for every i,

ZNM
i =

∑

1≤r,s≤N

Er,s ⊗AM
r,s,i.

Thus if EN = (Er,s)1≤r,s≤N , we fix DN = (UN ⊗ Ik, E
N ⊗ Ik), and we can apply Theorem 1.4 of [10] to

get that for any non-commutative polynomial P ,

lim
k→∞

Ek

[
τkN (P̃ (UkN

t , DkN ))
]
= τN

(
P̃ (ut, U

N , EN)
)
.

Consequently, for any non-commutative polynomial P , we also have

lim
k→∞

Ek

[
τkN ⊗ IM (P̃ (UkN

t , DkN , AM ))
]
= τN ⊗ IM

(
P̃ (ut, U

N , EN , AM )
)
.
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Hence for any P ∈ Pd,

lim
k→∞

Ek

[
τkN ⊗ IM (P (Y k

t ))
]
= τN ⊗ IM

(
P (ZN

t )
)
.

Now since UkN
t are unitary matrices, we can find a polynomial L such that for any k,

∥∥P (Y k
t )
∥∥ ≤ C =

L
(∥∥UN

∥∥ ,
∥∥ZNM

∥∥). Knowing this, let fε ∈ C[X ] be a polynomial which is ε-close to x 7→ eiyx on the
interval [−C,C]. Since one can always assume that C >

∥∥P (ZN
t )
∥∥, we have a constant K such that

∥∥(τN ⊗ IM )
(
q(ZN

t )
)
− (τN ⊗ IM )

(
(Afε(P )B)(ZN

t )
∥∥ ≤ Kε,

∥∥(τN ⊗ IM )
(
q(Y k

t )
)
− (τN ⊗ IM )

(
(Afε(P )B)(Y k

t )
∥∥ ≤ Kε.

Thus
∥∥(τN ⊗ IM )

(
q(ZN

t )
)
− Ek

[
(τkN ⊗ IM )

(
q(Y k

t )
)]∥∥

≤
∥∥(τN ⊗ IM )

(
(Afε(P )B)(ZN

t )
)
− Ek

[
(τkN ⊗ IM )

(
(Afε(P )B)(Y k

t )
)]∥∥+ 2Kε.

Consequently

limsup
k→∞

∥∥(τN ⊗ IM )
(
q(ZN

t )
)
− ER

[
(τkN ⊗ IM )

(
q(Y k

t )
)]∥∥ ≤ 2Kε.

This completes the proof.

The next lemma shows that the non-diagonal coefficients can actually be neglected.

Lemma 4.2. We define Y k
t as in Proposition 4.1, P1,2 = IN ⊗ E1,2 ⊗ IM , q = AeiyPB, then

lim
k→∞

k1/2Ek

[
(TrkN ⊗IM )(q(Y k

t )P1,2)
]
= 0.

Proof. Let us first define for A,B ∈ Pd,

f t
A,B(y) = ER

[
(TrkN ⊗IM )((A eiyP B)(Y k

t ) P1,2)
]
,

dtn(y) = sup
A,B∈Pd monomials,

deg(AB)≤n
0≤s≤t

∥∥f t
A,B(y)

∥∥ .

Consequently, there exists a constant D (which does depend on, N ,
∥∥UN

∥∥ and
∥∥ZNM

∥∥) such that for
any n, dtn(y) ≤ Dn. Note that this constant D can be exponentially large in N , indeed it does not
matter since in the end we will show that this quantity tends to 0 when k goes to infinity and the other
parameters such as N,M or y are fixed. Next we define for a small enough,

gtk,a(y) =
∑

n≥0

dtn(y)a
n.

But if we set cM (P ) the coefficient associated to the monomial M in P , we have for any s ≤ t,

∣∣∣∣
df s

A,B(y)

dy

∣∣∣∣ ≤
∑

L monomials

|cL(P )| dtdeg(AB)+deg(L)(y).

Thus if deg(AB) ≤ n, we have for any y ≥ 0,

f s
A,B(y) ≤ f s

A,B(0) +
∑

L monomials

|cL(P )|
∫ y

0

dtn+deg(L)(u) du.

Thus we have for y ≥ 0 and any n ≥ 0,
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andtn(y) ≤ andtn(0) +
∑

L monomials

|cL(P )|a− deg(L)

∫ y

0

dtn+deg(L)(u)a
n+deg(L) du.

And with ‖.‖a−1 defined as in (4), we have

gtk,a(y) ≤ gtk,a(0) + ‖P‖a−1

∫ y

0

gtk,a(u)du.

Thanks to Gronwall’s inequality, we have for y ≥ 0,

gtk,a(y) ≤ gtk,a(0)e
y‖P‖

a−1 . (17)

Now we need to find an estimate on gk,a(0), first for any j, one can write ZNM
j =

∑
u,v Eu,v⊗Ik⊗Aj

u,v

for some matrices Aj
u,v, then we define

V t
N,k =

(
UkN
t , (UkN

t )∗, UN ⊗ Ik, (U
N ⊗ Ik)

∗, (Eu,v ⊗ Ik)u,v

)
, (18)

ctn = sup
deg(L)≤n, L monomial

0≤s≤t

∣∣Ek

[
TrkN (L(V s

N,k) P1,2)
]∣∣ .

Besides since Y k
s is composed of

(UN ⊗ Ik)U
kN
s ⊗ IM , ZNM

j =
∑

u,v

Eu,v ⊗ Ik ⊗Aj
u,v,

and the adjoints of those matrices, if L is a monomial of degree n, then we can view L(Y k
s ) as a sum of at

most N2n monomials of degree at most 2n in UkN
s ⊗ IM , UN ⊗ IkM , Eu,v ⊗ Ik ⊗Aj

u,v and their adjoints.
We consider K the supremum over u, v, j of

∥∥Aj
u,v

∥∥, we also naturally assume that K ≥ 1, then we have
for s ≤ t,

∥∥Ek

[
TrNk ⊗IM (L(Uk

s )P1,2)
]∥∥ ≤ N2nKnct2n.

Thus if we set
f t
k(a) =

∑

n≥0

ctna
n,

we have
gtk,a(0) ≤ f t

k(N
√
Ka).

Now we need to study the behaviour of f t
k(a) when k goes to infinity for a small enough. Let Q be a

monomial, we define Qt as the monomial Q evaluated in V t
N,k. Thanks to Lemma 2.4,

d

dt
Ek [TrkN (QtP1,2)] =− |Q|B

2
Ek [TrkN (QtP1,2)]

− 1

kN

∑

i≤p, Q=AUiBUiC

Ek

[
TrkN

(
AtU

kN
i,t CtP1,2

)
TrkN

(
BtU

kN
i,t

)]

− 1

kN

∑

i≤p, Q=AU∗
i BU∗

i C

Ek

[
TrkN

(
AtU

kN
i,t

∗
CtP1,2

)
TrkN

(
BtU

kN
i,t

∗
)]

+
1

kN

∑

i≤p, Q=AUiBU∗
i C

Ek [TrkN (AtCtP1,2)TrkN (Bt)]

+
1

kN

∑

i≤p, Q=AU∗
i BUiC

Ek [TrkN (AtCtP1,2)TrkN (Bt)] .

Since Ek [TrkN (Q0P1,2)] = 0, we have for any t,
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Ek [TrkN (QtP1,2)] =

∫ t

0

e−
|Q|B

2 (t−s)

(
− 1

kN

∑

i≤p, Q=AUiBUiC

Ek

[
TrkN

(
AsU

kN
i,s CsP1,2

)
TrkN

(
BsU

kN
i,s

)]

− 1

kN

∑

i≤p, Q=AU∗
i BU∗

i C

Ek

[
TrkN

(
AsU

kN
i,s

∗
CtP1,2

)
TrkN

(
BsU

kN
i,s

∗
)]

+
1

kN

∑

i≤p, Q=AUiBU∗
i C

Ek [TrkN (AsCsP1,2)TrkN (Bs)]

+
1

kN

∑

i≤p, Q=AU∗
i BUiC

Ek [TrkN (AsCsP1,2)TrkN (Bs)]

)
ds.

As in Proposition 3.1, we consider (V kN
t )t∈R+ and (W kN

t )t∈R+ independent vectors of p unitary Brownian
motions of size kN , independent of (UkN

t )t∈R+ . We define V r,1
N,k and V r,2

N,k as V r
N,k (see (18)) but with

V kN
s−rU

kN
r and W kN

s−rU
kN
r instead of UkN

r . Thanks to Proposition 3.1, by polarization and the fact that
(DiQ

∗)∗ = −DiQ, we have with Cov(X,Y ) = E[XY ]− E[X ]E[Y ],

Covk (TrkN (AsCsP1,2),TrkN (Bs)) = − 1

kN

∑

i≤p

∫ s

0

Ek

[
TrkN

(
(δi(AC)#̃P1,2)

(
V r,1
N,k

)
(DiB)

(
V r,2
N,k

))]
dr.

Since P1,2 is a matrix of rank N and that we can assume D ≥ max(1,
∥∥UN

∥∥), we have

|Covk (TrkN (AsCsP1,2),TrkN (Bs))| ≤
s

k
deg(AC) deg(B) Ddeg(ABC).

We now assume that Q has degree at most n, then |Covk (TrkN (AsCsP1,2),TrkN (Bs))| ≤ s
kn

2Dn. Thus
we have,

|Ek [TrkN (QtP1,2)]| ≤
n4t2Dn

k2N

+
1

kN

∫ t

0

e−
|Q|B

2 (t−s)

(
∑

i≤p, Q=AUiBUiC

∣∣Ek

[
TrkN

(
AsU

kN
i,s CsP1,2

)]
Ek

[
TrkN

(
BsU

kN
i,s

)]∣∣

∑

i≤p, Q=AU∗
i BU∗

i C

∣∣∣Ek

[
TrkN

(
AsU

kN
i,s

∗
CtP1,2

)]
Ek

[
TrkN

(
BsU

kN
i,s

∗
)]∣∣∣

∑

i≤p, Q=AUiBU∗
i C

|Ek [TrkN (AsCsP1,2)]Ek [TrkN (Bs)]|

∑

i≤p, Q=AU∗
i BUiC

|Ek [TrkN (AsCsP1,2)]Ek [TrkN (Bs)]|
)
ds.
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This means that,

|Ek [TrkN (QtP1,2)]| ≤
n4t2Dn

k2N
+

∫ t

0

e−
|Q|B

2 (t−s)

(
∑

i≤p, Q=AUiBUiC

ctdeg(AC)+1D
deg(B)+1

+
∑

i≤p, Q=AU∗
i BU∗

i C

ctdeg(AC)+1D
deg(B)+1

+
∑

i≤p, Q=AUiBU∗
i C

ctdeg(AC)D
deg(B)

+
∑

i≤p, Q=AU∗
i BUiC

ctdeg(AC)D
deg(B)

)
ds

≤ n4t2Dn

k2N
+

∫ t

0

|Q|Be−
|Q|B

2 sds
∑

0≤d≤n−1

Ddctn−1−d

≤ n4t2Dn

k2N
+ 2

∑

0≤d≤n−1

Ddctn−1−d.

Hence, for any n ≥ 1,

ctn ≤ n4t2Dn

k2N
+ 2

∑

0≤d≤n−1

Ddctn−1−d.

Since we are taking the trace of L(V s
N,k)P1,2 with P1,2 = IN ⊗ E1,2 ⊗ IM , we have c0 = 0. We fix

s : a 7→∑
n≥0

n4t2(aD)n

N , thus for a small enough,

f t
k(a) ≤

s(a)

k2
+ 2

∑

n≥1


 ∑

0≤d≤n−1

Ddctn−1−d


 an

≤ s(a)

k2
+

2a

1− aD
f t
k(a)

Thus for a small enough, f t
k(a) ≤ 2s(a)k−2. Which means that f t

k(a) = O(k−2) and since as we have
already said, gtk,a(0) ≤ f t

k(N
√
Ka), we have for any fixed t and y that gtk,ak

(y) = O(k−2). Since
∣∣∣k3/2Ek

[
(τkN ⊗ IM )(q(Y k

t )P1,2)
]∣∣∣ ≤ k1/2a− deg(AB)gtk,ak

(y),

we get the conclusion.

We can now prove the following intermediary lemma that will allow us to derive Lemma 4.4. This
lemma is the only one where the law of UN actually plays an important part. In other words the fact
that UN is a vector of random unitary i.i.d. matrices of size N whose law is invariant by multiplication
by a matrix of SUN(R) will be the crux of the proof.

Lemma 4.3. We define Y k
t as in Proposition 4.1, we set

• Pl,l′ = IN ⊗ El,l′ ⊗ IM ,

• q = A eiyP B.

Then for every M,N ∈ N, t ∈ R+ and y ∈ R,

SN
t,y(A,B) = lim

k→∞
− 1

kN2
E

[
τM

(
∑

1≤l,l′≤k

Ek

[
(TrkN ⊗IM )

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

) ]

− Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)
)]
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Proof. Since all of our random variables are unitary matrices, thanks to Proposition 4.1 and the domi-
nated convergence theorem,

SN
t,y(A,B) = lim

k→∞
E
[
τM

(
Ek[τkN ⊗ IM ]

⊗
Ek[τkN ⊗ IM ]

(
δi
(
A eiyP B

) (
Y k
t

)))]
, (19)

where Ek[τN⊗IM ]
⊗

Ek[τN⊗IM ]
(
A⊗B

(
Y k
t

))
= Ek[τN⊗IM (A(Y k

t ))]Ek[τN⊗IM (B(Y k
t ))]. Since given

V ∈ SUN (R), (UkN
t,1 , UN

1 ⊗ Ik, . . . , U
kN
t,p , UN

p ⊗ Ik) has the same law as ((V ∗ ⊗ Il)U
kN
t,1 (V ⊗ Il), (U

N
1 V )⊗

Il, U
kN
t,2 , UN

2 ⊗ Ik, . . . , U
kN
t,p , UN

p ⊗ Ik), we have

E[q(Y k
t )] = E

[
q̃
(
(UN

1 ⊗ Ik UkN
t,1 )⊗ IM (V ⊗ IkM ),

(UN
2 ⊗ Ik UkN

t,2 )⊗ IM , . . . , (UN
p ⊗ Ik UkN

t,p )⊗ IM , ZNM ⊗ Ik

)]
.

Hence let H be an skew-hermitian matrix, then for any s ∈ R, esH ∈ SUN(R), thus by taking V this

matrix and differentiating with respect to s we get that, E
[
δ1q(Y

k
t )#(H ⊗ IkM )

]
= 0. And similarly we

get that for any i,

E
[
δiq(Y

k
t )#(H ⊗ IkM )

]
= 0.

Since every matrix is a linear combination of skew-Hermitian matrices, this is true for any matrix
H ∈ MN (C), and thus for any i,

E
[
(TrN ⊗IkM )

⊗
2
(
δiq(Y

k
t )
) ]

=
∑

1≤r,s≤N

g∗r ⊗ IkM E
[
δiq(Y

k
t )#(Er,s ⊗ IkM )

]
gs ⊗ IkM = 0 (20)

Let S, T ∈ MNkM (C) be deterministic matrices, then

Trk ⊗IM

(
(TrN ⊗IkM )

⊗
2 (S ⊗ T )

)

=
∑

1≤m,n≤N

TrNk ⊗IM (S Em,n ⊗ IkM T En,m ⊗ IkM )

=
∑

1≤l,l′≤k

∑

1≤m≤N

g∗m ⊗ f∗
l ⊗ IM S gm ⊗ fl′ ⊗ IM

∑

1≤n≤N

g∗n ⊗ f∗
l′ ⊗ IM T gn ⊗ fl ⊗ IM

=
∑

1≤l,l′≤k

TrN ⊗IM (IN ⊗ f∗
l ⊗ IM S IN ⊗ fl′ ⊗ IM )TrN ⊗IM (IN ⊗ f∗

l′ ⊗ IM T IN ⊗ fl ⊗ IM )

=
∑

1≤l,l′≤k

TrkN ⊗IM
(
S IN ⊗ El′,l ⊗ IM

)
TrkN ⊗IM

(
T IN ⊗ El,l′ ⊗ IM

)
.

Thus by using equation (20), we have for any i,
∑

1≤l,l′≤k

E
[
(TrkN ⊗IM )

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

) ]
= 0.

And consequently,
∑

1≤l,l′≤k

E
[
(TrkN ⊗IM )

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

) ]
− E

[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)]

(21)

= −
∑

1≤l,l′≤k

E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)]
.

Let V,W ∈ Mk(C) be permutation matrices. Since INM ⊗ V commutes with ZNM ⊗ Ik and UN ⊗ IkM ,
and that the law of UkN

t is invariant by conjugation by a unitary matrix, it follows that the law of every
matrix of Y k

t is invariant by conjugation by INM ⊗ V or INM ⊗W . Thus,

Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)
= Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× V Pl′,lV

∗ ⊗WPl,l′W
∗
)
.

Thus by using well-chosen matrices, we get
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• if l = l′, Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)
= Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× P1,1 ⊗ P1,1

)
,

• if l 6= l′, Ek[TrkN ⊗IM ]
⊗

2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)
= Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× P1,2 ⊗ P1,2

)
.

Consequently, we have that

• equation (21) is equal to

∑

1≤l,l′≤k

E
[
(TrkN ⊗IM )

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

) ]
− E

[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)]

= −kE
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× P1,1 ⊗ P1,1

)]

− k(k − 1)E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× P1,2 ⊗ P1,2

)]
.

• Whereas the quantity inside the trace τM in equation (19) is equal to

E
[
Ek[τkN ⊗ IM ]

⊗
Ek[τkN ⊗ IM ]

(
δiq
(
Y k
t

))]

=
1

(kN)2

∑

1≤l,l′≤k

E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq
(
Y k
t

)
× Pl,l ⊗ Pl′,l′

)]

=
1

N2
E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq
(
Y k
t

)
× P1,1 ⊗ P1,1

)]
.

Thus, we have

SN
t,y(A,B) = lim

k→∞
− 1

kN2
τM

(
∑

1≤l,l′≤k

E
[
(TrkN ⊗IM )

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

) ]

− E
[
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× Pl′,l ⊗ Pl,l′

)]
)

−k − 1

N2
E

[
τM

(
Ek[TrkN ⊗IM ]

⊗
2
(
δiq(Y

k
t )× P1,2 ⊗ P1,2

)
)]

.

Thanks to Lemma 4.2 and Proposition 2.2, the second term converges towards 0, which gives the expected
formula.

Lemma 4.3 makes a covariance appears. Thus it is natural to want to use Corollary 3.1 to get an
explicit expression for SN

t,y(A,B).

Lemma 4.4. For any N , we have

SN
t,y(A,B) =

t

N2

∑

j≤p

E

[
τN ⊗ τM

(
(h ◦ δj)(δ1i q)(UNut ⊗ IM , ZNM )⊠ (h ◦ δj)(δ2i q)(UNvt ⊗ IM , ZNM )

)]
.

where ut and vt are vectors of free Brownian motions which are freely independent.

Proof. Thanks to Lemma 4.3 and 3.1 we have

SN
t,y(A,B)

= lim
k→∞

1

k2N3

∑

j≤p

∫ t

0

E

[
τM ⊗ TrkN

(
∑

1≤l,l′≤k

Pl′,l (h ◦ δj)(δ1i q)((UN ⊗ Ik)V
kN
t−sU

kN
s ⊗ IM , ZNM ⊗ Ik)

⊠ Pl,l′ (h ◦ δj)(δ2i q)((UN ⊗ Ik)W
kN
t−sU

kN
s ⊗ IM , ZNM ⊗ Ik)

)]
ds.
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Consequently,

SN
t,y(A,B)

= lim
k→∞

1

N2

∑

j≤p

∫ t

0

E

[
τM ⊗ τN

(
τk ⊗ IMN

(
(h ◦ δj)(δ1i q)((UN ⊗ Ik)V

kN
t−sU

kN
s ⊗ IM , ZNM ⊗ Ik)

)
⊠

τk ⊗ IMN

(
(h ◦ δj)(δ2i q)((UN ⊗ Ik)W

kN
t−sU

kN
s ⊗ IM , ZNM ⊗ Ik)

)
)]

ds.

Let x, y ∈ MkN (C)⊗MM (C), thanks to Lemma 3.1, ‖h(x⊗ y)‖ ≤ M ‖x‖ ‖y‖. Moreover, let us remind
that, with the convention A× (B ⊗ C)×D = (AB) ⊗ (CD), we have for q = AeiβyPB,

δiq = δiA eiβyP B + iβyA

∫ 1

0

ei(1−u)βyP δiP eiuβyP Bdu+A eiβyP δiB. (22)

Thus similarly to the proof of proposition 4.1, we can approximate the exponentials by polynomials and
hence approximate (h ◦ δj)(δ1i q) and (h ◦ δj)(δ2i q) uniformly in k with polynomials in Y k

t . If Q and T are
such polynomials, then thanks to Corollary 3.1,

Ek [τk ⊗ IMN (Q)τk ⊗ IMN (T )]

=
1

k2

∑

1≤i,j,r,s≤N

Ek [(TrkN ⊗IM (QIk ⊗ Ej,i ⊗ IM ))⊗ Ei,j (TrkN ⊗IM (TIk ⊗ Es,r ⊗ IM ))⊗ Er,s]

=
1

k2

∑

1≤i,j,r,s≤N

Ek [(TrkN ⊗IM (QIk ⊗ Ej,i ⊗ IM )) (TrkN ⊗IM (TIk ⊗ Es,r ⊗ IM ))]⊗ (Ei,jEr,s)

= O(k−2) +
1

k2

∑

1≤i,j,r,s≤N

(
Ek [(TrkN ⊗IM (QIk ⊗ Ej,i ⊗ IM ))]

Ek [(TrkN ⊗IM (TIk ⊗ Es,r ⊗ IM ))]
)
⊗ (Ei,jEr,s)

= O(k−2) + Ek [τk ⊗ IMN (Q)]Ek [τk ⊗ IMN (T )]

Besides, since (Ut)t≥0 and (Vt)t≥0 are independent, V kN
t−sU

kN
s has the same law as UkN

t , thus

SN
t,y(A,B)

=
t

N2

∑

j≤p

E

[
τM ⊗ τN

(
lim
k→∞

Ek

[
τk ⊗ IMN

(
(h ◦ δj)(δ1i q)((UN ⊗ Ik)U

kN
t ⊗ IM , ZNM ⊗ Ik)

) ]

⊠ Ek

[
τk ⊗ IMN

(
(h ◦ δj)(δ2i q)((UN ⊗ Ik)U

kN
t ⊗ IM , ZNM ⊗ Ik)

) ]
)]

.

Thanks to Proposition 3.2, if τ is the trace on the C∗-algebra where the variables ut belongs, then viewing
u
t as a vector of matrices of size N , we get

lim
k→∞

Ek

[
τk ⊗ IMN

(
(h ◦ δj)(δ1i q)((UN ⊗ Ik)U

kN
t ⊗ IM , ZNM ⊗ Ik)

) ]

= τ ⊗ IMN

(
(h ◦ δj)(δ1i q)(UN

u
t ⊗ IM , ZNM )

)

Thus if vt is a freely independent copy of ut, we have

SN
t,y(A,B) =

t

N2

∑

j≤p

E

[
τM ⊗ τN ⊗ τ

(
(h ◦ δj)(δ1i q)(UN

u
t ⊗ IM , ZNM )

⊠ (h ◦ δj)(δ2i q)(UN
v
t ⊗ IM , ZNM )

)]
.
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But then thanks to Proposition 3.2 again, we have

SN
t,y(A,B) =

t

N2

∑

j≤p

E

[
lim
k→∞

Ek

[
τM ⊗ τkN

(
(h ◦ δj)(δ1i q)((UN ⊗ Ik)U

kN
t ⊗ IM , ZNM ⊗ Ik)

⊠ (h ◦ δj)(δ2i q)((UN ⊗ Ik)V
kN
t ⊗ IM , ZNM ⊗ Ik)

)]]
.

And we conclude with Proposition 4.1.

The next step to prove Theorem 4.1 is to find an estimate for SN
t,y(A,B) in all of its parameters. In

particular we have to be careful to pay attention to the estimation in t if we want to integrate from 0 to
infinity.

Lemma 4.5. There exists a polynomial LP such that for any t, y,N, ZNM ,

|SN
t,y(A,B)| ≤ LP

(∥∥ZNM
∥∥)M

2

N2
(1 + |y|3) t (23)

∣∣SN
t,y(A,B)

∣∣ ≤ LP

(∥∥ZNM
∥∥)M

2

N2
(1 + y4) te−

t
2 (24)

Proof. The first inequality is a straightforward consequence of Lemma 4.1 and 4.4. For the second one,
we want to study the asymptotic of SN

t,y(A,B) when t go to infinity. Let u and v be vectors of freely
independent Haar unitaries free between each other and free from MN (C), then by invariance of Haar
unitaries by multiplication by a free unitary,

τN ⊗ τM

(
(h ◦ δj)(δ̃1i q)(UNu⊗ IM , ZNM )⊠ (h ◦ δj)(δ̃2i q)(UNv ⊗ IM , ZNM )

)

= τN ⊗ τM

(
(h ◦ δj)(δ̃1i q)(u ⊗ IM , ZNM )⊠ (h ◦ δj)(δ̃2i q)(v ⊗ IM , ZNM )

)
(25)

Thanks to equation (5) and the remark preceding it, we can approximate equation (25) by replacing
q by a polynomial in Pd. We know that for any i, ZNM

i =
∑

1≤u,v≤M Au,v
i ⊗ Eu,v, thus if we set

A = (Au,v
i )i,u,v, to show that (25) is zero, we only need to show that for any monomials Q,

τN

(
Dj(δ̃1iQ)(u,A)⊠Dj(δ̃2iQ)(v,A)

)
= 0. (26)

In order to do so, if there exist S, T monomials and l such that Q = SUlU
∗
l T , then

δiQ = δiS × 1⊗ UlU
∗
l T + SUlU

∗
l ⊗ 1× δiT

In particular for any polynomial K,H ,

Dj(K̃UlU
∗
l H̃)(u,A) = δjK̃(u,A) #̃ H̃(u,A) + δjH̃(u,A) #̃ K̃(u,A) = Dj(K̃H)(u,A).

Consequently, we have

τN

(
Dj(δ̃1iQ)(u,A)⊠Dj(δ̃2iQ)(v,A)

)
= τN

(
Dj(δ̃1i S)(u,A)⊠Dj(δ̃2i S × UlU

∗
l T̃ )(v,A)

)

+ τN

(
Dj(S̃UlU

∗
l × δ̃1i T )(u,A)⊠Dj(δ̃2i T )(v,A)

)

= τN

(
Dj(δ̃1i S)(u,A)⊠Dj(δ̃2i S × T̃ )(v,A)

)

+ τN

(
Dj(S̃ × δ̃1i T )(u,A)⊠Dj(δ̃2i T )(v,A)

)

= τN

(
Dj( ˜δ1i (ST ))(u,A)⊠Dj( ˜δ2i (ST ))(v,A)

)
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By induction one can show that Q is a linear combination of monomial of the form A0U
n1

i1
A1 . . . Ak−1U

nk

ik
Ak

where for any s, ns ∈ Z \ {0} and either τN (As) = 0, or As = IN and is 6= is+1. Thus δiQ is a linear
combination of terms of one of the following form,

A0U
n1

i1
A1 . . . Ak−1U

nk

ik
⊗B0U

m1

j1
B1 . . . Bl−1U

ml

jl
Bl,

A0U
n1

i1
A1 . . . Ak−1U

nk

ik
Ak ⊗ Um1

j1
B1 . . . Bl−1U

ml

jl
Bl,

where for any s, ms, ns ∈ Z \ {0} and either As = IN and is 6= is+1, or τN (As) = 0, similarly for Bs. We
are now going to prove (26). We restrict ourselves to the first case since the second one is similar. We
need to prove that

τN

(
Dj(A0u

n1

i1
A1 . . . Ak−1u

nk

ik
)×Dj(B0v

m1

j1
B1 . . . Bl−1v

ml

jl
Bl)
)
= 0.

This is a linear combination of terms of the form,

τN

(
B0v

m1

j1
B1 . . . Bt−1v

α2

jt
uβ1

ir
Ar . . . u

nk

ik
A0u

n1

i1
A1 . . . Ar−1u

α1

ir
vβ2

jt
Bt . . . Bl−1v

ml

jl
Bl

)
,

where α1 + β1 = nr and α2 + β2 = mt. If (α2, β1) 6= (0, 0) and (α1, β2) 6= (0, 0), then this is equal to
zero by freeness of u,v and MN (C). Otherwise if (α2, β1) = (0, 0) for example, then

τN

(
B0v

m1

j1
B1 . . . Bt−1v

α2

jt
uβ1

ir
Ar . . . u

nk

ik
A0u

n1

i1
A1 . . . Ar−1u

α1

ir
vβ2

jt
Bt . . . Bl−1v

ml

jl
Bl

)

= τN

(
B0v

m1

j1
B1 . . . v

mt−1

jt−1
(Bt−1Ar − τN (Bt−1Ar))u

nr+1

ir+1
. . . unk

ik
A0u

n1

i1
A1 . . . Ar−1u

α1

ir
vβ2

jt
Bt . . . Bl−1v

ml

jl
Bl

)

+ τN (Bt−1Ar))τN

(
B0v

m1

j1
B1 . . . v

mt−1

jt−1
u
nr+1

ir+1
. . . unk

ik
A0u

n1

i1
A1 . . . Ar−1u

α1

ir
vβ2

jt
Bt . . . Bl−1v

ml

jl
Bl

)

= 0.

Thus we get that,

τN ⊗ τM

(
(h ◦ δj)(δ1i q)(UNu⊗ IM , ZNM )⊠ (h ◦ δj)(δ2i q)(UNv ⊗ IM , ZNM )

)
= 0.

Consequently, with Lemma 4.4 and 3.3, we have that

SN
t,y(A,B) =

t

N2

∑

j≤p

E

[
τN ⊗ τM

(
(h ◦ δj)(δ1i q)(UNut ⊗ IM , ZNM )⊠ (h ◦ δj)(δ2i q)(UNvt ⊗ IM , ZNM )

)

−τN⊗τM

(
(h ◦ δj)(δ1i q)(UN ũt ⊗ IM , ZNM )⊠ (h ◦ δj)(δ2i q)(UN ṽt ⊗ IM , ZNM )

)]

=
t

N2

∑

j≤p

E

[
τN ⊗ τM

(
h
(
δj(δ

1
i q)(U

Nut ⊗ IM , ZNM )− δj(δ
1
i q)(U

N ũt ⊗ IM , ZNM )
)

⊠ (h ◦ δj)(δ2i q)(UNvt ⊗ IM , ZNM )

+ (h ◦ δj)(δ2i q)(UN ũt ⊗ IM , ZNM )

⊠ h
(
δj(δ

1
i q)(U

Nvt ⊗ IM , ZNM )− δj(δ
1
i q)(U

N ṽt ⊗ IM , ZNM )
)]

.

Hence by using Duhamel formula with Lemmas 3.3 and 3.1, we have that there is a polynomial LP which
only depends on P such that

∣∣SN
t,y(A,B)

∣∣ ≤ LP

(∥∥ZNM
∥∥)M

2

N2
(1 + y4) te−

t
2 .

We now have the tools to prove Theorem 4.1.
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Proof of Theorem 4.1. Thanks to Lemma 4.1, and since Di e
iyP = iy δiP #̃ eiyP , there exist a family of

monomials (Ak, Bk)k and a constant C which only depends on P such that,
∣∣∣∣∣E
[

1

MN
TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)) )
− τN ⊗ τM

(
f
(
P̃
(
uN
t , ZNM

)) )]
∣∣∣∣∣

≤ C
∑

k

∫
|y|
∫ t

0

∣∣SN
t,y(Ak, Bk)

∣∣ ds d|µ|(y).

Thanks to equation (24), by letting t got to infinity, we get that for some polynomial LP ,
∣∣∣∣∣E
[

1

MN
TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)))]
− τN ⊗ τM

(
f
(
P̃
(
u, ZNM

)))
∣∣∣∣∣

≤ M2

N2
LP

(∥∥ZNM
∥∥)×

∫

R

(|y|+ |y|5) d|µ|(y) .

Whereas with equation (23), we get that
∣∣∣∣∣E
[

1

MN
TrMN

(
f
(
P̃
(
UN ⊗ IM , ZNM

)) )
− τN ⊗ τM

(
f
(
P̃
(
uN
t , ZNM

)) )]
∣∣∣∣∣

≤ t2
M2

N2
LP

(∥∥ZNM
∥∥)×

∫

R

(|y|+ y4) d|µ|(y) .

Besides, thanks to Proposition 3.3, thanks to Duhamel formula we can find a polynomial L′
P such that

∣∣∣∣∣τN ⊗ τM

(
eiyP̃(u,Z

NM)
)
− τN ⊗ τM

(
eiyP̃(u

N
t ,ZNM)

)∣∣∣∣∣

=

∣∣∣∣∣τN ⊗ τM

(
eiyP̃(U

Nu,ZNM)
)
− τN ⊗ τM

(
eiyP̃(U

Nut,Z
NM)

)∣∣∣∣∣

≤ e−t/2L′
P

(∥∥ZNM
∥∥)× |y|.

Hence the conclusion by fixing t = 4 ln(N).

We can finally prove Theorem 1.1.

Proof of Theorem 1.1. We want to use Theorem 4.1. To do so we would like to take the Fourier transform
of f and use Fourier inversion formula. However we did not assume that f is integrable. Thus the first
step of the proof is to show that we can assume that f has compact support. Since UN and u are unitaries,

there exists a polynomial H which only depends on P such that
∥∥∥P̃
(
UN ⊗ IM , ZNM

)∥∥∥ ≤ H
(∥∥ZNM

∥∥).

Consequently since we also have that
∥∥∥P̃ (u⊗ IM , ZNM )

∥∥∥ ≤ H
(∥∥ZNM

∥∥), we can replace f by fg where

g is a C∞ function which takes value in [0, 1], takes value 1 in [−H
(∥∥ZNM

∥∥) , H
(∥∥ZNM

∥∥)] and 0 outside
of [−H

(∥∥ZNM
∥∥)− 1, H

(∥∥ZNM
∥∥)+ 1]. Since f can be differentiated six times, we can take its Fourier

transform and then invert it so that with the convention f̂(y) = 1
2π

∫
R
f(x)e−ixydx, we have

∀x ∈ R, f(x) =

∫

R

eixyf̂(y) dy.

Besides since if f has compact support bounded by H
(∥∥ZNM

∥∥)+1, then
∥∥∥f̂
∥∥∥
∞

≤ 2
(
H
(∥∥ZNM

∥∥)+ 1
)
‖f‖∞,

we have
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∫

R

(|y|+ y4)
∣∣∣f̂(y)

∣∣∣ dy ≤
∫

R

|y|+ |y|3 + y4 + y6

1 + y2

∣∣∣f̂(y)
∣∣∣ dy

≤

∫

R

∣∣∣(̂f)(1)(y)
∣∣∣ +
∣∣∣(̂f)(3)(y)

∣∣∣+
∣∣∣(̂f)(4)(y)

∣∣∣+
∣∣∣(̂f)(6)(y)

∣∣∣
1 + y2

dy

≤ 2
(
H
(∥∥ZNM

∥∥)+ 1
)
‖f‖C6

∫

R

1

1 + y2
dy

≤ C
(
H
(∥∥ZNM

∥∥)+ 1
)
‖f‖C6 ,

for some absolute constant C. Hence it satisfies the hypothesis of Theorem 4.1 with µ(dy) = f̂(y)dy,
thus we have

∣∣∣∣E
[

1

MN
Tr
(
f
(
P̃
(
UN ⊗ IM , ZNM

)) )]
− τ
(
f
(
P̃
(
u⊗ IM , ZNM

)))∣∣∣∣

≤ M2 ln2(N)

N2
LP

(∥∥ZNM
∥∥)
∫

R

(|y|+ y4)
∣∣∣f̂(y)

∣∣∣ dy

≤ M2 ln2(N)

N2
CLP

(∥∥ZNM
∥∥) (H

(∥∥ZNM
∥∥)+ 1

)
‖f‖C6 .

We similarly get the case where f is a C7 function.

Finally to conclude this subsection, it is worth noting the following corollary from Lemma 4.1 and
4.4.

Corollary 4.1. We define,

• u = (u1, . . . , up) a family of p free Haar unitaries,

• UN = (UN
1 , . . . , UN

p ) random unitary i.i.d. matrices of size N whose law is invariant by multipli-
cation by a matrix of SUN(R),

• ut = (u1
t , . . . , u

p
t ) a family of p free unitary Brownian motions at times t,

• Y MN be a family of commuting matrices which converges in distribution towards a family y,

• P ∈ Pd a self-adjoint polynomial.

Then,

lim
N→∞

N2

(
E

[
1

MN
TrMN

(
f
(
P̃
(
UN ⊗ IMN

, IN ⊗ Y MN
)))]

− τN ⊗ τM

(
f
(
P̃
(
u⊗ IMN

, IN ⊗ Y MN
))))

=
1

2

∑

1≤i,j≤p

∫ ∫ ∞

0

t τ⊗2

(
Djδ

1
i

(
Di e

iyP̃
)
(uut ⊗ 1, 1⊗ y) ⊠ Djδ

2
i

(
Di e

iyP̃
)
(uvt ⊗ 1, 1⊗ y)

)
dt dµ(y).
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5 Proof of Corollaries

5.1 Proof of Corollary 1.1

We could directly apply Theorem 1.1 to fz : x → (z − x)−1, however for z such that ℑz is small, we
have ‖f‖

C6 = O
(
(ℑz)−7

)
when we want O

(
(ℑz)−5

)
instead. Since P is self-adjoint, GP (z) = GP (z),

thus we can assume that ℑz < 0, but then

fz(x) =

∫ ∞

0

eixy (ie−iyz) dy.

Consequently with µz(dy) = ie−iyz dy, we have

∫ ∞

0

(y + y4) d|µz |(y) =
1

|ℑz|2 +
24

|ℑz|5
.

Thus by applying Theorem 4.1 with ZNM =
(
IN ⊗ Y M

1 , . . . , IN ⊗ Y M
p

)
, P and fz, we have

∣∣E
[
GP (UN⊗IM ,IN⊗Y M )(z)

]
−GP (u⊗IM ,1⊗Y M )(z)

∣∣ ≤ M2 ln2(N)

N2
LP

(∥∥ZNM
∥∥)
∫

R

(1 + y4) d|µz|(y).

Now since
∥∥ZNM

∥∥ =
(∥∥Y M

1

∥∥ , . . . ,
∥∥Y M

p

∥∥) which does not depend on N , we finally have

∣∣E
[
GP (UN⊗IM ,IN⊗Y M )(z)

]
−GP (u⊗IM ,1⊗Y M )(z)

∣∣ ≤ M2 ln2(N)

N2
LP

(∥∥Y M
1

∥∥ , . . . ,
∥∥Y M

p

∥∥)
(

1

|ℑz|2 +
24

|ℑz |5
)
.

5.2 Proof of Corollary 1.2

Let f : R → R be a Lipschitz function uniformly bounded by 1 and with Lipschitz constant at most
1, we want to find an upper bound on

∣∣∣∣∣E
[

1

MN
TrNM

(
f
(
P
(
UN ⊗ IM , IN ⊗ YM

)) )]
− τ ⊗ τM

(
f (P (u⊗ IM , 1⊗ YM ))

)∣∣∣∣∣. (27)

Firstly, since UN are unitary matrices, we can assume that the support of f is bounded by a constant
S = H(

∥∥Y M
∥∥) for some polynomial H independent of everything. However we cannot apply directly

Theorem 1.1 since f is not regular enough. In order to deal with this issue we use the convolution with
gaussian random variable, thus let G be a centered gaussian random variable, we set

fε : x → E[f(x + εG)].

Since f has Lipschitz constant 1, we have for any x ∈ R,

|E[f(x+ εG)]− f(x)| ≤ ε.

Since fε is regular enough we could now apply Theorem 1.1, however we a get better result by using
Theorem 4.1. Indeed we have

fε(x) =
1√
2π

∫

R

f(x+ εy)e−y2/2 dy

=
1√
2π

∫

R

f(y)
e−

(x−y)2

2ε2

ε
dy

=
1

2π

∫

R

f(y)

∫

R

ei(x−y)ue−(uε)2/2 du dy.

Since the support of f is bounded, we can apply Fubini’s theorem:
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fε(x) =
1

2π

∫

R

eiux
∫

R

f(y)e−iyu dy e−(uε)2/2 du.

And so with the convention ĥ(u) = 1
2π

∫
R
h(y)e−iuydy, we have

fε(x) =

∫

R

eiuxf̂(u)e−(uε)2/2 du.

Thus if we set µε(dy) = f̂(y)e−(yε)2/2 dy, then, since ‖f‖∞ ≤ 1,
∫

R

(1 + y4)d|µε|(y) ≤ 2S

∫

R

(1 + y4)e−y2/2 dy ε−5.

Consequently we can apply Theorem 4.1 with fε and since ‖f − fε‖∞ ≤ ε, there exists a polynomial RP

such that (27) can be bounded by

2ε+RP

(∥∥Y M
∥∥)M

2 ln2(N)

N2ε5
.

Thus we can now fix ε = (N−1 ln(N))1/3 and we get that for any f Lipschitz function uniformly bounded
by 1 and with Lipschitz constant at most 1, (27) can be bounded by

2RP

(∥∥Y M
∥∥)M2

(
lnN

N

)1/3

.

5.3 Proof of Theorem 1.2

Firstly, we need to set the operator norm of tensor of C∗-algebras we will work with. When writing
the proof it appears that it is the minimal tensor product as defined in 2.4. The following two lemmas
were used in [11], see Lemma 4.1.8 from [7] for a proof of the first one and Lemma 4.3 from [11] for the
second one. In order to learn more about the second lemma, especially how to weaken the hypothesis,
we refer to [23].

Lemma 5.1. Let (A, τA) and (B, τB) be C∗-algebra with faithful traces, then τA ⊗ τB extends uniquely
to a faithful trace τA ⊗min τB on A⊗min B.

Lemma 5.2. Let C be an exact C∗-algebra endowed with a faithful state τC, let Y N ∈ AN be a sequence
of family of noncommutative random variable in a C∗-algebra AN which converges strongly towards a
family Y in a C∗-algebra A endowed with a faithful state τA. Let S ∈ C be a family of noncommutative
random variable, then the family (S ⊗ 1, 1 ⊗ Y N ) converges strongly in distribution towards the family
(S ⊗ 1, 1⊗ Y ).

In order to prove Theorem 1.2 we use well-known concentration properties of unitary Haar matrices
coupled with an estimation of the expectation, let us begin by stating the concentration properties that
we will use.

Proposition 5.1. Let f be a continuous function on U
p
N , such that for any X,Y ∈ U

p
N ,

|f(X)− f(Y )| ≤ C
∑

i

TrN ((Xi − Yi)(Xi − Yi)
∗)

1/2
.

Then if W is a vector of p independent random matrices distributed according to the Haar measure on
SUN , and U a vector of independent unitary Haar matrices of size N , we have,

P (|f(U)− EW [f(WU)]| ≥ δ) ≤ 4p e−(
δ

2pC )
2
N .
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Proof. We want to use Corollary 4.4.28 from [2], in order to do so let us first assume that f takes real
values. We then set,

f i
Ui+1,...,Up

: Ui → EW1,...,Wi−1 [f(W1U1, . . . ,Wi−1Ui−1, Ui, Ui+1, . . . , Up)] .

Thus,

f(U)− EW [f(WU)] =
∑

1≤i≤p

f i
Ui+1,...,Up

(Ui)− EWi

[
f i
Ui+1,...,Up

(WiUi)
]
.

Besides for any Ui, Vi, we have that |f i
Ui+1,...,Up

(Ui) − f i
Ui+1,...,Up

(Vi)| ≤ C TrN ((Ui − Vi)(Ui − Vi)
∗)1/2.

Thus thanks to Corollary 4.4.28 from [2] we have that,

P (|f(U)− EW [f(WU)]| ≥ δ) ≤
∑

i

P

(∣∣∣f i
Ui+1,...,Up

(Ui)− EYi

[
f i
Ui+1,...,Up

(WiUi)
]∣∣∣ ≥ δ

p

)

≤ 2p e−(
δ

pC )
2
N .

Finally we conclude by taking the real and imaginary part of f .

We can now prove the concentration inequality that we will use in the rest of this paper. To simplify
notations we will write M instead of MN . We also set ZNM = (ZN⊗IM , IN⊗Y M ) and Z = (z⊗1, 1⊗y).

Proposition 5.2. Let P ∈ Pd, there are polynomials HP and KP which only depends on P such that
for any N,M ,

P

( ∣∣∣
∥∥∥P̃ (UN ⊗ IM , ZNM )

∥∥∥− E
[∥∥∥P̃ (UN ⊗ IM , ZNM )

∥∥∥
] ∣∣∣ ≥ δ +

KP (
∥∥ZNM

∥∥)
N

)
≤ e

− δ2N

HP (‖ZNM‖) .

Proof. We set GN : X 7→
∥∥∥P̃ (X ⊗ IM , ZNM )

∥∥∥. One can find a polynomial LP such that for any N and

ZNM ,
|GN (X)−GN (Y )| ≤ LP

(∥∥ZNM
∥∥)∑

i

‖Xi − Yi‖ ,

where ‖.‖ is the operator norm. Besides

∑

i

‖Xi − Yi‖ ≤
∑

i

TrN ((Xi − Yi)
∗(Xi − Yi))

1/2
.

Hence with Proposition 5.1, there is a polynomial HP which only depends on P such that for any N,M ,

P
( ∣∣∣
∥∥∥P̃ (UN ⊗ IM , ZNM )

∥∥∥− EW

[∥∥∥P̃ (WUN ⊗ IM , ZNM )
∥∥∥
] ∣∣∣ ≥ δ

)
≤ e

− δ2N

HP (‖ZNM‖) .

Besides for any matrix U ∈ UN , there exist S ∈ SUN and θ ∈ [0, 2π] such that U = ei
θ
N S. Indeed we

just have to pick θ such that eiθ = det(U). Thus there is a polynomial KP such that

∣∣∣EW

[∥∥∥P̃ (WUN ⊗ IM , ZNM )
∥∥∥
]
− E

[∥∥∥P̃ (UN ⊗ IM , ZNM )
∥∥∥
]∣∣∣ ≤

KP (
∥∥ZNM

∥∥)
N

.

This concludes the proof.

We can now prove Theorem 1.2. Firstly, we can assume that ZN and Y M are deterministic matrices
by Fubini’s theorem. The convergence in distribution is a well-known theorem, we refer to [2], Theorem
5.4.10. We set g a function of class C∞ which takes value 0 on (−∞, 1/2] and value 1 on [1,∞), and

belongs to [0, 1] otherwise. Let us define fε : t 7→ g
(
ε−1

(
t−

∥∥∥P̃ P̃ ∗(u⊗ 1, Z)
∥∥∥
))

. By Theorem 1.1,

there exists a constant C which only depends on P , supM
∥∥Y M

∥∥ and supN
∥∥ZN

∥∥ (which is finite thanks
to the strong convergence assumption on Y M and ZN ) such that,
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∣∣∣∣∣E
[
TrMN

(
fε

(
P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)))]
−MNτN ⊗ τM

(
fε

(
P̃ P̃ ∗

(
u⊗ IM , ZNM

)))
∣∣∣∣∣

≤ Cε−7M
3

N
.

According to Theorem A.1 from [18], (u, ZN)N≥1 converges strongly in distribution towards (u, z)
since, given a system of free semi-circular variable, we can write ui = f(xi) for a specific function f built
with the help of Lemma 3.1 of [12]. Besides thanks to Lemma 5.2 and Corollary 17.10 from [24], we
have that (u ⊗ IM , 1 ⊗ Y M )M≥1 converges strongly in distribution towards (u ⊗ 1, 1 ⊗ y). In Theorem
1.2, we are interested in the situation where ZNM = ZN ⊗ IM or ZNM = IN ⊗ Y M . So, without loss of
generality, we restrict ourselves to this kind of ZNM . We know that (u ⊗ IM , ZNM ) converges strongly
towards (u⊗ 1, Z), but since the support of fε is disjoint from the spectrum of P̃ P̃ ∗(u⊗ 1, Z), thanks to

Proposition 2.1, for N large enough, τN ⊗ τM

(
fε

(
P̃ P̃ ∗

(
u⊗ IM , ZNM

)))
= 0 and therefore,

E
[
TrMN

(
fε

(
P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)) )]
≤ Cε−7M

3

N
. (28)

Hence, we deduce for N large enough,

E
[∥∥∥P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)∥∥∥
]
−
∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥

≤ ε+

∫ ∞

ε

P
(∥∥∥P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)∥∥∥ ≥
∥∥∥P̃ P̃ ∗(u ⊗ 1, Z)

∥∥∥+ α
)

dα

≤ ε+

∫ K

ε

P
(
TrNM

(
fα

(
P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)))
≥ 1
)

dα

≤ ε+ C′ε−6M
3

N
.

Finally we get that almost surely,

limsup
N→∞

E
[∥∥∥P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)∥∥∥
]
≤
∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥ .

Thanks to Proposition 5.2, by taking δN = N−1/4 and using Borel-Cantelli lemma, we get that almost
surely,

lim
N→∞

∥∥∥P̃ P̃ ∗
(
UN ⊗ IM , ZNM

)∥∥∥− E
[∥∥∥P̃ P̃ ∗

(
UN ⊗ IM , ZNM

)∥∥∥
]
= 0

And consequently almost surely,

limsup
N→∞

∥∥∥P̃ P̃ ∗
(
UN ⊗ IM , ZNM

)∥∥∥ ≤
∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥ .

Besides, we know thanks to Theorem 5.4.10 of [2] that if h is a continuous function taking posi-

tive values on
(∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥− ε,∞
)

and taking value 0 elsewhere. Then 1
MN TrMN (h(P̃ P̃ ∗(UN ⊗

IM , ZNM ))) converges almost surely towards τA ⊗min τB(h(P̃ P̃ ∗(u⊗ 1, Z))). If this quantity is positive,
then almost surely for N large enough so is 1

MN TrMN (h(P̃ P̃ ∗(UN ⊗ IM , ZNM ))), thus
∥∥∥P̃ P̃ ∗(UN ⊗ IM , ZNM )

∥∥∥ ≥
∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥− ε.

Since h is non-negative and the intersection of the support of h with the spectrum of P̃ P̃ ∗(u ⊗ 1, Z) is
non-empty, we have that h(P̃ P̃ ∗(u⊗1, Z)) ≥ 0 and is not 0. Besides, we know that the trace on the space
where z is defined is faithful, and so is the trace on the C∗-algebra generated by a single semicircular
variable, hence by Theorem 2.1, so is τA. Thus, since both τA and τB are faithful, by Lemma 5.1, so is
τA ⊗min τB and τA ⊗min τB(h(P̃ P̃ ∗(u ⊗ 1, Z))) > 0. As a consequence, almost surely,

liminf
N→∞

∥∥∥P̃ P̃ ∗
(
UN ⊗ IM , ZNM

)∥∥∥ ≥
∥∥∥P̃ P̃ ∗(u⊗ 1, Z)

∥∥∥ .

We finally conclude thanks to the fact that for any y in a C∗-algebra, ‖yy∗‖ = ‖y‖2.
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